WorldWideScience

Sample records for cho-k1 cells mrid

  1. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin;

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most...... of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...

  2. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions.

    Science.gov (United States)

    Czub, J; Banaś, D; Błaszczyk, A; Braziewicz, J; Buraczewska, I; Choiński, J; Górak, U; Jaskóła, M; Korman, A; Lankoff, A; Lisowska, H; Łukaszek, A; Szefliński, Z; Wójcik, A

    2009-03-01

    Chinese hamster ovary CHO-K1 cells were exposed to high LET (12)C-beam (LET: 830 keV/microm) in the dose range of 0-6 Gy and to (60)Co irradiation and the RBE value was obtained. Effects of (12)C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio sigma(2)/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  3. Effects of aldicarb and propoxur on cytotoxicity and lipid peroxidation in CHO-K1 cells.

    Science.gov (United States)

    Maran, E; Fernández-Franzón, M; Font, G; Ruiz, M J

    2010-06-01

    Cytotoxic effects of aldicarb, its sulfone and sulfoxide, and propoxur, lipid peroxidation and antioxidant parameters in Chinese Hamster Ovary (CHO-K1) cells were determined. D,L-buthionine-(S,R)-sulfoximine (BSO) was assayed to determine the role of GSH in the protection against carbamate cytotoxicity. Pre-treatment with 60 microM BSO, induced a significant decrease in the glutathione reductase (GR; 64-141%), the glutathione peroxidase (GPx; 10-30%) and the glutathione S-transferase (GST; 59-93%) activities, and its GSH levels (79-85%), while the oxidized glutathione (GSSG) levels significantly increased (64-78%) respect to experiment non-BSO-pretreated. Carbamates BSO pre-treated vs. non-BSO pre-treated showed a significant increase in malondialdehyde (MDA) production (from 13% to 52% vs. 25% to 93%). These data suggest that carbamates could injure CHO-K1 cells via oxidative stress by the increase of MDA production; moreover, BSO enhance the oxidative damage caused by carbamates. However, the glutathione system protects cells from carbamates damage.

  4. Performance evaluation of CHO-K1 cell in culture medium supplemented with hemolymph

    Directory of Open Access Journals (Sweden)

    Tássia Raffoul

    2005-06-01

    Full Text Available The aim of this work was to evaluate the potential of hemolymph utilization as a culture medium supplement to cultivate the animal cell CHO-K1. For this purpose 1% v/v of hemolymph was added to DMEM medium containing 10% v/v of FBS and 1 or 4.5 g/L of glucose. The culture was grown in spinner flasks incubated in a 10% v/v CO2 environment, at 37ºC, with the Cytodex 1 microcarrier. Comparing the results obtained from the culture with hemolymph against those without hemolymph, a positive influence of the hemolymph was observed, as the experiment with hemolymph presented a 52% higher cell concentration and a higher productivity of up to 40%.Desenvolvimento de meios de cultura isentos de soro fetal bovino (SFB é uma das grandes prioridades de pesquisa em desenvolvimento de processos com célula animal. O objetivo do presente trabalho foi realizar uma análise do potencial de uso da hemolinfa como suplemento do meio utilizado no cultivo da célula animal ancorante CHO-K1. Para isso, foi adicionado 1% v/v de extrato de hemolinfa ao meio DMEM contendo 10% v/v de SFB e 1,0 ou 4,5 g/L de glicose. O cultivo foi realizado em frascos tipo spinner em um ambiente de 10% v/v de CO2, a 37ºC, utilizando o microcarregador Cytodex 1. Comparando os resultados obtidos no ensaio com hemolinfa com um sem hemolinfa pode-se notar uma influência positiva da hemolinfa no cultivo, já que o ensaio com hemolinfa apresentou uma concentração máxima de células 52% maior e uma produtividade máxima de até 40% maior.

  5. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  6. Protective effect of propolis on radiation-induced chromosomal damage on Chinese hamster ovary cells (CHO-K1)

    Energy Technology Data Exchange (ETDEWEB)

    Spigoti, Geyza; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br; Tsutsumi, Shiguetoshi [Amazon Food Ltd., Tokyo (Japan)], e-mail: fwip5138@mb.infoweb.ne.jp

    2009-07-01

    In the last years, particular interest has been given to investigations concerning natural, effective and nontoxic compounds with radioprotective capacity in concert with increasing utilization of different types of ionizing radiation for various applications. Among them, propolis, a resinous mixture of substances collected by honey bees (Apis mellifera) has been considered promising since it presents several advantageous characteristics, i.e., antiinflammatory, anticarcinogenic, antimicrobial and free radical scavenging action. It is, therefore, a direct antioxidant that protects cells and organisms from the adverse effects of ionizing radiation. These relevant biological activities are mainly mediated by the flavonoids, present at relatively high concentrations in the propolis. Considering that the chemical composition and, consequently, the biological activity of propolis is variable according to the environmental plant ecology, the present study was conducted in order to evaluate the radioprotective capacity of Brazilian propolis, collected in the State of Rio Grande do Sul, against genotoxic damages induced by {sup 60}Co {gamma}-radiation in Chinese hamster ovary cells (CHO-K1). for this purpose, micronucleus induction was analyzed concerning irreparable damage, specifically related to DNA double-strand breaks, that are potentially carcinogenic. CHO-K1 cells were submitted to different concentrations of propolis (3 - 33 {mu}g/ml), 1 h before irradiation, with 1 Gy of {gamma} radiation (0.722 Gy/min). The data obtained showed a decreasing tendency in the quantity of radioinduced damage on cells previously treated with propolis. The radioprotective effect was more prominent at higher propolis concentration. The treatment with propolis alone did not induce genotoxic effects on CHO-K1 cells. Beside that, the treatment with propolis, associated or not with radiation, did not influence the kinetics of cellular proliferation. (author)

  7. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    Camille C. Hanot

    2015-12-01

    Full Text Available Superparamagnetic iron-oxide nanoparticles (SPIONs show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells. We evaluated the effect of particle diameter (50 and 100 nm and polyethylene glycol (PEG chain length (2k, 5k and 20k Da on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and sulforhodamine B (SRB assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS. Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

  8. Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells

    NARCIS (Netherlands)

    Westerink, W.M.; Schirris, T.J.J.; Horbach, G.J.; Schoonen, W.G.

    2011-01-01

    In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these

  9. Sulfhydryl compounds inhibit the cyto- and geno-toxicity of o-phenylphenol metabolites in CHO-K1 cells.

    Science.gov (United States)

    Tayama, S; Nakagawa, Y

    1991-01-01

    The effects of cysteine and reduced glutathione (GSH) on the genotoxicity of o-phenylphenol (OPP) and its metabolites, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), were examined using the frequency of sister-chromatid exchanges (SCEs) and chromosome aberrations in CHO-K1 cells as parameters. Cytotoxic (cell-progression delay) and cytogenetic effects induced by a 3-h treatment with OPP, PHQ (100 micrograms/ml) or PBQ (50 micrograms/ml) with S9 mix after a 27-h expression time were inhibited by cysteine or GSH (3-10 mM). Materials corresponding to the cysteine or GSH adducts were found by HPLC in each incubation mixture. In the culture without S9 mix, PHQ and PBQ showed severe cytotoxicity since no metaphases could be obtained at doses over 25 and 5 micrograms/ml, respectively, and the sulfhydryl compounds inhibited the toxicity by the formation of adducts with PBQ and by inhibiting the formation of PBQ in the case of PHQ. With PHQ, the sulfhydryl compounds appeared to inhibit autooxidation. However, the sulfhydryl compounds did not inhibit the cytotoxic and cytogenetic effects caused by OPP in the cell mixture without S9 mix, but on the contrary intensified them. No adduct formation was detected in the incubation solution. On the basis of these results, it is considered that electrophilic quinone (PBQ) and/or semiquinone (phenylsemiquinone, PSQ) radicals, capable of binding to nucleophilic small molecules (such as cysteine and GSH) or (biological) macromolecules, are produced from metabolite PHQ in metabolic oxidation of OPP, and induce cyto- and geno-toxic effects in the cells. The cyto- and geno-toxic effects of OPP itself to the cells are clearly independent of any electrophilic radical reaction.

  10. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays.

    Science.gov (United States)

    Cabaniols, Jean-Pierre; Ouvry, Christine; Lamamy, Véronique; Fery, Isabelle; Craplet, Marie-Laure; Moulharat, Natacha; Guenin, Sophie-Pénélope; Bedut, Stéphane; Nosjean, Olivier; Ferry, Gilles; Devavry, Séverine; Jacqmarcq, Cécile; Lebuhotel, Céline; Mathis, Luc; Delenda, Christophe; Boutin, Jean A; Duchâteau, Philippe; Cogé, Francis; Pâques, Frédéric

    2010-09-01

    The development of cell-based assays for high-throughput screening (HTS) approaches often requires the generation of stable transformant cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. The authors developed a targeted integration system in Chinese hamster ovary (CHO) cells, called the cellular genome positioning system (cGPS), based on the stimulation of homologous gene targeting by meganucleases. Five different GOIs were knocked in at the same locus in cGPS CHO-K1 cells. Further characterization revealed that the cGPS CHO-K1 system is more rapid (2-week protocol), efficient (all selected clones expressed the GOI), reproducible (GOI expression level variation of 12%), and stable over time (no change in GOI expression after 23 weeks of culture) than classical random integration. Moreover, in all cGPS CHO-K1 targeted clones, the recombinant protein was biologically active and its properties similar to the endogenous protein. This fast and robust method opens the door for creating large collections of cell lines of better quality and expressing therapeutically relevant GOIs at physiological levels, thereby enhancing the potential scope of HTS.

  11. DNA-DSB in CHO-K1 cells induced by heavy-ions: Break rejoining and residual damage (GSI)

    Science.gov (United States)

    Taucher-Scholz, G.; Heilmann, J.; Becher, G.; Kraft, G.

    1994-01-01

    DNA double strand breaks (DSB's) are the critical lesions involved in cellular effects of ionizing radiation. Therefore, the evaluation of DSB induction in mammalian cells after heavy ion irradiation is an essential task for the assessment of high-LET radiation risk in space. Of particular interest has been the question of how the biological efficiency for the cellular inactivation endpoint relates to the initial lesions (DSBs) at varying LETs. For cell killing, an increased Relative Biological Efficiency (RBE) has been determined for highLET radiation around 100-200 keV/mu m. At higher LET, the RBE's decrease again to values below one for the very heavy particles. At GSI, DSB-induction was measured in CHO-K1 cells following irradiation with accelerated particles covering a wide LET range. The electrophoretic elution of fragmented DNA out of agarose plugs in a constant electrical field was applied for the detection of DSB's. The fraction of DNA retained was determined considering the relative intensities of ethidium bromide fluorescence in the well and in the gel lane. Dose-effect curves were established, from which the RBE for DSB induction was calculated at a fraction of 0.7 of DNA retained In summary, these rejoining studies are in line with an enhanced severity of the DNA DSB's at higher LET's, resulting in a decreased repairability of the induced lesions. However, no information concerning the fidelity of strand breaks rejoining is provided in these studies. To assess correct rejoining of DNA fragments an experimental system involving individual DNA hybridization bands has been set up. In preliminary experiments Sal I generated DNA fragments of 0.9 Mbp were irradiated with xrays and incubated for repair However, restitution of the original signals was not observed, probably due to the high radiation dose necessary for breakage of a fragment of this size. A banding pattern with NotI hybridization signals in a higher MW range (3Mbp) has been obtained by varying

  12. Cytoskeleton, endoplasmic reticulum and nucleus alterations in CHO-K1 cell line after Crotalus durissus terrificus (South American rattlesnake venom treatment

    Directory of Open Access Journals (Sweden)

    B. P. Tamieti

    2007-01-01

    Full Text Available Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

  13. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells.

    Science.gov (United States)

    Di Virgilio, A L; Reigosa, M; Arnal, P M; Fernández Lorenzo de Mele, M

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO(2)) and aluminium oxide (Al(2)O(3)) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 microg/mL TiO(2) and 0.5-10 microg/mL Al(2)O(3). SCE frequencies were higher for cells treated with 1-5 microg/mL TiO(2). The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO(2). No SCE induction was achieved after treatment with 1-25 microg/mL Al(2)O(3). In conclusion, findings showed cytotoxic and genotoxic effects of TiO(2) and Al(2)O(3) NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on.

  14. GD3 expression in CHO-K1 cells increases growth rate, induces morphological changes, and affects cell-substrate interactions.

    Science.gov (United States)

    Daniotti, Jose L; Zurita, Adolfo R; Trindade, Vera M T; Maccioni, Hugo J F

    2002-11-01

    We have generated a panel of CHO-K1 cell clones with different glycolipid compositions by stable transfection of appropriate glycosyltransferases and studied the morphological and growth phenotype of a clone stably expressing Sial-T2. Compared with the GM3 expressing parental cells, Sial-T2 transfectants show low expression of GM3 and neo expression of GD3 and GT3. These cells show about 60% reduction of the mean cell area, and about 2-fold increase of the mean colony area and growth rate. Cells over expressing Sial-T2 showed a flattened appearance, and with time in culture they detached from the substrate leaving adhered material that was GD3 immunoreactive. No apoptotic or proteome differences could be detected in the Sial-T2 transfectants. Thus, increased expression of GD3 and GT3 influence parameters of growth and social behavior of CHO-K1 cells. However, the molecular and cellular basis underlying these influences requires further investigation.

  15. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Fujitani, Yuji; Furuyama, Akiko [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Kanno, Sanae [Department of Legal Medicine, St. Marianna School of Medicine (Japan)

    2012-02-15

    The toxicity of carbon nanotubes (CNTs), a highly promising nanomaterial, is similar to that of asbestos because both types of particles have a fibrous shape and are biopersistent. Here, we investigated the characteristics of macrophage receptor with collagenous structure (MARCO), a membrane receptor expressed on macrophages that recognizes environmental or unopsonized particles, and we assessed whether and how MARCO was involved in cellular uptake of multi-walled CNTs (MWCNTs). MARCO-transfected Chinese hamster ovary (CHO-K1) cells took up polystyrene beads irrespective of the particle size (20 nm–1 μm). In the culture of MARCO-transfected CHO-K1 cells dendritic structures were observed on the bottom of culture dishes, and the edges of these dendritic structures were continually renewed as the cell body migrated along the dendritic structures. MWCNTs were first tethered to the dendritic structures and then taken up by the cell body. MWCNTs appeared to be taken up via membrane ruffling like macropinocytosis, rather than phagocytosis. The cytotoxic EC{sub 50} value of MWCNTs in MARCO-transfected CHO-K1 cells was calculated to be 6.1 μg/mL and transmission electron microscopic observation indicated that the toxicity of MWCNTs may be due to the incomplete inclusion of MWCNTs by the membrane structure. -- Highlights: ►Carbon nanotubes (CNTs) were tethered to MARCO in vitro. ►CNTs were taken up rapidly into the cell body via MARCO by membrane ruffling. ►The incomplete inclusion of CNTs by membranes caused cytotoxicity.

  16. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.L. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata (1900) (Argentina); Reigosa, M. [Instituto Multidisciplinario de Biologia Celular (IMBICE), Calle 526 y Camino Gral. Belgrano (entre 10 y 11), La Plata 1900 (Argentina); Arnal, P.M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina); Fernandez Lorenzo de Mele, M., E-mail: mmele@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina)

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO{sub 2}) and aluminium oxide (Al{sub 2}O{sub 3}) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24 h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24 h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 {mu}g/mL TiO{sub 2} and 0.5-10 {mu}g/mL Al{sub 2}O{sub 3}. SCE frequencies were higher for cells treated with 1-5 {mu}g/mL TiO{sub 2}. The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO{sub 2}. No SCE induction was achieved after treatment with 1-25 {mu}g/mL Al{sub 2}O{sub 3}. In conclusion, findings showed cytotoxic and genotoxic effects of TiO{sub 2} and Al{sub 2}O{sub 3} NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on.

  17. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    Science.gov (United States)

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study.

  18. DNA display selection of peptide ligands for a full-length human G protein-coupled receptor on CHO-K1 cells.

    Directory of Open Access Journals (Sweden)

    Nobuhide Doi

    Full Text Available The G protein-coupled receptors (GPCRs, which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II type-1 receptor (hAT1R as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.

  19. Induction of 8-hydroxy-2'-deoxyguanosine in CHO-K1 cells exposed to phenyl-hydroquinone, a metabolite of ortho-phenylphenol.

    Science.gov (United States)

    Nakagawa, Y; Tayama, S

    1996-03-29

    The induction of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an index of oxidative DNA modification, was investigated in CHO-K1 cells exposed to phenyl-hydroquinone (PHQ), a major metabolite of ortho-phenylphenol (OPP), an antimicrobial. Addition of PHQ at a concentration of 50 microM to CHO cell suspensions (10(6) cells/ml) induced slight elevation of intracellular 8-OHdG levels. Pretreatment of CHO cells with 3-amino-1,2,4-triazole (AT, 20 mM) enhanced PHQ-induced 8-OHdG formation which was accompanied by cell death. Pretreatment of CHO-K1 cells with AT (20 mM) and deferoxamine (DeFe, 20 mM) inhibited the formation of 8-OHdG as well as cell death caused by PHQ. Neither AT nor DeFe affected cell viability or the formation of 8-OHdG in untreated CHO cells during the incubation period. The loss of cellular glutathione induced by the addition of PHQ alone was enhanced by the pretreatment of CHO cells with AT or AT plus DeFe. When PHQ was added to AT-pretreated cell suspensions, the concentration of PHQ decreased with time. This decrease was accompanied by the formation of phenyl-benzoquinone (PBQ). These results suggest that the reactive oxygen species derived from autoxidation of PHQ which converts to PBQ via phenyl-semiquinone elicit DNA damage in CHO cells, especially when the activity of cellular catalase is inhibited.

  20. Landfill leachate sludge use as soil additive prior and after electrocoagulation treatment: A cytological assessment using CHO-k1 cells.

    Science.gov (United States)

    Morozesk, M; Bonomo, M M; Rocha, L D; Duarte, I D; Zanezi, E R L; Jesus, H C; Fernandes, M N; Matsumoto, S T

    2016-09-01

    Electrocoagulation has recently attracted attention as a potential technique for treating toxic effluents due to its versatility and environmental compatibility, generating a residue chemically suitable to be used as a soil additive. In the present study, landfill leachate sludge hazardous effects were investigated prior and after electrocoagulation process using in vitro assays with the mammalian cells CHO-k1. An integrated strategy for risk assessment was used to correctly estimate the possible adverse landfill leachate sludge effects on human health and ecosystem. Electrocoagulation process proved to be an effective treatment due to possibility to improve effluent adverse characteristics and produce sludge with potential to be used as soil additive. Despite low cytoxicity, the residue presented genotoxic and mutagenic effects, indicating a capacity to induce genetic damages, probably due to induction of polyploidization process in cells. The observed effects demand an improvement of waste management methods for reduce negative risks of landfill leachate sludge application.

  1. Effect of scavengers of active oxygen species on cell damage caused in CHO-K1 cells by phenylhydroquinone, an o-phenylphenol metabolite.

    Science.gov (United States)

    Tayama, S; Nakagawa, Y

    1994-07-01

    Phenylhydroquinone (PHQ), a metabolite of o-phenylphenol (OPP), is easily autoxidized to phenylbenzoquinone (PBQ) via the semiquinone (phenylsemiquinone, PSQ) with concomitant production of superoxide anion radicals (O2-.). We have used scavengers of active oxygen species to examine whether or not O2-. produced during oxidation of PHQ is related to cell damage in CHO-K1 cells. PHQ at 10 micrograms/ml (3-h treatment) induced sister-chromatid exchange (SCE), endoreduplication (ERD) and cell-cycle delay in CHO-K1 cells. These effects were inhibited by catalase (280 U/ml), a scavenger of hydrogen peroxide (H2O2), as well as by the reductants, ascorbate (3 mM) and GSH (1 mM). Mannitol (50 mM), a scavenger of hydroxyl radical (OH.), was ineffective and superoxide dismutase (SOD, 150 U/ml), a scavenger of O2-., or SOD plus catalase rather intensified the toxicity as did aminotriazole (20 mM), an inhibitor of catalase. Analyses of incubation solutions by HPLC showed that the extent of cell damage is correlated with PHQ loss; catalase suppressed PHQ loss, whereas SOD promoted it. The correlation was more clearly seen in the time courses of cell death and PHQ loss during incubation of PHQ with each of the scavengers of active oxygen species. These results show that neither O2-. nor OH. participates in the cell damage, but rather H2O2 generated via dismutation of O2-. may participate, probably by accelerating the autoxidation of PHQ and thus causing an increase in the production of toxic intermediates. In fact, conversion of PHQ to PBQ, a reactive product, was demonstrated during incubation with PHQ in phosphate-buffered saline by following the changes in UV-visible spectra of PHQ. Inclusion of H2O2 (0.2 or 1 mM) in the incubation mixture accelerated the PHQ loss. The present results can be explained in terms of the autoxidation mechanism of hydroquinone proposed by O'Brien (1991). Different from the results in the absence of S9 mix, the cell damage induced by 50 micrograms

  2. Evaluation of the radio modifier effect of propolis on chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with 60-CO; Avaliacao do efeito radiomodificador da propolis em celulas de ovario de hamster chines (CHO-K1) e em celulas tumorais de prostata (PC3), irradiadas com CO-60

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Geyza Spigoti

    2011-07-01

    In the last decades, it has been given a great interest to investigations concerning natural, effective, nontoxic compounds with radioprotective potential together with the increasing utilization of different types of ionizing radiation for various applications. Among them propolis, a resinous compound produced by honeybees (Apis mellifera), has been considered quite promising, since it presents several advantageous biological characteristics, i. e., anti-inflammatory, antimicrobial, anticarcinogenic, antioxidant and also free radical scavenging action. The purpose of the present study was to evaluate the effect of Brazilian propolis, collected in the State of Rio Grande do Sul, on Chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with {sup 60}Co {gamma} radiation. For this purpose, three interlinked parameters were analyzed: micronucleus induction, cell viability and clonogenic death. The choice of these parameters was justified by their biological significance, in addition to the fact that they are readily observable and measurable in irradiated cells. The cytogenetic data obtained showed a radioprotective effect of propolis (5-100 {mu}g/ml) in the induction of DNA damage for both cell lines, irradiated with doses of 1 - 4 Gy. The cytotoxicity assay, however, showed a prominent antiproliferative effect of propolis (50 - 400{mu}/ml) in PC3 cells irradiated with 5 G{gamma}. The survival curves obtained were adequately fitted by a linear-quadratic model, where the {alpha} coefficient was higher in CHO-K1 cells. Concerning the clonogenic capacity, PC3 cells were more radiosensitive than CHO-K1 cells at the higher doses of the survival curve. Propolis at the concentrations of 30 - 100 {mu}g/ml, did not influence the clonogenic potential of PC3 cells, since the survival curves, associated or not with propolis, were found similar, although the combined treatment in CHO-K1 cells exhibited a stimulating proliferative effect. The data

  3. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X....... Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  4. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.

    Science.gov (United States)

    Jiang, Xiumei; Miclăuş, Teodora; Wang, Liming; Foldbjerg, Rasmus; Sutherland, Duncan S; Autrup, Herman; Chen, Chunying; Beer, Christiane

    2015-03-01

    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemical species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X-ray absorption near-edge structure (XANES) was employed to assess the chemical state of intracellular silver. The toxic potential of Ag NPs and Ag(+) was evaluated by cell viability, reactive oxygen species (ROS) production and live-dead cell staining. The results suggest that cellular uptake of Ag NPs involves lipid-raft-mediated endocytosis and energy-independent diffusion. The degradation study shows that Ag NPs taken up into cells dissolved quickly and XANES results directly indicated that the internalized Ag was oxidized to Ag-O- species and then stabilized in silver-sulfur (Ag-S-) bonds within the cells. Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-L-cysteine, an efficient antioxidant and Ag(+) chelator, diminished the cytotoxicity caused by Ag NPs or Ag(+) exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs is related to the intracellular release of silver ions, followed by their binding to SH-groups, presumably coming from amino acids or proteins, and affecting protein functions and the antioxidant defense system of cells.

  5. GM3 alpha2,8-sialyltransferase (GD3 synthase): protein characterization and sub-golgi location in CHO-K1 cells.

    Science.gov (United States)

    Daniotti, J L; Martina, J A; Giraudo, C G; Zurita, A R; Maccioni, H J

    2000-04-01

    GD3 synthase (Sial-T2) is a key enzyme of ganglioside synthesis that, in concert with GM2 synthase (GalNAc-T), regulates the ratio of a- and b-pathway gangliosides. In this work, we study the sub-Golgi location of an epitope-tagged version of chicken Sial-T2 transfected to CHO-K1 cells. The expressed protein was enzymatically active both in vitro and in vivo and showed a molecular mass of approximately 47 or approximately 95 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence or absence of, respectively, beta-mercaptoethanol. The 95-kDa form of Sial-T2 was also detected if the protein was retained in the endoplasmic reticulum (ER) due to impaired glycosylation, indicating that it was formed in the ER. Confocal immunofluorescence microscopy showed Sial-T2 localized to the Golgi complex and, within the organelle, partially co-localizing with the mannose-6-phosphate receptor, a marker of the trans-Golgi network (TGN). In cells treated with brefeldin A, a major fraction of Sial-T2 redistributed to the ER, even under controlled expression to control for mislocalization due to protein overloading. In experiments of incorporation of sugars into endogenous acceptors of Golgi membranes in vitro, GD3 molecules formed by incubation with CMP-NeuAc were converted to GD2 upon incubation with UDP-GalNAc. These results indicate that Sial-T2 localizes mainly to the proximal Golgi, although a fraction is located in the TGN functionally coupled to GalNAc-T. Consistent with this, most of the enzyme was in an endoglycosidase H (Endo-H)-sensitive, neuraminidase (NANase)-insensitive form. A minor secreted form lacking approximately 40 amino acids was Endo-H-resistant and NANase-sensitive, indicating that the cells were able to process N-glycans to Endo-H-resistant forms. Taken together, the results of these biochemical and immunocytochemical experiments indicate that in CHO-K1 cells, most Sial-T2 localizes in the proximal Golgi and that a functional fraction

  6. Assessment of cytotoxic and cytogenetic effects of a 1,2,5-thiadiazole derivative on CHO-K1 cells. Its application as corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, C.A. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Quimica, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Mirifico, M.V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Quimica, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Facultad de Ingenieria, Areas Departamentales Ingenieria Quimica and Mecanica, Universidad Nacional de La Plata, Calle 47 y 1, 1900 La Plata (Argentina); Morales, M.L. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Quimica, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Reigosa, M.A. [IMBICE (Instituto Multidisciplinario de Biologia Celular), CICPBA, CONICET, Calle 526 entre 10 y 11, 1900 La Plata (Argentina); Mele, M. Fernandez Lorenzo de, E-mail: mmele@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Quimica, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Facultad de Ingenieria, Areas Departamentales Ingenieria Quimica and Mecanica, Universidad Nacional de La Plata, Calle 47 y 1, 1900 La Plata (Argentina)

    2009-10-30

    This work focuses on the possible use of phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxide (TDZ) as a harmless corrosion inhibitor. TDZ range-dose providing minimum adverse effects to the environment and human health, with satisfactory corrosion-inhibiting properties was evaluated. Cytotoxicity and genotoxicity of TDZ at 0.57-12.50 {mu}M concentration range were tested by neutral red, chromosomal aberrations, mitotic index, and colony formation assays. Results showed a significant increase of chromatid-type aberrations for the highest concentration of TDZ assayed (12.50 {mu}M). Additionally, a reduction in the proliferative rate for lower concentrations was detected by the MI assay. We concluded that TDZ should be used at concentrations lower than 1.16 {mu}M. Corrosion assays performed showed good inhibition effect (ca. 50%) at low (0.65 {mu}M) TDZ concentration. Consequently, our results indicated that TDZ induced a time- and dose-dependent genotoxic and cytotoxic response on CHO-K1 cells. Short assays should be complemented with long exposure tests to simulate chronic contact with TDZ since lower threshold levels may be found for shorter exposures and a wrong safety range could be determined.

  7. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    Science.gov (United States)

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-01

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta Me

  8. Yellow fluorescent protein-based assay to measure GABA(A channel activation and allosteric modulation in CHO-K1 cells.

    Directory of Open Access Journals (Sweden)

    Teres Johansson

    Full Text Available The γ-aminobutyric acid A (GABA(A ion channels are important drug targets for treatment of neurological and psychiatric disorders. Finding GABA(A channel subtype selective allosteric modulators could lead to new improved treatments. However, the progress in this area has been obstructed by the challenging task of developing functional assays to support screening efforts and the generation of cells expressing functional GABA(A ion channels with the desired subtype composition. To address these challenges, we developed a yellow fluorescent protein (YFP-based assay to be able to study allosteric modulation of the GABA(A ion channel using cryopreserved, transiently transfected, assay-ready cells. We show for the first time how the MaxCyte STX electroporation instrument can be used to generate CHO-K1 cells expressing functional GABA(A α2β3γ2 along with a halide sensing YFP-H148Q/I152L (YFP-GABA(A2 cells. As a basis for a cell-based assay capable of detecting allosteric modulators, experiments with antagonist, ion channel blocker and modulators were used to verify GABA(A subunit composition and functionality. We found that the I(- concentration used in the YFP assay affected both basal quench of YFP and potency of GABA. For the first time the assay was used to study modulation of GABA with 7 known modulators where statistical analysis showed that the assay can distinguish modulatory pEC50 differences of 0.15. In conclusion, the YFP assay proved to be a robust, reproducible and inexpensive assay. These data provide evidence that the assay is suitable for high throughput screening (HTS and could be used to discover novel modulators acting on GABA(A ion channels.

  9. Selective Modulation of Protein Kinase C α over Protein Kinase C ε by Curcumin and Its Derivatives in CHO-K1 Cells.

    Science.gov (United States)

    Pany, Satyabrata; Majhi, Anjoy; Das, Joydip

    2016-04-12

    Members of the protein kinase C (PKC) family of serine/threonine kinases regulate various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. Modulation of isoform-selective activity of PKC by curcumin (1), the active constituent of Curcuma L., is poorly understood, and the literature data are inconsistent and obscure. The effect of curcumin (1) and its analogues, 4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl oleate (2), (9Z,12Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12-dienoate (3), (9Z,12Z,15Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12,15-trienoate (4), and (1E,6E)-1-[4-(hexadecyloxy)-3-methoxyphenyl]-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione (5), and didemethylcurcumin (6) on the membrane translocation of PKCα, a conventional PKC, and PKCε, a novel PKC, has been studied in CHO-K1 cells, in which these PKC isoforms are endogenously expressed. Translocation of PKC from the cytosol to the membrane was measured using immunoblotting and confocal microscopy. 1 and 6 inhibited the TPA-induced membrane translocation of PKCα but not of PKCε. Modification of the hydroxyl group of curcumin with a long aliphatic chain containing unsaturated double bonds in 2-4 completely abolished this inhibition property. Instead, 2-4 showed significant translocation of PKCα but not of PKCε to the membrane. No membrane translocation was observed with 1, 6, or the analogue 5 having a saturated long chain for either PKCα or PKCε. 1 and 6 inhibited TPA-induced activation of ERK1/2, and 2-4 activated it. ERK1/2 is the downstream readout of PKC. These results show that the hydroxyl group of curcumin is important for PKC activity and the curcumin template can be useful in developing isoform specific PKC modulators for regulating a particular disease state.

  10. Effect of ethanolic extract of propolis on cell viability of chinese hamster ovary cells (CHO-K1) irradiated with {sup 60}CO gamma-rays using differential staining technique

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marcos P.M. de; Castro, Renato F. de; Okazaki, Kayo; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of present study was to assess the effect of Brazilian propolis (AF-08) on CHO-K1 cells irradiated with {sup 60}Co, through the differential staining technique, using acridine orange and ethidium bromide. The cells were pre-incubated with different concentrations of propolis (50, 100 and 200 μg/mL) for 24h and irradiated with 5 Gy, analyzed at 24 and 48h after exposure. This technique is based on the cell capacity to incorporate fluorescent DNA dyes, where the viable (green), apoptotic (orange/yellow) and necrotic (red) cells can be identified through fluorescence microscopy. Digital high-resolution images were acquired from at least 5 visualization fields, and cells were analyzed using ImageJ and Flowing software. This approach permitted to analyze a large number of cells/sample with the time reduction, much easier and faster, proportioning more statistical power of the technique. The treatment with propolis only was not cytotoxic at 24 and 48h, except for the higher concentration of 200 μg/mL associated or not with radiation, increasing apoptotic and mainly necrotic cells (p<0.001). The data showed a promising use of propolis as well as technique used, pointing out that 200 μg/mL of propolis was cytotoxic, but at lower one (50 μg/mL) presented a radioprotective effect in irradiated CHO-K1 cells. (author)

  11. Experimental verification for in vitro technique confirmation of bystander effect induced by gamma radiation in CHO-K1 cell line; Verificacao experimental para confirmacao da tecnica in vitro do efeito bystander induzido por radiacao gama na linhagem celular CHO-K1

    Energy Technology Data Exchange (ETDEWEB)

    Viana, P.H.L.; Goes, A.M.; Gomes, D.A., E-mail: pedroleroybio@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento Bioquimica e Imunologia. Lab. de Imunologia Celular e Molecular; Grynberg, S.E., E-mail: seg@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-08-15

    The bystander effect refers to biological responses detected in cells not directly irradiated but influenced, somehow, by signals transmitted from neighboring irradiated cells. These biological responses include sister chromatid exchange, mutations, micronucleus formation, chromosomal aberrations, carcinogenesis, apoptosis and necrosis. Although its existence is unquestionable, the mechanisms involved on triggering the bystander effect are not yet completely elucidated. Previous studies have shown that the bystander effect depends on a large variety of parameters including the radiation dose, the dose rate, the type of radiation and type of cells or tissue. This study aims to confirm the technique previously used in the literature in human cell lines for the bystander effect verification. The results suggest that the working conditions adopted by the group show technical efficiency and enables the reproduction of the bystander effect. (author)

  12. Cultivos de células CHO-K1

    Directory of Open Access Journals (Sweden)

    M.C. Nóvoa-Valiñas

    2005-01-01

    Full Text Available El uso de determinados metales pesados y pesticidas es la estrategia más empleada para el control de plagas. Estas sustancias, una vez aplicadas a los cultivos, pueden pasan al medio ambiente, permaneciendo en él como xenobióticos que van a afectar, en mayor o menor medida, a los seres vivos. En el presente estudio se ha evaluado la toxicidad basal de un metal, cobre, y un pesticida organoclorado, lindano, así como mezclas de ambos a distintas concentraciones. Para llevar a cabo este trabajo se ha utilizado la línea celular CHO-K1 (células epiteliales de ovario de hamster, usándose como criterio de citotoxicidad la muerte celular, determinada mediante la técnica del rojo neutro. Las concentraciones iniciales fueron: 0,03; 0,06 y 0,9 mM de cobre y 0,01; 0,03 y 0,1 mM de lindano. Y en las mezclas, las concentraciones estuvieron comprendidas entre 0,01-0,9 de cobre y 0,001-0,1de lindano. Como resultados, la citotoxicidad del cobre y lindano fue dosis-dependiente. En las exposiciones a mezclas se observa que a concentraciones fijas de lindano, la viabilidad desciende al aumentar la concentración de cobre, mientras que, dentro de un cierto rango, a concentraciones fijas de cobre, la viabilidad celular se incrementa al aumentar la concentración de lindano

  13. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, J.M. (Miami Univ., Oxford, OH (USA). Dept. of Zoology)

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs.

  14. Determination of IGF-1-Producing CHO-K1 Growth Phases Using GCMS-Based Global Metabolite Analysis

    Directory of Open Access Journals (Sweden)

    S. E. M. SABERI

    2011-12-01

    Full Text Available Mammalian cell lines, in particular CHO-K1 is vital for the multibillion dollar biotechnology industry. The majority of large scale bioprocessing of commercially valuable protein biopharmaceuticals is produced using this type of cell. An ideal mammalian cell system as host for biologics production should retain efficient use of energy sources in order to boost productivity at minimum cost. Various analyses such as cell counting and monitoring of specific biochemical responses are used to provide data to enable bioprocess control in order to achieve the ideal system. Our study aimed to see whether global metabolite analysis using Gas Chromatography Mass Spectrometry (GCMS would be a potential alternative approach in providing data for bioprocess control. In this study, we analyzed metabolites of CHO-K1 cells at different growth phases using GCMS. CHO-K1 cells producing insulin like growth factor-I (IGF1 were obtained from ATCC. Cells were grown in T-flask and incubated at 37°C/ 5% CO2 until 70-80% confluent in RPMI 1640 media. Samples (cells and spent/conditioned media were taken at designated intervals for routine cell counting (Trypan Blue dye exclusion method; glucose, glutamine and lactate determination (YSI 2700; IGF-1 production (ELISA kit R&D Sstems, Inc; and global metabolite analysis (GCMS. Conditioned media from each time point were spun down before subjecting into GCMS. Data from GCMS was then transferred to SIMCA P+12.0 for chemometric evaluation using Principal Component Analysis (PCA. The first component, PC1 results was able to explain 36% of the variation of the data with clear separation between exponential phase and other phases (initial and death phase. This suggests that GCMS-based global metabolite analysis has the ability to capture cell growth behaviour and offered insights of factors that may influence the biological system.ABSTRAK: Produk yang berupa sel kekal mamalia, terutamnya CHO-K1 adalah penting dan menguntungkan

  15. Citotoxicidad del fungicida mancozeb en cultivos de CHO-K1

    Directory of Open Access Journals (Sweden)

    A.E. Bayoumi

    2002-01-01

    Full Text Available Se ha determinado la citotoxicidad del fungicida ditiocarbámico mancozeb, en cultivos celulares de ovario de hámster (CHO-K1, usando los bioensayos estandarizados de incorporación de rojo neutro (RN y del contenido total de proteínas (PT. Las dos técnicas mostraron ser comparables en la determinación del efecto citotóxico, mostrando valores de RN50 menores de 15 mg/ml después de 24 h de exposición al plaguicida. La citotoxicidad fue mayor cuanto mayor fue el tiempo de exposición al mancozeb, en ausencia de suero fetal bovino en el medio de cultivo. La preincubación del mancozeb con diferentes concentraciones de fracción submitocondrial de hígado de rata, originó metabolitos menos tóxicos que el compuesto de origen, lo que indica una cierta protección metabólica proporcionada por la fracción S9. Igualmente, el metabolito final de su degradación, la etilentiourea (ETU mostró menor citotoxicidad que el compuesto original a los tiempos de exposición cortos.

  16. Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts

    Science.gov (United States)

    Rehders, Maren; Grosshäuser, Bianka B.; Smarandache, Anita; Sadhukhan, Annapurna; Mirastschijski, Ursula; Kempf, Jürgen; Dünne, Matthias; Slenzka, Klaus; Brix, Klaudia

    2011-04-01

    Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respiratory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of extraterrestrial lunar dusts on human health is required to best support future missions to moon, mars or other destinations. In this study, we used several methods to assess the specific effects of extraterrestrial dusts onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and because a well orchestrated program ensures proper wound healing. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology and viability of the cells were determined. Cytotoxicity was measured using the MTT assay and by monitoring culture impedance, while phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells which was also investigated by propidium iodide intake. It was found that the effects of the two types of dust simulants on the different features of both cell lines varied to a considerable extent. Moreover, proliferation of HaCaT keratinocytes, as analyzed by Ki67 labeling, was suppressed in sub-confluent cultures exposed to lunar dust simulant. Furthermore, experimental evidence is provided for a delay in regeneration of keratinocyte monolayers from scratch-wounding when exposed to lunar dust simulant. The obtained results will facilitate further investigations of dust exposure during wound healing and will ease risk assessment studies e.g., for lunar lander approaches. The investigations will help to determine safety measures to be taken during

  17. Strategies for adaptation of mAb-producing CHO cells to serum-free medium

    OpenAIRE

    Costa A; Rodrigues M.; Henriques Mariana; Oliveira Rosário; Azeredo Joana

    2011-01-01

    Large-scale production of biopharmaceuticals commonly requires the use of serum-free medium, for safety and cost reasons. However, serum is essential to most mammalian cells growth, and its removal implies a very time-consuming process for cell adaptation. Thus, the aim of the study was to evaluate different strategies for cell adaptation to serum-free medium. Three cell types were used to assess the impact of transfection on adaptation: one common CHO-K1 cell line and two CHO-K1 cells tr...

  18. Urokinase receptor promotes ovarian cancer cell dissemination through its 84-95 sequence.

    Science.gov (United States)

    Bifulco, Katia; Votta, Giuseppina; Ingangi, Vincenzo; Di Carluccio, Gioconda; Rea, Domenica; Losito, Simona; Montuori, Nunzia; Ragno, Pia; Stoppelli, Maria Patrizia; Arra, Claudio; Carriero, Maria Vincenza

    2014-06-30

    The clinical relevance of the urokinase receptor (uPAR) as a prognostic marker in ovarian cancer is well documented. We had shown that the uPAR sequence corresponding to 84-95 residues, linking D1 and D2 domains (uPAR84-95), drives cell migration and angiogenesis in a protease-independent manner. This study was aimed at defining the contribution of uPAR84-95 sequence to invasion of ovarian cancer cells. Now, we provide evidence that the ability of uPAR-expressing ovarian cancer cells to cross extra-cellular matrix and mesothelial monolayers is prevented by specific inhibitors of the uPAR84-95 sequence. To specifically investigate uPAR84-95 function, uPAR-negative CHO-K1 cells were stably transfected with cDNAs coding for uPAR D2 and D3 regions exposing (uPARD2D3) or lacking (uPAR∆D2D3) the 84-95 sequence. CHO-K1/D2D3 cells were able to cross matrigel, mesothelial and endothelial monolayers more efficiently than CHO-K1/∆D2D3 cells, which behave as CHO-K1 control cells. When orthotopically implanted in nude mice, tumor nodules generated by CHO-K1/D2D3 cells spreading to peritoneal cavity were more numerous as compared to CHO-K1/∆D2D3 cells. Ovarian tumor size and intra-tumoral microvessel density were significantly reduced in the absence of uPAR84-95. Our results indicate that cell associated uPAR promotes growth and abdominal dissemination of ovarian cancer cells mainly through its uPAR84-95 sequence.

  19. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation

    DEFF Research Database (Denmark)

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-yu;

    2015-01-01

    -glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO...

  20. Nuclear and non-nuclear targets for G{sub 2} delay in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Lear, B.; Sedita, B.A.; Grdina, D.J. [Argonne National Laboratory, IL (United States)] [and others

    1995-11-01

    The role of DNA double-strand breaks in producing mitotic (G{sub 2}) delay was examined in Chinese hamster ovary (CHO) cells. Restriction enzymes, which produce only DNA double-stranded breaks, were introduced by electroporation into CHO-K1 and its radiation-sensitive derivativexrs-5; at several time points after treatment, the fraction of cells in G{sub 2} was determined. Electroporation of Alu I or Sau 3A1 into CHO-K1 resulted in a G{sub 2} delay that peaked with 40% of the population in G{sub 2} at 12 h after treatment. The delay lasted about 8 h. This is equivalent to a 5 Gy {gamma} ray exposure. In xrs-5 cells, the same treatment resulted in a G{sub 2} delay that peaked at 50% of the population 20 h after treatment and the delay lasted about 12 h. Much of delay induced in CHO-K1 cells was due to the electroporation treatment itself. The electroporation, which on its own was not toxic or mutagenic in either CHO-K1 or xrs-5 cells, resulted in a G{sub 2} delay in that peaked at 30% 12 h after treatment in CHO-K1 cells and 8 h after treatment in xrs-5 cells. In both cell lines, the delay was about 6 h long. These results indicate that DNA double-strand breaks are one signal for G{sub 2} delay, but that there may be other, nonuclear targets for delay as well.

  1. Fucan effect on CHO cell proliferation and migration.

    Science.gov (United States)

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean; Medeiros, Valquiria Pereira; Trindade, Edvaldo Silva; Franco, Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-10-15

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schröederi seaweed. This 21.5 kDa galactofucan inhibited CHO-K1 proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B binds to fibronectin and activates integrin, mainly integrin α5β1, which induces FAK/RAS/MEK/ERK activation. FAK activation inhibits CHO-K1 migration on fibronectin and ERK blocks cell cycle progression. This study indicates that fucan B could be applied in developing new antitumor drugs.

  2. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line.

  3. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Directory of Open Access Journals (Sweden)

    Michał Arabski

    2012-01-01

    Full Text Available Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed.

  4. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  5. Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines.

    Science.gov (United States)

    Cao, Yihua; Kimura, Shuichi; Itoi, Takayuki; Honda, Kohsuke; Ohtake, Hisao; Omasa, Takeshi

    2012-06-01

    Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.

  6. A fucan from the brown seaweed Spatoglossum schröederi inhibits Chinese hamster ovary cell adhesion to several extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    H.A.O. Rocha

    2001-05-01

    Full Text Available Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1 and the mutant type deficient in xylosyltransferase (CHO-745. The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5(and CHO-745 (2 x 10(5 and 5 x 10(5 cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.

  7. A fucan from the brown seaweed Spatoglossum schröederi inhibits Chinese hamster ovary cell adhesion to several extracellular matrix proteins.

    Science.gov (United States)

    Rocha, H A; Franco, C R; Trindade, E S; Carvalho, L C; Veiga, S S; Leite, E L; Dietrich, C P; Nader, H B

    2001-05-01

    Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5)) and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.

  8. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  9. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.

    Science.gov (United States)

    Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C

    2015-05-01

    Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers

  10. The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface.

    Directory of Open Access Journals (Sweden)

    Camila Lopes Veronez

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen, influence this interaction. METHODS: We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type and CHO-745 (deficient in proteoglycans. Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS: At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION: The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein

  11. Detailed analysis of the response of different cell lines to carbon irradiation

    CERN Document Server

    Hromcikova, H; Lokajícek, M

    2005-01-01

    Published survival data for Chinese hamster ovarian cells CHO-K1 and their radiosensitive mutant xrs5 after irradiation by carbon ions of energies from 2.4 to 266.4 MeV/u have been analyzed using the probabilistic two-stage radiobiological model, which enables to represent the interplay of damage induction and repair processes. The results give support for the hypothesis that the differences in radiation sensitivity of diverse cell lines are given primarily by their different repair capabilities, and indicate the need for explicitly representing the outcome of repair processes in radiobiological models and treatment planning approaches in radiotherapy.

  12. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

    Science.gov (United States)

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  13. High levels of protein expression using different mammalian CMV promoters in several cell lines.

    Science.gov (United States)

    Xia, Wei; Bringmann, Peter; McClary, John; Jones, Patrick P; Manzana, Warren; Zhu, Ying; Wang, Soujuan; Liu, Yi; Harvey, Susan; Madlansacay, Mary Rose; McLean, Kirk; Rosser, Mary P; MacRobbie, Jean; Olsen, Catherine L; Cobb, Ronald R

    2006-01-01

    With the recent completion of the human genome sequencing project, scientists are faced with the daunting challenge of deciphering the function of these newly found genes quickly and efficiently. Equally as important is to produce milligram quantities of the therapeutically relevant gene products as quickly as possible. Mammalian expression systems provide many advantages to aid in this task. Mammalian cell lines have the capacity for proper post-translational modifications including proper protein folding and glycosylation. In response to the needs described above, we investigated the protein expression levels driven by the human CMV in the presence or absence of intron A, the mouse and rat CMV promoters with intron A, and the MPSV promoter in plasmid expression vectors. We evaluated the different promoters using an in-house plasmid vector backbone. The protein expression levels of four genes of interest driven by these promoters were evaluated in HEK293EBNA and CHO-K1 cells. Stable and transient transfected cells were utilized. In general, the full-length human CMV, in the presence of intron A, gave the highest levels of protein expression in transient transfections in both cell lines. However, the MPSV promoter resulted in the highest levels of stable protein expression in CHO-K1 cells. Using the CMV driven constitutive promoters in the presence of intron A, we have been able to generate >10 microg/ml of recombinant protein using transient transfections.

  14. Glycerol-3-phosphate acyltransferase-2 is expressed in spermatic germ cells and incorporates arachidonic acid into triacylglycerols.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Cattaneo

    Full Text Available BACKGROUND: De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT. In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid. METHODS AND RESULTS: Incubation of GPAT2-transfected CHO-K1 cells with [1-(14C]arachidonate for 3 h increased incorporation of [(14C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2's role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein. CONCLUSIONS: These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.

  15. Spergularia marina induces glucagon-like peptide-1 secretion in NCI-H716 cells through bile acid receptor activation.

    Science.gov (United States)

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra; Kim, Hye Young

    2014-11-01

    Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca(2+) and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca(2+) and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis.

  16. Increased repair of {gamma}-induced DNA double-strand breaks at lower dose-rate in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, D.; Hindo, J.; Averbeck, D. [Centre Universitaire d' Orsay, Inst. Curie-Section de Recherche, Orsay CEDEX (France)]. E-mail: dietrich.averbeck@curie.u-psud.fr

    2004-02-01

    DNA double-strand breaks (DSBs) are highly cell damaging. We asked whether for a given dose a longer irradiation time would be advantageous for the repair of DSBs. Varying the {gamma}-irradiation dose and its delivery time (0.05 Gy/min low dose-rate (LDR) compared with 3.5 Gy/min high dose-rate), confluent Chinese hamster ovary cells (CHO-K1) and Ku80 mutant cells (xrs-6) deficient in nonhomologous end-joining (NHEJ) were irradiated in agarose plugs at room temperature using a cesium-137 {gamma}-ray source. We used pulsed-field gel electrophoresis (PFGE) to measure DSBs in terms of the fraction of activity released (FAR). At LDR, one third of DSBs were repaired in CHO-K1 but not in xrs-6 cells, indicating the involvement of NHEJ in the repair of {gamma}-induced DSBs at a prolonged irradiation incubation time. To improve DSB measurements, we introduced in our PFGE protocol an antioxidant at the cell lysis step, thus avoiding free-radical side reactions on DNA and spurious DSBs. Addition of the metal chelator deferoxamine (DFO) decreased more efficiently the basal DSB level than did reduced glutathione (GSH), showing that measuring DSBs in the absence of DFO reduces precision and underestimates the role of NHEJ in the dose-rate effect on DSB yield. (author)

  17. Optimization protein productivity of human interleukin-2 through codon usage, gene copy number and intracellular tRNA concentration in CHO cells.

    Science.gov (United States)

    Ou, Kua-Chun; Wang, Chih-Yang; Liu, Kuan-Ting; Chen, Yi-Ling; Chen, Yi-Chen; Lai, Ming-Derg; Yen, Meng-Chi

    2014-11-14

    Transfer RNA (tRNA) abundance is one of the critical factors for the enhancement of protein productivity in prokaryotic and eukaryotic hosts. Gene copy number of tRNA and tRNA codon usage bias are generally used to match tRNA abundance of protein-expressing hosts and to optimize the codons of recombinant proteins. Because sufficient concentration of intracellular tRNA and optimized codons of recombinant proteins enhanced translation efficiency, we hypothesized that sufficient supplement of host's tRNA improved protein productivity in mammalian cells. First, the small tRNA sequencing results of CHO-K1 cells showed moderate positive correlation with gene copy number and codon usage bias. Modification of human interleukin-2 (IL-2) through codons with high gene copy number and high codon usage bias (IL-2 HH, modified on Leu, Thr, Glu) significantly increased protein productivity in CHO-K1 cells. In contrast, modification through codons with relatively high gene copy number and low codon usage bias (IL-2 HL, modified on Ala, Thr, Val), or relatively low gene copy number and low codon usage bias (IL-2 LH, modified on Ala, Thr, Val) did not increase IL-2 productivity significantly. Furthermore, supplement of the alanine tRNA or threonine tRNA increased IL-2 productivity of IL-2 HL. In summary, we revealed a potential strategy to enhance productivity of recombinant proteins, which may be applied in production of protein drug or design of DNA vaccine.

  18. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  19. Transient transfection of mammalian cells using a violet diode laser

    Science.gov (United States)

    Torres-Mapa, Maria Leilani; Angus, Liselotte; Ploschner, Martin; Dholakia, Kishan; Gunn-Moore, Frank J.

    2010-07-01

    We demonstrate the first use of the violet diode laser for transient mammalian cell transfection. In contrast to previous studies, which showed the generation of stable cell lines over a few weeks, we develop a methodology to transiently transfect cells with an efficiency of up to ~40%. Chinese hamster ovary (CHO-K1) and human embryonic kidney (HEK293) cells are exposed to a tightly focused 405-nm laser in the presence of plasmid DNA encoding for a mitochondrial targeted red fluorescent protein. We report transfection efficiencies as a function of laser power and exposure time for our system. We also show, for the first time, that a continuous wave laser source can be successfully applied to selective gene silencing experiments using small interfering RNA. This work is a major step towards an inexpensive and portable phototransfection system.

  20. Diffusion tensor driven contour closing for cell microinjection targeting.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  1. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    DEFF Research Database (Denmark)

    Hefzi, Hooman; Ang, Kok Siong; Hanscho, Michael

    2016-01-01

    in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production......Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways...... simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses....

  2. Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration.

    Science.gov (United States)

    Nikolovska, Katerina; Spillmann, Dorothe; Seidler, Daniela G

    2015-02-01

    Fibroblast growth factor 2 (Fgf2) is involved in several biological functions. Fgf2 requires glycosaminoglycans, like chondroitin and dermatan sulfates (hereafter denoted CS/DS) as co-receptors. CS/DS are linear polysaccharides composed of repeating disaccharide units [-4GlcUAb1-3-GalNAc-b1-] and [-4IdoUAa1-3-GalNAc-b1-],which can be sulfated. Uronyl 2-O-sulfotransferase (Ust)introduces sulfation at the C2 of IdoUA and GlcUA resulting inover-sulfated units. Here, we investigated the role of Ust-mediated CS/DS 2-O sulfation in Fgf2-induced cell migration. We found that CHO-K1 cells overexpressing Ust contain significantly more CS/DS2-O sulfated units, whereas Ust knockdown abolished CS/DS 2-O sulfation. These structural differences in CS/DS resulted in altered Fgf2 binding and increased phosphorylation of ERK1/2 (also known as MAPK3 and MAPK1, respectively). As a functional consequence of CS/DS 2-O sulfation and altered Fgf2 binding, cell migration and paxillin activation were increased. Inhibition of sulfation, knockdown of Ust and inhibition of FgfR resulted in reduced migration. Similarly, in 3T3 cells Fgf2 treatment increased migration, which was abolished by Ust knockdown. The proteoglycan controlling the CHO migration was syndecan 1. Knockdown of Sdc1 in CHO-K1 cells overexpressing Ust abolished cell migration.We conclude that the presence of distinctly sulfated CS/DS can tune the Fgf2 effect on cell migration.

  3. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells.

    Science.gov (United States)

    Kim, Hak Jun; Shim, Hye Eun; Lee, Jun Hyuck; Kang, Yong-Cheol; Hur, Young Baek

    2015-12-28

    Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1°C/min in a -80°C freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

  4. Model-based strategy for cell culture seed train layout verified at lab scale.

    Science.gov (United States)

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn

    2016-08-01

    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  5. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang;

    2013-01-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been st...... of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production....... stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages...

  6. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang;

    2013-01-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been...... stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages....... This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details...

  7. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K;

    2002-01-01

    will often engage both oocytes and mammalian cells. Efficient expression of a protein in both systems have thus far only been possible by subcloning the cDNA into two different vectors because several different molecular requirements should be fulfilled to obtain a high protein level in both mammalian cells...... and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained a dual......-function vector capable of supporting protein production in both Xenopus oocytes and CHO-K1 cells at an expression level equivalent to the levels obtained with vectors optimized for either oocyte or mammalian expression. Our functional studies have been performed with hERGI, KCNQ4, and Kv1.3 potassium channels....

  8. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  9. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  10. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.

    Science.gov (United States)

    Noh, Soo Min; Park, Jin Hyoung; Lim, Myung Sin; Kim, Jong Won; Lee, Gyun Min

    2017-02-01

    Chinese hamster ovary (CHO) cell cultivation for production of therapeutic proteins is accompanied by production of metabolic wastes, mostly ammonia and lactate. To reduce ammonia production, the glutamine synthetase (GS) system was used to develop therapeutic monoclonal antibody (mAb)-producing CHO cells (SM-0.025). Additionally, the lactate dehydrogenase-A (LDH-A) was downregulated with shRNA to reduce lactate production in SM-0.025. The resulting mAb-producing cell lines (#2, #46, and #52) produced less ammonia than the host cell line during the exponential phase due to GS protein overexpression. LDH-A downregulation in SM-0.025 not only reduced lactate production but also further reduced ammonia production. Among the three LDH-A-downregulated clones, clone #2 had the highest mAb production along with significantly reduced specific lactate and ammonia production rates compared to those in SM-0.025. Waste reduction increased the galactosylation level of N-glycosylation, which improved mAb quality. LDH-A downregulation was also successfully applied to the host cell lines (CHO K1 and GS knockout CHO-K1). However, LDH-A downregulated host cells could not survive the pool-selection process wherein glutamine was excluded and methionine sulfoximine was added to the media. Taken together, LDH-A downregulation in the mAb-producing cell line generated with the GS system successfully reduced both ammonia and lactate levels, improving mAb galactosylation. However, LDH-A downregulation could not be applied to host cell lines because it hampered the selection process of the GS system.

  11. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael;

    2015-01-01

    to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular...... pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse...... transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting...

  12. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture.

    Science.gov (United States)

    Lee, Namil; Shin, JongOh; Park, Jin Hyoung; Lee, Gyun Min; Cho, Suhyung; Cho, Byung-Kwan

    2016-11-18

    Chinese hamster ovary (CHO) cells are the preferred host for the production of a wide array of biopharmaceuticals. Thus, efficient and rational CHO cell line engineering methods have been in high demand to improve quality and productivity. Here, we provide a novel genome engineering platform for increasing desirable phenotypes of CHO cells based upon the integrative protocol of high-throughput RNA sequencing and DNA-free RNA-guided Cas9 (CRISPR associated protein9) nuclease-based genome editing. For commercial production of therapeutic proteins, CHO cells have been adapted for suspension culture in serum-free media, which is highly beneficial with respect to productivity and economics. To engineer CHO cells for rapid adaptation to a suspension culture, we exploited strand-specific RNA-seq to identify genes differentially expressed according to their adaptation trajectory in serum-free media. More than 180 million sequencing reads were generated and mapped to the currently available 109,152 scaffolds of the CHO-K1 genome. We identified significantly downregulated genes according to the adaptation trajectory and then verified their effects using the genome editing method. Growth-based screening and targeted amplicon sequencing revealed that the functional deletions of Igfbp4 and AqpI gene accelerate suspension adaptation of CHO-K1 cells. The availability of this strand-specific transcriptome sequencing and DNA-free RNA-guided Cas9 nuclease mediated genome editing facilitates the rational design of the CHO cell genome for efficient production of high quality therapeutic proteins.

  13. First genotoxicity study of Paraná river water from Argentina using cells from the clam Corbicula fluminea (Veneroida Corbiculidae and Chinese hamster (Cricetulus griseus Rodentia, Cricetidae K1 cells in the comet assay

    Directory of Open Access Journals (Sweden)

    Jacqueline D. Caffetti

    2008-01-01

    Full Text Available High concentrations of xenobiotics from urban and industrial wastes have contributed to the contamination of many aquatic environments. We used the comet assay to evaluate the genotoxic potential of water collected from the River Paraná, which receives a great deal of waste, at three points (Puerto Piray, Eldorado and Montecarlo in the Misiones Province of Argentina. The in vivo comet assay used 40 freshwater clams (Corbicula fluminea while the in vitro comet assay used Chinese hamster (Cricetulus griseus K1 cell (CHO-K1 cultures with the mutagen ethyl methanesulfonate (EMS as the positive control and phosphate buffered saline (PBS as the negative control. Both assays showed statistically significant differences between the three sampling sites in relation to the negative control, the results of this preliminary study indicating that at these three sites water from the Paraná River presents genotoxic potential.

  14. Baculovirus ETL promoter acts as a shuttle promoter between insect cells and mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Yu-kou LIU; Chih-chieh CHU; Tzong-yuan WU

    2006-01-01

    Aim:To identify a shuttle promoter that can mediate gene expression in both insect cells and mammalian cells to facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle.Methods:Recombinant baculoviruses carrying the β-galactosidase reporter gene under the control of an early to late(ETL)promoter of the Autographa califomica multiple nuclear polyhedrosis virus(AcMNPV)or a cytomegalovirus immediate early promoter (CMV promoter)were constructed.COS1,HeLa,CHO-K1,hFob1.19,and MCF-7 mammalian cells were tested for the expression of β-galactosidase.Results:ETL promoter activity was higher in bone-derived hFob1.19 than in COS1,HeLa,CHOK1,or MCF-7 mammalian cells.The transient plasmid transfection assay indicated that ETL promoter activity in mammalian cells was dependent on baculovirus gene expression.Conclusion:ETL promoter activity in mammalian cells is baculovirus gene expression-dependent,and the shuttle promoter will facilitate the application of baculovirus expression vectors in mammalian cell expression systems and for gene therapy.

  15. A fully automated system for adherent cells microinjection.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

  16. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  17. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  18. An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread.

    Directory of Open Access Journals (Sweden)

    Ghadah A Karasneh

    Full Text Available Herpes simplex virus type-1 (HSV-1 is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs on its surface (CHO-745 we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread.

  19. Digital microfluidics with impedance sensing for integrated cell culture and analysis.

    Science.gov (United States)

    Shih, Steve C C; Barbulovic-Nad, Irena; Yang, Xuning; Fobel, Ryan; Wheeler, Aaron R

    2013-04-15

    We report the first digital microfluidic (DMF) system capable of impedance sensing of mammalian cells. The new system was validated in three assays: calibration, proliferation, and serum sensing. In the first assay, three cell lines (HeLa, CHO-K1, and NIH-3T3) were seeded at different densities to determine the relationship between impedance and cell number, which was found to be linear for each type of cell. In the proliferation assay, cells were grown for four days and their proliferation rates were determined by regular impedance measurements. In the serum sensing assay, a dilution series of cell media containing different concentrations of serum was evaluated using impedance measurements to determine the optimum conditions for proliferation. The DMF impedance system is label-free, does not require imaging, and is compatible with long-term cell culture. We propose that this system will be useful for the growing number of scientists who are seeking methods other than fluorescence or cell sorting to analyze adherent cells in situ.

  20. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Srđenović Branislava U.

    2015-01-01

    Full Text Available Fullerenol (C60(OH24 nanoparticles (FNP have a significant role in biomedical research due to their numerous biological activities, some of which are cytoprotective and antioxidative properties. The aim of this study was to measure distribution of fullerenol nanoparticles and zeta potential in cell medium RPMI 1640 with 10% fetal bovine serum (FBS and to investigate the influence of FNP on Chinese hamster ovary cells (CHO-K1 survival, as well as to determine the activity of three antioxidative enzymes: superoxide-dismutase, glutathione-reductase and glutathione-S-transferase in mitomycin C-treated cell line. Our investigation implies that FNP, as a strong antioxidant, influence the cellular redox state and enzyme activities and thus may reduce cell proliferation, which confirms that FNP could be exploited for its use as a cytoprotective agent.[Projekat Ministarstva nauke Republike Srbije, br. III45005 i Pokrajinski Sekretarijat za nauku i tehnološki razvoj Vojvodine, grant number 114-451-2056/2011-01

  1. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman

    2016-11-23

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

  2. A visual targeting system for the microinjection of unstained adherent cells.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2013-02-01

    Automatic localization and targeting are critical steps in automating the process of microinjecting adherent cells. This process is currently performed manually by highly trained operators and is characterized as a laborious task with low success rate. Therefore, automation is desired to increase the efficiency and consistency of the operations. This research offers a contribution to this procedure through the development of a vision system for a robotic microinjection setup. Its goals are to automatically locate adherent cells in a culture dish and target them for a microinjection. Here the major concern was the achievement of an error-free targeting system to guarantee high consistency in microinjection experiments. To accomplish this, a novel visual targeting algorithm integrating different image processing techniques was proposed. This framework employed defocusing microscopy to highlight cell features and improve cell segmentation and targeting reliability. Three main image processing techniques, operating at three different focus levels in a bright field (BF) microscope, were used: an anisotropic contour completion (ACC) method, a local intensity variation background-foreground classifier, and a grayscale threshold-based segmentation. The proposed framework combined information gathered by each of these methods using a validation map and this was shown to provide reliable cell targeting results. Experiments conducted with sets of real images from two different cell lines (CHO-K1 and HEK), which contained a total of more than 650 cells, yielded flawless targeting results along with a cell detection ratio greater than 50%.

  3. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  4. Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody

    Directory of Open Access Journals (Sweden)

    Pardo Luis A

    2011-09-01

    Full Text Available Abstract Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62 and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody.

  5. Fucan inhibits Chinese hamster ovary cell (CHO) adhesion to fibronectin by binding to the extracellular matrix.

    Science.gov (United States)

    Rocha, Hugo A; Franco, Célia R; Trindade, Edvaldo S; Veiga, Silvio S; Leite, Edda L; Nader, Helena B; Dietrich, Carl P

    2005-07-01

    In recent years, sulfated fucans have emerged as an important class of natural biopolymers. In this study, the anti-adhesive activity of a fucan from the brown seaweed Spatoglossum schröederi was analyzed using tumorigenic cells: wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). Fibronectin (FN) was used as substrate for cell attachment. For both cell types, this fucan has shown a dose-dependent anti-adhesive effect, reaching saturation at around 400 mug/mL. This effect was abolished by desulfation of the fucan. In addition, this polymer exhibited the highest inhibitory effect in comparison to other sulfated polysaccharides. The fucan was biotinylated and used as a probe to identify its action sites. Biotinylated fucan was detected in the extracellular matrix environment by confocal microscopy and flow cytometric analysis, but not at the cell surface. The results suggest that the fucan shows anti-adhesive activity by binding directly to FN, and blocking FN sites that are recognized by cell surface ligands, possibly the integrin family.

  6. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.

    Science.gov (United States)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang; Nagarajan, Harish; Yerganian, George; O'Brien, Edward; Bordbar, Aarash; Roth, Anne M; Rosenbloom, Jeffrey; Bian, Chao; Xie, Min; Chen, Wenbin; Li, Ning; Baycin-Hizal, Deniz; Latif, Haythem; Forster, Jochen; Betenbaugh, Michael J; Famili, Iman; Xu, Xun; Wang, Jun; Palsson, Bernhard O

    2013-08-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages. This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production.

  7. Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells.

    Science.gov (United States)

    Wang, Shuguang; Hunter, Lindsey A; Arslan, Zikri; Wilkerson, Michael G; Wickliffe, Jeffrey K

    2011-10-01

    Titanium dioxide nanoparticles (nano-TiO(2) ) are widely used in cosmetics, skin care products, paints, and water treatment processes. Disagreement remains regarding the safety of nano-TiO(2) , and little epidemiological data is available to provide needed resolution. Most studies have examined effects using acute exposure experiments with relatively few studies using a chronic exposure design. We examined cyto- and genotoxicity in CHO-K1 cells following 60 days of continuous exposure to defined levels of nano-TiO(2) (0, 10, 20, or 40 μg/ml). Oxidative stress increased in a concentration-dependent manner in short- (2 days) and long-term cultures, but long-term cultures had lower levels of oxidative stress. The primary reactive oxygen species appeared to be superoxide, and ROS indicators were lowered with the addition of superoxide dismutase (SOD). No cyto- or genotoxic effects were apparent using the XTT, trypan-blue exclusion, and colony-forming assays for viability and the Comet and Hprt gene mutation assays for genotoxicity. Nano-TiO(2) increased the percentage of cells in the G2/M phase of the cell cycle, but this effect did not appear to influence cell viability or cell division. Cellular Ti content was dose-dependent, but chronically exposed cells had lower amounts than acutely exposed cells. CHO cells appear to adapt to chronic exposure to nano-TiO(2) and detoxify excess ROS possibly through upregulation of SOD in addition to reducing particle uptake.

  8. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Visser, Nico; Rieder, Elizabeth A

    2010-10-01

    Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.

  9. The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells.

    Science.gov (United States)

    Costa, Ana Rita; Withers, Joanne; Rodrigues, Maria Elisa; McLoughlin, Niaobh; Henriques, Mariana; Oliveira, Rosário; Rudd, Pauline M; Azeredo, Joana

    2013-06-25

    N-glycosylation is one of the most crucial parameters affecting the biological activity of therapeutic monoclonal antibodies (mAbs), and should therefore be closely monitored and controlled to guarantee a consistent and high-quality product in biopharmaceutical processes. In the present work, the effect of the time-consuming step of gradual cell adaptation to serum-free conditions on the glycosylation profile of a mAb produced by CHO-K1 cells was evaluated. High-performance liquid chromatography analysis revealed important changes in mAb glycosylation patterns in all steps of serum reduction. These changes could be grouped in two distinct phases of the process of adaptation: middle (2.5 to 0.15% serum) and final (0.075 and 0% serum). For intermediate levels of serum, a desirable increase of galactosylation and decrease of fucosylation, but an undesirable increase in sialylation were observed; while the inverse was obtained at the final stages of adaptation. These divergences may be related to the reduction of serum supplementation, to variations in the levels of cell density and viability achieved at these stages, and to the natural shift of the cell growth mode during adaptation from adherent to suspended. The divergent glycan profiles obtained in this study demonstrate a strong influence of the adaptation process on mAb glycosylation, suggesting that control and monitoring of product quality should be implemented at the early stages of process development.

  10. Action of human group IIa secreted phospholipase A2 on cell membranes. Vesicle but not heparinoid binding determines rate of fatty acid release by exogenously added enzyme.

    Science.gov (United States)

    Koduri, R S; Baker, S F; Snitko, Y; Han, S K; Cho, W; Wilton, D C; Gelb, M H

    1998-11-27

    Human group IIa phospholipase A2 (hIIa-PLA2) is a highly basic protein that is secreted from a number of cells during inflammation and may play a role in arachidonate liberation and in destruction of invading bacteria. It has been proposed that rodent group IIa PLA2 is anchored to cell surfaces via attachment to heparan sulfate proteoglycan and that this interaction facilitates lipolysis. hIIa-PLA2 contains 13 lysines, 2 histidines, and 10 arginines that fall into 10 clusters. A panel of 26 hIIa-PLA2 mutants were prepared in which 1-4 basic residues in each cluster were changed to glutamate or aspartate (charge reversal). A detailed analysis of the affinities of these mutants for anionic vesicles and for heparin and heparan sulfate in vitro and of the specific activities of these proteins for hydrolysis of vesicles in vitro and of living cell membranes reveal the following trends: 1) the affinity of hIIa-PLA2 for heparin and heparan sulfate is modulated not by a highly localized site of basic residues but by diffuse sites that partially overlap with the interfacial binding site. In contrast, only those residues on the interfacial binding site of hIIa-PLA2 are involved in binding to membranes; 2) the relative ability of these mutants to hydrolyze cellular phospholipids when enzymes were added exogenously to CHO-K1, NIH-3T3, and RAW 264.7 cells correlates with their relative in vitro affinity for vesicles and not with their affinity for heparin and heparan sulfate. 3) The rates of exogenous hIIa-PLA2-catalyzed fatty acid release from wild type CHO-K1 cells and two mutant lines, one lacking glycosaminoglycan and one lacking heparan sulfate, were similar. Thus basic residues that modulate interfacial binding are important for plasma membrane fatty acid release by exogenously added hIIa-PLA2. Binding of hIIa-PLA2 to cell surface heparan sulfate does not modulate plasma membrane phospholipid hydrolysis by exogenously added hIIa-PLA2.

  11. Synthesis of novel curcuminoids accommodating a central β-enaminone motif and their impact on cell growth and oxidative stress.

    Science.gov (United States)

    De Vreese, Rob; Grootaert, Charlotte; D'hoore, Sander; Theppawong, Atiruj; Van Damme, Sam; Van Bogaert, Maarten; Van Camp, John; D'hooghe, Matthias

    2016-11-10

    Curcuminoids are high-potential drugs targeting multiple components of vital signaling pathways without being toxic, and are therefore considered to be valuable lead structures in medicinal chemistry. Unfortunately, most curcuminoids poorly reach their site of action because of low bioavailability issues, (partly) associated with the labile β-diketo structure. In that respect, curcumin derivatives bearing a central β-enaminone fragment may have improved solubility and intestinal stability, and therefore may represent a new class of analogs with higher bioactivity. In that mindset, thirteen N-alkyl enaminones were efficiently synthesized via a novel approach, using montmorillonite K10 clay and microwave irradiation. These compounds were then characterized in terms of solubility and chemical anti-oxidant properties, and were applied in screening assays for cell toxicity, growth and oxidative stress using CHO-K1, EA.hy926, HT-29 and Caco-2 cell lines. Compared to native curcumin, many nitrogen derivatives showed a stronger antiproliferative effect, which was highly structure and cell type dependent. In addition, the correlation between cell viability and reactive oxygen species production was limited. Therefore, this set of novel curcumin derivatives may be useful to unravel other mechanisms of oxidative stress-related diseases, and eventually be used as more bioavailable and bioactive alternatives for native curcumin.

  12. Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojewodzka, M., E-mail: marylaw@ichtj.waw.pl [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Gradzka, I.; Buraczewska, I.; Brzoska, K.; Sochanowicz, B. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Goncharova, R.; Kuzhir, T. [Institute of Genetics and Cytology, Belarussian National Academy of Sciences, Minsk (Belarus); Szumiel, I. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland)

    2009-12-01

    Compounds with the structural motif of 1,4-dihydropyridine display a broad spectrum of biological activities, often defined as bioprotective. Among them are L-type calcium channel blockers, however, also derivatives which do not block calcium channels exert various effects at the cellular and organismal levels. We examined the effect of sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (denoted here as DHP and previously also as AV-153) on X-ray-induced DNA damage and mutation frequency at the HGPRT (hypoxanthine-guanine phosphoribosyl transferase) locus in Chinese hamster ovary CHO-K1 cells. Using formamido-pyrimidine glycosylase (FPG) comet assay, we found that 1-h DHP (10 nM) treatment before X-irradiation considerably reduced the initial level of FPG-recognized DNA base damage, which was consistent with decreased 8-oxo-7,8-dihydro-2'-deoxyguanosine content and mutation frequency lowered by about 40%. No effect on single strand break rejoining or on cell survival was observed. Similar base damage-protective effect was observed for two calcium channel blockers: nifedipine (structurally similar to DHP) or verapamil (structurally unrelated). So far, the specificity of the DHP-caused reduction in DNA damage - practically limited to base damage - has no satisfactory explanation.

  13. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells

    Science.gov (United States)

    Zhao, Chun-Peng; Guo, Xiao; Chen, Si-Jia; Li, Chang-Zheng; Yang, Yun; Zhang, Jun-He; Chen, Shao-Nan; Jia, Yan-Long; Wang, Tian-Yun

    2017-01-01

    Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes. PMID:28216629

  14. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development.

    Science.gov (United States)

    Liu, Yaya; Zhang, Weiyan; Deng, Xiancun; Poon, Hong Fai; Liu, Xuping; Tan, Wen-Song; Zhou, Yan; Fan, Li

    2015-12-01

    Basal medium design is considered one of the most important steps in process development. To optimize chemically defined (CD) media efficiently and effectively for the biopharmaceutical industry, a two-step rational strategy was applied to optimize four antibody producing Chinese hamster ovary (CHO) cell lines. In the first step, 48 of 52 components of our in-house medium were divided into three groups according to their characteristics. In the next step, these groups were optimized by spent medium analysis, response surface methodology and mixture design. Because these steps in our strategy involved dividing medium components into groups and subsequently adjusting the concentration of the components, we termed this medium development strategy "divide and conquer". By applying the strategy, we were able to improve the titers of CHO-S, CHO-DG44 and two CHO-K1 cell lines 1.92, 1.86, 2.92 and 1.62-fold, respectively, in 8 weeks with fewer than 60 tests. This divide-and-conquer strategy was efficient, effective, scalable and universal in our current study and offered a new approach to CD media development.

  15. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies.

    Science.gov (United States)

    Chan, Kah Fai; Shahreel, Wahyu; Wan, Corrine; Teo, Gavin; Hayati, Noor; Tay, Shi Jie; Tong, Wen Han; Yang, Yuansheng; Rudd, Pauline M; Zhang, Peiqing; Song, Zhiwei

    2016-03-01

    Removal of core fucose from N-glycans attached to human IgG1 significantly enhances its affinity for the receptor FcγRIII and thereby dramatically improves its antibody-dependent cellular cytotoxicity activity. While previous works have shown that inactivation of fucosyltransferase 8 results in mutants capable of producing fucose-free antibodies, we report here the use of genome editing techniques, namely ZFNs, TALENs and the CRISPR-Cas9, to inactivate the GDP-fucose transporter (SLC35C1) in Chinese hamster ovary (CHO) cells. A FACS approach coupled with a fucose-specific lectin was developed to rapidly isolate SLC35C1-deficient cells. Mass spectrometry analysis showed that both EPO-Fc produced in mutants arising from CHO-K1 and anti-Her2 antibody produced in mutants arising from a pre-existing antibody-producing CHO-HER line lacked core fucose. Lack of functional SLC35C1 in these cells does not affect cell growth or antibody productivity. Our data demonstrate that inactivating Slc35c1 gene represents an alternative approach to generate CHO cells for production of fucose-free antibodies.

  16. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    Science.gov (United States)

    Goh, John S Y; Zhang, Peiqing; Chan, Kah Fai; Lee, May May; Lim, Sing Fee; Song, Zhiwei

    2010-07-01

    A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identification of nine different single base pair mutations. Some mutations result in a premature stop codon whereas others cause a single amino acid substitution in the GnT I protein. Interestingly, expression of the normal GnT I cDNA in mutant cells resulted in enhanced sialylation of N-glycans. The sialylation of recombinant erythropoietin (EPO) produced in mutant cells that were co-transfected with GnT I was enhanced compared to that of EPO produced in wild type CHO cells. The enhanced sialylation of EPO produced by JW152 cells in the presence of GnT I over CHO-K1 cells is a result of increased sialylated glycan structures with higher antennary branching. These findings represent a new strategy that may be utilized by the biotechnology industry to produce highly sialylated therapeutic glycoproteins.

  17. Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody.

    Science.gov (United States)

    Gulis, Galina; Silva, Izabel Cristina Rodrigues; Sousa, Herdson Renney; Sousa, Isabel Garcia; Bezerra, Maryani Andressa Gomes; Quilici, Luana Salgado; Maranhao, Andrea Queiroz; Brigido, Marcelo Macedo

    2016-09-01

    Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.

  18. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    Science.gov (United States)

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future.

  19. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  20. Expression System Based on an MTIIa Promoter to Produce hPSA in Mammalian Cell Cultures

    Science.gov (United States)

    Santos, Anderson K.; Parreira, Ricardo C.; Resende, Rodrigo R.

    2016-01-01

    Because of the limitations of standard culture techniques, the development of new recombinant protein expression systems with biotechnological potential is a key challenge. Ideally, such systems should be able to effectively and accurately synthesize a protein of interest with intrinsic metabolic capacity. Here, we describe such a system that was designed based on a plasmid vector containing promoter elements derived from the metallothionein MTIIa promoter, as well as processing and purification elements. This promoter can be induced by heavy metals in a culture medium to induce the synthesis of human prostate-specific antigen (hPSA), which has been modified to insert elements for purification, proteolysis, and secretion. We optimized hPSA production in this system by comparing the effects and contributions of ZnCl2, CdCl2, and CuSO4 in HEK293FT, HeLa, BHK-21, and CHO-K1 cells. We also compared the effectiveness of three different transfection agents: multi-walled carbon nanotubes, Lipofectamine 2000, and X-tremeGENE HP Reagent. hPSA production was confirmed via the detection of enhanced green fluorescent protein fluorescence, and cell viability was determined. The expression of hPSA was compared with that of the native protein produced by LNCaP cells, using enzyme-linked immunosorbent assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis. X-tremeGENE reagent, the BHK-21 cell line, and CuSO4 showed the highest hPSA production rates. Furthermore, BHK-21 cells were more resistant to the oxidative stress caused by 100 μM CuSO4. These results suggest that the proposed optimized inducible expression system can effectively produce recombinant proteins with desired characteristics for a wide range of applications in molecular biology. PMID:27582737

  1. Expression system based on an MTIIa promoter to produce hPSA in mammalian cell cultures

    Directory of Open Access Journals (Sweden)

    Anderson K Santos

    2016-08-01

    Full Text Available Because of the limitations of standard culture techniques, the development of new recombinant protein expression systems with biotechnological potential is a key challenge. Ideally, such systems should be able to effectively and accurately synthesize a protein of interest with intrinsic metabolic capacity. Here, we describe such a system that was designed based on a plasmid vector containing promoter elements derived from the metallothionein MTIIa promoter, as well as processing and purification elements. This promoter can be induced by heavy metals in a culture medium to induce the synthesis of human prostate-specific antigen (hPSA, which has been modified to insert elements for purification, proteolysis, and secretion. We optimized hPSA production in this system by comparing the effects and contributions of ZnCl2, CdCl2, and CuSO4 in HEK293FT, HeLa, BHK-21, and CHO-K1 cells. We also compared the effectiveness of three different transfection agents: multi-walled carbon nanotubes, Lipofectamine 2000, and X-tremeGENE HP Reagent. hPSA production was confirmed via the detection of enhanced green fluorescent protein fluorescence, and cell viability was determined. The expression of hPSA was compared with that of the native protein produced by LNCaP cells, using enzyme-linked immunosorbent assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis. X-tremeGENE reagent, the BHK-21 cell line, and CuSO4 showed the highest hPSA production rates. Furthermore, BHK-21 cells were more resistant to the oxidative stress caused by 100 μM CuSO4. These results suggest that the proposed optimized inducible expression system can effectively produce recombinant proteins with desired characteristics for a wide range of applications in molecular biology.

  2. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    Science.gov (United States)

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity.

  3. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.

    Science.gov (United States)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Hansen, Henning Gram; Kallehauge, Thomas Beuchert; Betenbaugh, Michael J; Nielsen, Alex Toftgaard; Kildegaard, Helene Faustrup

    2014-08-01

    Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry as a host for the production of complex pharmaceutical proteins. Thus genome engineering of CHO cells for improved product quality and yield is of great interest. Here, we demonstrate for the first time the efficacy of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved by applying lectin selection. All eight sgRNAs examined in this study resulted in relatively high indel frequencies, demonstrating that the Cas9 system is a robust and efficient genome-editing methodology in CHO cells. Deep sequencing revealed that 85% of the indels created by Cas9 resulted in frameshift mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named "CRISPy" for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27,553 genes and lists the number of off-target sites in the genome. In conclusion, the proven functionality of Cas9 to edit CHO genomes combined with our CRISPy database have the potential to accelerate genome editing and synthetic biology efforts in CHO cells.

  4. Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells.

    Science.gov (United States)

    Ansorge, Sven; Esteban, Geoffrey; Schmid, Georg

    2010-01-01

    Lab and pilot scale batch cultivations of a CHO K1/dhfr(-) host cell line were conducted to evaluate on-line multifrequency permittivity measurements as a process monitoring tool. The beta-dispersion parameters such as the characteristic frequency (f(C)) and the permittivity increment (Deltaepsilon(max)) were calculated on-line from the permittivity spectra. The dual-frequency permittivity signal correlated well with the off-line measured biovolume and the viable cell density. A significant drop in permittivity was monitored at the transition from exponential growth to a phase with reduced growth rate. Although not reflected in off-line biovolume measurements, this decrease coincided with a drop in OUR and was probably caused by the depletion of glutamine and a metabolic shift occurring at the same time. Sudden changes in cell density, cell size, viability, capacitance per membrane area (C(M)), and effects caused by medium conductivity (sigma(m)) could be excluded as reasons for the decrease in permittivity. After analysis of the process data, a drop in f(C) as a result of a fall in intracellular conductivity (sigma(i)) was identified as responsible for the observed changes in the dual-frequency permittivity signal. It is hypothesized that the beta-dispersion parameter f(C) is indicative of changes in nutrient availability that have an impact on intracellular conductivity sigma(i). On-line permittivity measurements consequently not only reflect the biovolume but also the physiological state of mammalian cell cultures. These findings should pave the way for a better understanding of the intracellular state of cells and render permittivity measurements an important tool in process development and control.

  5. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics

    DEFF Research Database (Denmark)

    Kumar, Amit; Baycin-Hizal, Deniz; Wolozny, Daniel;

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was co...

  6. Bradykinin release avoids high molecular weight kininogen endocytosis.

    Directory of Open Access Journals (Sweden)

    Igor Z Damasceno

    Full Text Available Human H-kininogen (120 kDa plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type and CHO-745 (mutant deficient in proteoglycans biosynthesis cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular

  7. The orphan G protein-coupled receptor GPR139 is activated by the peptides

    DEFF Research Database (Denmark)

    Jensen, Anne Cathrine Nøhr; Shehata, Mohamed A; Hauser, Alexander S

    2017-01-01

    principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca(2+)-assay. All three...

  8. A Novel Nonsense Variant in Nav1.5 Cofactor MOG1 Eliminates Its Sodium Current Increasing Effect and May Increase the Risk of Arrhythmias

    DEFF Research Database (Denmark)

    Olesen, Morten S; Jensen, Niels F; Holst, Anders G

    2011-01-01

    and 23 were patients with Brugada syndrome. The effect of one variant was investigated functionally by patch-clamping CHO-K1 cells coexpressing Nav1.5 with MOG1. RESULTS: We uncovered a novel heterozygous nonsense variant, c.181G>T (p.E61X), that, however, was also present in control subjects, albeit...

  9. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Science.gov (United States)

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using growth

  10. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    Directory of Open Access Journals (Sweden)

    Ming Li Chou

    Full Text Available Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS, a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293 cells, baby hamster kidney (BHK-21 cells, African green monkey kidney (Vero cells, and Chinese hamster ovary (CHO-k1 cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced

  11. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  12. Anticlastogenic potential and antioxidant effects of an aqueous extract of pulp from the pequi tree (Caryocar brasiliense Camb

    Directory of Open Access Journals (Sweden)

    Juliana Khouri

    2007-03-01

    Full Text Available The effectiveness of an aqueous extract of Caryocar brasiliense (Caryocaraceae Camb pulp, popularly known in Brazil as pequi, against clastogenicity induced by cyclophosphamide and bleomycin was evaluated using an in vivo mouse bone marrow cell micronuclei test, an in vitro Chinese hamster ovary cell (CHO-K1 chromosome aberration test and an in vitro antioxidant assay based on the oxidative damage to 2-deoxy-D-ribose (2-DR induced by hydroxyl radicals (•OH generated by the reaction between ascorbic acid and (Fe III-EDTA. In mouse bone marrow cells the extract showed a protective effect against micronuclei induced by cyclophosphamide and bleomycin but did not interfere with polychromatic bone marrow erythrocyte proliferation, except when the mice had been treated with the highest dose of cyclophosphamide. When CHO-K1 cells were pretreated by adding 0.01, 0.05 or 0.1 mL of extract per mL of cell culture medium 24 or 48 h before bleomycin or cyclophosphamide there was a protective effect against chromosome breaks and a significant decrease in the mitotic index (a measure of cytotoxicity of the CHO-K1 cells. The extract also had a protective effect against oxidative hydroxyl radical damage to 2-DR. This study suggests that C. brasiliense pulp aqueous extract has anticlastogenic potential, possibly due to its antioxidative properties.

  13. Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain.

    Science.gov (United States)

    Fang, Qing; Yang, Lin; Zhu, Weijun; Liu, Li; Wang, Haibo; Yu, Wenbo; Xiao, Genfu; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2005-05-10

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.

  14. Zebrafish 3-O-sulfotransferase-4 generated heparan sulfate mediates HSV-1 entry and spread.

    Directory of Open Access Journals (Sweden)

    Thessicar E Antoine

    Full Text Available Rare modification of heparan sulfate (HS by glucosaminyl 3-O sulfotransferase (3-OST isoforms generates an entry receptor for herpes simplex virus type-1 (HSV-1. In the zebrafish (ZF model multiple 3-OST isoforms are differentially expressed. One such isoform is 3-OST-4 which is widely expressed in the central nervous system of ZF. In this report we characterize the role of ZF encoded 3-OST-4 isoform for HSV-1 entry. Expression of ZF 3-OST-4 into resistant Chinese hamster ovary (CHO-K1 cells promoted susceptibility to HSV-1 infection. This entry was 3-O sulfated HS (3-OS HS dependent as pre-treatment of ZF 3-OST-4 cells with enzyme HS lyases (heparinase II/III significantly reduced HSV-1 entry. Interestingly, co-expression of ZF 3-OST-4 along with ZF 3-OST-2 which is also expressed in brain rendered cells more susceptible to HSV-1 than 3-OST-4 alone. The role of ZF-3-OST-4 in the spread of HSV-1 was also evaluated as CHO-K1 cells that expressed HSV-1 glycoproteins fused with ZF 3-OST-4 expressing effector CHO-K1 cells. Finally, adding further evidence ZF 3-OST-4 mediated HSV-1 entry was inhibited by anti-3O HS G2 peptide. Taken together our results demonstrate a role for ZF 3-OST-4 in HSV-1 pathogenesis and support the use of ZF as a model to study it.

  15. Glycosyltransferase complexes improve glycolipid synthesis.

    Science.gov (United States)

    Spessott, Waldo; Crespo, Pilar M; Daniotti, José Luis; Maccioni, Hugo J F

    2012-07-30

    The synthesis of gangliosides GM3 and GD3 is carried out by the successive addition of sialic acid residues on lactosylceramide (LacCer) by the Golgi located sialyltransferases Sial-T1 and Sial-T2, respectively. CHO-K1 cells lack Sial-T2 and only express GM3. Here we show that the activity of Sial-T1 was near 2.5-fold higher in homogenates of CHO-K1 cells transfected to express Sial-T2 (CHO-K1(Sial-T2)) than in untransfected cells. The appearance of Sial-T1 enzyme or gene transcription activators or the stabilization of the Sial-T1 protein were discarded as possible causes of the activation. Sial-T2 lacking the catalytic domain failed to promote Sial-T1 activation. Since Gal-T1, Sial-T1 and Sial-T2 form a multienzyme complex, we propose that transformation of formed GM3 into GD3 and GT3 by Sial-T2 in the complex leaves Sial-T1 unoccupied, enabled for new rounds of LacCer utilization, which results in its apparent activation.

  16. Immunodetection of P-selectin using an antibody to its C-terminal tag.

    Science.gov (United States)

    Mehta-D'souza, Padmaja

    2015-01-01

    P-selectin is a multi-domain glycoprotein expressed on activated endothelial cells and activated platelets. We previously expressed a recombinant form of P-selectin containing only its N-terminal lectin and EGF domains in CHO-K1 cells and showed that these two domains are sufficient to mediate ligand binding. We have now expressed the same construct in CHO-Lec1 cells that make truncated glycans. The uniform glycosylation in these cells should make it easier to crystallize this protein.

  17. Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Hui Jin

    2012-11-01

    Full Text Available As cancer stem cells (CSCs are postulated to play critical roles in cancer development, including metastasis and recurrence, CSC imaging would provide valuable information for cancer treatment and lead to CSC-targeted therapy. To assess the possibility of in vivo CSC targeting, we conducted basic studies on radioimmunotargeting of cancer cells positive for CD133, a CSC marker recognized in various cancers. Antibodies against CD133 were labeled with 125I, and their in vitro cell binding properties were tested. Using the same isotype IgG as a control, in vivo biodistribution of the labeled antibody retaining immunoreactivity was examined in mice bearing an HCT116 xenograft in which a population of the cancer cells expressed CD133. Intratumoral distribution of the labeled antibody was examined and compared to the CD133 expression pattern. The 125I-labeled anti-CD133 antibody showed a modest but significantly higher accumulation in the HCT116 xenograft compared to the control IgG. The intratumoral distribution of the labeled antibody mostly overlapped with the CD133 expression, whereas the control IgG was found in the area close to the necrotic tumor center. Our results indicate that noninvasive in vivo targeting of CSCs could be possible with radiolabeled antibodies against cell membrane markers.

  18. 稳定表达人CCR5基因CHO细胞系的建立及鉴定%Establishment and characterization of CHO cell line stably expressing human CCR5 gene

    Institute of Scientific and Technical Information of China (English)

    程林; 吴喜林; 袁钟平; 吴稚伟

    2012-01-01

    CCR5 is one of the most important co-receptors required for HIV-I infection and a potential target for anti viral agents. In this study,the eukaryotic expression plasmid pcDNA3.1 CCR5 carrying human CCR5 gene was stably transfected into CHO-K1 cells. After 2 weeks selection by G418, cell clones were selected from limited dilution in 96-well plates,and 22 clones were obtained. All the clones were analyzed for cell surface CCR5 expression using flow cytometry, and clone 10 was identified as a high expression clone. The CCR5 gene transcription of the clone 10 was further analyzed using RT PCR and gel electrophoresis,and the target band was visible in the expected location. Cellular ELISA indicated that the surface CCR5 expression of clone 10 was 13. 6 fold higher than the control cells. Our results indicated that the CHO cell line stably expressing human CCR5 can be a useful tool for study viral co receptor,specific antibody screening and anti-viral agents.%CC型趋化因子受体5(CCR5)是HIV-1感染机体所需的最重要的辅助受体和潜在的抗病毒药物靶点之一.将含有人CCR5基因的真核表达质粒pcDNA3.1CCR5稳定转染CHOK1细胞,G418筛选2周后,在96孔板内通过有限稀释法培养细胞单克隆,最后得到22个细胞克隆,用流式细胞术检测细胞表面CCR5蛋白,发现克隆10能够高表达人CCR5基因.使用RT—PCR鉴定克隆10CCR5基因转录情况,结果在预期的位置检测出目的条带.采用细胞ELISA的方法进一步鉴定克隆10细胞表面CCR5的表达,结果该克隆的405nm光密度值是对照组的13.6倍.结果表明,本研究建立的稳定转染人CCR5的CHO细胞系能够高效表达CCR5基因,为研究HIV—1共受体、筛选病毒中和抗体、以及抗病毒药物奠定了基础.

  19. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Research Center for Environmental Risk, National Institute for Environmental Studies (Japan); Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Center for Environmental Health Sciences, National Institute for Environmental Studies (Japan)

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  20. A β-peptide agonist of the GLP-1 receptor, a class B GPCR.

    Science.gov (United States)

    Denton, Elizabeth V; Craig, Cody J; Pongratz, Rebecca L; Appelbaum, Jacob S; Doerner, Amy E; Narayanan, Arjun; Shulman, Gerald I; Cline, Gary W; Schepartz, Alanna

    2013-10-18

    Previous work has shown that certain β(3)-peptides can effectively mimic the side chain display of an α-helix and inhibit interactions between proteins, both in vitro and in cultured cells. Here we describe a β(3)-peptide analog of GLP-1, CC-3(Act), that interacts with the GLP-1R extracellular domain (nGLP-1R) in vitro in a manner that competes with exendin-4 and induces GLP-1R-dependent cAMP signaling in cultured CHO-K1 cells expressing GLP-1R.

  1. Activation of Autophagy in Response to Nanosecond Pulsed Electric Field Exposure

    Science.gov (United States)

    2015-02-07

    approximately 1e2 nm in diameter, referred to as nanopores [1e3]. Nanopores allow the passage of small ions through the plasma membrane and can contribute...fetal bovine serum, 2 mM L-glutamine, and 100 U/mL penicillin /streptomycin. CHO-K1 cells were cultured in F12K me- dium supplemented with 10% fetal bovine...serum, 2 mM L-gluta- mine, and 100 U/mL penicillin /streptomycin at 37 Cwith 5% CO2 in air. The media and its components were purchased from ATCC

  2. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization.

    Science.gov (United States)

    Schwarzer, Roland; Levental, Ilya; Gramatica, Andrea; Scolari, Silvia; Buschmann, Volker; Veit, Michael; Herrmann, Andreas

    2014-10-01

    Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.

  3. In vitro and in vivo antimutagenic effects of DIG, a herbal preparation of Berberis vulgaris, Taraxacum officinale and Arctium lappa, against mitomycin C.

    Science.gov (United States)

    Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E

    2015-07-01

    DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.

  4. The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology

    DEFF Research Database (Denmark)

    Kildegaard, Helene Faustrup; Baycin-Hizal, Deniz; Lewis, Nathan

    2013-01-01

    line was recently sequenced. Now, the CHO systems biology era is underway. Critical ‘omics data sets, including proteomics, transcriptomics, metabolomics, fluxomics, and glycomics, are emerging, allowing the elucidation of the molecular basis of CHO cell physiology. The incorporation of these data sets...... into mathematical models that describe CHO phenotypes will provide crucial biotechnology insights. As ‘omics technologies and computational systems biology mature, genome-scale approaches will lead to major innovations in cell line development and metabolic engineering, thereby improving protein production......Chinese hamster ovary (CHO) cells are the primary factories for biopharmaceuticals because of their capacity to correctly fold and post-translationally modify recombinant proteins compatible with humans. New opportunities are arising to enhance these cell factories, especially since the CHO-K1 cell...

  5. Facile Synthesis and Cytotoxic Activity of the First Ferrocene-Resveratrol Conjugate

    Directory of Open Access Journals (Sweden)

    Veronika Kovač

    2016-09-01

    Full Text Available The bioorganometallic III containing trimethylene chain between ferrocene and resveratrol (3,5,4'-trihydroxystilbene, RSV moieties connected via ester bond has been synthesized. The novel bioconjugate was characterized using IR and NMR (1H, 13C, COSY, NOESY, HMBC spectroscopy, ESI-MS and HRMS. The RSV and ferrocene-RSV conjugate III were screened in vitro for their inhibitory effects against proliferation of hepatoblastoma (Hep G2 cells by MTT assay. Also, possible cytotoxicity towards normal ovary cells (CHO-K1 was evaluated. The obtained data revealed profound effects in biological/cytotoxic activity of III vs. RSV in Hep G2 cell line. Lower cytotoxicity of III was observed in normal ovary cells as compared to hepatoblastoma cells. This work is licensed under a Creative Commons Attribution 4.0 International License.

  6. Stichodactyla helianthus peptide, a pharmacological tool for studying Kv3.2 channels.

    Science.gov (United States)

    Yan, Lizhen; Herrington, James; Goldberg, Ethan; Dulski, Paula M; Bugianesi, Randal M; Slaughter, Robert S; Banerjee, Priya; Brochu, Richard M; Priest, Birgit T; Kaczorowski, Gregory J; Rudy, Bernardo; Garcia, Maria L

    2005-05-01

    Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was initiated to identify potent blockers of the Kv3.2 channel. Chinese hamster ovary (CHO)-K1 cells stably expressing human Kv3.2b (CHO-K1.hKv3.2b) were established and characterized. Stichodactyla helianthus peptide (ShK), isolated from S. helianthus venom and a known high-affinity blocker of Kv1.1 and Kv1.3 channels, was found to potently inhibit 86Rb+ efflux from CHO-K1.hKv3.2b (IC50 approximately 0.6 nM). In electrophysiological recordings of Kv3.2b channels expressed in Xenopus laevis oocytes or in planar patch-clamp studies, ShK inhibited hKv3.2b channels with IC50 values of approximately 0.3 and 6 nM, respectively. Despite the presence of Kv3.2 protein in human pancreatic beta cells, ShK has no effect on the Kv current of these cells, suggesting that it is unlikely that homotetrameric Kv3.2 channels contribute significantly to the delayed rectifier current of insulin-secreting cells. In mouse cortical GABAergic fast-spiking interneurons, however, application of ShK produced effects consistent with the blockade of Kv3 channels (i.e., an increase in action potential half-width, a decrease in the amplitude of the action potential after hyperpolarization, and a decrease in maximal firing frequency in response to depolarizing current injections). Taken together, these results indicate that ShK is a potent inhibitor of Kv3.2 channels and may serve as a useful pharmacological probe for studying these channels in native preparations.

  7. Bio-inspired synthesis and characterization of superparamagnetic particles; Sintese e caracterizacao bioinspirada de particulas superparamagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius F., E-mail: vfc_mg@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Queiroz, Alvaro A.A. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Estudos e Inovacao em Materiais Biofuncionais Avancados

    2012-08-15

    This paper discusses the bio-inspired synthesis of type YFeAl ferrites encapsulated into polyglycerol dendrimers (PGLD) generation 3. The structure and morphological properties of the system YFeAl/PGLD was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were studied through the techniques of Moessbauer spectroscopy and magnetization. The cytotoxicity of the nanoparticles encapsulated in dendrimers PGLD G3 at the cell membrane was studied against mammalian cell line CHO.K1 measuring the amount of lactate dehydrogenase (LDH) released by the cell damage. Microscopy TEM and XRD analysis indicate that spherical nanoparticles were obtained highly crystalline and monodisperse with size 20 nm

  8. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay

    Directory of Open Access Journals (Sweden)

    Lo SH

    2016-08-01

    Full Text Available Shih-Hsiang Lo,1,2 Kai-Chung Cheng,3 Ying-Xiao Li,3,4 Chin-Hong Chang,4,5 Juei-Tang Cheng,4,6 Kung-Shing Lee7,8 1Division of Cardiology, Department of Internal Medicine, Zhongxing Branch of Taipei City Hospital, 2Department of History and Geography, University of Taipei, Taipei, Taiwan; 3Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; 4Department of Medical Research, 5Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, 6Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, 7Department of Surgery, Pingtung Hospital, 8Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan Background: G-protein-coupled bile acid receptor 1, also known as TGR5 is known to be involved in glucose homeostasis. In animal models, treatment with a TGR5 agonist induces incretin secretion to reduce hyperglycemia. Betulinic acid, a triterpenoid present in the leaves of white birch, has been introduced as a selective TGR5 agonist. However, direct activation of TGR5 by betulinic acid has not yet been reported. Methods: Transfection of TGR5 into cultured Chinese hamster ovary (CHO-K1 cells was performed to establish the presence of TGR5. Additionally, TGR5-specific small interfering RNA was employed to silence TGR5 in cells (NCI-H716 cells that secreted incretins. Uptake of glucose by CHO-K1 cells was evaluated using a fluorescent indicator. Amounts of cyclic adenosine monophosphate and glucagon-like peptide were quantified using enzyme-linked immunosorbent assay kits. Results: Betulinic acid dose-dependently increases glucose uptake by CHO-K1 cells transfected with TGR5 only, which can be considered an alternative method instead of radioligand binding assay. Additionally, signals coupled to TGR5 activation are also

  9. Assessment of Cr(VI-induced cytotoxicity and genotoxicity using high content analysis.

    Directory of Open Access Journals (Sweden)

    Chad M Thompson

    Full Text Available Oral exposure to high concentrations of hexavalent chromium [Cr(VI] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI in a cell model relevant to the intestine, undifferentiated (proliferating and differentiated (confluent Caco-2 cells were treated with Cr(VI, hydrogen peroxide or rotenone for 2-24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG and phosphorylated histone variant H2AX (γ-H2AX measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and γ-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN formation was assessed in CHO-K1 and A549 cell lines. Cr(VI increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI will be discussed.

  10. Assessment of Cr(VI)-Induced Cytotoxicity and Genotoxicity Using High Content Analysis

    Science.gov (United States)

    Thompson, Chad M.; Fedorov, Yuriy; Brown, Daniel D.; Suh, Mina; Proctor, Deborah M.; Kuriakose, Liz; Haws, Laurie C.; Harris, Mark A.

    2012-01-01

    Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 2–24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (γ-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and γ-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed. PMID:22905163

  11. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters.

    Science.gov (United States)

    Leuthold, Simone; Hagenbuch, Bruno; Mohebbi, Nilufar; Wagner, Carsten A; Meier, Peter J; Stieger, Bruno

    2009-03-01

    Organic anion transporting polypeptides (humans OATPs, rodents Oatps) are expressed in most mammalian tissues and mediate cellular uptake of a wide variety of amphipathic organic compounds such as bile salts, steroid conjugates, oligopeptides, and a large list of drugs, probably by acting as anion exchangers. In the present study we aimed to investigate the role of the extracellular pH on the transport activity of nine human and four rat OATPs/Oatps. Furthermore, we aimed to test the concept that OATP/Oatp transport activity is accompanied by extrusion of bicarbonate. By using amphibian Xenopus laevis oocytes expressing OATPs/Oatps and mammalian cell lines stably transfected with OATPs/Oatps, we could demonstrate that in all OATPs/Oatps investigated, with the exception of OATP1C1, a low extracellular pH stimulated transport activity. This stimulation was accompanied by an increased substrate affinity as evidenced by lower apparent Michaelis-Menten constant values. OATP1C1 is lacking a highly conserved histidine in the third transmembrane domain, which was shown by site-directed mutagenesis to be critically involved in the pH dependency of OATPs/Oatps. Using online intracellular pH measurements in OATP/Oatp-transfected Chinese Hamster Ovary (CHO)-K1 cells, we could demonstrate the presence of a 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-sensitive chloride/bicarbonate exchanger in CHO-K1 cells and that OATP/Oatp-mediated substrate transport is paralleled by bicarbonate efflux. We conclude that the pH dependency of OATPs/Oatps may lead to a stimulation of substrate transport in an acidic microenvironment and that the OATP/Oatp-mediated substrate transport into cells is generally compensated or accompanied by bicarbonate efflux.

  12. Expression of glycoprotein of herpes simplex virus type 2 in CHO cells and its immulogical characters%Ⅱ型单纯疱疹病毒糖蛋白D在CHO细胞中的表达及其免疫学特性

    Institute of Scientific and Technical Information of China (English)

    晁华; 刘建源; 张振龙

    2012-01-01

    目的 在CHO细胞中表达Ⅱ型单纯疱疹病毒(Herpes simplex virus-2,HSV-2)糖蛋白D( Glycoprotein D,gD),并检测其免疫学特性.方法采用Vero细胞培养HSV-2,提取总DNA,以其为模板,PCR扩增gD基因,与pCMV-sport载体连接,构建重组表达质粒pCMV-gD,将质粒pCMV-gD转染COS-7和CHO-K1细胞,并进行表达.亲和胶Anti-flag M2 Agarose纯化表达蛋白,经SDS-PAGE和HPLC分析重组蛋白纯度,Western blot分析蛋白反应原性,全波长扫描分析蛋白的光谱曲线,等电聚焦电泳测定蛋白的等电点.以20、40 μg纯化的gD免疫BALB/c小鼠,ELISA法检测小鼠血清中HSV-2 gD特异性抗体水平,中和试验测定小鼠血清中和抗体水平.结果 酶切鉴定及DNA测序表明,重组表达质粒pCMV-gD构建正确,在COS-7细胞的瞬时表达产物和CHO细胞中的稳定表达产物均可被HSV-2 gD单抗特异性识别,表明该蛋白具有较好的反应原性.纯化的gD在相对分子质量约5 500处可见目的蛋白条带,纯度为65.46%;保留天然HSV-2 gD的反应原性,最适紫外吸收波长为275.50 nm,等电点为8.3.gD 20μg组和40 μg组小鼠血清特异性抗体滴度分别为1∶125 000和1∶16 000,中和抗体滴度分别为1∶17和1∶16,表明gD可诱导中和抗体的产生,也可诱导高滴度的HSV-2gD特异性抗体.结论 成功在CHO细胞中稳定表达了HSV-2 gD,表达的HSV-2 gD具有较好的免疫原性,为基因工程疫苗的开发奠定了基础.%Objective To express the glycoprotein D (gD) of herpes simplex virus type 2 (HSV-2) in CHO cells and determine its immulogical characters. Methods HSV-2 was cultured in Vero cells, from which total DNA was extracted and used as a template for amplification of gD gene by PCR. The PCR product was inserted into vector pCMV-sport, and the constructed recombi-nant plasmid pCMV-gD was transfected to in COS-7 and CHO cells for expression. The expressed product was purified by Anti-flag M2-Agarose chromatography, then analyzed

  13. Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation.

    Science.gov (United States)

    Roustan, A; Aye, M; De Meo, M; Di Giorgio, C

    2014-08-01

    The photo-inducible cytogenetic toxicity of glyphosate, atrazine, aminomethyl phosphoric acid (AMPA), desethyl-atrazine (DEA), and their various mixtures was assessed by the in vitro micronucleus assay on CHO-K1 cells. Results demonstrated that the cytogenetic potentials of pesticides greatly depended on their physico-chemical environment. The mixture made with the four pesticides exhibited the most potent cytogenetic toxicity, which was 20-fold higher than those of the most active compound AMPA, and 100-fold increased after light-irradiation. Intracellular ROS assessment suggested the involvement of oxidative stress in the genotoxic impact of pesticides and pesticide mixtures. This study established that enhanced cytogenetic activities could be observed in pesticide mixtures containing glyphosate, atrazine, and their degradation products AMPA and DEA. It highlighted the importance of cocktail effects in environmental matrices, and pointed out the limits of usual testing strategies based on individual molecules, to efficiently estimate environmental risks.

  14. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    Science.gov (United States)

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  15. FUNCTIONAL ANALYSIS AND GENOTYPE-PHENOTYPE CORRELATIONS IN WILSON DISEASE

    Directory of Open Access Journals (Sweden)

    Elena Scvortova

    2013-10-01

    Full Text Available Abstract: Knowledge of how mutations other than p.H1069Q translate into the basic defect in Wilson disease (WD is scarce due to the low incidence of homozygous index cases. A total of 12 homozygous mutations of ATP7B, were examined for their functional activity. Transfected Chinese hamster ovary cells (CHO-K1 exposed to elevated copper levels was used as a model for predicting the severity of different WD mutations. The results of this research have direct implications for WD diagnosis. Our data strongly confirms that phenotypic presentation of the patients is related to the ATP7B mutation, providing evidence for genotype - phenotype correlations and can explain in part the variable clinical features observed in patients with WD. The results we have provided help to highlight the information still needed for understanding the function and malfunction of ATP7B and its role in the disease.

  16. A FACS-Based Screening Method for High Producing Cells%基于流式细胞术分选的高效表达外源基因细胞的筛选

    Institute of Scientific and Technical Information of China (English)

    李世崇; 叶玲玲; 刘红; 刘兴茂; 王启伟; 吴本传; 黄培堂; 陈昭烈

    2009-01-01

    目的:以增强型绿色荧光蛋白(EGFP)作为报告基因,用流式细胞术筛选高表达EGFP的细胞,从而获得外源基因高效表达细胞株.方法:构建在EGFP C端编码区融合新霉素(neomycin)抗性基因的融合基因EGFP-Neomycin,将其插入pcDNA3.1(+)载体,构建EGFP-Neomyein融合基因表达载体pcDNAEN,转染CHO-K1细胞,G418加压筛选和倒置荧光显微镜观察证实所表达的EGFP-Neomycin融合蛋白具有新霉素抗性和激发EGFP荧光双功能;将编码组织型纤溶酶原激活剂(tPA)的cDNA插入pcDNAEN中CMV启动子下游,构建表达tPA的表达载体pcDNAEN/tPA.结果:流式细胞术分析和tPA纤维蛋白溶解活性测定表明,pcDNAEN/tPA转染CHO-K1细胞的EGFP相对荧光强度(RFT)的自然对数值与tPA表达水平呈明显的直线相关关系,相关系数为0.983;比较部分未经流式细胞仪分选的pcDNAEN/tPA转染阳性细胞克隆和RFT分布在100~1 000的pcDNAEN/tPA转染阳性细胞克隆的tPA表达水平,经流式细胞术分选获得的细胞克隆的tPA平均表达水平和最高表达水平分别是未经分选获得的细胞克隆的3.9倍和4.1倍.结论:构建的EGFP-Neomyein融合基因具有双功能,建立了利用流式细胞术筛选外源基因高效表达物细胞株的方法.

  17. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  18. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  19. Establishment of flow cytometric in micronucleus assay in vitro%流式细胞术检测体外微核方法的建立

    Institute of Scientific and Technical Information of China (English)

    欧红梅; 周长慧; 涂宏刚; 黄鹏程; 常艳

    2015-01-01

    OBJECTIVE:Establish the flow cytometric 96-well microplate-basedin vitro micronucleus assay in CHO-K1 cells,and explore the possibility of this method for early genetic toxicity screening during drug discovery. MEHTODS:The test included treatment with and without metabolic activation. For the treatment with metabolic activation,CHO-K1 cells were treated with three different concentrations of cyclophosphamide in the S9 mixmedium for 4 h,then incubated with S9-free fresh medium for 20 h. For the treatment without metabolic activation,cells were incubated with three different concentrations of mitomycin C continuously for 24 h. In all cases,after a total of 24 h since initiation of the treatment,cells were processed for microscopic scoring or flow cytometric MN analysis. A flow cytometric method for scoring MN used EMA and SYTOX Green to label the cells in 96-well microplate,and then compared with cytokinesis-block micronucleus assay in cell culture disks based on microscopy.RESULTS:Mitomycin C and cyclophosphamide at different concerntrations caused statistically significant and dose-dependent increasess in micronucleus assay . Non-parametric Spearman's coefficients (rs) is 1.000.CONCLUSION:Similar to literature published,mitomycin C and cyclophosphamide induced positive results in flow cytometric based in vitro micronucleus assay. So the method of flow cytometric 96-well microplate-based in vitro micronucleus assay in CHO-K1 cells was established. The concordance between microscopic scoring and flow cytometricwas good,therefore this method is promising for screening and evaluating genetic toxicity of chemicals.%目的:建立96孔板流式细胞术体外微核自动化检测的方法,并探讨其用于药物早期遗传毒性筛选和遗传毒性评价的可能性。方法:试验分为+S9短时处理组(4 h)和-S9持续处理组(24 h),分别选择3个不同浓度的环磷酰胺和丝裂霉素C处理CHO-K1细胞,24 h后收获细胞。采用EMA和SYTOX Green

  20. 76 FR 59901 - Isaria fumosorosea Apopka Strain 97; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-09-28

    ..., including all anticipated dietary exposures and all other exposures for which there is reliable information... pig (Harmonized Guideline 870.2600; MRID No. 431462-03). A supplemental dermal sensitization study demonstrated that Isaria fumosorosea Apopka strain 97 was not a dermal sensitizer to guinea pigs when...

  1. Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling.

    Science.gov (United States)

    Ding, Zhongren; Tuluc, Florin; Bandivadekar, Kavita R; Zhang, Lili; Jin, Jianguo; Kunapuli, Satya P

    2005-03-01

    The P2Y(1) ADP receptor activates G(q) and causes increases in intracellular Ca(2+) concentration through stimulation of PLC. In this study, we investigated the role of the amino acid residues in the COOH terminus of the human P2Y(1) receptor in G(q) activation. Stimulation of Chinese hamster ovary (CHO-K1) cells stably expressing the wild-type human P2Y(1) receptor (P2Y(1)-WT cells), P2Y(1)-DeltaR340-L373, or P2Y(1)-DeltaD356-L373 with 2-methylthio-ADP (2-MeSADP) caused inositol phosphate production. In contrast, cells expressing P2Y(1)-DeltaT330-L373, a mutant lacking the entire COOH terminus, completely lost their response to 2-MeSADP. Similar data were obtained by using these cell lines and measuring Ca(2+) mobilization upon stimulation with 2-MeSADP, indicating that the 10 amino acids (330TFRRRLSRAT339) in the COOH terminus of the human P2Y(1) receptor are essential for G(q) coupling. Radioligand binding demonstrated that both the P2Y(1)-WT and P2Y(1)-DeltaT330-L373-expressing cells have almost equal binding of [(3)H]MRS2279, a P2Y(1) receptor antagonist, indicating that COOH-terminal truncation did not drastically affect the conformation of the receptor. CHO-K1 cells expressing a chimeric P2Y(12) receptor with the P2Y(1) COOH terminus failed to elicit G(q) functional responses, indicating that the P2Y(1) COOH terminus is essential but not sufficient for G(q) activation. Finally, cells expressing a double-mutant P2Y(1) receptor (R333A/R334A) in the conserved BBXXB region of the COOH terminus of the G(q)-activating P2Y receptors completely lost their functional ability to activate G(q). We conclude that the two arginine residues (R333R334) in the COOH terminus of the human P2Y(1) receptor are essential for G(q) coupling.

  2. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  3. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  4. Stem cells in cell transplantation.

    Science.gov (United States)

    Sanmartin, Agneta; English, Denis; Sanberg, Paul R

    2006-12-01

    This commentary documents the increased number of stem cell-related research reports recently published in the cell transplantation field in the journal Cell Transplantation. The journal covers a wide range of issues in cell-based therapy and regenerative medicine and is attracting clinical and preclinical articles from around the world. It thereby complements and extends the basic coverage of stem cell physiology reported in Stem Cells and Development. Sections in Cell Transplantation cover neuroscience, diabetes, hepatocytes, bone, muscle, cartilage, skin, vessels, and other tissues, as well as tissue engineering that employs novel methods with stem cells. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and these two journals are well positioned to provide comprehensive coverage of these developments.

  5. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  6. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  7. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  8. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  9. Vascular Basement Membrane-derived Multifunctional Peptide, a Novel Inhibitor of Angiogenesis and Tumor Growth

    Institute of Scientific and Technical Information of China (English)

    Jian-Guo CAO; Shu-Ping PENG; Li SUN; Hui LI; Li WANG; Han-Wu DENG

    2006-01-01

    Vascular basement membrane-derived multifunctional peptide (VBMDMP) gene (fusion gene of the human immunoglobulin G3 upper hinge region and two tumstatin-derived fragments) obtained by chemical synthesis was cloned into vector pUC 19, and introduced into the expression vector pGEX-4T-1 to construct a prokaryotic expression vector pGEX-4T-1-VBMDMP. Recombinant VBMDMP produced in Escherichia coli has been shown to have significant activity of antitumor growth and antimetastasis in Lewis lung carcinoma transplanted into mouse C57B1/6. In the present study, we have studied the ability of rVBMDMP to inhibit endothelial cell tube formation and proliferation, to induce apoptosis in vitro, and to suppress tumor growth in vivo. The experimental results showed that rVBMDMP potently inhibited proliferation of human endothelial (HUVEC-12) cells and human colon cancer (SW480) cells in vitro, with no inhibition of proliferation in Chinese hamster ovary (CHO-K1) cells. rVBMDMP also significantly inhibited human endothelial cell tube formation and suppressed tumor growth of SW480 cells in a mouse xenograft model. These results suggest that rVBMDMP is a powerful therapeutic agent for suppressing angiogenesis and tumor growth.

  10. BPI700-Fcγ1700 chimeric gene expression and its protective effect in a mice model of the lethal E. coli infection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Infections caused by gram-negative bacteria (GNB) often lead to high mortality in common clinical settings. The effect of traditional antibiotic therapy is hindered by drug-resistant bacteria and unneutralizable endotoxin. Few effective methods can protect high risk patients from bacterial infection. This study explored the protection of adeno-associated virus 2 (AAV2)-bacteriacidal permeability increasing protein 700 (BPI700) -fragment crystallizable gamma one 700 (Fcγ1700) chimeric gene transferred mice against the minimal lethal dose (MLD) of E.coli and application of gene therapy for bacterial infection.Methods After AAV2-BPI700-Fcγ1700 virus transfection,dot blotting and Western blotting were used to detect the target gene products in Chinese hamster ovary-K1 cells (CHO-K1cells). Reverse transcription-polymerase chain reaction and immunohistochemical assay were carried out to show the target gene expression in mice. Modified BPI-enzyme linked immunosorbent assay was used to identify the target gene products in murine serum. The protection of BPI700-Fcγ1700 gene transferred mice was examined by survival rate after MLD E. coli challenge. Colony forming unit (CFU) count, limulus amebocyte lysate kit and cytokine kit were used to quantify the bacteria, the level of endotoxin, and proinflammatory cytokine.Results BPI1-199-Fc(1 protein was identified in the CHO-K1 cell culture supernatant, injected muscles and serum of the gene transferred mice. After MLD E. coli challenge, the survival rate of AAV2-BPI700-Fc(1700 gene transferred mice (36.7%) was significantly higher than that of AAV2-enhanced green fluorescent protein (AAV2- EGFP) gene transferred mice (3.3%) and PBS control mice (5.6%). The survival rate of AAV2-BPI700-Fc(1700 gene transferred mice treated with cefuroxime sodium was 65.0%. The bacterium number in main viscera, the levels of endotoxin and proinflammatory cytokine (tumor necrcsis factor-α and interleukin-1β) in serum of the AAV2-BPI

  11. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  12. Engineering Cell-Cell Signaling

    OpenAIRE

    Blagovic, Katarina; Gong, Emily S.; Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R

    2013-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cel...

  13. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  14. Macrophage Receptor with Collagenous Structure (MARCO Is Processed by either Macropinocytosis or Endocytosis-Autophagy Pathway.

    Directory of Open Access Journals (Sweden)

    Seishiro Hirano

    Full Text Available The Macrophage Receptor with COllagenous structure (MARCO protein is a plasma membrane receptor for un-opsonized or environmental particles on phagocytic cells. Here, we show that MARCO was internalized either by ruffling of plasma membrane followed by macropinocytosis or by endocytosis followed by fusion with autophagosome in CHO-K1 cells stably transfected with GFP-MARCO. The macropinocytic process generated large vesicles when the plasma membrane subsided. The endocytosis/autophagosome (amphisome generated small fluorescent puncta which were visible in the presence of glutamine, chloroquine, bafilomycin, ammonia, and other amines. The small puncta, but not the large vesicles, co-localized with LC3B and lysosomes. The LC3-II/LC3-I ratio increased in the presence of glutamine, ammonia, and chloroquine in various cells. The small puncta trafficked between the peri-nuclear region and the distal ends of cells back and forth at rates of up to 2-3 μm/sec; tubulin, but not actin, regulated the trafficking of the small puncta. Besides phagocytosis MARCO, an adhesive plasma membrane receptor, may play a role in incorporation of various extracellular materials into the cell via both macropinocytic and endocytic pathways.

  15. External stimulation by nanosecond pulsed electric fields to enhance cellular uptake of nanoparticles

    Science.gov (United States)

    Franklin, Samantha; Beier, Hope T.; Ibey, Bennett L.; Nash, Kelly

    2015-03-01

    As an increasing number of studies use gold nanoparticles (AuNPs) for potential medicinal, biosensing and therapeutic applications, the synthesis and use of readily functional, bio-compatible nanoparticles is receiving much interest. For these efforts, the particles are often taken up by the cells to allow for optimum sensing or therapeutic measures. This process typically requires incubation of the particles with the cells for an extended period. In an attempt to shorten and control this incubation, we investigated whether nanosecond pulsed electric field (nsPEF) exposure of cells will cause a controlled uptake of the particles. NsPEF are known to induce the formation of nanopores in the plasma membrane, so we hypothesized that by controlling the number, amplitude or duration of the nsPEF exposure, we could control the size of the nanopores, and thus control the particle uptake. Chinese hamster ovary (CHO-K1) cells were incubated sub-10 nm AuNPs with and without exposure to 600-ns electrical pulses. Contrary to our hypothesis, the nsPEF exposure was found to actually decrease the particle uptake in the exposed cells. This result suggests that the nsPEF exposure may be affecting the endocytotic pathway and processes due to membrane disruption.

  16. Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis.

    Science.gov (United States)

    Nagano, Koki; Takeuchi, Hiroshi; Gao, Jing; Mori, Yoshihide; Otani, Takahito; Wang, DaGuang; Hirata, Masato

    2015-05-01

    Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.

  17. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  18. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  19. The role of membrane dynamics in electrical and infrared neural stimulation

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Ibey, Bennett L.; Armani, Andrea M.

    2016-03-01

    We recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) to identify membrane disruption events in live cells. This technique was used to detect nanoporation in the plasma membrane following nanosecond pulsed electric field (nsPEF) exposure. It has been hypothesized that similar poration events could be induced by the thermal gradients generated by infrared (IR) laser energy. Optical pulses are a highly desirable stimulus for the nervous system, as they are capable of inhibiting and producing action potentials in a highly localized but non-contact fashion. However, the underlying mechanisms involved with infrared neural stimulation (INS) are not well understood. The ability of our method to non-invasively measure membrane structure and transmembrane potential via Two Photon Fluorescence (TPF) make it uniquely suited to neurological research. In this work, we leverage our technique to understand what role membrane structure plays during INS and contrast it with nsPEF stimulation. We begin by examining the effect of IR pulses on CHO-K1 cells before progressing to primary hippocampal neurons. The use of these two cell lines allows us to directly compare poration as a result of IR pulses to nsPEF exposure in both a neuron-derived cell line, and one likely lacking native channels sensitive to thermal stimuli.

  20. Stem cells.

    Science.gov (United States)

    Redi, Carlo Alberto; Monti, Manuela; Merico, Valeria; Neri, Tui; Zanoni, Mario; Zuccotti, Maurizio; Garagna, Silvia

    2007-01-01

    The application of stem cells to regenerative medicine is one of the actual hot topics in biomedicine. This research could help the cure of a number of diseases that are affecting a large share of the population. Some good results in cell replacement have already been obtained (infarcted heart, diabetes, Parkinson disease), apart from those of more traditional applications like severe burns and blood tumors. We are now facing crucial questions in stem cell biology. One of the key questions is how a cell begins to proliferate or differentiate. Genome reprogramming, both following nuclear transfer and cytoplast action, will likely highlight some of the molecular mechanisms of cell differentiation and dedifferentiation. In turn, these clues should be useful to the production of populations of reprogrammed cells that could develop into tissues or, in the future, into proper organs. We will overview what stem cells are, what roles they play in normal developmental processes and how stem cells could have the potential to treat diseases.

  1. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  2. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  3. Construction of Eukaryotic Expression Vector and Sequence Analysis of Antimicrobial Peptide Gene Shiva 1a%抗菌肽Shiva1a基因真核表达载体的构建及序列分析

    Institute of Scientific and Technical Information of China (English)

    宫晓炜; 郑福英; 蔺国珍; 曹小安; 王光华; 周继章; 才学鹏

    2011-01-01

    为了探讨天蚕类抗菌肽在动物早期抗感染过程中的作用机理,本研究以Shiva 1a基因的成熟肽为模板设计4条引物,利用重叠延伸PCR技术获得目的基因,并在C端添加6×His的标签.将此序列与真核表达载体pIRES2 -EGFP进行重组,构建pIRES2-EGFP-Shiva 1a重组表达质粒,对重组质粒进行酶切和测序鉴定后,采用阳离子脂质体转染将重组质粒转染到CHO-K1细胞,荧光显微镜观察其表达情况.通过生物信息学软件对抗菌肽Shiva 1a的二级结构和三级结构进行预测分析.其结果为进一步研究Shiva 1a的抗菌活性和在动物抗病育种方面的应用奠定了基础.%To explore the effect mechanism of cecropin-class lytic peptide at early stage of infection. The mat peptide of Shiva la was amplified by overlap extension PCR and the C-terminus contained 6×His-marker. The gene sequence were recombi-nant with eukaryotic expression vector pIRES2-EGFP. After being identified by restriction enzyme digestion and sequencing, the recombinant plasmid pIRES2-EGFP-Shiva la was transfected into CHO-K1 cells by liposomes. The expression of the the recombinant plasmid pIRES2-EGFP-Shiva 1a was observed by fluorescence microscope. At the same time, the secondary structure and 3D structure were predicted by bioinformatics tools. The results lay the foundation in research of antimicrobial activities and applications of the antimicrobial peptide Shiva la in breeding for disease resistance of animals.

  4. Sickle cell anemia

    Science.gov (United States)

    ... Anemia - sickle cell; Hemoglobin SS disease (Hb SS); Sickle cell disease Images Red blood cells, sickle cell Red blood cells, normal Red blood ... multiple sickle cells Red blood cells, sickle cells Red blood cells, sickle and ... Heeney MM, Ware RE. Sickle cell disease. In: Orkin SH, Fisher DE, Ginsburg D, Look ...

  5. Magnetic fields generated by an induction heating (IH) cook top do not cause genotoxicity in vitro.

    Science.gov (United States)

    Miyakoshi, Junji; Horiuchi, Emi; Nakahara, Takehisa; Sakurai, Tomonori

    2007-10-01

    The use of induction heater (IH) cook tops in homes has become widespread, especially in Japan, but there are concerns about the safety of intermediate frequency (IF) electromagnetic fields associated with these cooking appliances. Since the cellular genotoxicity of IF magnetic fields has not been examined in cultured cells, we examined the effects of these fields at a magnetic flux density of 532 +/- 20 microT at 23 kHz, using an exposure unit with a built-in CO2 incubator. Exposure to the IF magnetic field at 532 microT for 2 h did not affect the growth of CHO-K1 cells and caused no mutagenic effects in bacterial mutation assays. Exposure to the IF magnetic field for 2 h induced neither single nor double DNA strand breaks in comet assays, and caused no significant change in the mutation frequency at the HPRT locus compared to sham exposure. The magnetic field used in this study is more than 80 times higher than the level recommended as safe in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines. From these results, we suggest that exposure to an IF magnetic field for 2 h does not cause cellular genotoxicity in bacteria and in Chinese hamster cells. However, the possibility of effects on other cellular functions remains, and further studies on the cellular effects of IF magnetic fields are required.

  6. Mutagenicity induced by the hydroalcoholic extract of the medicinal plant Plathymenia reticulata Benth

    Directory of Open Access Journals (Sweden)

    A Della Torre

    2011-01-01

    Full Text Available Plathymenia reticulata Benth has an anti-inflammatory effect and is capable of neutralizing the neuromuscular blockade induced by Bothrops jararacussu or Crotalus durissus terrificus venoms, probably by precipitating venom proteins (an effect caused by plant tannins. The present study aimed to evaluate the mutagenic activity of P. reticulata by using the Salmonella mutagenicity assay (Ames test and the micronucleus test in CHO-K1 cells. P. reticulata extract concentrations of 2.84, 5.68, 11.37, and 19.90 mg/plate were assayed by the Ames test using TA97a, TA98, TA100 and TA102 bacterial strains, with (+S9 and without (-S9 metabolic activation. Concentrations of 5, 1.6 and 0.5 μg/mL of P. reticulata extract were used for the micronucleus test. P. reticulata extract was mutagenic to TA98 (-S9 and showed signs of mutagenic activity in TA97a and TA102 (both -S9 strains. Micronucleus test CBPI values showed that the endogenous metabolic system increased the number of viable cells when compared to the non-activated samples and the micronucleus frequency increased when the cells were treated in the absence of S9. We concluded that P. reticulata extract may present direct mutagenic properties.

  7. Validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel enhancers using IonWorks HT.

    Science.gov (United States)

    Jow, Flora; Shen, Ru; Chanda, Pranab; Tseng, Eugene; Zhang, Howard; Kennedy, Jeffrey; Dunlop, John; Bowlby, Mark R

    2007-12-01

    Enhancers of KCNQ channels are known to be effective in chronic pain models. To discover novel enhancers of KCNQ channels, the authors developed a medium-throughput electrophysiological assay by using the IonWorks platform. Screening of 20 CHO-K1 clones stably expressing KCNQ2/3 was performed on the IonWorks HT until the best clone (judged from seal rate, current level, and stability) was obtained. The KCNQ2/3 current amplitude in the cells was found to increase from 60 +/- 15 pA to 473 +/- 80 pA (at -10 mV), and the expression rate was increased by 56% when the cells were incubated at 27 degrees C overnight. The clone used for compound screening had a seal rate of greater than 90% and an overall success rate of greater than 70%. The voltage step protocol (hold cells at -80 mV and depolarize to -10 mV for 1 s) was designed to provide moderate current but still allow for pharmacological current enhancement. EC(50)s were generated from 8-point concentration-response curves with a control compound on each plate using compounds that were also tested with conventional patch clamp. The authors found that there was a very good correlation (R(2) > 0.9) between the 2 assays, thus demonstrating the highly predictive nature of the IonWorks assay.

  8. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  9. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  10. Cell, cell, cell: fuel cell applications moving ahead

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2001-11-01

    Developments in fuel cell technology within the last decade, such as the targeting by major automakers of non-polluting fuel cells as an alternative to the internal combustion engine, are reviewed. For example, Ballard Power Systems of Vancouver is the exclusive supplier to both DaimlerCrysler and the Ford Motor Company of the fuel cell stacks that produce the power in fuel cell systems. Ballard plans the commercial launch of transit bus engines in 2002 and automotive products between 2003 and 2005. The company also sees huge opportunities for fuel cells in stationary and portable power applications. At the same time, the Calgary-based fuel cell division of Energy Ventures Inc. is developing a direct methanol fuel cell that eliminates the intermediate step of 'reforming' methanol into hydrogen that is required in the Ballard process. Energy Ventures targets small niche markets such as small utility vehicles for its direct methanol fuel cell. A completely self-contained fuel cell of this type is expected to be ready in 2002. Solid oxide fuel cells for off-grid remote power units as well as for home heat and power is yet another field of development that will be particularly attractive to operations in remote areas where reliable grid electricity is expensive and hard to obtain. A prototype 2.3 kW residential power system using natural gas was made available by Global Thermoelectric Inc in June 2001; field testing is planned for 2002, with commercial production in late 2003 or 2004. The Calgary-based Snow Leopard Resources Inc plans to use pure hydrogen sulphide obtained from sour natural gas as a hydrogen source. The prime focus of Snow Leopard is on gas plants looking for ways to increase their efficiency, obtain carbon dioxide credits and generate electricity on site. This type of fuel cell also could be of interest to companies with shut-in sour gas since these companies could use the stationary fuel cell system to generate electricity.

  11. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  12. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  13. Development of a universal high-throughput calcium assay for G-protein-coupled receptors with promiscuous G-protein Gα15/16

    Institute of Scientific and Technical Information of China (English)

    Ting ZHU; Li-yan FANG; Xin XIE

    2008-01-01

    Aim:To develop a universal high-throughput screening assay based on Gα15/16-mediated calcium mobilization for the identification of novel modulators of G-protein-coupled receptors (GPCR). Methods:In the present study, CHO-K1 or HEK293 cells were co-transfected with plasmids encoding promiscuous G-protein Cα15/16 and various receptors originally coupled to Gαs, Gαi, or Gαq pathways. Intracellular calcium change was monitored with fluorescent dye Fluo-4. Results:We found out for all the receptors tested, Gα15/16 could shift the receptors' coupling to the calcium mobilization pathway, and the EC50 values of the ligands generated with this method were comparable with reported values that were ob-tained using traditional methods. This assay was validated and optimized with the δ-opioid receptor, which originally coupled to God and was recently found to play important roles in neurodegenerative and autoimmune diseases. A large-scale screening of 48 000 compounds was performed based on this system. Sev-eral new modulators were identified and confirmed with the traditional GTPγS binding assay. Conclusion:This cell-based calcium assay was proved to be robust and easy to automate, and could be used as a universal method in search-ing for GPCR modulators.

  14. In vitro and in vivo safety evaluation of low molecular weight chitosans prepared by hydrolyzing crab shell chitosans with bamboo shoots chitosanase.

    Science.gov (United States)

    Chang, Ya-Min; Lee, Yu-Jing; Liao, Junn-Wang; Jhan, Jyun-Kai; Chang, Chen-Tien; Chung, Yun-Chin

    2014-09-01

    Our previous study demonstrated that the oral administration of low molecular weight chitosans (LMWC), prepared by hydrolyzing crab shell chitosans with bamboo shoots chitosanase in an appropriate dose, reduced aristolochic acid-induced renal lesions in mice. The objectives of this study were to evaluate the safety of LMWC using genetic and animal toxicity assays. Two assays for genotoxicity were performed: the chromosomal aberration of Chinese hamster ovary cells (CHO-K1 cells) (in vitro) and micronucleus assays in mice (in vivo). Acute oral toxicity and 28-day repeated feeding toxicity tests were performed via the oral gavage method in Sprague-Dawley (SD) rats. LMWC did not induce an increase in micronucleus ratios in vivo, and the chromosome aberration assay indicated that the LMWC was safe in terms of clastogenicity in doses up to 5.0 mg/ml. No acute lethal effect at a maximum tested dose of 5.0 g LMWC/kg body weight (bw) was observed in rats. The results of the 28-day study revealed no adverse effects on the body weight, feed consumption, hematology, blood biochemical parameters, organ weights or pathology. The no observed adverse effect level (NOAEL) of LMWC in rats was 1.0 g/kg bw for the subacute toxicity study.

  15. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    Science.gov (United States)

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  16. Origins of intracellular calcium mobilization evoked by infrared laser stimulation

    Science.gov (United States)

    Olsovsky, Cory A.; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.

    2015-03-01

    Cellular delivery of pulsed IR laser energy has been shown to stimulate action potentials in neurons. The mechanism for this stimulation is not completely understood. Certain hypotheses suggest the rise in temperature from IR exposure could activate temperature- or pressure-sensitive channels, or create pores in the cellular outer membrane. Studies using intensity-based Ca2+-responsive dyes show changes in Ca2+ levels after various IR stimulation parameters; however, determination of the origin of this signal proved difficult. An influx of larger, typically plasma-membrane-impermeant ions has been demonstrated, which suggests that Ca2+ may originate from the external solution. However, activation of intracellular signaling pathways, possibly indicating a more complex role of increasing Ca2+ concentration, has also been shown. By usingCa2+ sensitive dye Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the excitation wavelengths, we have quantified the Ca2+ mobilization in terms of influx from the external solution and efflux from intracellular organelles. CHO-K1 cells, which lack voltage-gated Ca2+ channels, and NG-108 neuroblastoma cells, which do not produce action potentials in an early undifferentiated state, are used to determine the origin of the Ca2+ signals and investigate the role these mechanisms may play in IR neural stimulation.

  17. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration.

    Science.gov (United States)

    Maletínská, Lenka; Tichá, Anežka; Nagelová, Veronika; Spolcová, Andrea; Blechová, Miroslava; Elbert, Tomáš; Zelezná, Blanka

    2013-03-01

    Neuropeptide FF (NPFF) belongs to the RF-amide family of peptides bearing the identical C-terminal amino acid sequence (R-F-NH2). In addition to NPFF, prolactin-releasing peptide (PrRP), another RF-amide, binds to NPFF receptors with high affinity. A selective antagonist of PrRP has not yet been identified, but a selective antagonist of NPFF, 1-adamantanecarbonyl-RF-NH2 (RF9), was recently reported to antagonize the hyperalgesic effect of NPFF after central administration to mice. In the present study, RF9 competed with NPFF analog D-Y-L-(N-Me)-F-Q-P-Q-R-F-NH2 (1DMe) in binding to CHO-K1 cell membranes transfected with the human NPFF2 receptor. In rat pituitary RC-4B/C cells, where the expression of the NPFF2 receptor was proved by immunodetection, RF9 did not reverse the phosphorylation of MAPK/ERK1/2 induced by [Tyr(1)]NPFF. In vivo experiments with fasted mice confirmed that centrally injected [Tyr(1)]NPFF significantly lowered food intake. However, RF9, a putative NPFF2 antagonist, did not reverse the anorectic effect of [Tyr(1)]NPFF. Paradoxically, RF9 itself exhibited an anorectic effect in fasted mice not only after intracerebroventricular but also after subcutaneous administration. This finding casts doubt on claims that RF9 is an NPFF antagonist.

  18. Electrochemical cell

    Science.gov (United States)

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  19. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...

  20. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  1. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells ... red blood cells. This leads to anemia. The sickle cells also get stuck in blood vessels, blocking blood ...

  2. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease?Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... disease, hemoglobin SS disease, hemoglobin synthesis, hemoglobinopathies, ... cell anemia, sickle cell crisis, vaso-occlusive crisis Family Health, ...

  3. Stem Cell Information: Glossary

    Science.gov (United States)

    ... bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue. Cell-based therapies —Treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or ...

  4. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  5. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  6. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  7. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  8. Resveratrol inhibits Trypanosoma cruzi arginine kinase and exerts a trypanocidal activity.

    Science.gov (United States)

    Valera Vera, Edward A; Sayé, Melisa; Reigada, Chantal; Damasceno, Flávia S; Silber, Ariel M; Miranda, Mariana R; Pereira, Claudio A

    2016-06-01

    Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (cruzi trypomastigotes bursting from infected CHO K1 cells, with IC50=77μM. Additionally epimastigotes overexpressing arginine kinase were 5 times more resistant to resveratrol compared to controls. Taking into account that: (1) resveratrol is considered as completely nontoxic; (2) is easily accessible due to its low market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease.

  9. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms.

    Science.gov (United States)

    Islan, German A; Dini, Cecilia; Bartel, Laura C; Bolzán, Alejandro D; Castro, Guillermo R

    2015-12-30

    The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions.

  10. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    Science.gov (United States)

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  11. Analytical and toxicity characterization of halo-hydroxyl-benzoquinones as stable halobenzoquinone disinfection byproducts in treated water.

    Science.gov (United States)

    Wang, Wei; Qian, Yichao; Li, Jinhua; Moe, Birget; Huang, Rongfu; Zhang, Hongquan; Hrudey, Steve E; Li, Xing-Fang

    2014-05-20

    Exposure to chlorination disinfection byproducts (DBPs) is potentially associated with an increased risk of bladder cancer. Four halobenzoquinones (HBQs) have been detected in treated drinking water and have shown potency in producing reactive oxygen species and inducing damage to cellular DNA and proteins. These HBQs are unstable in drinking water. The fate and behavior of these HBQs in drinking water distribution systems is unclear. Here we report the high-resolution mass spectrometry identification of the transformation products of HBQs as halo-hydroxyl-benzoquinones (OH-HBQs) in water under realistic conditions. To further examine the kinetics of transformation, we developed a solid-phase extraction with ultrahigh-performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) method to determine both the HBQs and OH-HBQs. The method provides reproducible retention times (SD method, we confirmed that decrease of HBQs correlated with increase of OH-HBQs in both the laboratory experiments and several distribution systems, supporting that OH-HBQs were more stable forms of HBQ DBPs. To understand the toxicological relevance of the OH-HBQs, we studied the in vitro toxicity with CHO-K1 cells and determined the IC50 of HBQs and OH-HBQs ranging from 15.9 to 72.9 μM. While HBQs are 2-fold more toxic than OH-HBQs, both HBQs and OH-HBQs are substantially more toxic than the regulated DBPs.

  12. Structure-affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites.

    Science.gov (United States)

    Sugawara, Mitsuru; Mochizuki, Takahiro; Takekuma, Yoh; Miyazaki, Katsumi

    2005-08-15

    It is well known that human organic anion transporter 1 (hOAT1) transports many kinds of drugs, endogenous compounds, and toxins. However, little is known about the structure-affinity relationship. The aim of this study was to elucidate the structure-affinity relationship using a series of structurally related compounds that interact with hOAT1. Inhibitory effects of xanthine- and uric acid-related compounds on the transport of p-aminohippuric acid were examined using CHO-K1 cells stably expressing hOAT1. The order of potency for the inhibitory effects of xanthine-related compounds on PAH uptake was 1-methyl derivative>7-methyl derivative>3-methyl derivative falling dotsxanthine>1,3,7-trimethyl derivative (caffeine). The order of potency of the inhibition was 1,3,7-trimethyluric acid>1,3-dimethyluric acid>1,7-dimethyluric acid>1-methyluric acid>uric acid. A significant correlation between inhibitory potency and lipophilicity of the tested uric acid-related compounds was observed. The main determinant of the affinity of xanthine-related compounds is the position of the methyl group. On the other hand, lipophilicity is the main determinant of the affinity of uric acid-related compounds.

  13. Gastroprotective potential against indomethacin and safety assessment of the homology of medicine and food formula cuttlebone complex.

    Science.gov (United States)

    Chien, Mei-Yin; Lin, Yi-Ting; Peng, Fu-Chuo; Lee, Huei-Jane; Chang, Jin-Ming; Yang, Chih-Min; Chen, Chao-Hsiang

    2015-08-01

    Cuttlebone complex (CBC), a homology of medicine and food formula, is comprised of five herbal medicines (Endoconcha Sepiae, Radix Paeoniae Rubra, fresh ginger, Fructus Amomi, and Radix Glycyrrhizae) and two food ingredients (Zingiber zerumbet and chitosan). Herein, the gastroprotective potential against indomethacin and a safety assessment of CBC were investigated. In a gastroprotective model, CBC effectively decreased the indomethacin-increased gastric ulcerous lesions, and increased the indomethacin-decreased prostaglandin E2 levels in the gastric mucosa. In genotoxicity tests, CBC treatment did not increase the numbers of revertant colonies in five Salmonella typhimurium strains and chromosome aberrations in Chinese hamster ovary CHO-K1 cells, with or without S9 metabolic activation. The oral supplementation of CBC did not increase micronucleus formation in the peripheral blood of mice. In a subacute toxicity study, the body weight and blood biochemical parameters observed in CBC-treated rats were normal. In conclusion, CBC was considered as a non-toxic formula and could be used to remedy indomethacin-induced gastric damage.

  14. Assessment of Cytotoxicity, Fetotoxicity, and Teratogenicity of Plathymenia reticulata Benth Barks Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Lia de Barros Leite Albuquerque

    2013-01-01

    Full Text Available Scientific assessment of harmful interactions of chemicals over the entire reproductive cycle are divided into three segments based on the period: from premating and mating to implantation (I, from implantation to major organogenesis (II, and late pregnancy and postnatal development (III. We combined the segments I and II to assess Plathymenia reticulata aqueous extract safety. In order to investigate reproductive toxicity (segment I, pregnant rats received orally 0.5 or 1.0 g/kg of extract, daily, during 18 days. These concentrations were determined by a preliminary in vitro LD50 test in CHO-k1 cells. A control group received deionized water. The offspring was removed at the 19th day, by caesarean, and a teratology study (segment II was carried out. The corpora lutea, implants, resorptions, live, and dead fetuses were then counted. Placenta and fetuses were weighted. External and visceral morphology were provided by the fixation of fetuses in Bouin, whereas skeletal analysis was carried out on the diaphanizated ones. The increase in the weights of placenta and fetuses was the only abnormality observed. Since there was no sign of alteration on reproduction parameters at our experimental conditions, we conclude that P. reticulata aqueous extract is safe at 0.5 to 1.0 g/kg and is not considered teratogenic.

  15. Screening of lectins from South American plants used as affinity ligands to purify rhEPO

    Directory of Open Access Journals (Sweden)

    G.I. Amadeo

    2003-03-01

    Full Text Available Two groups of isoforms of rhEPO, at a concentration of 300 µg/ml, were tested as putative inhibitors of the lectinic hemagglutination reaction in order to obtain affinity ligand(s for hormone purification: groups I (pI: 3.80; 3.89; 3.95; 4.07, 4.15 and 4.26 and groups II (pI: 4.15, 4.26; 4.38; 4.51; 4.72 and 4.93 Crude extracts from the vegetable materials Abrus precatorious (Abrin, Artocarpus incisa (Frutalin, Artocarpus integrifolia (Jacalin, Canavalia ensiformes (ConA, Canavalia brasiliensis (Conbr, Cratylia floribunda, Dioclea altissima (DAL, Dioclea grandiflora (DGL, Erythrina vellutina (EVL, Erythrina cristagalli, Lutaelburgia auriculata (lectin not fully characterized yet, Lycopersicum esculentum (LEA, Phaseolus vulgaris (PHA, Ricinus communis (Ricin and Triticum vulgaris (WGA were used. Only some of the galactose-specific lectins and the GlcNAc-specific lectins showed rapid full inhibition of the hemagglutination reaction for the less acidic isoforms and the total isoforms of rhEPO, respectively. On this basis, the selected lectins were purified by affinity chromatoghraphy and covalently coupled to cyanogen bromide activated Sepharose® (Amersham-Pharmacia. CHO.K1 cell culture supernatant containing rhEPO was loaded onto the lectin resins and the recoveries were calculated by using specific elutions.

  16. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  17. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  18. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  19. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  20. Red blood cells, multiple sickle cells (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  1. CellFinder: a cell data repository

    OpenAIRE

    Stachelscheid, H.; Seltmann, S.; Lekschas, F.; Fontaine, J.F.; Mah, N.; Neves, M.; Andrade-Navarro, M.A.; Leser, U; Kurtz, A.

    2014-01-01

    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue t...

  2. Molluscan cells in culture: primary cell cultures and cell lines

    OpenAIRE

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as bi...

  3. A proteomic study of cMyc improvement of CHO culture

    Directory of Open Access Journals (Sweden)

    Dunn Michael J

    2010-03-01

    Full Text Available Abstract Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS. Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin, protein biosysnthesis (eIF6 and energy metabolism (ATP synthetase, and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.

  4. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  5. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  6. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  7. Antiparietal cell antibody test

    Science.gov (United States)

    APCA; Anti-gastric parietal cell antibody; Atrophic gastritis - anti-gastric parietal cell antibody; Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; ...

  8. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  9. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr.

    Science.gov (United States)

    Kang, Shin-Young; Kim, Yeon-Gu; Lee, Hong Weon; Lee, Eun Gyo

    2015-12-01

    Gene amplification using dihydrofolate reductase gene (dhfr) and methotrexate (MTX) is widely used for recombinant protein production in mammalian cells and is typically conducted in DHFR-deficient Chinese hamster ovary (CHO) cell lines. Generation of DHFR-deficient cells can be achieved by an expression vector incorporating short hairpin RNA (shRNA) that targets the 3'-untranslated region (UTR) of endogenous dhfr. Thus, shRNAs were designed to target the 3'-UTR of endogenous dhfr, and shRNA-2 efficiently down-regulated dhfr expression in CHO-K1 cells. A single gene copy of shRNA-2 also decreased the translational level of DHFR by 80% in Flp-In CHO cells. shRNA-2 was then incorporated into a plasmid vector expressing human erythropoietin (EPO) and an exogenous DHFR to develop EPO-producing cells in the Flp-In system. The specific EPO productivity (q EPO) was enhanced by stepwise increments of MTX concentration, and differences in the amplification rate were observed in Flp-In CHO cells that expressed shRNA-2. In addition, the q EPO increased by more than 2.5-fold in the presence of 500 nM MTX. The mRNA expression level and gene copy numbers of dhfr were correlated with increased productivity in the cells, which is influenced by inhibition of endogenous dhfr. This study reveals that an expression vector including shRNA that targets the 3'-UTR of endogenous dhfr can enhance the transgene amplification rate and productivity by generating DHFR-deficient cells. This approach may be applied for amplifying the foreign gene in wild-type cell lines as a versatile single-plasmid vector.

  10. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  11. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  12. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  13. Photoelectrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, R. David (Newton, MA); Boudreau, Robert A. (Norton, MA)

    1983-06-14

    A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.

  14. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  15. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Wang, Y; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  16. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    Science.gov (United States)

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  17. Cell culture purity issues and DFAT cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shengjuan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Bergen, Werner G. [Program in Cellular and Molecular Biosciences/Department of Animal Sciences, Auburn University, Auburn, AL 36849 (United States); Hausman, Gary J. [Animal Science Department, University of Georgia, Athens, GA 30602-2771 (United States); Zan, Linsen, E-mail: zanls@yahoo.com.cn [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Dodson, Michael V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  18. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    Science.gov (United States)

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts.

  19. Electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Heuts, J.J.F.G.; Willems, J.J.G.S.A.

    1987-10-13

    An electrochemical cell is described comprising a negative electrode. The electrochemically active material of which consists of an intermetallic compound forming a hydride with hydrogen, which compound has the CaCu/sub 5/-structure and the compositional formula AB/sub m/C/sub n/, where m+n is between 4.8 and 5.4, where n is between 0.05 and 0.6, in which A consists of Misch-metal or of one or more elements selected from the group consisting of Y, Ti, Hf, Zr, Ca, Th, La and the remaining rare earth metals, in which the total atomic quantities of the elements Y, Ti, Hf and Zr may not be more than 40% of A. B consists of two or more elements selected from the group formed by Ni, Co, Cu, Fe and Mn, where the maximum atomic quantity per gram atom of A is for Ni: 3.5, for Co:3.5, for Cu:3.5, for Fe:2.0 and for Mn:1.0, and C consists of one or more elements selected from the group formed by Al, Cr and Si in the indicated atomic quantities: Al:0.05-0.6, Cr:0.05-0.5 and Si:0.05-0.5, characterized in that the electrochemically active material additionally comprises one or more metals selected from the group formed by Pd, Pt, Ir and Rh, the atomic quantity per gram atom of A being from 0.001 to 0.5.

  20. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  1. Cell culture purity issues and DFAT cells.

    Science.gov (United States)

    Wei, Shengjuan; Bergen, Werner G; Hausman, Gary J; Zan, Linsen; Dodson, Michael V

    2013-04-12

    Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  2. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  3. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.

  4. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  5. Cell sheet engineering

    Directory of Open Access Journals (Sweden)

    Masayuki Yamato

    2004-05-01

    Full Text Available We have developed ‘cell sheet engineering’ in order to avoid the limitations of tissue reconstruction using biodegradable scaffolds or single cell suspension injection. Our concept is tissue reconstruction, not from single cells, but from cell sheets. Cell sheets are prepared using temperature-responsive culture dishes. Temperature-responsive polymers are covalently grafted onto the dishes, allowing various types of cells to adhere and proliferate at 37°C. The cells spontaneously detach when the temperature is reduced below 32°C without the need for proteolytic enzymes. The confluent cells are noninvasively harvested as single, contiguous cell sheets with intact cell-cell junctions and deposited extracellular matrix (ECM. We have used these harvested cell sheets for various tissue reconstructions, including ocular surfaces, periodontal ligaments, cardiac patches, and bladder augmentation.

  6. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  7. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  8. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  9. CellFinder: a cell data repository.

    Science.gov (United States)

    Stachelscheid, Harald; Seltmann, Stefanie; Lekschas, Fritz; Fontaine, Jean-Fred; Mah, Nancy; Neves, Mariana; Andrade-Navarro, Miguel A; Leser, Ulf; Kurtz, Andreas

    2014-01-01

    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians.

  10. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  11. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  12. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  13. The naturally occurring mutation Y197C does not affect the expression or signaling of the human histamine H3 receptor.

    Science.gov (United States)

    Flores-Clemente, Cecilia; Escamilla-Sánchez, Juan; Arias, Juan-Manuel; Arias-Montaño, José-Antonio

    2017-02-22

    There is evidence for genetic polymorphism within the human histamine H3 receptor (hH3R), and a Tyr to Cys exchange at position 197 (Y197C), located in the amino terminus of the fifth transmembrane domain, has been reported. In this work we compared the expression and the pharmacological and signaling properties of wild-type (hH3RWT) and mutant (hH3RY197C) receptors transiently expressed in CHO-K1 cells. The hH3RY197C cDNA was created by overlap extension PCR amplification. Receptor expression and affinity were assessed by N-α-[methyl-(3)H]-histamine binding to cell membranes and intact cells. Receptor function was evaluated by stimulation of [(35)S]-GTPγS binding to cell membranes and by inhibition of forskolin-induced cAMP accumulation in intact cells. The hH3RWT and hH3RY197C were expressed at similar levels (761±68 and 663±66fmol/mg protein for membranes, and 13,434±1533 and 15,894±1884 receptors per cell, respectively). There were no significant differences in the affinities for H3R agonists or antagonists/inverse agonists between the hH3RWT and hH3RY197C, and the H3R agonist RAMH was similarly efficacious and potent to stimulate [(35)S]-GTPγS binding and to inhibit forskolin-induced cAMP accumulation. These results indicate that the Y197C mutation does not affect the expression, ligand affinity or signaling of the human H3 receptor.

  14. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  15. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119.

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    Full Text Available G protein-coupled receptor (GPR 119 is expressed in pancreatic β-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1 release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD, for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes.

  16. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  17. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  18. Cell mechanics: a dialogue

    Science.gov (United States)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  19. Chemical composition and cytotoxicity activity of the essential oil of Pterodon emarginatus

    Directory of Open Access Journals (Sweden)

    Rafael C. Dutra

    2012-10-01

    Full Text Available Pterodon emarginatus Vogel, Fabaceae, is a native aromatic tree distributed by central region of Brazil. Hydroalcoholic infusions of the seeds are used in folk medicine for their anti-rheumatic and anti-inflammatory properties. The objective of this work was identified the chemical components and verify the cytotoxic effect of the essential oil (EO from P. emarginatus seeds. Thus, the EO of P. emarginatus seeds was analyzed by GC/MS analysis followed by brine shrimp lethality test and cytotoxic activity against tumor cell lines and human peripheral mononuclear blood cells (PBMC. The cancer cell lines tested were C6 (rat glioma, MeWo (human melanoma, CT26.WT (mouse colon carcinoma, MDA (human breast cancer, A549 (human lung carcinoma, B16-F1 (mouse melanoma, CHO-K1 (hamster ovary cell and BHK-21 (hamster kidney fibroblast. Eleven compounds were identified by GC and CG/MS analyses. The main compounds with concentrations higher than 5% were β-elemene (15.3%, trans-caryophyllene (35.9%, α-humulene (6.8%, germacrene-D (9.8%, bicyclo germacrene (5.5% and spathulenol (5.9%. The EO of P. emarginatus seeds showed toxicity to Artemia salina (LC50 1.63 µg/mL and was active against all the cell lines tested. The potent cytotoxic activity had IC50 values ranging from 24.9 to 47 µg/mL. However, EO (1-100 µg/mL had less cytotoxicity in PBMCs isolated from a healthy subject. In summary, the present study showed the potential antiproliferative of the EO of P. emarginatus seeds.

  20. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  1. T-Cell Lymphoma

    Science.gov (United States)

    Getting the Facts T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). T-cell lymphomas account for ...

  2. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  3. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  4. Expression Products of Chimeric BMP2 and BMP7 Induce Osteoblast Differentiation%BMP2与BMP7嵌合表达产物可诱导成骨细胞分化

    Institute of Scientific and Technical Information of China (English)

    胡丽玲; 李晓霞; 张镜宇; 王宝利

    2009-01-01

    目的:构建骨形态发生蛋白(BMP)2与BMP7嵌合表达的分泌型基因载体pcDNA3-BMP2/7,检测表达产物的成骨诱导活性.方法:聚合酶链反应(PCR)扩增BMP2与BMP7的成熟肽编码基因,利用重叠延伸PCR以柔性肽(Gly_4Ser)_3编码序列使两者嵌合并克隆到质粒pcDNA3/sec上,转染CHO-K1细胞筛选得到稳定克隆,以其条件培养基处理鼠胚胎成纤维细胞C3H10T1/2,通过RT-PCR研究BMP2/7嵌合表达产物的活性.结果:BMP2/7嵌合表达产物可以明显提高C3H10T1/2细胞碱性磷酸酶(Alkaline phosphatase,ALP)、骨钙素(Osteocalcin,Oc)成骨细胞表型基因以及特异性转录因子Runx2 (runt-related transcription factor 2)mRNA的表达(P < 0.01).结论:制备的BMP2/7嵌合表达产物能够形成异源二聚体,诱导非骨源性细胞向成骨细胞分化.%Objective: To study the osteoinductive activity of chimeric molecule of bone morphogenetic protein(BMP)2 and BMP7 expressed in mammalian cells. Methods: Sequences encoding mature peptides of BMP2 and BMP7 were separately amplified by PCR and then linked by overlap-extension PCR with a DNA sequence encoding a flexible peptide (Gly_4Ser)_3 between them. The chimeric DNA sequence was cloned into secretory expression plasmid pcDNA3/sec and then the recombinant plasmid pcDNA3 -BMP2/7 was transfected into CHO-K1 cells. In the presence of G418,cells that stably expressed BMP2/7 were screened out. Thereafter, the conditioned culture medium of the transfected cells was collected and used to treat C3H10T1/2 cells. RT-PCR was employed to study the activity of the recombinant product in inducing osteoblast differentiation. Results: The expression products of chimeric BMP2/7 significantly enhanced the mRNA expression levels of osteoblast phenotype genes, such as alkaline phosphatase, osteocalcin and osteoblast specific transcription factor runt-related transcription factor 2 in C3H10T1/2 cells(P < 0.01). Conclusion: The chimeric expression products of BMP2

  5. Ganglion cell like cells, diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Anand Shankar Ammanagi

    2013-01-01

    Full Text Available We report a case of cutaneous swelling found on the left anterior axillary fold of a 41-year-old man. Gross examination of specimen excised from the dermis showed a well-circumscribed nodule histologically composed of spindle cells with interspersed ganglion cell like cells. On hematoxylin and eosine (H and E staining it was diagnosed as ganglioneuroma. Ganglioneuromas are rare, benign, fully differentiated tumors that contain mature schwann cells, ganglion cells, fibrous tissue, and nerve fibers. They are commonly found along the paravertebral sympathetic ganglia and sometimes in the adrenal medulla. However primary cutaneous ganglioneuroma is an extremely rare tumor. Immunohistochemical workup revealed a fibroblastic origin and hence the case was diagnosed as fibromatosis with ganglion cell like fibroblasts. This case report suggests that the features considered diagnostic of ganglioneuromas can occur in other cutaneous lesions and, therefore, this diagnosis cannot be offered only on the basis of H and E.

  6. Generation of iPS Cells from Granulosa Cells.

    Science.gov (United States)

    Mao, Jian; Liu, Lin

    2016-01-01

    Various types of somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells. Somatic stem cells may generate iPS cells more efficiently than do differentiated cells. We show that granulosa cells exhibit characteristic of somatic stem cells and can be reprogrammed to iPS cells more efficiently or with few factors. Here, we describe generation of mouse and pig iPS cells from granulosa cells with high efficiency.

  7. Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro.

    Science.gov (United States)

    Zhu, Rong; Liu, Qiang; Huang, Weijin; Yu, Yongxin; Wang, Youchun

    2014-10-01

    Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines.

  8. Modulation of early stress-related biomarkers in cytoplasm by the antioxidants silymarin and quercetin using a cellular model of acute arsenic poisoning.

    Science.gov (United States)

    Soria, Elio A; Eynard, Aldo R; Bongiovanni, Guillermina A

    2010-12-01

    Several pathologies (e.g. cancer and diabetes) are increased in arsenic-exposed populations, with oxidative stress being a major toxicological mechanism. Since the flavonoids silymarin (S) and quercetin (Q) are antioxidants and may protect cells, it would be valuable to develop a model which allows assessing the potential of xenobiotic against arsenic cytotoxicity in an efficient and rapid way. Thus, the oxidant production [e.g. reactive oxygen species and reactive nitrogen species (RNS)], the molecular parameters of biological response [e.g. plasma membrane composition, actin microfilaments and activated diphosphorilated c-Jun N-terminal kinase (JNK)] and cellular viability were determined in CHO-K1 cells treated with arsenite (As), S and Q. Arsenic caused loss of the cellular viability in a time-dependent manner. This effect was accompanied by a lipid hydroperoxide (LHP) formation, with no RNS induction or ganglioside content changes being found. Both flavonoids counteracted oxidative damage. Despite all treatments had unspecific responses on nitrite cellular release along the time, there was no relation between them and the cellular viability. Arsenic induced cytoplasmic microfilament rearrangement (tight perinuclear distribution with projections, stress fibres and pseudopodia) which was reversed by S. Also, activated JNK showed a similar distribution to actin. Contrarily, Q caused a dysmorphic granular pattern, thus behaving as a toxic agent. Summing up, toxic levels of arsenic disturb the redox homeostasis with LHP induction and early triggering of stress responses in cytoskeleton and cell signalling. Using the proposed model, only S showed to protect cells from arsenical cytotoxicity without own toxic properties. Thus, S might be considered for modulation of the human arsenic susceptibility.

  9. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents.

    Science.gov (United States)

    De Grandis, Rone Aparecido; Resende, Flávia Aparecida; da Silva, Monize Martins; Pavan, Fernando Rogério; Batista, Alzir Azevedo; Varanda, Eliana Aparecida

    2016-03-01

    Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health.

  10. B cell helper assays.

    Science.gov (United States)

    Abrignani, Sergio; Tonti, Elena; Casorati, Giulia; Dellabona, Paolo

    2009-01-01

    Activation, proliferation and differentiation of naïve B lymphocytes into memory B cells and plasma cells requires engagement of the B cell receptor (BCR) coupled to T-cell help (1, 2). T cells deliver help in cognate fashion when they are activated upon recognition of specific MHC-peptide complexes presented by B cells. T cells can also deliver help in a non-cognate or bystander fashion, when they do not find specific MHC-peptide complexes on B cells and are activated by alternative mechanisms. T-cell dependent activation of B cells can be studied in vitro by experimental models called "B cell helper assays" that are based on the co-culture of B cells with activated T cells. These assays allow to decipher the molecular bases for productive T-dependent B cell responses. We show here examples of B cell helper assays in vitro, which can be reproduced with any subset of T lymphocytes that displays the appropriate helper signals.

  11. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  12. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  13. Single cell mechanics of keratinocyte cells.

    Science.gov (United States)

    Lulevich, Valentin; Yang, Hsin-ya; Isseroff, R Rivkah; Liu, Gang-yu

    2010-11-01

    Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

  14. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  15. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  16. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  17. Tracking adult stem cells.

    Science.gov (United States)

    Snippert, Hugo J; Clevers, Hans

    2011-02-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.

  18. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  19. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  20. Cell shape recognition by colloidal cell imprints

    NARCIS (Netherlands)

    Borovička, Josef; Stoyanov, S.D.; Paunov, V.N.

    2015-01-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into accou

  1. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  2. Are mesenchymal stromal cells immune cells?

    NARCIS (Netherlands)

    M.J. Hoogduijn (Martin)

    2015-01-01

    textabstractMesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-cl

  3. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity.

    Science.gov (United States)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie

    2013-10-15

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [(3)H](2)O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks.

  4. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks

  5. Functional effects of the late sodium current inhibition by AZD7009 and lidocaine in rabbit isolated atrial and ventricular tissue and Purkinje fibre.

    Science.gov (United States)

    Persson, Frida; Andersson, Birgit; Duker, Göran; Jacobson, Ingemar; Carlsson, Leif

    2007-03-08

    AZD7009 (tert-Butyl-2-(7-[(2S)-3-(4-cyanophenoxy)-2-hydroxypropyl]-9-oxa-3,7-diazabicyclo[3.3.1]non-3-yl)ethylcarbamate) is an antiarrhythmic agent that increases atrial refractoriness, shows high antiarrhythmic efficacy and has low proarrhythmic potential. This study was primarily undertaken to determine the effects of AZD7009 on the late sodium current and to examine the impact of late sodium current inhibition on action potential duration in various myocardial cells. AZD7009 inhibited the late sodium current in Chinese Hamster Ovary K1 (CHO K1) cells expressing hNa(v)1.5 with an IC(50) of 11+/-2 microM. The late sodium current in isolated rabbit atrial and ventricular myocytes was also concentration dependently inhibited by AZD7009. Action potentials were recorded during exposure to 5 microM E-4031 (1-[2-(6-methyl-2pyridyl)ethyl]-4-(4-methylsulfonyl aminobenzoyl)piperidine), a compound that selectively inhibits the rapid delayed rectifier potassium current (I(Kr)), and to E-4031 in combination with AZD7009 or lidocaine in rabbit atrial and ventricular tissue and Purkinje fibres. In Purkinje fibres, but not in ventricular tissue, AZD7009 and lidocaine attenuated the E-4031-induced action potential duration prolongation. In atrial cells, AZD7009, but not lidocaine, further prolonged the E-4031-induced action potential duration. E-4031 induced early afterdepolarisations (EADs) in Purkinje fibres, EADs that were totally suppressed by AZD7009 or lidocaine. In conclusion, excessive action potential duration prolongation induced by E-4031 was attenuated by AZD7009 and lidocaine in rabbit Purkinje fibre, but not in atrial or ventricular tissue, most likely by inhibiting the late sodium current. Furthermore, the opposite effect by AZD7009 on action potential duration in atrial tissue suggests that AZD7009, in addition to inhibiting I(Kr), also inhibits other repolarising currents in the atria.

  6. Receptor reserve analysis of the human alpha(2C)-adrenoceptor using.

    Science.gov (United States)

    Umland, S P; Wan, Y; Shah, H; Billah, M; Egan, R W; Hey, J A

    2001-01-12

    Here we determine for norepinephrine, (5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline) (UK14,304), 5,6,7,8-tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (BHT-920), (2-[3-hydroxy-2,6-dimethyl-4-t-butylbenzyl]-2-imidazoline) (oxymetazoline), and ((R)-3-Hydroxy-alpha-[(methylamino)methyl]-benzenemethanol hydrochloride) (phenylephrine), affinities using a radiolabeled agonist and antagonist, and potency and efficacy values in membrane [(35)S]guanosine-5'-O-(3-thiotriphosphate) ([(35)S]GTP gamma S) binding and cAMP cellular inhibition assays, in Chinese hamster ovary cells (CHO-K1) expressing the human alpha(2c)-adrenoceptor. These cells express a high ratio of receptor to G-protein because each agonist, but not several antagonists, displaced [(3)H]UK14,304 with higher affinity than [(3)H]rauwolscine. The rank order of potency of high affinity K(i) and EC(50) in both functional assays was norepinephrine > or =UK14,304>BHT-920>oxymetazoline>phenylephrine. The receptor reserve of G-protein activation and cAMP responses was measured with the irreversible antagonist, benextramine; K(A) values of norepinephrine or UK14,304 were similar (289, 271 or 150, 163 nM, respectively). A 20-fold greater receptor occupancy was required for agonist-induced half-maximal [(35)S]GTP gamma S binding compared to cAMP inhibition, indicating significant signal amplification in cells. Therefore, the G-protein activation assay is better at distinguishing full and partial agonists.

  7. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer.

    Science.gov (United States)

    Kulbacka, Julita; Pucek, Agata; Kotulska, Małgorzata; Dubińska-Magiera, Magda; Rossowska, Joanna; Rols, Marie-Pierre; Wilk, Kazimiera Anna

    2016-08-01

    Nanocarriers and electroporation (also named electropermeabilization) are convenient methods to increase drug transport. In the current study, we present an effective support of drug delivery into cancer cells, utilizing these methods. We compare the efficiency of each of them and their combination. Multifunctional solid lipid nanoparticles (SLNs) loaded with a cyanine-type IR-780 - acting as a diagnostic agent and a photosensitizer, and a flavonoid derivative - baicalein (BAI) or fisetin (FIS) as a therapeutic cargo - were fabricated via solvent-diffusion method. A therapy supplemented with flavonoids may provide a more precise method to apply desirable lower drug doses and is more likely to result in lower toxicity and a decrease in tumor growth. The SLNs were stabilized with Phospholipon 90G at various concentrations; cetyl palmitate (CP) was applied as a solid matrix. The obtained nanosystems were characterized by dynamic light scattering (size along with size distribution), UV-vis (cargos encapsulation efficiency) and atomic force microscopy (morphology and shape). The obtained SLNs were used as drug carriers alone and in combination with electropermeabilization induced by millisecond pulsed electric fields of high intensity. Two cell lines were selected for the study: LoVo and CHO-K1. The viability was assessed after electroporation alone, the use of electroporation and nanoparticles, and nanoparticles or drugs alone. The intracellular accumulation of cyanine IR-780 and the impact on intracellular structure organization of cytoskeleton was visualized with confocal microscopy method with alpha-actin and beta-tubulin. In this study, the efficacy of nanoparticles with mixed cargo, additionally enhanced by electroporation, is demonstrated to act as an anticancer modality to eliminate cancer cells.

  8. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  9. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  10. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  11. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  12. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  13. Stem Cell Transplant

    Science.gov (United States)

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  14. Sickle cell test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003666.htm Sickle cell test To use the sharing features on this page, please enable JavaScript. The sickle cell test looks for the abnormal hemoglobin in the ...

  15. Sickle Cell Tests

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Sickle Cell Tests Share this page: Was this page helpful? ... else I should know? How is it used? Sickle cell tests are used to identify the presence of ...

  16. Sickle Cell Disease Quiz

    Science.gov (United States)

    ... Websites About Us Information For... Media Policy Makers Sickle Cell Disease Quiz Language: English Español (Spanish) Recommend on ... 1. True or False: Only African Americans get sickle cell disease. A True B False 2. True or ...

  17. Sickle Cell Trait

    Science.gov (United States)

    ... Websites About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... pass the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  18. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  19. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  20. White Blood Cell Count

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? ... Count; Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , ...

  1. Sickle Cell Information Center

    Science.gov (United States)

    ... Nature, Wash Post, SciAm, CNN - Google Custom Search Sickle Cell Anemia News -- ScienceDaily January 18, 1970 Read articles summarizing medical research on sickle-cell anemia. NYT, Nature, Wash Post, SciAm, CNN - Google Custom ...

  2. Sickle Cell Disease

    Science.gov (United States)

    ... About Us Overview of CDC’s work. Advancements in Sickle Cell Disease New supplement from the American Journal of Preventive Medicine describes the state of sickle cell disease related care in the United States. Read Supplement ...

  3. Red blood cell production

    Science.gov (United States)

    ... to one part of the body or another. Red blood cells are an important element of blood. Their job ... is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of ...

  4. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  5. Mast cell proteoglycans.

    Science.gov (United States)

    Rönnberg, Elin; Melo, Fabio R; Pejler, Gunnar

    2012-12-01

    Mast cells are versatile effector cells of the immune system, contributing to both innate and adaptive immunity toward pathogens but also having profound detrimental activities in the context of inflammatory disease. A hallmark morphological feature of mast cells is their large content of cytoplasmic secretory granules, filled with numerous secretory compounds, including highly negatively charged heparin or chondroitin sulfate proteoglycans of serglycin type. These anionic proteoglycans provide the basis for the strong metachromatic staining properties of mast cells seen when applying various cationic dyes. Functionally, the mast cell proteoglycans have been shown to have an essential role in promoting the storage of other granule-contained compounds, including bioactive monoamines and different mast cell-specific proteases. Moreover, granule proteoglycans have been shown to regulate the enzymatic activities of mast cell proteases and to promote apoptosis. Here, the current knowledge of mast cell proteoglycans is reviewed.

  6. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  7. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  8. Kidney Cell Electrophoresis

    Science.gov (United States)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  9. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  10. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  11. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  12. Storage of cell lines.

    Science.gov (United States)

    Parker, Katharine A

    2011-01-01

    The successful storage of cell lines depends upon many factors, including the condition of the cells to be frozen and the experience of the operator. Attempting to freeze down unhealthy, contaminated or poorly labelled cells can have huge implications for a research laboratory. This chapter outlines the importance of good record keeping, vigilant monitoring, aseptic technique, and high-quality reagents in the successful storage and downstream propagation of cell lines.

  13. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  14. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  15. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  16. Adventures with Cell Phones

    Science.gov (United States)

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  17. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  18. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  19. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  20. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  1. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  2. SYNOVIAL CELL SARCOMA

    Directory of Open Access Journals (Sweden)

    M. Farzan

    1997-06-01

    Full Text Available Ten cases of synovial cell sarcoma are reported. The youngest patient was a 2'A years old boy with synovial cell sarcoma of the knee and the oldest one was a man with synovial cell sarcoma of the elbow.

  3. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  4. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  5. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  6. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  7. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  8. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    Directory of Open Access Journals (Sweden)

    Christine Gross

    2016-03-01

    Full Text Available The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1, a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1 polarized budding of HTLV-1 into synaptic clefts; and (2 cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  9. Molecular and biochemical characterization of xrs mutants defective in Ku80.

    Science.gov (United States)

    Singleton, B K; Priestley, A; Steingrimsdottir, H; Gell, D; Blunt, T; Jackson, S P; Lehmann, A R; Jeggo, P A

    1997-01-01

    The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities. PMID:9032253

  10. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  11. Genotoxic and mutagenic effects of lipid-coated CdSe/ZnS quantum dots.

    Science.gov (United States)

    Aye, Mélanie; Di Giorgio, Carole; Berque-Bestel, Isabelle; Aime, Ahissan; Pichon, Benoit P; Jammes, Yves; Barthélémy, Philippe; De Méo, Michel

    2013-01-20

    We proposed to evaluate the genotoxicity and mutagenicity of a new quantum dots (QDs) nanoplatform (QDsN), consisting of CdSe/ZnS core-shell QDs encapsulated by a natural fusogenic lipid (1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC)) and functionalized by a nucleolipid N-[5'-(2',3'-di-oleoyl) uridine]-N',N',N'-trimethylammoniumtosylate (DOTAU). This QDs nanoplatform may represent a new therapeutic tool for the diagnosis and treatment of human cancers. The genotoxic, mutagenic and clastogenic effects of QDsN were compared to those of cadmium chloride (CdCl(2)). Three assays were used: (1) the Salmonella/microsome assay with four tester strains, (2) the comet assay and (3) the micronucleus test on CHO cells. The contribution of simulated sunlight was studied in the three assays while oxidative events were only explored in the comet assay in aliquots pretreated with the antioxidant l-ergothioneine. We found that QDsN could enter CHO-K1 cells and accumulate in cytoplasmic vesicles. It was not mutagenic in the Salmonella/mutagenicity test whereas CdCl(2) was weakly positive. In the dark, both the QDsN and CdCl(2) similarly induced dose-dependent increases in single-strand breaks and micronuclei. Exposure to simulated sunlight significantly potentiated the genotoxic activities of both QDsN and CdCl(2), but did not significantly increase micronucleus frequencies. l-Ergothioneine significantly reduced but did not completely suppress the DNA-damaging activity of QDsN and CdCl(2). The present results clearly point to the genotoxic properties and the risk of long-term adverse effects of such a nanoplatform if used for human anticancer therapy and diagnosis in the future.

  12. Optimized codon usage enhances the expression and immunogenicity of DNA vaccine encoding Taenia solium oncosphere TSOL18 gene.

    Science.gov (United States)

    Wang, Yuan-Yuan; Chang, Xue-Lian; Tao, Zhi-Yong; Wang, Xiao-Li; Jiao, Yu-Meng; Chen, Yong; Qi, Wen-Juan; Xia, Hui; Yang, Xiao-Di; Sun, Xin; Shen, Ji-Long; Fang, Qiang

    2015-07-01

    Cysticercosis due to larval cysts of Taenia solium, is a serious public health problem affecting humans in numerous regions worldwide. The oncospheral stage-specific TSOL18 antigen is a promising candidate for an anti-cysticercosis vaccine. It has been reported that the immunogenicity of the DNA vaccine may be enhanced through codon optimization of candidate genes. The aim of the present study was to further increase the efficacy of the cysticercosis DNA vaccine; therefore, a codon optimized recombinant expression plasmid pVAX1/TSOL18 was developed in order to enhance expression and immunogenicity of TSOL18. The gene encoding TSOL18 of Taenia solium was optimized, and the resulting opt-TSOL18 gene was amplified and expressed. The results of the present study showed that the codon-optimized TSOL18 gene was successfully expressed in CHO-K1 cells, and immunized mice vaccinated with opt-TSOL18 recombinant expression plasmids demonstrated opt‑TSOL18 expression in muscle fibers, as determined by immunohistochemistry. In addition, the codon-optimized TSOL18 gene produced a significantly greater effect compared with that of TSOL18 and active spleen cells were markedly stimulated in vaccinated mice. 3H-thymidine incorporation was significantly greater in the opt-TSOL18 group compared with that of the TSOL18, pVAX and blank control groups (P<0.01). In conclusion, the eukaryotic expression vector containing the codon-optimized TSOL18 gene was successfully constructed and was confirmed to be expressed in vivo and in vitro. The expression and immunogenicity of the codon-optimized TSOL18 gene were markedly greater compared with that of the un-optimized gene. Therefore, these results may provide the basis for an optimized TSOL18 gene vaccine against cysticercosis.

  13. Molecular Design, Expression and Evaluation of PASylated Human Recombinant Erythropoietin with Enhanced Functional Properties.

    Science.gov (United States)

    Hedayati, Mohammad Hossein; Norouzian, Dariush; Aminian, Mahdi; Teimourian, Shahram; Ahangari Cohan, Reza; Sardari, Soroush; Khorramizadeh, M Reza

    2017-02-01

    Erythropoietin (EPO) is the principal hormone which, has somewhat short half-life involved in the differentiation and regulation of circulating red blood cells. The present study was carried out to evaluate the capability of a polyethylene glycol mimetic technology as a biological alternative to improve pharmaceutical properties of human recombinant EPO. In silico models of EPO fused to 200 amino acids of proline, alanine, and serine (PAS) were initially generated and assessed by molecular dynamic (MD) simulation. The fluctuations of the modeled structure reached a plateau after 6000 ps of MD simulation. The Phi and psi analysis showed >99.2% of residues were located in the allowed regions. An expression vector consisting of EPO cDNA tagged to PAS coding sequences was synthesized and expressed in CHO-K1 Cells. The produced PASylated molecule was purified and characterized by standard analytical methods. The molecular weight of fusion protein was expanded to 70 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis method. Analytical size exclusion chromatography revealed an approximately sevenfold increase in apparent size of produced protein. Although the in vitro potency of the fusion protein was significantly reduced (1.26 ± 0.05 vs. 0.24 ± 0.03 ng/ml) but, the in vivo activity was considerably increased up to 1.58 × 10(5) IU/ml in normocythemic mice assay. Pharmacokinetic animal studies revealed strongly 15.6-fold plasma half-life extension for the PASylated EPO (83.16 ± 13.28 h) in comparison to epoetin α (8.5 ± 2.4 h) and darbepoetin α (25.3 ± 2.2h).

  14. A novel, testis-specific mRNA transcript encoding an NH2-terminal truncated nitric-oxide synthase.

    Science.gov (United States)

    Wang, Y; Goligorsky, M S; Lin, M; Wilcox, J N; Marsden, P A

    1997-04-25

    mRNA diversity represents a major theme of neuronal nitric-oxide synthase (nNOS) gene expression in somatic cells/tissues. Given that gonads often express unique and biologically informative variants of complex genes, we determined whether unique variants of nNOS are expressed in the testis. Analysis of cDNA clones isolated from human testis identified a novel, testis-specific nNOS (TnNOS) mRNA transcript. A predicted 3294-base pair open reading frame encodes an NH2-terminal truncated protein of 1098 amino acids. Measurement of calcium-activated L-[14C]citrulline formation and nitric oxide release in CHO-K1 cells stably transfected with the TnNOS cDNA indicates that this protein is a calcium-dependent nitric-oxide synthase with catalytic activity comparable to that of full-length nNOS. TnNOS transcripts exhibit novel 5' mRNA sequences encoded by two unique exons spliced to exon 4 of the full-length nNOS. Characterization of the genomic structure indicates that exonic regions used by the novel TnNOS are expressed from intron 3 of the NOS1 gene. Although lacking canonical TATA and CAAT boxes, the 5'-flanking region of the TnNOS exon 1 contains multiple putative cis-regulatory elements including those implicated in testis-specific gene expression. The downstream promoter of the human nNOS gene, which directs testis-specific expression of a novel NH2-terminal truncated nitric-oxide synthase, represents the first reported example in the NOS gene family of transcriptional diversity producing a variant NOS protein.

  15. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Yan LI; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: The sesquiterpene hydroquinones/quinones belong to one class of marine sponge metabolites, and they have Accepted considerable attention due to their varied biological activities, including anti-tumor, anti-HIV, and anti-inflammatory action. In order to probe the potential anti-diabetic effect of the sesquiterpene hydroquinones/quinones, the effect of dysi-dine on the insulin pathway was studied.Methods: The promotion of glucose uptake by dysidine was studied in differentiated 3T3-L1 cells. The increase in membrane-located GLUT4 by dysidine was studied in CHO-K1/GLUT4 and 3T3-L1 cells by immuno-staining. The activation of the insulin signaling pathway by dysidine was probed by Western blotting. The inhibition of PTPases by dysidine was detected in vitro.Results: Dysidine, found in the Hainan sponge Dysidea villosa in the Chinese South Sea, effectively activated the insulin signaling pathway, greatly promoted glucose uptake in 3T3-L1 ceils, and showed strong insulin-sensitizing activities. The potential targets of action for dysidine were probed, and the results indicated that dysidine exhibited its cellular effects through activation of the insulin pathway, possibly through the inhibition of protein tyrosine phosphatases, with more specific inhibition against protein tyrosine phosphatase 1B (PTPIB). Conclusion: Our findings are expected to expand understanding of the biological activities of sesquiterpene hydroquino-nes/quinones, and they show that dysidine could be a potential lead compound in the development of an alternative adju-vant in insulin therapy.

  16. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  17. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  18. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  19. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.......Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable...

  20. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  1. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death

    Institute of Scientific and Technical Information of China (English)

    Shan Wang; Zhen Guo; Peng Xia; Tingting Liu; Jufang Wang; Shan Li; Lihua Sun; Jianxin Lu; Qian Wen; Mingqian Zhou; Li Ma; Xia Ding; Xiaoning Wang; Xuebiao Yao

    2009-01-01

    Cytotoxic lymphocytes are key players in the orchestration of immune response and elimination of defective cells. We have previously reported that natural killer (NK) cells enter target tumor cells, leading to either target cell death or self-destruction within tumor cells. However, it has remained elusive as to the fate of NK cells after internaliza-tion and whether the heterotypic cell-in-cell process is different from that of the homotypic cell-in-cell event recently named entosis. Here, we show that NK cells undergo a cell-in-cell process with the ultimate fate of apoptosis within tumor cells and reveal that the internalization process requires the actin cytoskeletal regulator, ezrin. To visualize how NK cells enter into tumor cells, we carried out real-time dual color imaging analyses of NK cell internalization into tumor cells. Surprisingly, most NK cells commit to programmed cell death after their entry into tumor cells, which is distinctively different from entosis observed in the homotypic cell-in-cell process. The apoptotic cell death of the internalized NK cells was evident by activation of caspase 3 and DNA fragmentation. Furthermore, NK cell death after internalization is attenuated by the caspase inhibitor, Z-VAD-FMK, confirming apoptosis as the mode of NK cell death within tumor cells. To determine protein factors essential for the entry of NK cells into tumor cells, we car-ried out siRNA-based knockdown analysis and discovered a critical role of ezrin in NK cell internalization. Impor-tantly, PKA-mediated phosphorylation of ezrin promotes the NK cell internalization process. Our findings suggest a novel regulatory mechanism by which ezrin governs NK cell internalization into tumor cells.

  2. Islet cell development.

    Science.gov (United States)

    Rojas, Anabel; Khoo, Adrian; Tejedo, Juan R; Bedoya, Francisco J; Soria, Bernat; Martín, Franz

    2010-01-01

    Over the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages. Islet cell fate is coordinated by a complex network of inductive signals and regulatory transcription factors that, in a combinatorial way, determine pancreatic organ specification, differentiation, growth, and lineage. Together, these signals and factors direct the progression from multipotent progenitor cells to mature pancreatic cells. Later in development and adult life, several of these factors also contribute to maintain the differentiated phenotype of islet cells. A detailed understanding of the processes that operate in the pancreas during embryogenesis will help us to develop a suitable source of cells for diabetes therapy. In this chapter, we will discuss the main transcription factors involved in pancreas specification and beta-cell formation.

  3. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  4. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  5. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type...... and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  6. Cell Factory Engineering.

    Science.gov (United States)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-03-22

    Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.

  7. Peripheral giant cell granuloma

    Directory of Open Access Journals (Sweden)

    Padam Narayan Tandon

    2012-01-01

    Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.

  8. Cell viability assays: introduction.

    Science.gov (United States)

    Stoddart, Martin J

    2011-01-01

    The measurement of cell viability plays a fundamental role in all forms of cell culture. Sometimes it is the main purpose of the experiment, such as in toxicity assays. Alternatively, cell viability can be used to -correlate cell behaviour to cell number, providing a more accurate picture of, for example, anabolic -activity. There are wide arrays of cell viability methods which range from the most routine trypan blue dye exclusion assay to highly complex analysis of individual cells, such as using RAMAN microscopy. The cost, speed, and complexity of equipment required will all play a role in determining the assay used. This chapter aims to provide an overview of many of the assays available today.

  9. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  10. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  11. Cutaneous hamartoma with pagetoid cells.

    Science.gov (United States)

    Piérard-Franchimont, C; Dosal, F L; Estrada, J A; Piérard, G E

    1991-04-01

    We report an unusual cutaneous hamartoma with pagetoid cells characterized by the presence of intraepidermal cells resembling Toker's cells of the nipple. These cells were EMA positive and could be related to the histogenesis of some Paget's disease.

  12. Sickle Cell Disease (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Sickle Cell Disease KidsHealth > For Parents > Sickle Cell Disease Print ... healthy, and productive lives. A Closer Look at Sickle Cell Disease The different types of sickle cell disease ...

  13. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  14. High Red Blood Cell Count

    Science.gov (United States)

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  15. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  16. Cell to substratum and cell to cell interactions of microalgae.

    Science.gov (United States)

    Ozkan, Altan; Berberoglu, Halil

    2013-12-01

    This paper reports the cell to substratum and cell to cell interactions of a diverse group of microalgae based on the Extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) approach using the previously reported physico-chemical surface properties. The microalgae included 10 different species of green algae and diatoms from both freshwater and saltwater environments while the substrata included glass, indium-tin oxide (ITO), stainless steel, polycarbonate, polyethylene, and polystryrene. The results indicated that acid-base interactions were the dominating mechanism of interaction for microalgae. For green algae, if at least one of the interacting surfaces was hydrophobic, adhesion at primary minimum was predicted without any energy barrier. However, most diatom systems featured energy barriers for adhesion due to repulsive van der Waals interactions. The results reported in this study are expected to provide useful data and insight into the interaction mechanisms of microalgae cells with each other and with substrata for a number of practical applications including prevention of biofouling of photobioreactors and other man-made surfaces, promotion of biofilm formation in algal biofilm photobioreactors, and developing bioflocculation strategies for energy efficient harvesting of algal biomass. Particularly, Botryococcus braunii and Cerithiopsis fusiformis were identified as promising species for biofloccuation and biofilm formation in freshwater and saltwater aquatic systems, respectively. Finally, based on the observed trends in this study, use of hydrophilic algae and hydrophilic coatings over surfaces are recommended for minimizing biofouling in aquatic systems.

  17. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.

  18. Embryonic stem cell-somatic cell fusion and postfusion enucleation.

    Science.gov (United States)

    Sumer, Huseyin; Verma, Paul J

    2015-01-01

    Embryonic stem (ES) cells are able to reprogram somatic cells following cell fusion. The resulting cell hybrids have been shown to have similar properties to pluripotent cells. It has also been shown that transcriptional changes can occur in a heterokaryon, without nuclear hybridization. However it is unclear whether these changes can be sustained following removal of the dominant ES nucleus. In this chapter, methods are described for the cell fusion of mouse tetraploid ES cells with somatic cells and enrichment of the resulting heterokaryons. We next describe the conditions for the differential removal of the ES cell nucleus, allowing for the recovery of somatic cells.

  19. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  20. Cell-Substrate Adhesion by Amoeboid Cells

    Science.gov (United States)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  1. Aneuploidy in stem cells

    Institute of Scientific and Technical Information of China (English)

    Jorge; Garcia-Martinez; Bjorn; Bakker; Klaske; M; Schukken; Judith; E; Simon; Floris; Foijer

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells(IPSCs) from somatic cells has brought this promise steps closer to reality. However,as somatic cells might have accumulated various chromosomal abnormalities,including aneuploidies throughout their lives,the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated,or worse,become at risk of adopting a malignant fate. In this review,we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore,we review the differences between how somatic cells and stem cells respond to aneuploidy.

  2. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  3. Cell Factory Engineering

    DEFF Research Database (Denmark)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely...... focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies...... in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta...

  4. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  5. Fish germ cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplan-tation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.

  6. Trafficking and cell migration.

    Science.gov (United States)

    Ulrich, Florian; Heisenberg, Carl-Philipp

    2009-07-01

    The migration of single cells and epithelial sheets is of great importance for gastrulation and organ formation in developing embryos and, if misregulated, can have dire consequences e.g. during cancer metastasis. A keystone of cell migration is the regulation of adhesive contacts, which are dynamically assembled and disassembled via endocytosis. Here, we discuss some of the basic concepts about the function of endocytic trafficking during cell migration: transport of integrins from the cell rear to the leading edge in fibroblasts; confinement of signalling to the front of single cells by endocytic transport of growth factors; regulation of movement coherence in multicellular sheets by cadherin turnover; and shaping of extracellular chemokine gradients. Taken together, endocytosis enables migrating cells and tissues to dynamically modulate their adhesion and signalling, allowing them to efficiently migrate through their extracellular environment.

  7. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  8. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Phadnaik Mangesh

    2010-01-01

    Full Text Available Plasma cell granuloma is a rare reactive lesion composed of polyclonal plasma cells. It manifests primarily in the lungs, but may occur in various other anatomic locations like the oral cavity. Intraoral plasma cell granulomas involving the tongue, lip, oral mucosa and gingiva have been reported in the past. This case presents a 54-year-old female with chronic periodontitis and mandibular anterior gingival overgrowth treated by Phase I therapy (scaling and root planing and excisional biopsy. Histological examination revealed inflammatory cell infiltrate containing sheets of plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. This case highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  9. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  10. Myoepithelial cells in pathology.

    Science.gov (United States)

    Balachander, N; Masthan, K M K; Babu, N Aravindha; Anbazhagan, V

    2015-04-01

    Myoepithelial cells are a normal constituent of the salivary acini and ducts and are found between the epithelial cells and the basement membrane. Microscopically myoepithelial cells are thin and spindle-shaped and ultrastructurally they possess a number of Cytoplasmic processes that extend between and over the acinar and ductal-lining cells, and they show features of both smooth muscle and epithelium. They play a vital role during expulsion of saliva and regulates the electrolytic exchange. They also perform as tumor suppressors and are considered to play a very important role in differentiation of various salivary gland tumors and help in the diagnosis of tumors. Neoplastic myoepithelial cells in both benign and malignant tumors can take numerous forms including epithelioid, plasmacytoid, spindle and clear cell variant, and this variability largely accounts for difficulties in histopathological diagnosis.

  11. Myoepithelial cells in pathology

    Directory of Open Access Journals (Sweden)

    N Balachander

    2015-01-01

    Full Text Available Myoepithelial cells are a normal constituent of the salivary acini and ducts and are found between the epithelial cells and the basement membrane. Microscopically myoepithelial cells are thin and spindle-shaped and ultrastructurally they possess a number of Cytoplasmic processes that extend between and over the acinar and ductal-lining cells, and they show features of both smooth muscle and epithelium. They play a vital role during expulsion of saliva and regulates the electrolytic exchange. They also perform as tumor suppressors and are considered to play a very important role in differentiation of various salivary gland tumors and help in the diagnosis of tumors. Neoplastic myoepithelial cells in both benign and malignant tumors can take numerous forms including epithelioid, plasmacytoid, spindle and clear cell variant, and this variability largely accounts for difficulties in histopathological diagnosis.

  12. Cytoskeleton and Cell Motility

    CERN Document Server

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  13. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  14. Differentiated human stem cells resemble fetal, not adult, β cells.

    Science.gov (United States)

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  15. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  16. Lymphomas of large cells.

    Science.gov (United States)

    Staples, W G; Gétaz, E P

    1977-09-03

    Historial aspects of the classification of large-cell lymphomas are described. Immunological characterization of the lymphomas has been made possible by identification of T and B lymphocytes according to their cell membrane surface characteristics. The pathogenesis of lymphomas has been clarified by the germinal (follicular) centre cell concepts of Lennert and Lukes and Collins. The various classifications are presented and compared. Whether these subdivisions will have any relevance in the clinical context remains to be seen.

  17. Immobilized Cell Research

    Science.gov (United States)

    1990-10-31

    beads, the plasmid is twice as stable as in cells In a process where immobilized cells produce material grown in continuous culture over 200...carrageenan) or chemically cross-linked, or- Penicillium chrysogenum than in washed freely suspended ganic polymer (Ca-alginate, polyacrylamide, and mycelium ...these materials are formed into the freely suspended cells stopped after 6 days. If the beads of several millimeters in diameter by allowing the

  18. Cell Wall Proteome

    OpenAIRE

    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F

    2007-01-01

    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  19. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  20. Origins of pluripotent stem cells.

    Science.gov (United States)

    Roelen, B A J; Chuva De Sousa Lopes, S M

    2011-08-01

    Different types of pluripotent stem cells can be identified and cultured in vitro. Here an overview is presented of the various pluripotent stem cells types. Embryonal carcinoma (EC) cells that have been cultured in vitro provided the groundwork for future pluripotent cell cultures. Conditions established for these cells such as culture on a feeder layer of mouse embryonic fibroblasts and the importance of fetal calf serum were initially also used for the culture of mouse embryonic stem (ES) cells derived from the inner cell masses of blastocysts. Embryonic stem cells derived from human blastocysts were found to require different conditions and are cultured in the presence of activin and basic fibroblast growth factor. Recently pluripotent stem cells have also been derived from mouse peri-implantation epiblasts. Since these epiblast stem cells (EpiSCs) require the same conditions as the human ES cells it has been suggested that human ES cells are more similar to mouse EpiSCs than to mouse ES cells. Pluripotent cell lines have also been derived from migratory primordial germ cells and spermatogonial stem cells. The creation of pluripotent stem cells from adult cells by the introduction of reprogramming transcription factors, so-called induced pluripotent stem (iPS) cells allowed the derivation of patient-specific pluripotent stem cells without the need of creation of a human blastocyst after cloning by somatic cells nuclear transfer. Recently it has become clear however that iPS cells may be quite different to ES cells in terms of epigenetics.

  1. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  2. Functional characterization of the protein C A267T mutation: evidence for impaired secretion due to defective intracellular transport

    Directory of Open Access Journals (Sweden)

    Tjeldhorn Lena

    2010-09-01

    Full Text Available Abstract Background Activated protein C (PC is a serine protease that regulates blood coagulation by inactivating coagulation factors Va and VIIIa. PC deficiency is an autosomally inherited disorder associated with a high risk of recurrent venous thrombosis. The aim of the study was to explore the mechanisms responsible for severe PC deficiency in a patient with the protein C A267T mutation by in-vitro expression studies. Results Huh7 and CHO-K1 cells were transiently transfected with expression vectors containing wild-type (WT PC and mutated PC (A267T PC cDNAs. PC mRNA levels were assessed by qRT-PCR and the PC protein levels were measured by ELISA. The mRNA levels of WT PC and A267T PC were similar, while the intracellular protein level of A267T PC was moderately decreased compared to WT PC. The secretion of A267T PC into the medium was severely impaired. No differences in molecular weights were observed between WT and A267T PC before and after treatment with endo-β-N-acetylglucosaminidase. Proteasomal and lysosomal degradations were examined using lactacystin and bafilomycin, respectively, and revealed that A267T PC was slightly more susceptible for proteasomal degradation than WT PC. Intracellular co-localization analysis indicated that A267T PC was mainly located in the endoplasmic reticulum (ER, whereas WT PC was observed in both ER and Golgi. Conclusions In contrast to what has been reported for other PC mutants, intracellular degradation of A267T PC was not the main/dominant mechanism underlying the reduced intracellular and secretion levels of PC. Our results indicate that the A267T mutation most likely caused misfolding of PC, which might lead to increased retention of the mutated PC in ER.

  3. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia.

    Science.gov (United States)

    Dirami, Thassadite; Rode, Baptiste; Jollivet, Mathilde; Da Silva, Nathalie; Escalier, Denise; Gaitch, Natacha; Norez, Caroline; Tuffery, Pierre; Wolf, Jean-Philippe; Becq, Frédéric; Ray, Pierre F; Dulioust, Emmanuel; Gacon, Gérard; Bienvenu, Thierry; Touré, Aminata

    2013-05-02

    The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals.

  4. Cationic lipids bearing succinic-based, acyclic and macrocyclic hydrophobic domains: Synthetic studies and in vitro gene transfer.

    Science.gov (United States)

    Jubeli, Emile; Maginty, Amanda B; Khalique, Nada Abdul; Raju, Liji; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2017-01-05

    In this communication we describe the construction of four succinic-based cationic lipids, their formulation with plasmid DNA (pDNA), and an evaluation of their in vitro gene delivery into Chinese hamster ovarian (CHO-K1) cells. The cationic lipids employed in this work possess either a dimethylamine or trimethylamine headgroup, and a macrocyclic or an acyclic hydrophobic domain composed of, or derived from two 16-atom, succinic-based acyl chains. The synthesized lipids and a co-lipid of neutral charge, either cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were formulated in an overall 3:2 cationic-to-neutral lipid molar ratio, then complexed with plasmid DNA (pDNA). The relative transfection performance was evaluated via a comparison between matched versus mismatched formulations defined by the rigidity relationship between the lipids employed. Gel electrophoresis was used to characterize the binding of the lipid formulations with plasmid DNA and the relative degree of plasmid degradation using a DNase I degradation assay. Small angle X-ray diffraction (SAXD) was employed to characterize the packing morphology of the lipid-DNA complexes. In general, the succinic unit embedded within the hydrophobic domain of the cationic lipids was found to improve lipid hydration. The transfection assays revealed a general trend in which mismatched formulations that employed a rigid lipid combined with a non-rigid (or flexible) lipid, outperformed the matched formulations. The results from this work suggest that the design of the cationic lipid structure and the composition of the lipoplex formulation play key roles in governing the transfection performance of nonviral gene delivery agents.

  5. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG

    2007-01-01

    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  6. Analysis of carbohydrate residues on recombinant human thyrotropin receptor.

    Science.gov (United States)

    Oda, Y; Sanders, J; Roberts, S; Maruyama, M; Kiddie, A; Furmaniak, J; Smith, B R

    1999-06-01

    An investigation of the sugar groups on recombinant human TSH receptors (TSHR) expressed in CHO-K1 cells and solubilized with detergents is described. Western blotting studies with TSHR monoclonal antibodies showed that the receptor was present principally as two bands with approximate molecular masses of 120 and 100 kDa. Further blotting studies using lectins and/or involving treatment with different glycosidases indicated that the 100-kDa band contained about 16 kDa of high mannose-type sugars, and the 120-kDa band contained about 33 kDa of complex-type sugars. It was possible to separate the 120- and 100-kDa components of the TSHRs by lectin affinity chromatography. In particular, Galanthus nivalis lectin, which binds high mannose-type sugars, bound the 100-kDa band, but not the 120-kDa band, whereas Datura stramonium lectin, which binds complex-type sugars, bound the 120-kDa band, but not the 100-kDa band. 125I-Labeled TSH binding studies with the various lectin column fractions showed that TSH-binding activity was principally associated with the complex-type sugar containing the 120-kDa form of the receptor rather than the high mannose-containing 100-kDa form. During peptide chain glycosylation, high mannose-type sugar residues are attached first and then modified by the formation of complex type structures to form the mature glycoprotein. Our data suggest that in the case of the TSH receptor, this type of posttranslational processing has an important role in forming the TSH-binding site.

  7. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    Science.gov (United States)

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  8. Rapid cooled lens cell

    Science.gov (United States)

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  9. Cell sorting in development.

    Science.gov (United States)

    Krens, S F Gabby; Heisenberg, Carl-Philipp

    2011-01-01

    During the development of multicellular organisms, cell fate specification is followed by the sorting of different cell types into distinct domains from where the different tissues and organs are formed. Cell sorting involves both the segregation of a mixed population of cells with different fates and properties into distinct domains, and the active maintenance of their segregated state. Because of its biological importance and apparent resemblance to fluid segregation in physics, cell sorting was extensively studied by both biologists and physicists over the last decades. Different theories were developed that try to explain cell sorting on the basis of the physical properties of the constituent cells. However, only recently the molecular and cellular mechanisms that control the physical properties driving cell sorting, have begun to be unraveled. In this review, we will provide an overview of different cell-sorting processes in development and discuss how these processes can be explained by the different sorting theories, and how these theories in turn can be connected to the molecular and cellular mechanisms driving these processes.

  10. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  11. Littoral Cells 2005

    Data.gov (United States)

    California Department of Resources — Littoral cells along the California Coast. Originally digitized by Melanie Coyne from the Assessment and Atlas of Shoreline Erosion Along the California Coast...

  12. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  13. Analysing immune cell migration.

    Science.gov (United States)

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  14. Microencapsulation Of Living Cells

    Science.gov (United States)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  15. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  16. Assessment of cell viability.

    Science.gov (United States)

    Johnson, Simon; Nguyen, Vy; Coder, David

    2013-01-01

    Cell viability may be judged by morphological changes or by changes in membrane permeability and/or physiological state inferred from the exclusion of certain dyes or the uptake and retention of others. This unit presents methods based on dye exclusion, esterase activity, and mitochondrial membrane potential, as well as protocols for determining the pre-fixation viability of fixed cells either before or after fixation with amine-reactive dyes suitable for a range of excitation wavelengths. Membrane-impermeable dead cell and live cell dyes as well as dye-exclusion procedures for microscopy are also included.

  17. Dedifferentiated adipocyte-derived progeny cells (DFAT cells)

    OpenAIRE

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J.; Rasmussen, Theodore P; Bergen, Werner G.; Dodson, Michael V.

    2013-01-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, ...

  18. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  19. Regulation of B Cell to Plasma Cell Transition within the Follicular B Cell Response.

    Science.gov (United States)

    Nera, K-P; Kyläniemi, M K; Lassila, O

    2015-09-01

    Persistent humoral immunity depends on the follicular B cell response and on the generation of somatically mutated high-affinity plasma cells and memory B cells. Upon activation by an antigen, cognately activated follicular B cells and follicular T helper (TFH ) cells initiate germinal centre (GC) reaction during which high-affinity effector cells are generated. The differentiation of activated follicular B cells into plasma cells and memory B cells is guided by complex selection events, both at the cellular and molecular level. The transition of B cell into a plasma cell during the GC response involves alterations in the microenvironment and developmental state of the cell, which are guided by cell-extrinsic signals. The developmental cell fate decisions in response to these signals are coordinated by cell-intrinsic gene regulatory network functioning at epigenetic, transcriptional and post-transcriptional levels.

  20. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  1. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  2. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  3. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  4. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  5. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): Potential stem cells of adipose tissue.

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-07-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.

  6. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  7. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  8. Ghost cell odontogenic carcinoma.

    NARCIS (Netherlands)

    Nazaretian, S.P.; Schenberg, M.E.; Simpson, I.; Slootweg, P.J.

    2007-01-01

    Ghost cell odontogenic carcinoma (GCOC) is the malignant counterpart of calcifying cystic odontogenic tumour and dentinogenic ghost cell tumour. This is the case of a middle-aged male who presented with a slow-growing maxillary tumour. He was asymptomatic until pain symptoms developed prior to initi

  9. Electrochemical cell stack assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  10. Ghrelin and cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Geyang Xu; Yin Li; Wenjiao An; Weizhen Zhang

    2008-01-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a gastric hormone that has been found to have a wide variety of biological functions. This review summarizes our current understanding of the effects of ghrelin on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells.

  11. Cell Phones for Education

    Science.gov (United States)

    Roberson, James H.; Hagevik, Rita A.

    2008-01-01

    Cell phones are fast becoming an integral part of students' everyday lives. They are regarded as important companions and tools for personal expression. School-age children are integrating the cell phone as such, and thus placing a high value on them. Educators endeavor to instill in students a high value for education, but often meet with…

  12. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  13. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  14. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  15. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  16. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  17. Tetraspanins in Mast Cells

    Directory of Open Access Journals (Sweden)

    Martin eKöberle

    2012-05-01

    Full Text Available Mast cells are key mediators of the immune system, most prominently known for their role in eliciting harmful allergic reactions. Mast cell mediator release (e. g. by degranulation is triggered by Fc{epsilon}RI recognition of antigen – IgE complexes. Until today no therapeutic targeting of this and other mast cell activation pathways is established. Among possible new candidates there are tetraspanins that have been described on mast cells already several years ago.Tetraspanins are transmembrane proteins acting as scaffolds, mediating local clustering of their interaction partners and thus amplify their activities. More recently, tetraspanins were also found to exert intrinsic receptor functions. Tetraspanins have been found to be crucial components of fundamental biological processes like cell motility and adhesion. In immune cells, they not only boost the effectiveness of antigen presentation by clustering MHC molecules, they are also key players in all kinds of degranulation events and immune receptor clustering. This review focuses on the contribution of tetraspanins clustered with Fc{epsilon}RI or residing in granule membranes to classical mast cells functions but also undertakes an outlook on the possible contribution of tetraspanins to newly described mast cell functions and discusses possible drugging strategies.

  18. Tumor cell metabolism

    Science.gov (United States)

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  19. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  20. Stem cells in dermatology.

    Science.gov (United States)

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today.

  1. [Acute plasma cell leukemia].

    Science.gov (United States)

    Monsalbe, V; Domíngues, C; Roa, I; Busel, D; González, S

    1989-01-01

    Plasma Cell Leukemia is a very rare form of plasmocytic dyscrasia, whose clinical and pathological characteristics warrant its recognition as a distinct subentity. We report the case of a 60 years old man who presented a rapidly fatal acute plasma cell leukemia, with multiple osteolytic lesions, hipercalcemia, renal and cardiac failure.

  2. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  3. "Angular" plasma cell cheilitis.

    Science.gov (United States)

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  4. "Angular" plasma cell cheilitis

    OpenAIRE

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus

    2014-01-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  5. NCAM regulates cell motility.

    Science.gov (United States)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna; Hartmann-Petersen, Rasmus; Kawa, Anna; Walmod, Peter S; Belman, Vadym; Gallagher, Helen C; Berezin, Vladimir; Bock, Elisabeth; Pedersen, Nina

    2002-01-15

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine inhibitor of NCAM-negative cell locomotion through a heterophilic interaction with a cell-surface receptor. As we showed that the two N-terminal immunoglobulin modules of NCAM, which are known to bind to heparin, were responsible for this inhibition, we presume that this receptor is a heparan sulfate proteoglycan. A model for the inhibitory effect of NCAM is proposed, which involves competition between NCAM and extracellular components for the binding to membrane-associated heparan sulfate proteoglycan.

  6. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…

  7. Retinal stem cells and potential cell transplantation treatments.

    Science.gov (United States)

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  8. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  9. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  10. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  11. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  12. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  13. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  14. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    A quarter of humanity's current energy consumption is used for transportation (1). Low-temperature hydrogen fuel cells offer much promise for replacing this colossal use of fossil fuels with renewables; these fuel cells produce negligible emissions and have a mileage and filling time equal...... to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10......% of the annual automotive vehicle production. Lowering the Pt loading in a fuel cell to a sustainable level requires the reactivity of Pt to be tuned so that it accelerates oxygen reduction more effectively (3). Two reports in this issue address this challenge (4, 5)....

  15. Storing Blood Cells

    Science.gov (United States)

    1976-01-01

    The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.

  16. Mast cell leukemia.

    Science.gov (United States)

    Georgin-Lavialle, Sophie; Lhermitte, Ludovic; Dubreuil, Patrice; Chandesris, Marie-Olivia; Hermine, Olivier; Damaj, Gandhi

    2013-02-21

    Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for mast cell activation-involvement of the liver, spleen, peritoneum, bones, and marrow-are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation.

  17. Dynamics of cell orientation

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel A.

    2007-09-01

    Many physiological processes depend on the response of biological cells to mechanical forces generated by the contractile activity of the cell or by external stresses. Using a simple theoretical model that includes the forces due to both the mechanosensitivity of cells and the elasticity of the matrix, we predict the dynamics and orientation of cells in both the absence and presence of applied stresses. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the cellular forces in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency.

  18. Physics of adherent cells

    Science.gov (United States)

    Schwarz, Ulrich S.; Safran, Samuel A.

    2013-07-01

    One of the most unique physical features of cell adhesion to external surfaces is the active generation of mechanical force at the cell-material interface. This includes pulling forces generated by contractile polymer bundles and networks, and pushing forces generated by the polymerization of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical properties of their environment and to communicate with each other. The effect of forces is intricately linked to the material properties of cells and their physical environment. Here a review is given of recent progress in our understanding of the role of forces in cell adhesion from the viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.

  19. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    黎向锋; 李雅芹; 蔡军; 张德远

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  20. Mast cells and inflammation.

    Science.gov (United States)

    Frenzel, Laurent; Hermine, Olivier

    2013-03-01

    The prominent role for mast cells in the inflammatory response has been increasingly well documented in recent years. Mast cells not only contribute to maintain homeostasis via degranulation and to generate IgE-mediated allergic reactions, but also sit at a major crossroads for both innate and adaptive immune responses. The part played by mast cells in chronic inflammatory diseases such as rheumatoid arthritis and multiple sclerosis identifies mast cells as a valuable treatment target in these diseases. Tyrosine-kinase inhibitors targeting the c-Kit mast cell receptor have been found effective in treating rheumatoid arthritis, asthma, and multiple sclerosis. When used in combination with other available drugs, tyrosine-kinase inhibitors may improve the therapeutic management of these diseases.

  1. Cell Radiation Experiment System

    Science.gov (United States)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  2. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  3. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  4. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  5. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  6. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  7. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  8. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  9. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinic...

  10. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease in disease-fighting cells ( ... a decrease in a certain type of white blood cell (neutrophil). The definition of low white blood cell ...

  11. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.

  12. Embryonic stem cells: testing the germ-cell theory.

    Science.gov (United States)

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  13. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  14. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  15. Cell density monitoring and control of microencapsulated CHO cell cultures

    OpenAIRE

    Cole, Harriet Emma

    2015-01-01

    Though mammalian cells play a key role in the manufacturing of recombinant glycosylated proteins, cell cultures and productivity are limited by the lack of suitable systems to enable stable perfusion culture. Microencapsulation, or entrapping cells within a semi-permeable membrane, offers the potential to generate high cell density cultures and improve the productivity by mimicking the cells natural environment. However, the cells being secluded by the microcapsules membrane are difficult to ...

  16. Dedifferentiated fat cells: A cell source for regenerative medicine

    OpenAIRE

    Jumabay, Medet; Boström, Kristina I.

    2015-01-01

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell su...

  17. Single Cell Characterization of Prostate Cancer-Circulating Tumor Cells

    Science.gov (United States)

    2013-09-01

    al., 2010). In addition, there were a significant number of cell cycle and mitosis associated transcripts in the highly expressed gene set including...red blood cell lysis with 10 volumes of 16 PharmLyse (BD Biosciences) for 15 minutes at room temperature . Remaining cells were pelleted at 4uC for 15...processes (23%, GO:0008152) or the cell cycle (10%, GO:0007049), consistent with mitotically active cells (Fig. 4C). Cell cycle and mitosis associated

  18. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    progenitor cells (NPCs) by expressing an activated form of Notch1 (N1ICD) or oncogenic PIK3CA (PIK3CA*) in the developing mouse cerebellum, using cell...resistance, pediatric cancer, brain tumor, Notch1, PIK3CA, cell of origin, molecular subtypes, neural stem cells, neural progenitor cells, tumor initiation...neural progenitor cells, tumor initiation. 3. ACCOMPLISHMENTS: Major goals of the project: The stated goals of this project are to: 1) test the

  19. Plasma cells negatively regulate the follicular helper T cell program

    OpenAIRE

    2010-01-01

    B lymphocytes differentiate into antibody-secreting cells under the antigen-specific control of follicular helper T (TFH) cells. Here, we demonstrate that isotype-switched plasma cells expressed MHCII, CD80 and CD86 and intracellular machinery required for antigen presentation. Antigen-specific plasma cells could access, process and present sufficient antigen in vivo to induce multiple TH cell functions. Importantly, antigen-primed plasma cells failed to induce interleukin 21 or Bcl-6 in naïv...

  20. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells

    OpenAIRE

    Sally M Lansley; Searles, Richelle G.; Hoi, Aina; Thomas, Carla; Moneta, Helena; Herrick, Sarah E; Thompson, Philip J; Mark, Newman; Sterrett, Gregory F; Prêle, Cecilia M; Mutsaers, Steven E.

    2011-01-01

    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm i...

  1. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  2. Cell therapy for diabetes mellitus: an opportunity for stem cells?

    Science.gov (United States)

    Soria, B; Bedoya, F J; Tejedo, J R; Hmadcha, A; Ruiz-Salmerón, R; Lim, S; Martin, F

    2008-01-01

    Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.

  3. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  4. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  5. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  6. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  7. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  8. Cell Growth Enhancement

    Science.gov (United States)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  9. Congenital granular cell epulis.

    Science.gov (United States)

    Conrad, Rachel; Perez, Mia C N

    2014-01-01

    Congenital granular cell epulis is a rarely reported lesion of unknown histogenesis with a strong predilection for the maxillary alveolar ridge of newborn girls. Microscopically, it demonstrates nests of polygonal cells with granular cytoplasm, a prominent capillary network, and attenuated overlying squamous epithelium. The lesion lacks immunoreactivity for S-100, laminin, chromogranin, and most other markers except neuron-specific enolase and vimentin. Through careful observation of its unique clinical, histopathologic, and immunohistochemical features, this lesion can be distinguished from the more common adult granular cell tumor as well as other differential diagnoses.

  10. Giant Cell Fibroma

    OpenAIRE

    Tahere Nosratzehi; Lale Maleki

    2013-01-01

    Giant cell fibroma is a fibrous tumor which represents about 2 to 5% of all oral fibrotic proliferations. Compared to traumatic fibroma, giant (traumatic fibroma or irritation fibroma) cell fibroma occurs at a younger age. In about 60% of the cases the lesion is diagnosed within the first three decades of life and is slightly more in women. 50% of the cases is observed in the gum and will appear as a nodule with a papillary surface [1]. The giant cell fibroma is treated by conservative excisi...

  11. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  12. PLUTONIUM ELECTROREFINING CELLS

    Science.gov (United States)

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  13. Stem cells and transplant arteriosclerosis.

    Science.gov (United States)

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  14. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive wh

  15. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  16. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  17. What is Sickle Cell Disease?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Sickle Cell Disease? Español The term sickle cell disease (SCD) ... other common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin Sβ 0 thalassemia ...

  18. What Causes Sickle Cell Disease?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Causes Sickle Cell Disease? Abnormal hemoglobin, called hemoglobin S , causes sickle cell ... way that hemoglobin works. ( See Overview. ) How Is Sickle Cell Disease Inherited? When the hemoglobin S gene is inherited ...

  19. Learning about Sickle Cell Disease

    Science.gov (United States)

    ... genetic terms used on this page Learning About Sickle Cell Disease What do we know about heredity and ... Information What do we know about heredity and sickle cell disease? Sickle cell disease is the most common ...

  20. Perivascular cells for regenerative medicine

    NARCIS (Netherlands)

    M. Crisan (Mihaela); M. Corselli (Mirko); W.C. Chen (William); B. Péault (Bruno)

    2012-01-01

    textabstractMesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We an

  1. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  2. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  3. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  4. Dazl Promotes Germ Cell Differentiation from Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yu; Ping Ji; Jinping Cao; Shu Zhu; Yao Li; Lin Zheng; Xuejin Chen; Lixin Feng

    2009-01-01

    It has been demonstrated that through the formation of embryoid bodies (Ebs) germ cells can be derived from embryonic stem (ES) cells. Here, we describe a transgene expression approach to derive germ cells directly from ES cells in vitro without EB formation. Through the ectopic expression of Deleted in Azoospermia-Like (Dazl), a germ cell-specific RNA-binding protein,both motile tailed-sperm and oocytes were induced from mouse ES (mES) cells in culture. Furthermore, transient overexpression of Dazl led to suppression of Nanog but induced germ cell nuclear antigen in mES cells. Dazl knockdown resulted in reduction in the expression of germ cell markers including Stella, MVH and Prdm1. Our study indicates that Dazl is a master gene controlling germ cell differentiation and that ectopic expression of Dazl promotes the dynamic differentiation of mouse ES cells into gametes in vitro.

  5. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  6. Colorful Microbial Cell Factories

    DEFF Research Database (Denmark)

    Petersen, Pia Damm

    Yeast cell factories are powerful tools used for the production of high-value natural compounds otherwise not easily available. Many bioactive and industrially important plant secondary metabolites can be produced in yeast by engineering their biosynthetic pathways into yeast cells, as these both...... anthocyanins. Yeast cell factories present a platform to circumvent the problem of low yields of interesting molecular structures in plant tissues, as hand-picking of desired enzyme activities allows for specific biosynthesis of the precise pigment of interest, as well as choosing more stable structures...... for heterologous biosynthesis is possible. In cell factories, great improvements in yields can be achieved through molecular engineering of flux from endogenous yeast precursors, e.g. by elimination of by-product formation, and by genetic optimization of pathway components, such as fine-tuning of expression levels...

  7. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  8. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  9. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  10. Cell Centred Database (CCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Cell Centered Database (CCDB) is a web accessible database for high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging.

  11. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  12. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  13. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  14. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  15. Whole cell entrapment techniques.

    Science.gov (United States)

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).

  16. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  17. RSW Cell Centered Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — New cell centered grids are generated to complement the node-centered ones uploaded. Six tarballs containing the coarse, medium, and fine mixed-element and pure tet....

  18. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  19. Mast cells & Company

    Directory of Open Access Journals (Sweden)

    Friederike eJönsson

    2012-02-01

    Full Text Available Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb’s classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells by considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  20. Plasma Cell Cheilitis

    Directory of Open Access Journals (Sweden)

    Thami Gurvinder P

    1999-01-01

    Full Text Available A case of plasma cell cheilitis with good response to glucocorticoids, is described for its rarity and probable aetiological correlation with habit of use of nasal snuff is discussed.

  1. Merkel cell tumor.

    Science.gov (United States)

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  2. Intestinal M cells.

    Science.gov (United States)

    Ohno, Hiroshi

    2016-02-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions.

  3. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  4. Nanodiamond internalization in cells and the cell uptake mechanism

    Science.gov (United States)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-08-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  5. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  6. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  7. Optimized lithium oxyhalide cells

    Science.gov (United States)

    Kilroy, W. P.; Schlaikjer, C.; Polsonetti, P.; Jones, M.

    1993-04-01

    Lithium thionyl chloride cells were optimized with respect to electrolyte and carbon cathode composition. Wound 'C-size' cells with various mixtures of Chevron acetylene black with Ketjenblack EC-300J and containing various concentrations of LiAlCl4 and derivatives, LiGaCl4, and mixtures of SOCl2 and SO2Cl2 were evaluated as a function of discharge rate, temperature, and storage condition.

  8. Single cell dynamic phenotyping

    OpenAIRE

    Katherin Patsch; Chi-Li Chiu; Mark Engeln; Agus, David B.; Parag Mallick; Shannon M. Mumenthaler; Daniel Ruderman

    2016-01-01

    Live cell imaging has improved our ability to measure phenotypic heterogeneity. However, bottlenecks in imaging and image processing often make it difficult to differentiate interesting biological behavior from technical artifact. Thus there is a need for new methods that improve data quality without sacrificing throughput. Here we present a 3-step workflow to improve dynamic phenotype measurements of heterogeneous cell populations. We provide guidelines for image acquisition, phenotype track...

  9. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  10. Dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Singhaniya Shikha

    2009-01-01

    Full Text Available Dentinogenic ghost cell tumor (DGCT is a rare tumorous form of calcifying odontogenic cyst and only a small number of cases have been described. It is a locally invasive neoplasm that is characterized by ameloblastoma-like epithelial islands, ghost cells and dentinoid. The present report describes a case of a 21-year-old male with a tumor in the posterior region of the mandible, showing features of DGCT.

  11. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  12. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  13. Parietal cell vagotomy.

    Science.gov (United States)

    Cumberland, V H; Coupland, G A

    1975-07-12

    In a series of 100 consecutive patients who had parietal cell vagotomy performed, no drainage procedure was performed in 56 while 44 were drained. Dumping was significantly less in those who were not drained. All patients were tested for adequacy of vagotomy and for function of the nerve of Latarget at operation. Four patients have had further operations, two for proven recurrent ulcers. Parietal cell vagotomy has given excellent clinical results in this group of patients.

  14. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  15. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toyooka, Tatsushi; Shinmen, Takuya [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka (Japan); Aarts, Jac M.M.J.G. [Division of Toxicology, Wageningen University, Wageningen (Netherlands); Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka (Japan)

    2012-11-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.

  16. On the cell biology of pit cells, the liver-specific NK cells

    Institute of Scientific and Technical Information of China (English)

    Dian Zhong Luo; David Vermijlen; Bülent Ahishali; Vasilis Triantis; Georgia Plakoutsi; Filip Braet; Karin Vanderkerken; Eddie Wisse

    2000-01-01

    @@ INTRODUCTION Natural killer (NK) cells are functionally defined by their ability to kill certain tumor cells and virusinfected cells without prior sensitization[1]. NK cells comprise about 10% to 15% of lymphocytes in the peripheral blood and most of these cells in human and rat have the morphology of large granular lymphocytes ( LGL )[2]. However, recent studies have demonstrated that small agranular lymphocytes, lacking CD3 expression, have cytolytic activity comparable to NK cells[3].

  17. [Progress in dedifferentiated fat cells].

    Science.gov (United States)

    Cheng, Feifei; Yang, Zhi; Qian, Cheng

    2014-10-01

    When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to dedifferentiated fat (DFAT) cells. DFAT cells have many advantages compared with adipose-derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs). For example, DFAT cells are homogeneous and could be obtained from donors regardless of their age. Furthermore, DFAT cells also have the same multi-lineage potentials and low immunogenicity as ASCs. As an excellent source of seed cells for tissue engineering and stem cell transplantation, DFAT cells have better prospects in the treatment of many clinical diseases, such as bone defects, neurological diseases, ischemic heart disease and kidney disease. It is necessary to make more intensive studies of DFAT cells. This article summarizes progresses in the immunological characteristics, differentiation ability and potential clinical applications of DFAT cells.

  18. Microfluidic Cell Cycle Analysis of Spread Cells by DAPI Staining

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-01-01

    Full Text Available Single-cell cell cycle analysis is an emerging technique that requires detailed exploration of the image analysis process. In this study, we established a microfluidic single-cell cell cycle analysis method that can analyze cells in small numbers and in situ on a microfluidic chip. In addition, factors that influenced the analysis were carefully investigated. U87 or HeLa cells were seeded and attached to microfluidic channels before measurement. Cell nucleic DNA was imaged by 4′-6-diamidino-2-phenylindole (DAPI staining under a fluorescent microscope and subsequently fluorescent intensities of the cell nuclei DNA were converted to depict histograms for cell cycle phases. DAPI concentration, microscopic magnification, exposure time and cell number were examined for optimal cell cycle analysis conditions. The results showed that as few as a few hundred cells could be measured by DAPI staining in the range of 0.4–0.6 μg/mL to depict histograms with typical cell cycle phase distribution. Microscopic magnification during image acquisition, however, could distort the phase distribution. Exposure time did not significantly affect the cell cycle analysis. Furthermore, cell cycle inhibitor rapamycin treatment changed the cell cycle phase distribution as expected. In conclusion, a method for microfluidic single-cell cell cycle analysis of spread cells in situ was developed. Factors such as dye concentration and microscopic magnification had more influence on cell cycle phase distribution. Further studies will focus on detail differentiation of cell cycle phases and the application of such a method for biological meanings.

  19. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  20. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment