WorldWideScience

Sample records for cho mammalian cells

  1. Quantitative mammalian cell mutagenesis and mutagen screening: study with CHO cells

    International Nuclear Information System (INIS)

    Hsie, A.W.; O'Neill, J.P.; San Sebastian, J.R.; Brimer, P.A.

    1979-01-01

    The CHO/HGPRT system has been developed and defined for quantifying mutation induced by various physical and chemical agents at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells. In all direct-acting chemical mutagens studied, mutation induction increases linearly as a function of the concentration, with no apparent threshold. Some chemicals induce mutation at non-cytotoxic concentrations. The mutagenicity of ethyl methanesulfonate has been quantified as a function of exposure concentration x treatment time. The sensitive and quantitative nature of the system enables studies of the structure-activity (mutagenicity) relationships of various classes of chemicals, including alkylating agents, heterocyclic nitrogen mustards, and platinum compounds. When rat liver S 9 -mediated metabolic activation is present, procarcinogens such as benzo(a)pyrene, 2-acetylaminofluorene, and dimethylnitrosamine are mutagenic, whereas their noncarcinogenic structural analogues pyrene, fluorene, and dimethylamine are not. The system has been shown to be useful in determining the interactive effects between physical and chemical agents, and in screening for mutagenicity of fractionated organic mixtures and industrial chemicals in both liquid and gaseous state. For the system to be used successfully in routine screening, further studies should be directed toward the development of a metabolic activation system suitable for a broad spectrum of chemicals, a sensitive and reliable statistical method, and an experimental design to determine compounds with low mutagenicity. The system has been expanded for determination of mutagen-induced chromosome aberration, sister-chromatid exchange, and micronucleus formation in addition to gene mutation and cytotoxicity; it can also be used to study inhibition of DNA synthesis

  2. Gene mutation, quantitative mutagenesis, and mutagen screening in mammalian cells: study with the CHO/HGPRT system

    International Nuclear Information System (INIS)

    Hsie, A.W.

    1980-01-01

    We have employed CHO cells to develop and define a set of stringent conditions for studying mutation induction to TG resistance. Several lines of evidence support the CHO/HGPRT system as a specific-locus mutational assay. The system permits quantification of mutation at the HGPRT locus induced by various physical and chemical mutagens. The quantitative nature of the system provides a basis for the study of structure-function relationships of various classes of chemical mutagens. The intra- and interlaboratory reproducibility of this system suggests its potential for screening environmental agents for mutagenic activity

  3. Stable expression of human thyrotropin (hTSH) in mammalian cells (CHO) expressing α2,6 sialyltransferase

    International Nuclear Information System (INIS)

    Damiani, Renata

    2009-01-01

    A CHO cell line, previously genetically modified by the introduction of rat α2,6-sialyltransferase cDNA, generated for the first time a human-like sialylated recombinant hTSH (hlsr-hTSH) more similar to the native hormone, with 61% of α2,3- and 39% of α2,6-linked sialic acid residues. The best clone, when submitted to gene amplification with up to 8 μM methotrexate, presented a secretion level of ∼2 μg hTSH/10 6 cells/day, useful for product purification and characterization. The relative molecular masses (M r ) of the heterodimer and of the α- and β-subunits of purified hlsr-hTSH, determined by MALDI-TOF mass spectrometry, and the relative hydrophobicities, determined by RP-HPLC, were not remarkably different from those presented by two r-hTSH preparations secreted by normal CHO cells. Some differences were observed, though, in N-glycan composition, with more tri- and much more tetra-sialylated structures in hlsr-hTSH. When analyzed via an in vivo bioassay based on hTSH-induced T 4 release in mice, hlsr-hTSH was shown to be equipotent (p > 0.05) with the commercial preparation of r-hTSH (Thyrogen), and 1.5-fold more potent than native hTSH (p < 0.001). (author)

  4. Mechanisms of oxygen radiosensitization in CHO cells

    International Nuclear Information System (INIS)

    Whillans, D.W.

    1981-01-01

    A model is presented for repair and fixation pathways when CHO cells are irradiated in the presence of O 2 . This analysis predicts that an increase in the repair path such as has been postulated for addition of a radioprotective sulfhydryl should increase OER/sub max/ in porportion to k prime, the new repair rate constant and also increase K with k prime. Any radiosensitizer which mimics the action of O 2 simply increases k prime 2 , so that the OER/sub max/ decreases at 1/k prime 2 but K increases as k prime 2 . These predictions have been tested in mammalian CHO cells making use of a Clark-type oxygen probe with defined conditions to ensure that O 2 is not depleted by radiation or cellular consumption, and so O 2 levels are known with accuracy. In a complementary study, the technique of rapid-mixing was used to measure the rate of development of O 2 sensitization in these same cells. By a variation of this rapid-mixing approach, the rate of diffusion into these cells has also been measured independently. Neither the dependence of OER on O 2 concentration nor the development of radiosensitivity with time of incubation in O 2 gives evidence in CHO cells for two components of sensitization indicative of two sites or two mechanisms of action, as seen in some V79 sublines. 13 references, 4 figures

  5. Glycoengineering of CHO Cells to Improve Product Quality.

    Science.gov (United States)

    Wang, Qiong; Yin, Bojiao; Chung, Cheng-Yu; Betenbaugh, Michael J

    2017-01-01

    Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.

  6. Misonidazole-glutathione conjugates in CHO cells

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate

  7. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  8. RNA-seq based expression analysis of the CHO cell protein secretion pathway

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Kildegaard, Helene Faustrup

    The Chinese hamster ovary (CHO) cell-line is the predominant mammalian industrial cell line being used to produce recombinant therapeutic proteins. Although CHO cells have been used for more than 25 years, the genome sequence was first published in 2011. So far there have been limited studies...... of the cell biology of the CHO cell and the potential of cell line engineering. To elucidate the poorly understood cellular processes that control and limit recombinant protein production and secretion, a system-wide study was initiated to identify possible engineering targets relevant for therapeutic protein...

  9. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Brandl, Julian

    2017-01-01

    , counting 801 different components in mouse. By employing our mouse RECON to the CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative methods...... to study protein secretion through graphical visualizations of omics data. We have demonstrated the use of these methods to identify potential new and known targets for engineering improved growth and IgG production, as well as the general observation that CHO cells seem to have less strict transcriptional...... regulation of protein secretion than healthy mouse cells.  Conclusions: The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein...

  10. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Grav, Lise Marie; Lewis, Nathan E.

    2015-01-01

    repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system enables rapid,easy and efficient engineering of mammalian genomes. It has a wide range of applications frommodification of individual genes to genome-wide screening or regulation of genes. Facile genomeediting using CRISPR/Cas9 empowers...... researchers in the CHO community to elucidate the mechanisticbasis behind high level production of proteins and product quality attributes of interest. Inthis review, we describe the basis of CRISPR/Cas9-mediated genome editing and its applicationfor development of next generation CHO cell factories while...... highlighting both future perspectivesand challenges. As one of the main drivers for the CHO systems biology era, genome engineeringwith CRISPR/Cas9 will pave the way for rational design of CHO cell factories....

  11. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  12. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    Science.gov (United States)

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  14. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  15. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  16. Methods for modeling chinese hamster ovary (cho) cell metabolism

    DEFF Research Database (Denmark)

    2015-01-01

    Embodiments of the present invention generally relate to the computational analysis and characterization biological networks at the cellular level in Chinese Hamster Ovary (CHO) cells. Based on computational methods utilizing a hamster reference genome, the invention provides methods for identify...

  17. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.

    Science.gov (United States)

    Huang, Zhuangrong; Lee, Dong-Yup; Yoon, Seongkyu

    2017-12-01

    Chinese hamster ovary (CHO) cells have been widely used for producing many recombinant therapeutic proteins. Constraint-based modeling, such as flux balance analysis (FBA) and metabolic flux analysis (MFA), has been developing rapidly for the quantification of intracellular metabolic flux distribution at a systematic level. Such methods would produce detailed maps of flows through metabolic networks, which contribute significantly to better understanding of metabolism in cells. Although these approaches have been extensively established in microbial systems, their application to mammalian cells is sparse. This review brings together the recent development of constraint-based models and their applications in CHO cells. The further development of constraint-based modeling approaches driven by multi-omics datasets is discussed, and a framework of potential modeling application in cell culture engineering is proposed. Improved cell culture system understanding will enable robust developments in cell line and bioprocess engineering thus accelerating consistent process quality control in biopharmaceutical manufacturing. © 2017 Wiley Periodicals, Inc.

  18. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    Science.gov (United States)

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. The apoptosis of CHO cells induced by X-rays

    International Nuclear Information System (INIS)

    Lu Zhaohong; Zhao Jingyong; Zhu Mingqing; Shi Xijin; Wang Chunlei

    2004-01-01

    The work is to study the mechanism of toxic effects on reproductive system and apoptosis of Chinese hamster ovary (CHO) cells induced by X-rays. CHO cell was exposed to X-rays 2 to 20 Gy. Apoptosis and morphological changes of the cells were observed by fluorescent microscopy and flow cytometry analyzer with double staining with Annexin V/PI. The apoptosis could be observed at 24, 48 and 72h after the exposure, but it was more obvious 48 and 72 h after the exposure. Rate of the apoptosis increased along with radiation dose were elevated. Some morphological changes, such as irregular agglomerate of chromatins, pycnosis and periphery distribution of nuclei, crescent-moon-like cells, small apoptosis body, were observed. Radiation results DNA damage in the CHO cells, and the damage cannot be repaired, hence the induced cell apoptosis. (authors)

  20. Multi-omic profiling of EPO-producing CHO cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    The Chinese hamster ovary (CHO) cell line is the predominant mammalian cell factory for production of therapeutic glycoproteins. In this work, we aimed to study bottlenecks in the secretory pathway associated with the production of human erythropoietin (EPO) in CHO cells. In connection to this, we...... discovered indications of metabolic adaptation of the amino acid catabolism in favor of heterologous protein production. We established a panel of stably EPO expressing CHO-K1 clones spanning a 25-fold productivity range and characterized the clones in batch and chemostat cultures. For this, we employed...... a multi-omic physiological characterization including metabolic foot printing of amino acids, metabolite fingerprinting of glycolytic intermediates, NAD(P)H-/NAD(P)+ and adenosine nucleotide phosphates. We used qPCR, qRT-PCR, western blots and Affymetrix CHO microarrays to assess EPO gene copy numbers...

  1. Perforate on CHO cell membranes induced by electromagnetic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Electromagnetic pulse (EMP), atomic force microscope, CHO cell, cell membrane. INTRODUCTION .... of perforation ranges from 390 to 660 nm and the depth is. 392.95 nm. ... cell membrane perforations increased when both the field intensity and ..... Melatonin and a spin-trap compound block.

  2. Method for reducing ammonium and lactate production in cho cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to modified producer cells for improved production of therapeutic proteins. Specifically, the inventors have found that removing genes involved in amino acid catabolism in Chinese Hamster Ovary (CHO) cells improves the cell growth and viability and likely also...

  3. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  4. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  5. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  6. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    Science.gov (United States)

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  8. Perforate on CHO cell membranes induced by electromagnetic ...

    African Journals Online (AJOL)

    Atomic force microscopy (AFM) has been used to visualize the morphological change on the surface of Chinese hamster ovary (CHO) cell membranes before and after electromagnetic pulses (EMP) irradiation. The results show that there were different sizes and shapes of membrane perforate (width ranging from 0.39 - 0.66 ...

  9. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.M.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2015-01-01

    Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds

  10. Accelerated and Rational Design of Improved CHO Cell Factories

    DEFF Research Database (Denmark)

    Grav, Lise Marie

    Recombinant production of therapeutic proteins provides huge benefits to human health and promises solutions to some of the most devastating and currently untreatable diseases in healthcare. Key to the development of new therapeutic proteins is to optimize and engineer living cells, namely cell...... of a number of novel tools is reported that aim to accelerate the construction of production cell lines for therapeutic proteins with optimal phenotypic attributes for industrial processes. Chinese hamster ovary (CHO) cells are the predominant production host for therapeutic proteins, and are the cell factory...... of interest in this thesis. The core of the thesis is revolved around the development and application of genome editing techniques that enable us to precisely engineer the genome of CHO cells by either rendering specific-targeted genes unfunctional or inserting new genes in precise genomic locations...

  11. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  12. Functional heterogeneity and heritability in CHO cell populations.

    Science.gov (United States)

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and

  13. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.

    Science.gov (United States)

    Fischer, Simon; Paul, Albert Jesuran; Wagner, Andreas; Mathias, Sven; Geiss, Melanie; Schandock, Franziska; Domnowski, Martin; Zimmermann, Jörg; Handrick, René; Hesse, Friedemann; Otte, Kerstin

    2015-10-01

    Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells. © 2015 Wiley Periodicals, Inc.

  14. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  16. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    Science.gov (United States)

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Synthesis of human prolactin in Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Soares, Carlos Roberto Jorge

    2000-01-01

    Three different eukaryotic expression vectors, based on the same selectable gene marker (dhfr), have been used for dhf- CHO cells transfection to rapidly isolate stable cell lines capable of secreting high levels of recombinant human prolactin (rec-hPRL). Two vectors, one codifying a human prolactin (p658-hPRL) and the other a tag-prolactin (p658-tagPRL), contain the complete hepatitis B virus-X (HBV-X) gene coding for a viral transactivator and a sequence derived from the granulocyte-macrophage colony-stimulating factor (GM-CSF) that mediates selective dhfr mRNA degradation. These vectors have the advantage of rapidly obtaining stable cell lines without methotrexate amplification. The highest secretion obtained by these vectors was of approximately 10 μg hPRU10 6 cells/day. The other vector (pEDdc-hPRL) is based on a dicistronic expression system, containing an internal ribosome entry site isolated from the encephalomyocarditis (EMC) virus. This vector before amplification provided secretion levels at least 10 fold lower than that obtained with the other two vectors. However, after three steps of methotrexate amplification, it provided some clones able to secrete up to 30 μg hPRU10 6 cells/day. This is the first report describing the production and purification of rec-hPRL from CHO cells, obtaining secretion levels with both vectors higher than those reported so far for this hormone in other eukaryotic systems. CHO-derived rec-hPRL contained approximately 10 % of the glycosylated form, a value that is consistent with results reported for hPRL purified from the pituitary or from transformed murine C-127 cells. CHO-derived rec-hPRL was purified with good yield, obtaining also a good resolution between non-glycosylated and glycosylated prolactin. The latter, when its potency was determined via an in vitro bioassay, presented a 47 % lower bioactivity. A qualitative and quantitative analysis of these forms was also possible thanks to the setting up of a reversed

  18. Mutant spectra of irradiated CHO AL cells determined with multiple markers analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Ross, Carley D.; French, C. Tenley; Keysar, Stephen B.; Fox, Michael H.

    2007-01-01

    We have previously developed a sensitive and rapid mammalian cell mutation assay which is based on a Chinese hamster ovary cell line that stably incorporates human chromosome 11 (CHO A L ) and uses flow cytometry to measure mutations in CD59. We now show that multiparameter flow cytometry may be used to simultaneously analyze irradiated CHO A L cells for mutations in five CD genes along chromosome 11 (CD59, CD44, CD90, CD98, CD151) and also a GPI-anchor gene. Using this approach, 19 different mutant clones derived from individual sorted mutant cells were analyzed to determine the mutant spectrum induced by ionizing radiation. All clones analyzed were negative for CD59 expression and PCR confirmed that at least CD59 exon 4 was also absent. As expected, ionizing radiation frequently caused large deletions along chromosome 11. This technology can readily be used to rapidly analyze the mutant yield as well as the spectrum of mutations caused by a variety of genotoxic agents and provide greater insight into the mechanisms of mutagenesis

  19. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    International Nuclear Information System (INIS)

    Jones, Meredith B.; Tomiya, Noboru; Betenbaugh, Michael J.; Krag, Sharon S.

    2010-01-01

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man 5 GlcNAc 2 -P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man 9 GlcNAc 2 -P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc 3 Man 9 GlcNAc 2 -P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man 5 GlcNAc 2 -PP-Dol through Glc 1 Man 9 GlcNAc 2 -PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc 3 Man 9 GlcNAc 2 -P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  20. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  1. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  2. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of...

  3. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær

    2014-01-01

    , in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors....

  5. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  6. Mutagenesis in mammalian cells

    International Nuclear Information System (INIS)

    Burki, H.J.

    1981-01-01

    Mutagenic processes in synchronous cultures of Chinese hamster ovary cells have been studied. There is a difference in the induction of mutants by ultraviolet light during the cell cycle. There appears to be a sensitive period in the middle of the G1 stage of the cell cycle suggesting some mutagenic mechanism is present at that time. Studies indicate that mutation induction during the cell cycle is also mutagen specific since exposure to ethyl nitrosourea in the same system produces different results. Two clones have been isolated which are ultrasensitive to ultraviolet light. These cells are being used to determine if this hypermutability is cell-cycle dependent, related to cell cycle biochemistry, or to repair processes independent of cell cycle. Tritium and bromodeoxyuridine induced damage to synchronously dividing cell cultures are also being studied in relation to DNA replication. Cell killing by ionizing radiation is also related to the cell cycle. Sensitive times in the cell cycle for mutation induction by ionization radiation are identified

  7. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  8. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  9. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells.

    Science.gov (United States)

    Böhm, Ernst; Seyfried, Birgit K; Dockal, Michael; Graninger, Michael; Hasslacher, Meinhard; Neurath, Marianne; Konetschny, Christian; Matthiessen, Peter; Mitterer, Artur; Scheiflinger, Friedrich

    2015-09-18

    BACKGROUND & Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.

  10. Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  11. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  12. RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells

    DEFF Research Database (Denmark)

    Orellana, Camila A.; Marcellin, Esteban; Palfreyman, Robin W.

    2018-01-01

    The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO......-regulation of genes encoding secreted glycoproteins is found to be the most significant change. The large number of significant differences even between subclones challenges the notion of identifying and manipulating a few key genes to generate high production CHO cell lines....

  13. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  14. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  15. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  16. The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy

    DEFF Research Database (Denmark)

    Zhang, Yang; Halim, Adnan; Narimatsu, Yoshiki

    2014-01-01

    The Chinese hamster ovary cell (CHO) is the major host cell factory for recombinant production of biological therapeutics primarily because of its “human-like” glycosylation features. CHO is used for production of several O-glycoprotein therapeutics including erythropoietin, coagulation factors......, and chimeric receptor IgG1-Fc-fusion proteins, however, some O-glycoproteins are not produced efficiently in CHO. We have previously shown that the capacity for O-glycosylation of proteins can be one limiting parameter for production of active proteins in CHO. Although the capacity of CHO for biosynthesis...... of glycan structures (glycostructures) on glycoproteins are well established, our knowledge of the capacity of CHO cells for attaching GalNAc-type O-glycans to proteins (glycosites) is minimal. This type of O-glycosylation is one of the most abundant forms of glycosylation, and it is differentially...

  17. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...... property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production....

  18. The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach

    NARCIS (Netherlands)

    Sosnin, E.A.; Stoffels - Adamowicz, E.; Erofeev, M.V.; Kieft, I.E.; Kunts, S.E.

    2004-01-01

    Living mammalian cells and bacteria were exposed to irradiation from narrow-band UV lamps and treated with a nonthermal gas plasma (plasma needle). The model systems were: Chinese Hamster Ovary (CHO-K1) cells (fibroblasts) and Escherichia Coli bacteria. UV irradiation can lead to cell death

  19. Cytogenetic analyses of Azadirachtin reveal absence of genotoxicity but marked antiproliferative effects in human lymphocytes and CHO cells in vitro.

    Science.gov (United States)

    Mosesso, Pasquale; Bohm, Lothar; Pepe, Gaetano; Fiore, Mario; Carpinelli, Alice; Gäde, Gerd; Nagini, Siddavaram; Ottavianelli, Alessandro; Degrassi, Francesca

    2012-09-18

    In this work we have examined the genotoxic potential of the bioinsecticide Azadirachtin A (AZA) and its influence on cell proliferation on human lymphocytes and Chinese Hamster ovary (CHO) cells. AZA genotoxicity was assessed by the analysis of chromosomal aberrations and sister chromatid exchanges (SCEs) in the absence and presence of rat liver S9 metabolism. Primary DNA damage was also investigated by means of the comet assay. The results obtained clearly indicate that AZA is not genotoxic in mammalian cells. On the other hand, AZA proved to interfere with cell cycle progression as shown by modulation of frequencies of first (M1) and second division (M2) metaphases detected by 5-Bromo-2'-deoxyuridine labeling. Accumulation of M1 metaphases were more pronounced in human lymphocytes. In the transformed CHO cell line, however, significant increases of multinucleated interphases and polyploid cells were observed at long treatment time. At higher dose-levels, the incidence of polyploidy was close to 100%. Identification of spindle structure and number of centrosomes by fluorescent immunostaining with α- and γ-tubulin antibodies revealed aberrant mitoses exhibiting multipolar spindles with several centrosomal signals. These findings suggest that AZA can act either through a stabilizing activity of microtubules or by inhibition of Aurora A, since both mechanisms are able to generate genetically unstable polyploid cells with multipolar spindles and multinucleated interphases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Kanon, B.; Konings, A.W.T.; Stackhouse, M.A.; Bedford, J.S.

    1993-01-01

    In the current study, the extent of hyperthermic radiosensitization in a new γ-radiation-sensitive cell line, irs-20, recently isolated by Stackhouse and Bedford (1991) and a heat-sensitive mutant hs-36 (Harvey and Bedford 1988) was compared with the radiosensitization of their mutual parent CHO 10B12 cell line. The irs-20 and CHO 10B12 cells have comparable heat (43.5 o C) sensitivities, whereas hs-36 and CHO 10B12 show a similar sensitivity to γ- and X-rays. Radiosensitization due to pre-exposure to 43.5 o C heating of plateau phase cultures was found for all three cell lines, even after relatively mild heat treatment killing <20% of cells. Experiments using CHEF electrophoresis confirmed the dsb repair deficiency of the irs-20 cells (Stackhouse and Bedford 1992) and showed that heat inhibited dsb repair in all three cell lines. (Author)

  1. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    Science.gov (United States)

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates. © 2015 American Institute of Chemical Engineers.

  2. Transferability study of CHO cell clustering assays for monitoring of pertussis toxin activity in acellular pertussis vaccines.

    Science.gov (United States)

    Isbrucker, R; Daas, A; Wagner, L; Costanzo, A

    2016-01-01

    Current regulations for acellular pertussis (aP) vaccines require that they are tested for the presence of residual or reversion-derived pertussis toxin (PTx) activity using the mouse histamine sensitisation test (HIST). Although a CHO cell clustering assay can be used by manufacturers to verify if sufficient inactivation of the substance has occurred in-process, this assay cannot be used at present for the final product due to the presence of aluminium adjuvants which interfere with mammalian cell cultures. Recently, 2 modified CHO cell clustering assays which accommodate for the adjuvant effects have been proposed as alternatives to the HIST. These modified assays eliminate the adjuvant-induced cytotoxicity either through dilution of the vaccine (called the Direct Method) or by introducing a porous barrier between the adjuvant and the cells (the Indirect Method). Transferability and suitability of these methods for testing of products present on the European market were investigated during a collaborative study organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM). Thirteen laboratories participated in this study which included 4 aP-containing vaccines spiked by addition of PTx. This study also assessed the transferability of a standardised CHO cell clustering assay protocol for use with non-adjuvanted PTx preparations. Results showed that the majority of laboratories were able to detect the PTx spike in all 4 vaccines at concentrations of 4 IU/mL or lower using the Indirect Method. This sensitivity is in the range of the theoretical sensitivity of the HIST. The Direct Method however did not show the expected results and would need additional development work.

  3. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  4. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.

    Science.gov (United States)

    Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2018-07-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.

  5. Taguchi Experimental Design for Optimization of Recombinant Human Growth Hormone Production in CHO Cell Lines and Comparing its Biological Activity with Prokaryotic Growth Hormone.

    Science.gov (United States)

    Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid

    2018-02-01

    Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  7. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    , analysis, control and optimization of N-glycosylation were thoroughly reviewed. In particular, how to control and optimize N-glycosylation in CHO cells was exclusively studied. The main focus of this PhD project is to find effective approaches of modulating N-glycosylation of CHO-derived recombinant...... galactose as feed additives, changing process parameters such as seeding density and cultivation duration are all demonstrated to be effective. The causal explanation of their impact on glycosylation can be various, including product, metabolism, proteome and physiology-associated mechanism. In the middle...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  8. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Larraza, Daniel M. [IMBICE, C.C. 403, 1900 La Plata (Argentina)]. E-mail: danielop@imbice.org.ar; Padron, Juan [IMBICE, C.C. 403, 1900 La Plata (Argentina); Ronci, Natalia E. [IMBICE, C.C. 403, 1900 La Plata (Argentina); Vidal Rioja, Lidia A. [IMBICE, C.C. 403, 1900 La Plata (Argentina)

    2006-08-30

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 {sup o}C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.

  9. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    International Nuclear Information System (INIS)

    Lopez-Larraza, Daniel M.; Padron, Juan; Ronci, Natalia E.; Vidal Rioja, Lidia A.

    2006-01-01

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 o C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells

  10. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Sarah Inwood

    2018-01-01

    Full Text Available The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK, while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.

  11. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Beuchert Kallehauge, Thomas; Pedersen, Lasse Ebdrup

    2015-01-01

    gene integration into site-specific loci in CHO cells using CRISPR/Cas9 genome editing system and compatible donor plasmid harboring a gene of interest (GOI) and short homology arms. This strategy has enabled precise insertion of a 3.7-kb gene expression cassette at defined loci in CHO cells following...

  12. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells

    DEFF Research Database (Denmark)

    Grav, Lise Marie; Julie la Cour Karottki, Karen; Lee, Jae Seong

    2017-01-01

    and yields. In this chapter, we present our protocol on how to use the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knockout engineering target genes in CHO cells. As an example, we refer to the glutamine synthetase (GS...

  13. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdr1 gene

    NARCIS (Netherlands)

    van Es, H. H.; Renkema, H.; Aerts, H.; Schurr, E.

    1994-01-01

    Expression of the pfmdr1-encoded Pgh1 protein of Plasmodium falciparum in CHO cells confers a phenotype of increased sensitivity to chloroquine due to an increased Pgh1-mediated accumulation of this antimalarial. Pgh1 carrying amino acid substitutions associated with chloroquine resistance in P.

  14. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  15. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  16. CHO On A Detox: Removing By-Product Formation Through Cell Engineering

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    Chinese Hamster Ovary (CHO) cells are the preferred hosts for the production of therapeutic glycoproteins. However, there is a need for improvement of the bioprocesses towards increased cell growth and higher productivities without compromising the product quality. Efforts to obtain tailor-made p......-made products with the desired properties that meet the requirements of regulatory authorities are continuously being made. Of equal relevance is to develop methods to engineer cell lines with improved by-product metabolism....

  17. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies

    DEFF Research Database (Denmark)

    Noh, Soo Min; Shin, Seunghyeon; Min Lee, Gyun

    2018-01-01

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1...... and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated...... in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation...

  18. Induction of micronuclei and binucleated cells by treatment with radiation and cisplatin in CHO cells

    International Nuclear Information System (INIS)

    Rodilla, V.; Seymour, C.B.; Mothersill, C.; Pertusa, J.; Pellicer, J.A.

    1991-01-01

    The frequencies of CHO cells with micronuclei in the cisplatin-treated cultures showed an increase reaching a maximum 48 hours after treatment. Within the next 48 hours a slight decrease in the frequencies was observed. In γ-irradiated cultures (1.2 Gy/min at 80 cm source-skin distance) the maximum in micronuclei-induction was reached at 24 hours post-irradiation, decreasing thereafter. Cultures receiving both treatments showed a similar curve, with a peak at 24 hours, decreasing thereafter. (UK)

  19. Efficient and reproducible mammalian cell bioprocesses without probes and controllers?

    Science.gov (United States)

    Tissot, Stéphanie; Oberbek, Agata; Reclari, Martino; Dreyer, Matthieu; Hacker, David L; Baldi, Lucia; Farhat, Mohamed; Wurm, Florian M

    2011-07-01

    Bioprocesses for recombinant protein production with mammalian cells are typically controlled for several physicochemical parameters including the pH and dissolved oxygen concentration (DO) of the culture medium. Here we studied whether these controls are necessary for efficient and reproducible bioprocesses in an orbitally shaken bioreactor (OSR). Mixing, gas transfer, and volumetric power consumption (P(V)) were determined in both a 5-L OSR and a 3-L stirred-tank bioreactor (STR). The two cultivation systems had a similar mixing intensity, but the STR had a lower volumetric mass transfer coefficient of oxygen (k(L)a) and a higher P(V) than the OSR. Recombinant CHO cell lines expressing either tumor necrosis factor receptor as an Fc fusion protein (TNFR:Fc) or an anti-RhesusD monoclonal antibody were cultivated in the two systems. The 5-L OSR was operated in an incubator shaker with 5% CO(2) in the gas environment but without pH and DO control whereas the STR was operated with or without pH and DO control. Higher cell densities and recombinant protein titers were obtained in the OSR as compared to both the controlled and the non-controlled STRs. To test the reproducibility of a bioprocess in a non-controlled OSR, the two CHO cell lines were each cultivated in parallel in six 5-L OSRs. Similar cell densities, cell viabilities, and recombinant protein titers along with similar pH and DO profiles were achieved in each group of replicates. Our study demonstrated that bioprocesses can be performed in OSRs without pH or DO control in a highly reproducible manner, at least at the scale of operation studied here. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of heavy water on ultrastructural and functional status of Hep 2 and CHO cells lysosomes

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Caloianu, Maria; Zarnescu, Otilia; Cimpean, Anisoara; Titescu, Gh.; Stefanescu, I.

    2002-01-01

    The heavy water effects on the ultrastructure and function of Hep 2 and CHO lysosomal cell compartment were investigated using electron microscopy and enzymatic studies. The cell viability, measured by neutral red uptake assay, and the total protein content determination, have shown a dose dependent decrease in cell growth for both studied cell types. The electron microscopy study has revealed a progressive increase in number and size of lysosomes and autophagosomes after 96 h exposure to different deuterium concentration media in a dose dependent manner. The enzymatic determination in the lysosomal pellet revealed an increased acid phosphatase activity in both cell types (15% and 33% for Hep 2 and 24% and 52% for CHO, respectively) exposed to media with high (65%, 90%) D 2 O content. (authors)

  1. Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; You-Hua Xie; Yu-Ying Kong; Ye Ye; Chun-Lin Wang; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To explore the role of hepatitis C virus (HCV) envelope protein 2 (E2) in the induction of apoptosis.METHODS: A carboxyterminal truncated E2 (E2-661) was transiently expressed in several cultured mammalian cell lines or stably expressed in Chinese hamster ovary (CHO)cell line. Cell proliferation was assessed by 3H thymidine uptake. Apoptosis was examined by Hoechst 33258staining, flow cytometry and DNA fragmentation analysis.RESULTS: Reduced proliferation was readily observed in the E2-661 expressing cells. These cells manifested the typical features of apoptosis, including cell shrinkage,chromatin condensation and hypodiploid genomic DNA content. Similar apoptotic cell death was observed in an E2-661 stably expressing cell line.CONCLUSION: HCV E2 can induce apoptosis in cultured mammalian cells.

  2. Thermotolerance and thermosensitization in CHO and R1H cells: a comparative study

    International Nuclear Information System (INIS)

    Dikomey, E.; Eickhoff, J.; Jung, H.

    1984-01-01

    In CHO and R1H cells thermotolerance was induced by a pre-incubation at 40 0 C, by an acute heat shock at 43 0 C followed by a time interval at 37 0 C, and during continuous heating at 42 0 C. Thermotolerance, which was tested at 43 0 , primarily causes an increase in D 0 of the heat-response curve. The degree of maximum thermotolerance was found to be generally more pronounced in CHO than in R1H cells, but the time interval at 37 0 C, as well as at 40 0 C, to reach this maximum level was the same in both cell lines. CHO and R1H cells could be sensitized to 40 0 C by a pre-treatment at 43 0 C. When compared for the same survival rate after pre-treatment at 43 0 C alone the degree of thermosensitization was about the same in both cell lines. In either cell line thermosensitization was found to be suppressed when cells were made thermotolerant by a previous incubation at 40 0 C for 16 hours. (author)

  3. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  4. Intracellular transport of cholesterol in mammalian cells

    International Nuclear Information System (INIS)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of [ 3 H]cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth

  5. Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Kumud Kant [University of Rajasthan, Department of Zoology (India); Awasthi, Anjali; Kumar, Narender; Roy, Partha [Indian Institute of Technology Roorkee, Department of Biotechnology (India); Awasthi, Kamlendra, E-mail: kamlendra.awasthi@gmail.com [Malaviya National Institute of Technology, Department of Physics (India); John, P. J., E-mail: placheriljohn@yahoo.com [University of Rajasthan, Department of Zoology (India)

    2013-09-15

    Silver nanoparticles (Ag NPs) are being used increasingly in wound dressings, catheters, and in various household products due to their antimicrobial activity. The present study reports the toxicity evaluation of synthesized and well characterized Ag NPs using Chinese hamster ovary (CHO) cells. The UV-Vis spectroscopy reveals the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 408-410 nm. Transmission electron microscopy (TEM) reveals that the average diameter of silver nanoparticles is about 5.0 {+-} 1.0 nm and that they have spherical shape. Cell visibility and cell viability percentage show dose-dependent cellular toxicity of Ag NPs. The half maximal inhibitory concentration (IC{sub 50}) for CHO cells is 68.0 {+-} 2.65 {mu}g/ml after 24 h Ag NPs exposure. Toxicity evaluations, including cellular morphology, mitochondrial function (MTT assay), reactive oxygen species (ROS), and DNA fragmentation assay (Ladder pattern) were assessed in unexposed CHO cells (control) and the cells exposed to Ag NPs concentrations of 15, 30, and 60 {mu}g/ml for 24 h. The findings may assist in the designing of Ag NPs for various applications and provide insights into their toxicity.

  6. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  7. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  8. Functional expression of Squalus acanthias melanocortin-5 receptor in CHO cells: ligand selectivity and interaction with MRAP.

    Science.gov (United States)

    Reinick, Christina L; Liang, Liang; Angleson, Josepha K; Dores, Robert M

    2012-04-05

    The melanocortin-5 receptor (MC(5)) of the dogfish Squalus acanthias (SacMC(5) receptor) can be functionally expressed in CHO cells in the absence of the co-expression of an exogenous MRAP cDNA. Both human ACTH(1-24) and dogfish ACTH(1-25) were much better stimulators of the SacMC(5) receptor than any of the mammalian or dogfish MSH ligands that were tested. The order of ligand selectivity for the dogfish melanocortins was ACTH(1-25)>αMSH>γ-MSH=δ-MSH>β-MSH. Unlike mammalian MC(5) receptors, the functional expression of the SacMC(5) receptor was not negatively impacted when the receptor was co-expressed with a cartilaginous fish (Callorhinchus milii) MRAP2 cDNA. However, co-expression with either mouse mMRAP1 or zebrafish zfMRAP1 increased the sensitivity of SacMC(5) receptor for hACTH(1-24) by at least one order of magnitude. Hence, SacMC(5) receptor has the potential to interact with MRAP1 orthologs and in this regard behaved more like a melanocortin MC(2) receptor ortholog than a melanocortin MC(5) receptor ortholog. These observations are discussed in light of the evolution of the melanocortin receptor gene family in cartilaginous fish, and the physiological implications of these observations are considered. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  10. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L.; Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, we studied alpha-particle induced and medium-mediated bystander effects in Chinese hamster ovary (CHO) cells through micronucleus (MN) assay. We showed that signal transduction from irradiated cells to bystander cells occur within a short time after irradiation. We then studied the effects of ROS (reactive oxygen species)-scavenging catechins in the medium before irradiation. We observed decreases in the percentage of bystander cells with MN formation and thus proved the protection effect of catechins on bystander cells from radiation.

  11. Development of thermotolerance in CHO cells: modification by procaine.

    Science.gov (United States)

    Rastogi, D; Henle, K J; Nagle, W A; Moss, A J; Neilan, B A; Rastogi, S P

    1987-01-01

    We have tested the reported ability of procaine to inhibit the induction and the development of thermotolerance in Chinese hamster ovary cells. Thermotolerance was induced either by hyperthermia alone (10 min, 45 degrees C) or by combining hyperthermia and procaine (5 min, 45 degrees C + 10 mM procaine) with heating times adjusted to yield similar cell survival after the conditioning treatments. Both the kinetics of thermotolerance development in fresh medium without procaine and the magnitude of thermotolerance 6 h after heat conditioning were similar for the two treatment groups. Development of thermotolerance in the presence of procaine was tested by adding the drug at 5 or 10 mM to culture medium between, but not during two fractionated heat treatments. Thermotolerance development was observed even in the presence of 10 mM procaine, but only if cell survival was corrected for the 37 degrees C-procaine toxicity. Complete survival curves of cells incubated for 6 h at 37 degrees C in 7.5 mM procaine between heat conditioning and test heating showed a D0 that was only 35 per cent lower than that of thermotolerant controls. The data are consistent with the reported sensitization to heat killing by procaine, but show that thermotolerance induction and development were only minimally perturbed by procaine.

  12. Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, K.M.; Suzuki, Keiji

    2007-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population via a bystander effect. Here, we examined whether dimethyl sulfoxide (DMSO) is effective in suppressing radiation induced bystander effects in Chinese hamster ovary (CHO) and repair deficient xrs5 cells. When 1 Gy-irradiated CHO cells were treated with 0.5% DMSO for 1 hr before irradiation, the induction of micronuclei in irradiated cells was suppressed to 80% of that in non-treated irradiated cells. The suppressive effect of DMSO on the formation of bystander signals was examined and the results demonstrated that 0.5% DMSO treatment of irradiated cells completely suppressed the induction of micronuclei by the bystander effect in non-irradiated cells. It is suggested that irradiated cells ceased signal formation for bystander effects by the action of DMSO. To determine the involvement of reactive oxygen species on the formation of bystander signals, we examined oxidative stress levels using the 2',7'-dichlorofluorescein (DCFH) staining method in irradiated populations. The results showed that the treatment of irradiated cells with 0.5% DMSO did not suppress oxidative stress levels. These results suggest that the prevention of oxidative stress is independent of the suppressive effect of DMSO on the formation of the bystander signal in irradiated cells. It is suggested that increased reactive oxygen species (ROS) in irradiated cells is not a substantial trigger of a bystander signal. (author)

  13. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  14. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  15. Adhesion and migration of CHO cells on micropatterned single layer graphene

    Science.gov (United States)

    Keshavan, S.; Oropesa-Nuñez, R.; Diaspro, A.; Canale, C.; Dante, S.

    2017-06-01

    Cell patterning technology on single layer graphene (SLG) is a fairly new field that can find applications in tissue engineering and biomaterial/biosensors development. Recently, we have developed a simple and effective approach for the fabrication of patterned SLG substrates by laser micromachining, and we have successfully applied it for the obtainment of geometrically ordered neural networks. Here, we exploit the same approach to investigate the generalization of the cell response to the surface cues of the fabricated substrates and, contextually, to quantify cell adhesion on the different areas of the patterns. To attain this goal, we tested Chinese hamster ovary (CHO) cells on PDL-coated micropatterned SLG substrates and quantified the adhesion by using single cell force spectroscopy (SCFS). Our results indicate higher cell adhesion on PDL-SLG, and, consequently, an initial CHO cell accumulation on the graphene areas, confirming the neuronal behaviour observed previously; interestingly, at later time point in culture, cell migration was observed towards the adjacent SLG ablated regions, which resulted more favourable for cell proliferation. Therefore, our findings indicate that the mechanism of interaction with the surface cues offered by the micropatterned substrates is strictly cell-type dependent.

  16. Polyamine metabolism in synchronously growing mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Heby, O.; Marton, L.J.; Gray, J.W.; Lindl, P.A.; Wilson, C.B.

    1976-03-02

    The times of synthesis of the polyamines putrescine, spermidine and spermine in relation to the cell cycle have been examined in Chinese hamster ovary (CHO) cells synchronized by selective detachment of mitotic cells. This technique produced cell populations with narrow age distributions. Following plating, the cells grew with high synchrony for more than one cell cycle in monolayer culture. At various times after plating, the distribution of cells among the G1, S and G2M phases of the cell cycle was calculated from DNA histograms obtained by flow microfluorometric analysis. At these same times L-ornithine decarboxylase assays and polyamine determinations showed that the synthesis of the polyamines was initiated in mid-G1 and that the polyamines started to accumulate towards the end of the G1 phase. Maximal rate of synthesis was obtained as the cells started to synthesize DNA and the highest polyamine content was obtained in the beginning of the S phase. Synthesis and accumulation of the polyamines decreased significantly during mid-S but towards the end of the S phase they increased again. The polyamine biosynthetic activity and the concentration of the polyamines reached a second maximum prior to cell division. The role of the polyamines in the traverse of the cell cycle and especially in the initiation or continuation of DNA synthesis is indicated also by the fact that fewer cells were found in the S phase when spermidine and spermine synthesis was inhibited by methylglyoxal-bis(guanylhydrazone).

  17. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.

    Directory of Open Access Journals (Sweden)

    Anne Mathilde Lund

    Full Text Available A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.

  18. Chinese hamster ovary (CHO-K1) cells expressed native insulin-like ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... ... University Malaysia (IIUM), P.O. Box 10, 50728, Kuala Lumpur, Malaysia. Accepted 7 November, 2011. Insulin-like growth factor-1 (IGF-1) has been shown to promote cell proliferation and inhibit apoptosis of cells. These are two characteristics of mammalian cell culture which may lead to high density cell.

  19. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment

    DEFF Research Database (Denmark)

    Grav, Lise Marie; Lee, Jae Seong; Thomsen, Signe Gerling

    2015-01-01

    The CRISPR/Cas9 genome editing technology has previously been shown to be a highly efficient tool for generating gene disruptions in CHO cells. In this study we further demonstrate the applicability and efficiency of CRISPR/Cas9 genome editing by disrupting FUT8, BAK and BAX simultaneously....... Taken together, multiplexing with CRISPR/Cas9 can accelerate genome engineering efforts in CHO cells even further....

  20. Rheological behavior of mammalian cells.

    Science.gov (United States)

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  1. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  2. Effect of 5-aminolevulinic acid on kinetics of protoporphyrin IX production in CHO cells.

    Directory of Open Access Journals (Sweden)

    W Warchoł

    2004-07-01

    Full Text Available 5-aminolevulinic acid (ALA is utilized in a photodynamic therapy as a compound capable of augmenting intracellular pool of protoporphyrin IX (PpIX, which exhibits properties of a photosensitizer. The studies were aimed at monitoring accumulation of endogenous protoporphyrin IX in CHO cells under effect of various concentrations of ALA in culture medium and following removal of the compound from the culture medium. Cell content of PpIX was determined following incubation of the cells for 72 h in a culture medium containing different concentration of ALA. Moreover, the cells were preincubated for 2 h in ALA at various concentrations and separated from the compound by medium change and their PpIX content was monitored following incubation. PpIX content was defined by a fluorescent technique under the confocal microscope. In the course of continuous incubation of cells with ALA, biphasic alterations were noted in cellular PpIX concentration. Removal of ALA from the incubation medium resulted at first in a decrease in PpIX content in cells, which was followed by an evidently augmented accumulation of the compound in the cells. The results suggested that in the case of CHO cells, exogenous ALA was not an exclusive source of PpIX synthesis and that alterations in enzyme activities were responsible for production of PpIX.

  3. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies.

    Science.gov (United States)

    Noh, Soo Min; Shin, Seunghyeon; Lee, Gyun Min

    2018-03-29

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1 and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation between the specific mAb productivity and these three gene copies (R 2  ≤ 0.012). Taken together, GS-mediated gene amplification does not occur in a single round of selection at a MSX concentration up to 50 μM. The use of the GS-knockout CHO host cell line facilitates the rapid generation of high producing clones with reduced production of lactate and ammonia in the absence of MSX.

  4. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  5. Genetically modified CHO cells for studying the genotoxicity of heterocyclic amines from cooked foods

    International Nuclear Information System (INIS)

    Thompson, L.H.; Wu, R.W.; Felton, J.S.

    1995-07-01

    We have developed metabolically competent CHO cells to evaluate the genotoxicity associated with heterocyclic amines, such as those that are present in cooked foods. Into repair-deficient UV5 cells we introduced cDNAs for expressing cytochrome P450IA2 and acetyltransferases. We then genetically reverted these transformed lines to obtain matched metabolically competent repair-deficient/proficient lines. For a high mutagenic response, we find a requirement for acetyltransferase with IQ but not with PhIP. This system allows for both quantifying mutagenesis and analyzing the mutational spectra produced by heterocyclic amines

  6. Chinese hamster ovary (CHO-K1) cells expressed native insulin-like ...

    African Journals Online (AJOL)

    These are two characteristics of mammalian cell culture which may lead to high density cell culture producing optimal desired yield of bioproducts. An inherent secretion of IGF-1 protein from host cells into the culture media is hypothesized to enable reduction or removable of serum from culture media, thus reducing cost.

  7. Recovery of CHO cells from hyperthermic potentiation to x rays: repair of DNA and chromatin

    International Nuclear Information System (INIS)

    Clark, E.P.; Dewey, W.C.; Lett, J.T.

    1981-01-01

    Above the critical temperature, ca. 42.5 0 C, hyperthermic potentiation of Chinese hamster ovary (CHO) cells to x irradiation was accompanied by increased binding of nonhistone proteins to DNA and by reduced rates of rejoining of DNA strand breaks. These biochemical changes were reversed as the cells recovered from the hyperthermic exposures at 37 0 C. If the hyperthermically treated cells were incubated at 37 0 C before x irradiation, the ratio of nonhistone protein to DNA returned to normal in 12 h but the depressed rate of rejoining of DNA strand breaks and increased cell radiosensitivity remained unaltered. Cell radiosensitivity began to decrease after 12 h and recovery from hyperthermia-potentiated radiosensitivity was complete by 48 h. In the same interval, the rate of rejoining of DNA strand breaks also returned to normal. From this behavior, we conclude that the reduction in the rate of rejoining of DNA strand breaks involved changes in DNA structure which were restored only after the thermal enhancement of protein binding was reversed. These experiments provide support for the viewpoint that critical hyperthermic potentiation (i.e., above 42.5 0 C for CHO cells) may have logistical advantages over subcritical hyperthermic potentiation (i.e., below 42.5 0 C) in clinical situations

  8. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    Science.gov (United States)

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  9. Relationship of radiation sensitivity and aberrant DNA synthesis in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Newman, C.N.; Hagler, H.; Miller, J.H.

    1986-11-01

    Comparison of alkaline sucrose gradient profiles of pulse-labeled DNA from a normal CHO cell line and its radiation-sensitive mutant, xrs-5, reveals significant differences in the replicon elongation/maturation process in these two cells. During a one hr period of growth subsequent to labeling, the molecular weight of pulse-labeled DNA from the mutant cell increases considerably more rapidly than that of the parent cell. For xrs-5, the presence of 2 mM deoxycytidine (CdR) in the culture medium reduces the replication rate to one approaching that of the parent cell growing in the standard medium. Corresponding uv resistance of the mutant likewise increases to nearly that of the parent cell line. These results suggest that the locus conferring radiation sensitivity to xrs-5 affects the DNA replisome complex and that replicative activity and radiation sensitivity are jointly modulated by CdR. 19 refs., 4 figs

  10. Radiation sensitivity of mammalian cells

    International Nuclear Information System (INIS)

    Koch, C.J.

    1985-01-01

    The authors tested various aspects of the so-called ''competition'' model for radiation sensitization/protection. In this model, sensitizers and/or protectors react in first order chemical reactions with radiation-induced target radicals in the cell, producing damage fixation or repair respectively. It is only because of these parallel, first-order competing reactions that they may assign net amounts of damage on the basis of the chemical reactivity of the sentiziers/protectors with the radicals. It might be expected that such a simple model could not explain all aspects of cellular radiosensitivity and this has indeed been found to be true. However, one is able, with the simple model, to pose quite specific questions, and obtain quantitative information with respect to the relative agreement between experiment and theory. Many experiments by several investigators have found areas of disagreement with the competition theory, particularly with respect to the follow items: 1) role of cellular glutathione as the most important endogeneous radiation protector 2) characteristics of various sensitizers which cause them to behave differently from each other 3) methods relating to the quantitative kinetic analysis of experimenal results. This paper addresses these specific areas of disagreement from both an experimental and theoretical basis

  11. Benchmarking of commercially available CHO cell culture media for antibody production.

    Science.gov (United States)

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate

    2015-06-01

    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable

  12. Sustained productivity in recombinant Chinese Hamster Ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype

    LENUS (Irish Health Repository)

    Meleady, Paula

    2011-07-24

    Abstract Background The ability of mammalian cell lines to sustain cell specific productivity (Qp) over the full duration of bioprocess culture is a highly desirable phenotype, but the molecular basis for sustainable productivity has not been previously investigated in detail. In order to identify proteins that may be associated with a sustained productivity phenotype, we have conducted a proteomic profiling analysis of two matched pairs of monoclonal antibody-producing Chinese hamster ovary (CHO) cell lines that differ in their ability to sustain productivity over a 10 day fed-batch culture. Results Proteomic profiling of inherent differences between the two sets of comparators using 2D-DIGE (Difference Gel Electrophoresis) and LC-MS\\/MS resulted in the identification of 89 distinct differentially expressed proteins. Overlap comparisons between the two sets of cell line pairs identified 12 proteins (AKRIB8, ANXA1, ANXA4, EIF3I, G6PD, HSPA8, HSP90B1, HSPD1, NUDC, PGAM1, RUVBL1 and CNN3) that were differentially expressed in the same direction. Conclusion These proteins may have an important role in sustaining high productivity of recombinant protein over the duration of a fed-batch bioprocess culture. It is possible that many of these proteins could be useful for future approaches to successfully manipulate or engineer CHO cells in order to sustain productivity of recombinant protein.

  13. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.

    Science.gov (United States)

    Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár

    2009-06-01

    In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.

  14. Effects of copper on CHO cells: cellular requirements and product quality considerations.

    Science.gov (United States)

    Yuk, Inn H; Russell, Stephen; Tang, Yun; Hsu, Wei-Ting; Mauger, Jacob B; Aulakh, Rigzen P S; Luo, Jun; Gawlitzek, Martin; Joly, John C

    2015-01-01

    Recent reports highlight the impact of copper on lactate metabolism: CHO cell cultures with higher initial copper levels shift to net lactate consumption and yield lower final lactate and higher titers. These studies investigated the effects of copper on metabolite and transcript profiles, but did not measure in detail the dependences of cell culture performance and product quality on copper concentrations. To more thoroughly map these dependences, we explored the effects of various copper treatments on four recombinant CHO cell lines. In the first cell line, when extracellular copper remained above the limit of detection (LOD), cultures shifted to net lactate consumption and yielded comparable performances irrespective of the differences in copper levels; when extracellular copper dropped below LOD (∼13 nM), cultures failed to shift to net lactate consumption, and yielded significantly lower product titers. Across the four cell lines, the ability to grow and consume lactate seemed to depend on the presence of a minimum level of copper, beyond which there were no further gains in culture performance. Although this minimum cellular copper requirement could not be directly quantified, we estimated its probable range for the first cell line by applying several assumptions. Even when different copper concentrations did not affect cell culture performance, they affected product quality profiles: higher initial copper concentrations increased the basic variants in the recombinant IgG1 products. Therefore, in optimizing chemically defined media, it is important to select a copper concentration that is adequate and achieves desired product quality attributes. © 2014 American Institute of Chemical Engineers.

  15. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  16. X-rays sensitive mammalian cell mutant

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1982-01-01

    A phenomenon that in x-ray-sensitive mammalian-cell mutants, cellular death due to x-ray radiation was not increased by caffeine, but on the contrary, the dead cells were resuscitated by it was discussed. The survival rate of mutant cells increased by caffein in a low concentration. This suggested that caffeine may have induced some mechanism to produce x-ray resistant mutant cells. Postirradiation treatment with caffeine increased considerably the survival rate of the mutant cells, and this suggested the existence of latent caffeine-sensitive potentially lethal damage repair system. This system, after a few hours, is thought to be substituted by caffeine-resistant repair system which is induced by caffeine, and this may be further substituted by x-ray-resistant repair system. The repair system was also induced by adenine. (Ueda, J.)

  17. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  18. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  19. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors

    DEFF Research Database (Denmark)

    Kildegaard, Helene Faustrup; Fan, Yuzhou; Wagtberg Sen, Jette

    2016-01-01

    Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production. In this......Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production....... In this study, the effect on IgG N-glycosylation from feeding CHO cells with eight glycosylation precursors during cultivation was investigated. The study was conducted in fed-batch mode in bioreactors with biological replicates to obtain highly controlled and comparable conditions. We assessed charge...

  20. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  1. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    Science.gov (United States)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  2. Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells

    Directory of Open Access Journals (Sweden)

    Veronica Avello

    2017-05-01

    Conclusions: The combination of NaBu addition and mild hypothermic condition causes an impact on physiological and metabolic state of CHO TF 70R cells, decreasing cell growth rate and improving glucose consumption efficiency. These results therefore provide a promising strategy to increase specific productivity of rh-tPA.

  3. Focusing on RISC assembly in mammalian cells.

    Science.gov (United States)

    Hong, Junmei; Wei, Na; Chalk, Alistair; Wang, Jue; Song, Yutong; Yi, Fan; Qiao, Ren-Ping; Sonnhammer, Erik L L; Wahlestedt, Claes; Liang, Zicai; Du, Quan

    2008-04-11

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.

  4. Focusing on RISC assembly in mammalian cells

    International Nuclear Information System (INIS)

    Hong Junmei; Wei Na; Chalk, Alistair; Wang Jue; Song, Yutong; Yi Fan; Qiao Renping; Sonnhammer, Erik L.L.; Wahlestedt, Claes; Liang Zicai; Du, Quan

    2008-01-01

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi

  5. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  6. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Redox signaling during hypoxia in mammalian cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Smith

    2017-10-01

    Full Text Available Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS such as hydrogen peroxide (H2O2 occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(PH oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

  8. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  9. The effect of purine phosphonomethoxyalkyl derivatives on DNA synthesis in Cho Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Stetina, R [Institute of Experimental Medicine, Laboratory of Developmental Toxicology, Academy of Sciences of Czech Republic, 51783 Olesnice v Orlickych horach (Czech Republic); Votruba, I; Holy, A; Merta, A [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic (Czech Republic)

    1994-12-31

    The inhibition of incorporation of {sup 3}H-thymidine and the changes of the rate of nascent DNA chain elongation were investigated in Cho Chinese hamster cells treated with (S)-(3-hydroxy-2-phosphonomethoxypropyl) (HPMP) and N-(2-phosphonomethoxyethyl) (PME) derivatives of adenine (A), guanine (G) and 2,6-diaminopurine (DAP). No direct correlation was observed in PME and HPMP derivatives between cytotoxicity, inhibition of {sup 3}H-thymidine incorporation and inhibition of nascent DNA chain elongation. The highest cytotoxicity and inhibition of DNA synthesis were caused by PMEG. The limited extent of inhibition of DNA elongation was encountered in the case of HPMPG and HPMPA. With PMEA, weak inhibition of elongation of DNA was observed only after a prolonged exposure (6 h). None of the investigated drugs induced DNA breaks. (author) 4 figs., 23 refs.

  10. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  11. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells

    International Nuclear Information System (INIS)

    Diamond, A.M.; Murray, J.L.; Dale, P.; Tritz, R.; Grdina, D.J.

    1995-01-01

    The media of representative mammalian cell lines were supplemented with low levels of selenium in the form of sodium selenite in order to investigate the effects of selenium on mammalian cells. Following incubation in 30 nM sodium selenite, these cells were assayed for changes in glutathione peroxidase (GPx) activity. The cells examined included NIH 3T3 mouse fibroblasts, PC12 rat sympathetic precursor cells, SupT-1 human lymphocytes, MCF-7 adr human breast carcinoma cells and AA8 Chinese hamster ovary cells. Selenium supplementation resulted in a marginal increase in GPx activity for the NIH 3T3, MCF-7 adr and Supt-1 cells but stimulated GPx activity approximately 5-fold in PC12 and AA8 cells. AA8 cells were selected to evaluate whether selenium supplementation was radioprotective against 60 cobalt gamma irradiation. Protection against radiation-induced mutation was measured by evaluating mutation frequency at the hprt locus. In this assay, preincubation of AA8 CHO cells significantly protected these cells from exposure to 8 Gy

  12. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Benane, S.G.; Stafford, J.E.

    1976-01-01

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  13. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  14. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  15. Physiological significance of polyploidization in mammalian cells.

    Science.gov (United States)

    Pandit, Shusil K; Westendorp, Bart; de Bruin, Alain

    2013-11-01

    Programmed polyploidization occurs in all mammalian species during development and aging in selected tissues, but the biological properties of polyploid cells remain obscure. Spontaneous polyploidization arises during stress and has been observed in a variety of pathological conditions, such as cancer and degenerative diseases. A major challenge in the field is to test the predicted functions of polyploidization in vivo. However, recent genetic mouse models with diminished polyploidization phenotypes represent novel, powerful tools to unravel the biological function of polyploidization. Contrary to a longstanding hypothesis, polyploidization appears to not be required for differentiation and has no obvious impact on proliferation. Instead, polyploidization leads to increased cell size and genetic diversity, which could promote better adaptation to chronic injury or stress. We discuss here the consequences of reducing polyploidization in mice and review which stress responses and molecular signals trigger polyploidization during development and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pertussis serology: assessment of IgG anti-PT ELISA for replacement of the CHO cell assay*

    Science.gov (United States)

    DALBY, TINE; SØRENSEN, CHARLOTTE; PETERSEN, JESPER WESTPHAL; KROGFELT, KAREN ANGELIKI

    2010-01-01

    Dalby T, Sørensen C, Petersen JW, Krogfelt KA. Pertussis serology: assessment of IgG anti-PT ELISA for replacement of the CHO cell assay. APMIS 2010; 118: 968–72. Two types of serological assays are commonly used for the assessment of pertussis vaccine-induced antibodies; the Chinese hamster ovary cell (CHO cell) assay and the immunoglobulin G (IgG) anti pertussis toxin (PT) enzyme-linked immunosorbent assay (IgG anti-PT ELISA). Recently, both the techniques have been modified to improve performance with sera with interfering activity (CHO cell assay) or with heat-treated sera (IgG anti-PT ELISA). These two improved techniques were compared by the analysis of 100 individual serum samples from a previous clinical trial and 213 sera from a longitudinal serum collection from 20 Danish adults recently vaccinated with the Danish acellular pertussis vaccine. The comparison showed a significant linear correlation between the results of the two assays with a p-value of ELISA can be used as a replacement for the often troublesome and time-consuming CHO cell assay for the measurement of vaccine-induced human antibodies to PT. PMID:21091778

  17. Method for detecting DNA strand breaks in mammalian cells using the Deinococcus radiodurans PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Kikuchi, Masahiro; Funayama, Tomoo; Narumi, Issay; Kobayashi, Yasuhiko

    2006-01-01

    In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields

  18. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    Science.gov (United States)

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  19. The relationship of metabolic burden to productivity levels in CHO cell lines.

    Science.gov (United States)

    Zou, Wu; Edros, Raihana; Al-Rubeai, Mohamed

    2018-03-01

    The growing demand for recombinant therapeutics has driven biotechnologists to develop new production strategies. One such strategy for increasing the expression of heterologous proteins has focused on enhancing cell-specific productivity through environmental perturbations. In this work, the effects of hypothermia, hyperosmolarity, high shear stress, and sodium butyrate treatment on growth and productivity were studied using three (low, medium, and high producing) CHO cell lines that differed in their specific productivities of monoclonal antibody. In all three cell lines, the inhibitory effect of these parameters on proliferation was demonstrated. Additionally, compared to the control, specific productivity was enhanced under all conditions and exhibited a consistent cell line specific pattern, with maximum increases (50-290%) in the low producer, and minimum increases (7-20%) in the high producer. Thus, the high-producing cell line was less responsive to environmental perturbations than the low-producing cell line. We hypothesize that this difference is most likely due to the bottleneck associated with a higher metabolic burden caused by higher antibody expression. Increased recombinant mRNA levels and pyruvate carboxylase activities due to low temperature and hyperosmotic stress were found to be positively associated with the metabolic burden. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  20. Plasma treatment of mammalian vascular cells : A quantitative description

    NARCIS (Netherlands)

    Kieft, IE; Darios, D; Roks, AJM; Stoffels, E

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  1. Plasma treatment of mammalian vascular cells: a quantitative description

    NARCIS (Netherlands)

    Kieft, I.E.; Darios, D.; Roks, A.J.M.; Stoffels - Adamowicz, E.

    2005-01-01

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  2. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  3. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  4. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available on transient photo-transfection of ovary (CHO-Kl), neuroblastoma (NG-I08 & SKN-SH) and embryonic kidney (HEK-293) as well as primary non-differentiated stem cells (EI4g2a) using a tightly focused titanium sapphire laser beam (1.1 urn diameter spot size...

  5. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM

    International Nuclear Information System (INIS)

    Kim, Hyonchol; Arakawa, Hideo; Hatae, Noriyuki; Sugimoto, Yukihiko; Matsumoto, Osamu; Osada, Toshiya; Ichikawa, Atsushi; Ikai, Atsushi

    2006-01-01

    The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions between the antibodies and GFP molecules on the cell surface were recorded to observe the distribution of the receptors. The result indicated that EP3 receptors were distributed on the CHO cell surface not uniformly but in small patches coincident with immunohistochemical observation. Repeated measurements on the same area of cell surface gave confirmation that it was unlikely that the receptors were extracted from the cell membrane during the experiments. The measurement of single molecular interaction between GFP and the anti-GFP antibody was succeeded on the cell surface using compression-free force spectroscopy. The value of separation work required to break a single molecular pair was estimated to be about 1.5x10 -18 J. The number of EP3 receptor on the CHO cell surface was estimated using this value to be about 1x10 4 under the assumption that the area of the cell surface was about 5000 μm 2 . These results indicated that the number of receptors on a living cell surface could be quantified through the force measurement by the AFM

  6. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  7. Estimation of relative biological effectiveness for low energy protons using cytogenetic end points in mammalian cells

    International Nuclear Information System (INIS)

    Bhat, N.N.; Nairy, Rajesh; Chaurasia, Rajesh; Desai, Utkarsha; Shirsath, K.B.; Anjaria, K.B.; Sreedevi, B.

    2013-01-01

    A facility has been designed and developed to facilitate irradiation of biological samples to proton beam using folded tandem ion accelerator (FOTIA) at BARC. The primary proton beam from the accelerator was diffused using gold foil and channelled through a drift tube. Scattered beam was monitored and calibrated. Uniformity and dosimetry studies were conducted to calibrate the setup for precise irradiation of mammalian cells. Irradiation conditions and geometry were optimized for mammalian cells and other biological samples in thin layer. The irradiation facility is housed in a clean air laminar flow to help exposure of samples in aseptic conditions. The set up has been used for studying various radiobiological endpoints in many biological model systems. CHO, MCF-7, A-549 and INT-407 cell lines were studied in the present investigation using micronucleus (MN) induction as an indicator of radiation damage. The mammalian cells grown on petri plates to about 40 % confluence (log phase) were exposed to proton beam of known doses in the range of 0.1 to 2 Gy. The dose estimation was done based on specific ionization in cell medium. Studies were also conducted using 60 Co gamma radiation to compare the results. Linear quadratic response was observed for all the cell lines when exposed to 60 Co gamma radiation. In contrast, linear response was observed for proton beam. In addition, very significant increase in the MN yield was observed for proton beam compared to 60 Co gamma radiation. Estimated α and β values for CHO cells is found to be 0.02±0.003 Gy-1 and 0.042±0.006 Gy-2 respectively for 60 Co gamma radiation. For proton beam, estimated α for linear fit is found to be 0.37±0.011 Gy-1. Estimated RBE was found to be in the range of 4-8 for all the cell lines and dose ranges studied. In conclusion, the proton irradiation facility developed for mammalian cells has helped to study various radiobiological endpoints. In this presentation, facility description, MN as

  8. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  9. Protection of cultured mammalian cells by rebamipide

    International Nuclear Information System (INIS)

    Antoku, Shigetoshi; Aramaki, Ryoji; Tanaka, Hisashi; Kusumoto, Naotoshi.

    1997-01-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO 2 incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with 14 C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  10. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  11. Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia.

    Science.gov (United States)

    Cole, A; Armour, E P

    1988-09-01

    A unique direct-view stereo electron microscope technique was used to visualize the structure and three-dimensional distributions of mitochondria in CHO cells in situ following hyperthermic treatments. Aberrations induced by various heating regimens were recorded. The protocol included a trypsin digestion that may have enhanced the expression of the initial heat damage. The developed damage was observed as increasing levels of mitochondrial distortion, swelling, and dissociation. Minimal damage was induced at 42 degrees C for exposures of up to 4 h, while significant damage was induced at 43 degrees C for exposures of more than 30 min and at 45 degrees C for exposures of more than 10 min. For moderate exposures, a partial recovery of mitochondrial integrity was observed when the heat treatment was followed by incubation at 37 degrees C for 24 h. Mitochondrial damage was related to the heat dose in that increasing treatment temperature resulted in greater damage, but when compared to cell survival the damage did not parallel cell killing under all time-temperature conditions.

  12. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  13. Identification of potential molecular markers of ionizing radiation-induced mutations at the hprt locus in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Sun, J.; Porter, R.C.

    1995-01-01

    Using multiplex polymerase chain reaction-based exon deletion analysis, we have analyzed mutations at the hprt locus from independent CHO cell mutants isolated from untreated, 60 Co x-ray-, and 212 Bi-exposed CHO-K1 cello and its radiation-sensitive derivative, xrs-5. In the 71 spontaneous CHO-K1 mutants analyzed, 78% showed no change in exon number or size, 20% showed loss of 1-8 exons (partial deletion), and 3% showed loss of all nine hprt exons (total deletion). Exposure of CHO-K1 cells to 6 Gy of γ rays (10% survival) produced 45% of the 20 mutants analyzed showing partial deletion, and 30% showing total deletion. Exposure to an equitoxic dose of a radiation from 212 Bi, a 220 Rn daughter, resulted in a spectrum similar to the γ-ray spectrum in that more than 75% of the 49 mutants analyzed were deletions. The α-radiation, however, tended to produce larger intragenic deletions that γ radiation. Of the 87 spontaneous xrs-5 mutants analyzed for deletions 44% showed partial deletion, and 14% showed total deletion. Exposure to α radiation (10% survival) resulted in a deletion spectrum similar to that seen in CHO-K1 cells. Of the 49 mutants analyzed, 43% showed no change in exon number or size, 16% showed partial deletion, and 41% showed total deletion. While the defect in xrs-5 has a profound effect on spontaneous mutation spectra, it does not appear to affect α-induced mutation spectra

  14. Sensing the Heat Stress by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Cates Jordan

    2011-08-01

    Full Text Available Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF, which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. Results The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO cells. The time profile of the GFP protein depends on the transient activity, Transient(t, of the heat shock system. The function Transient(t depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104. The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i the response of the cell to two

  15. Fluorescent light irradiation and its mutagenic potential in cultured mammalian cells

    International Nuclear Information System (INIS)

    Pant, K.; Thilager, A.

    1994-01-01

    The photobiological effect of light is characterized by its energy emission at different wave lengths. Therefore by studying the energy emission spectra at different light sources and their photobiological activities, one can relate wavelength range(s) of the spectrum to a particular photobiological effect. We studied the potential of light irradiation from standard fluorescent bulbs (Sylvania 34WT-12) used in offices and laboratories to induce unscheduled DNA Synthesis (UDS) and mutations in cultured mammalian cells. The energy emission spectrum of the bulbs was determined at every 10 nanometers from 300nM to 700nM. The Chinese hamster ovary (CHO) cells were used to study the induction of mutations at the Hypoxanthine Guanine Phosphoribosyl Transferase (HGPRT) locus. Primary rat hepatocyte cultures were used to study the effect of light irradiation on UDS. The CHO cells were cultured in tissue culture flasks in minimum light conditions (.02mw/cm 2 ) and exposed to light irradiations with durations from 0 to 40 minutes. The cultures were maintained in darkness during the expression period and evaluated for HGPRT mutant frequencies. Similarly, the primary rat hepatocyte cultures were cultured on cover slips under minimal light conditions except for light irradiation and evaluated for UDS using 3H-thymidine labelled auto-radiography. The results of the study indicate that irradiation from fluorescent lights caused a slight elevation in the HGPRT mutant frequency in CHO cells. However a significant increase in UDS was not observed even at the maximum light irradiation dose. These results were compared to data obtained from similar experiments conducted with fluorescent bulbs with different energy emission spectra

  16. Does autophagy have a license to kill mammalian cells?

    NARCIS (Netherlands)

    Scarlatti, F.; Granata, R.; Meijer, A. J.; Codogno, P.

    2009-01-01

    Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the

  17. Detection of DNA strand breaks in mammalian cells using the radioresistant bacterium PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Narumi, Issay; Kikuchi, Masahiro; Funayama, Tomoo; Kobayashi, Yasuhiko

    2003-01-01

    We have previously found that the PprA protein from Deinococcus radiodurans possesses ability to recognize DNA carrying strand breaks. In the present study, we attempted to visualize radiation-induced DNA strand breaks with PprA protein using immunofluorescence technique to elucidate the DNA damage response mechanism in mammalian cultured cells. As a result, colocalization of Cy2 and DAPI fluorescent signals was observed. This observation suggests that DNA strand breaks in the nucleus of CHO-K1 cells were effectively detected using the PprA protein. The amount of DNA strand breaks (integrated density of Cy2 fluorescent signals) was increased with the increase in the radiation dose. (author)

  18. FANCG knockout CHO cells display sensitivity to diverse DNA damaging agents and possible genomic instability

    International Nuclear Information System (INIS)

    Hinz, J.M.; Tebbs, R.S.; Yamada, N.A.; Salazar, E.P.; Kopf, V.L.; Thompson, L.H.

    2003-01-01

    Full text: The function of the proteins encoded by the genes responsible for the disease Fanconi anemia (FA) have not been elucidated. Several of these proteins (FancA, C, E, F, and G) form a complex in the nucleus, and cells deficient in any one of these proteins are sensitive to crosslinking agents, suggesting a possible role for these proteins in some aspect of DNA repair, chromosomal maintenance, or replication. We constructed a FancG knockout mutant (FGKO40) in CHO AA8 cells, as well as FancG-corrected FGKO40 cells (KO40BP6, which is a pool of six BAC-clone transformants). FGKO40 cells are sensitive to a wide variety of DNA damaging agents. Sensitivity to the cross-linking agents MMC (3x) and chloroethyl-nitrosourea (3x) does not exceed that of methyl methanesulfonate (MMS) (4x), methyl-nitrosourea (4x), or ethyl-nitrosourea (3x), or the purine analog 6-thioguanine (5x). Other agents show mild sensitivity in FGKO40 cells: ionizing radiation (1.2x), UV-C (1.5x), hydroxyurea (1.2x), camptothecin (1.2x), and excess thymidine (normal). The length of S phase was carefully measured by monitoring the progression of highly synchronous G1 cells obtained by centrifugal elutriation. FGKO40 cells traversed S phase normally but had a slightly longer G2 phase than parental cells. Treatment of synchronized G1 cells with MMS did not increase S phase in parental or mutant cells, but again G2 was slightly longer for FGKO40. Mutation rates were measured at the hrpt and aprt loci, where gene inactivation confers resistance to 6-thioguanine or 8-azaadenine, respectively. FGKO40 had a slightly reduced mutation rate for hprt mutants, suggesting reduced recovery of large deletions at this locus. Moreover, the rate of methotrexate resistance was elevated 2.5-fold in mutant cells compared to controls. Resistance to this drug is generally associated with amplification of the dhfr locus, suggesting FancG plays a role in this aspect of genome stability. We suggest that the defect in FGKO

  19. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  20. DNA precursor compartmentation in mammalian cells: distribution and rates of equilibration between nucleus and cytoplasm

    International Nuclear Information System (INIS)

    Leeds, J.M.

    1986-01-01

    A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells

  1. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  2. COMPARISON OF TWO TOTAL RNA EXTRACTION PROTOCOLS FROM CHO-K1 CELLS FOR RT-PCR: CUT-OFF COST FOR RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Vasila Packeer Mohamed

    2014-05-01

    Full Text Available ABSTRACT: Various methods have been described to extract RNA from adherent mammalian cells. RNA isolation in conjunction with reverse transcription polymerase chain reaction (RT-PCR is a valuable tool used to study gene expression profiling. This approach is now being used in mammalian cell bioprocessing to help understand and improve the system. The objective of this study was to compare and determine the most suitable RNA extraction method for CHO-K1 cells in a setting where a relatively large amount of samples was involved. Total RNA was extracted using Total RNA purification kit (without DNase treatment; Norgen, Canada and RNeasy mini kit (with DNase treatment; Qiagen, USA respectively. The extracted RNA was then reverse transcribed, and the cDNA was subjected to PCR-amplifying 18S. Yield from RNeasy kit was significantly higher (0.316 ± 0.033 µg/µl; p=0.004 than Total RNA purification kit (0.177 ± 0.0243 µg/µl. However, RNA purity for both methods was close to 2.0 and there was no significant difference between the methods. Total RNA purification kit is less expensive than RNeasy kit. Since there is no DNase treatment step in the former, extraction time for RNA is shorter. When the extracted RNA was subjected to RT-PCR, both methods were able to show detection of 18S at 219 bp.   Therefore, this study demonstrates that both protocols are suitable for RNA extraction for CHO-K1 cells. RNeasy mini kit (Qiagen is recommended if higher yields is the primary concern and Total RNA Purification kit (Norgen is recommended if time and cost are concerned. ABSTRAK: Pelbagai kaedah telah digunakan untuk mengekstrak RNA daripada sel mamalia lekat.  Pemencilan RNA dengan menggunakan reaksi rantai polimerase transkripsi berbalik (RT-PCR merupakan kaedah penting yang digunakan dalam mengkaji pernyataan gen berprofil.  Pendekatan ini kini digunakan dalam pemprosesan bio sel mamalia untuk memahami dan menambah baik sistem.  Tujuan kajian dijalankan

  3. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (qp)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), Li......Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...... of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 m...

  4. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors.

    Science.gov (United States)

    Costello, Alan; Lao, Nga; Clynes, Martin; Barron, Niall

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotype in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for down regulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA-sponge that is in theory expressed only in the presence of an inducer.

  5. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene F.; Andersen, Mikael R.

    2018-01-01

    and process optimization and monitoring to perform efficiently. One of the main reasons for this is the production and accumulation of toxic and growth-inhibiting metabolites during culture. Lactate and ammonium are the most known, but many more have been identified. In this review, we present an overview...... of metabolites that deplete and accumulate throughout the course of cultivations with toxic and growth inhibitory effects to the cells. We further provide an overview of the CHO metabolism with emphasis to metabolic pathways of amino acids, glutathione (GSH), and related compounds which have growth...... of resources that describe the cellular mechanisms of CHO and are available on-line. Finally, we discuss the application of this knowledge for bioprocess and medium development and cell line engineering....

  6. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    Science.gov (United States)

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  8. Origin and evolution of binucleated cells and binucleated cells with micronuclei in cisplatin-treated CHO cultures.

    Science.gov (United States)

    Rodilla, V

    1993-08-01

    It has recently been described that cisplatin is an agent able to induce binucleated cells (BC) in cultured CHO cells. Both the origin and the significance of those cells within a population are unknown although several hypothesis have been suggested such as blocking of cytokinesis or cell fusion. Using interval photography we have found that at least two mechanisms are involved in the production of BC. These cells can arise in a culture as a result of an incomplete process of cell division, i.e. karyokinesis with incomplete cytokinesis or as a result of the mitotic division of a pre-existent BC. The mitotic division of a BC can give rise to different types of daughter cells. These BC sometimes enter mitosis but fail to divide and as a consequence they remain BC. When the process of division is successful (in the vast majority of cases), the results that have been found are either two mononucleated cells or one mononucleated and one binucleated cell. The possible implications and significance of BC and BC with micronuclei in a given population are discussed.

  9. Accelerating Genome Editing in CHO Cells Using CRISPR Cas9 and CRISPy, a Web-Based Target Finding Tool

    DEFF Research Database (Denmark)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Hansen, Henning Gram

    2014-01-01

    of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved...... mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named “CRISPy” for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27...

  10. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns.

    Science.gov (United States)

    Seth, Gargi; Hamilton, Robert W; Stapp, Thomas R; Zheng, Lisa; Meier, Angela; Petty, Krista; Leung, Stephenie; Chary, Srikanth

    2013-05-01

    Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Copyright © 2012 Wiley Periodicals, Inc.

  11. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells

    International Nuclear Information System (INIS)

    Rebersek, Matej; Kanduser, Masa; Miklavcic, Damijan

    2011-01-01

    Gene electrotransfer is a non-viral gene delivery method that requires successful electroporation for DNA delivery into the cells. Changing the direction of the electric field during the pulse application improves the efficacy of gene delivery. In our study, we tested a pipette tip with integrated electrodes that enables changing the direction of the electric field for electroporation of cell suspension for gene electrotransfer. A new pipette tip consists of four cylindrical rod electrodes that allow the application of electric pulses in different electric field directions. The experiments were performed on cell suspension of CHO cells in phosphate buffer. Plasmid DNA encoding for green fluorescent protein (GFP) was used and the efficiency of gene electrotransfer was determined by counting cells expressing GFP 24 h after the experiment. Experimental results showed that the percentage of cells expressing GFP increased when the electric field orientation was changed during the application. The GFP expression was almost two times higher when the pulses were applied in orthogonal directions in comparison with single direction, while cell viability was not significantly affected. We can conclude that results obtained with the described pipette tip are comparable to previously published results on gene electrotransfer using similar electrode geometry and electric pulse parameters. The tested pipette tip, however, allows work with small volumes/samples and requires less cell manipulation

  12. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  13. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  14. A multi-landing pad DNA integration platform for mammalian cell engineering

    Science.gov (United States)

    Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron

    2018-01-01

    Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873

  15. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  16. CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells.

    Science.gov (United States)

    Uno, Narumi; Hiramatsu, Kei; Uno, Katsuhiro; Komoto, Shinya; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2017-10-06

    Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5' end, a 1 kb artificial telomere at the 3' end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.

  17. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  18. Protective effect of propolis on radiation-induced chromosomal damage on Chinese hamster ovary cells (CHO-K1)

    Energy Technology Data Exchange (ETDEWEB)

    Spigoti, Geyza; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br; Tsutsumi, Shiguetoshi [Amazon Food Ltd., Tokyo (Japan)], e-mail: fwip5138@mb.infoweb.ne.jp

    2009-07-01

    In the last years, particular interest has been given to investigations concerning natural, effective and nontoxic compounds with radioprotective capacity in concert with increasing utilization of different types of ionizing radiation for various applications. Among them, propolis, a resinous mixture of substances collected by honey bees (Apis mellifera) has been considered promising since it presents several advantageous characteristics, i.e., antiinflammatory, anticarcinogenic, antimicrobial and free radical scavenging action. It is, therefore, a direct antioxidant that protects cells and organisms from the adverse effects of ionizing radiation. These relevant biological activities are mainly mediated by the flavonoids, present at relatively high concentrations in the propolis. Considering that the chemical composition and, consequently, the biological activity of propolis is variable according to the environmental plant ecology, the present study was conducted in order to evaluate the radioprotective capacity of Brazilian propolis, collected in the State of Rio Grande do Sul, against genotoxic damages induced by {sup 60}Co {gamma}-radiation in Chinese hamster ovary cells (CHO-K1). for this purpose, micronucleus induction was analyzed concerning irreparable damage, specifically related to DNA double-strand breaks, that are potentially carcinogenic. CHO-K1 cells were submitted to different concentrations of propolis (3 - 33 {mu}g/ml), 1 h before irradiation, with 1 Gy of {gamma} radiation (0.722 Gy/min). The data obtained showed a decreasing tendency in the quantity of radioinduced damage on cells previously treated with propolis. The radioprotective effect was more prominent at higher propolis concentration. The treatment with propolis alone did not induce genotoxic effects on CHO-K1 cells. Beside that, the treatment with propolis, associated or not with radiation, did not influence the kinetics of cellular proliferation. (author)

  19. Protective effect of propolis on radiation-induced chromosomal damage on Chinese hamster ovary cells (CHO-K1)

    International Nuclear Information System (INIS)

    Spigoti, Geyza; Bartolini, Paolo; Okazaki, Kayo; Tsutsumi, Shiguetoshi

    2009-01-01

    In the last years, particular interest has been given to investigations concerning natural, effective and nontoxic compounds with radioprotective capacity in concert with increasing utilization of different types of ionizing radiation for various applications. Among them, propolis, a resinous mixture of substances collected by honey bees (Apis mellifera) has been considered promising since it presents several advantageous characteristics, i.e., antiinflammatory, anticarcinogenic, antimicrobial and free radical scavenging action. It is, therefore, a direct antioxidant that protects cells and organisms from the adverse effects of ionizing radiation. These relevant biological activities are mainly mediated by the flavonoids, present at relatively high concentrations in the propolis. Considering that the chemical composition and, consequently, the biological activity of propolis is variable according to the environmental plant ecology, the present study was conducted in order to evaluate the radioprotective capacity of Brazilian propolis, collected in the State of Rio Grande do Sul, against genotoxic damages induced by 60 Co γ-radiation in Chinese hamster ovary cells (CHO-K1). for this purpose, micronucleus induction was analyzed concerning irreparable damage, specifically related to DNA double-strand breaks, that are potentially carcinogenic. CHO-K1 cells were submitted to different concentrations of propolis (3 - 33 μg/ml), 1 h before irradiation, with 1 Gy of γ radiation (0.722 Gy/min). The data obtained showed a decreasing tendency in the quantity of radioinduced damage on cells previously treated with propolis. The radioprotective effect was more prominent at higher propolis concentration. The treatment with propolis alone did not induce genotoxic effects on CHO-K1 cells. Beside that, the treatment with propolis, associated or not with radiation, did not influence the kinetics of cellular proliferation. (author)

  20. Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro.

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L; Soto, Enrique

    2016-07-26

    Cytotoxicity of titanium dioxide (TiO₂) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO₂ thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO₂ films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO₂ films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO₂ thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO₂ thin films, the number of CHO-K1 cells on the control substrate and on all TiO₂ thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO₂ films annealed at 800 °C. These results indicate that TiO₂ thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO₂ thin films in biomedical science.

  1. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  2. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  3. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    International Nuclear Information System (INIS)

    Lohrer, H.; Robson, T.

    1989-01-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd 1 ), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author)

  4. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Lohrer, H.; Robson, T. (Newcastle upon Tyne Univ. (UK). Cancer Research Unit)

    1989-12-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd{sup 1}), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author).

  5. Evidence of heritable lethal mutations in progeny of X-irradiated CHO cells by micronucleus count in clon-cells

    International Nuclear Information System (INIS)

    Hagemann, G.; Kreczik, A.; Treichel, M.

    1996-01-01

    Low doses of ionizing radiation reduce the growth rates of clones following irradiation of the progenitor cells. Such reductions of clone growth have been proven by means of measurements of clone size distributions. The medians of such distributions can be used to quantify the radiation damage. Prolongations of generation times and cell death as result of heritable lethal mutations have been discussed as causes for the reduction of clone growth. The cell number of a clone of hypotetraploid CHO-cells was compared to the frequency of micronucleated binucleated cells in the same clone using the cytokinesis-block-micronucleus method. The dose dependent reduction of clone sizes is measured by the difference of the medians (after log transformation) of the clone size distributions. At cytochalasin-B concentrations of 1 μg/ml and after an incubation time of 16 h a yield of binucleated cells of about 50% was obtained. Median clone size differences as a measure of clonal radiation damage increased linearly with incubation times of 76, 100, 124, and 240 h following irradiation with 3, 5, 7, and 12 Gy. The frequency of binucleated clone cells with micronuclei strongly increased with decreasing clone size by a factor up to 20 following irradiation with 3, 5, and 7 Gy. The frequency of micronucleated binucleated clone cells was found to be independent of incubation time after irradiation. Radiation induced clone size reductions result from cell losses caused by intraclonal expression of micronuclei which have its origin in heritable lethal mutations. Measurements of clone size distributions can be done automatically. They can serve as predictive test for determination of median cell loss rates of surviving cell clones. (orig./MG) [de

  6. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    Science.gov (United States)

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized

  7. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    Camille C. Hanot

    2015-12-01

    Full Text Available Superparamagnetic iron-oxide nanoparticles (SPIONs show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells. We evaluated the effect of particle diameter (50 and 100 nm and polyethylene glycol (PEG chain length (2k, 5k and 20k Da on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and sulforhodamine B (SRB assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS. Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

  8. Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

    DEFF Research Database (Denmark)

    Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup

    2017-01-01

    CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 dierent catabolic pathways, to increase synthesis of biomass and recombinant protein, while red...... reducing production of growth-inhibiting metabolic by-products from amino acid catabolism....

  9. Mammalian cell culture capacity for biopharmaceutical manufacturing.

    Science.gov (United States)

    Ecker, Dawn M; Ransohoff, Thomas C

    2014-01-01

    : With worldwide sales of biopharmaceuticals increasing each year and continuing growth on the horizon, the manufacture of mammalian biopharmaceuticals has become a major global enterprise. We describe the current and future industry wide supply of manufacturing capacity with regard to capacity type, distribution, and geographic location. Bioreactor capacity and the use of single-use products for biomanufacturing are also profiled. An analysis of the use of this capacity is performed, including a discussion of current trends that will influence capacity growth, availability, and utilization in the coming years.

  10. Quantitative and molecular analyses of mutation in a pSV2gpt transformed CHO cell line

    International Nuclear Information System (INIS)

    Stankowski, L.F. Jr.; Tindall, K.R.; Hsie, A.W.

    1983-01-01

    Following NDA-mediated gene transfer we have isolated a cell line useful for studying gene mutation at the molecular level. This line, AS52, derived from a hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficient Chinese hamster ovary (CHO) cell line, carries a single copy of the E. coli xanthine-guanine phosphoribosyl transferase (XGPRT) gene (gpt) and exhibits a spontaneous mutant frequency of 20 TG/sup r/ mutants/10 6 clonable cells. As with HGPRT - mutants, XGPRT - mutants can be selected in 6-thioguanine. AS52 (XGPRT + ) and wild type CHO (HGPRT + ) cell exhibit almost identical cytotoxic responses to various agents. We observed significant differences in mutation induction by UV light and ethyl methanesulfonate (EMS). Ratios of XGPRT - to HGPRT - mutants induced per unit dose (J/m 2 for UV light and μg/ml for EMS) are 1.4 and 0.70, respectively. Preliminary Southern blot hybridization analyses has been performed on 30 XGPRT - AS52 mutants. A majority of spontaneous mutants have deletions ranging in size from 1 to 4 kilobases (9/19) to complete loss of gpt sequences (4/19); the remainder have no detectable (5/19) or only minor (1/19) alterations. 5/5 UV-induced and 5/6 EMS-induced mutants do not show a detectable change. Similar analyses are underway for mutations induced by x-irradiation and ICR 191 treatment

  11. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available and that the scattering force can enable sorting through axial guiding onto laminin coated glass coverslips upon which the selected cells adhere. Following this, I report on transient photo-transfection of mammalian cells including neuroblastomas (rat/mouse and human...

  12. Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts.

    Directory of Open Access Journals (Sweden)

    Ana de la Cueva

    Full Text Available Colorectal cancer (CRC is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα, an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy.ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS and thymidine kinase (TK1 levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action.Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.

  13. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  14. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  15. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Mogy

    2017-06-01

    Full Text Available The adenovirus major late promoter (MLP and its translational regulator – the tripartite leader (TPL sequence – can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds than translation (11 folds. Even with adenovirus infection to provide additional elements (in trans, CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.

  16. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  17. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  18. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.

    Science.gov (United States)

    Shin, Jongoh; Lee, Namil; Cho, Suhyung; Cho, Byung-Kwan

    2018-01-01

    Recent advances in the CRISPR/Cas9 system have dramatically facilitated genome engineering in various cell systems. Among the protocols, the direct delivery of the Cas9-sgRNA ribonucleoprotein (RNP) complex into cells is an efficient approach to increase genome editing efficiency. This method uses purified Cas9 protein and in vitro transcribed sgRNA to edit the target gene without vector DNA. We have applied the RNP complex to CHO cell engineering to obtain desirable phenotypes and to reduce unintended insertional mutagenesis and off-target effects. Here, we describe our routine methods for RNP complex-mediated gene deletion including the protocols to prepare the purified Cas9 protein and the in vitro transcribed sgRNA. Subsequently, we also describe a protocol to confirm the edited genomic positions using the T7E1 enzymatic assay and next-generation sequencing.

  19. Sister chromatid exchanges induced in CHO cells by X-rays or 5.5 MeV neutrons

    International Nuclear Information System (INIS)

    Bocian, E.; Rosiek, O.; Sablinski, J.; Ziemba-Zoltowska, B.

    1986-01-01

    The induction of sister chromatid exchanges (SCEs) by X-rays (1-9 Gy) and 5.5 MeV neutrons (0.5-4 Gy) was studied in CHO cells. A dose-dependent increase of the frequency of SCE was found for both radiations when cells with BrdUrd substituted DNA were irradiated. The similar doubling dose, approx. 4 Gy, was found for X-rays and neutrons. The increase of the SCE frequency was not clearly dependent on the dose when cells with BrdUrd unsubstituted DNA were irradiated. In this case a dose of 4 Gy enhanced the SCE frequency only by the factor of 1.3. (author)

  20. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  1. Induced DNA repair pathway in mammalian cells

    International Nuclear Information System (INIS)

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 μM cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells

  2. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    Science.gov (United States)

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This

  3. Intracellular dielectric tagging for improved optical manipulation of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-05-01

    Full Text Available review the application of optical forces for cellmanipulation and sorting, highlighting some of the key experiments over the last twenty years.We then introduce a new technique for enhancing the dielectric contrast of mammalian cells, which is a result...

  4. Reasons of reproductive death of mammalian cells

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1988-01-01

    According to its functional-structural organization the cell is rather a difficult object. It contains many various components, which essentially differ from the another according to their significance for its normal functioning, as well as sizes and number. When analyzing damage different types in cell sensitive target, that is - DNA, the author concludes, that it is most probable, that chromosomal aberrations are, mainly the reasons of cell reproduction death, rather than DNA unrepaired breaks

  5. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  6. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  7. Paraquat-induced radiosensitization of mammalian cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Fujikura, Toshio; Hiraoka, Toshio; Tenou, Hiromi.

    1983-06-01

    The herbicide, paraquat (methyl viologen, 1-1' dimethy1-4, 4'-bipyridinium dichloride), stimulates the production of superoxide anion (O 2 sup(-.)) in aerobic cells and therefore mimics some effects of ionizing radiation. In addition, concentrations of cellular glutathione are reduced by reaction with O 2 sup(-.). It is reported here that paraquat, toxic in its own right to aerobic cells, acts as a radiosensitizer when cells are exposed to nontoxic concentrations of the drug prior to and during irradiation. The radiomimetic effect of paraquat, alone and in combination with X-rays, was examined. Paraquat affects aerated cells (hamster lung V79 cells) in a dose-dependent manner. Doses in excess of 1 mM for two hours cause significant cell killing. In combination with radiation, sublethal doses of paraquat, given for two hours prior to irradiation, enhance the lethal effects of radiation. However, if cells are exposed to the same concentration of paraquat following irradiation, no additional lethal effect is observed. Paraquat is a useful tool to study the effects of O 2 sup(-.) and may lead to better understanding of the mechanisms of radiation-induced energy deposition in cells. (author)

  8. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  9. Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Bolt, Gert; Hansen, Jens J

    2015-01-01

    orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII...... FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce...

  10. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells.

    Science.gov (United States)

    Tofiño-Rivera, A; Ortega-Cuadros, M; Galvis-Pareja, D; Jiménez-Rios, H; Merini, L J; Martínez-Pabón, M C

    2016-12-24

    Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells.

    Science.gov (United States)

    Park, Jong-Ju; Seong, Hun-Ki; Kim, Jeong-Soo; Munkhzaya, Byambaragchaa; Kang, Myung-Hwa; Min, Kwan-Sik

    2017-06-01

    Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn 56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.

  12. Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2018-05-01

    Full Text Available Native flexibly linked (NFL HIV-1 envelope glycoprotein (Env trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.

  13. Use of track-end alpha particles from 241Am to study radiosensitive sites in CHO cells

    International Nuclear Information System (INIS)

    Datta, R.; Cole, A.; Robinson, S.

    1976-01-01

    Monolayers of CHO cells placed on membrane filters were irradiated with alpha particles from a 241 Am source. Particle penetration into the cells was controlled by placing the cell sample at various distances from the source. Dosimetric and spectrometric measurements were performed at comparable positions using a parallel plate ionization chamber and a scintillation crystal spectrometer. Cell survival, as measured by conventional cloning techniques, was single hit in form. A pronounced minimum in mean lethal dose of 29 rad was observed for alpha particle beams that penetrated only about 3 μm into the cell. A pronounced maximum in inactivation cross section of 90 μm 2 , equal to about half the projected area of the nucleus, occurred for beams that penetrated only 5 to 7 μm into the cell. Thus, a single alpha particle penetration several micrometers within the cell nucleus was effective in killing the cell, while fully penetrating beams were actually less efficient; the latter beams required multiple particle traversals and about three times the cell dose to achieve the same effect. These results support the proposal that radiosensitive sites are located in a thin peripheral region of the nucleus

  14. Negative pion irradiation of mammalian cells

    International Nuclear Information System (INIS)

    Dertinger, H.; Luecke-Huhle, C.; Schlag, H.; Weibezahn, K.F.

    1976-01-01

    Monolayers and spheroids of Chinese hamster cells (V79) were subjected to negative pion irradiation under aerobic conditions. R.b.e. values in the pion peak of 1.8 and 1.5 were obtained for monolayers and spheroids, respectively, whereas the r.b.e. for the plateau was found to be slightly higher than 1. In addition, it was observed that the higher resistance of the V79 spheroid cells than the monolayers to γ-irradiation is not diminished in the pion peak, suggesting that the underlying phenomenon of intercellular communication influences cell survival even after high-LET irradiation. (author)

  15. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    Science.gov (United States)

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  16. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    Science.gov (United States)

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  17. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

    Science.gov (United States)

    Schlatter, Stefan; Senn, Claudia; Fussenegger, Martin

    2003-07-20

    Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 210-225, 2003.

  18. Regulation of Autophagy by Glucose in Mammalian Cells

    OpenAIRE

    Moruno, Félix; Pérez-Jiménez, Eva; Knecht, Erwin

    2012-01-01

    Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focu...

  19. Photooxidative damage to mammalian cells and proteins by visible light

    International Nuclear Information System (INIS)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O 2 in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell

  20. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Boucher, D.

    2006-01-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137 Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

  1. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  2. A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells.

    Science.gov (United States)

    Hussain, Musaddeq

    2015-11-10

    Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing of monoclonal antibody (mAb) drugs in the biopharmaceutical industry. Host cell DNA is an impurity of such manufacturing process and must be controlled and monitored in order to ensure drug purity and safety. A conventional method for quantification of host residual DNA in drug requires extraction of DNA from the mAb drug substance with subsequent quantification of the extracted DNA using real-time PCR (qPCR). Here we report a method where the DNA extraction step is eliminated prior to qPCR. In this method, which we have named 'direct resDNA qPCR', the mAb drug substance is digested with a protease called KAPA in a 96-well PCR plate, the protease in the digest is then denatured at high temperature, qPCR reagents are added to the resultant reaction wells in the plate along with standards and controls in other wells of the same plate, and the plate subjected to qPCR for analysis of residual host DNA in the samples. This direct resDNA qPCR method for CHO is sensitive to 5.0fg of DNA with high precision and accuracy and has a wide linear range of determination. The method has been successfully tested with four mAbs drug, two IgG1 and two IgG4. Both the purified drug substance as well as a number of process intermediate samples, e.g., bioreactor harvest, Protein A column eluate and ion-exchange column eluates were tested. This method simplifies the residual DNA quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Protective activity of a novel resveratrol analogue, HS-1793, against DNA damage in 137Cs-irradiated CHO-K1 cells

    International Nuclear Information System (INIS)

    Jeong, Min Ho; Jo, Young Rae; Yang, Kwang Mo; Jeong, Dong Hyeok; Lee, Chang Geun; Oh, Su Jung; Jeong, Soo Kyung; Jo, Wol Soon; Lee, Ki Won

    2014-01-01

    Resveratrol has received considerable attention as a polyphenol with anti-oxidant, anti-carcinogenic, and anti-inflammatory effects. Radiation is an important component of therapy for a wide range of malignant conditions. However, it causes damage to normal cells and, hence, can result in adverse side effects. This study was conducted to examine whether HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, induces a protective effect against radiation-induced DNA damage. HS-1793 effectively scavenged free radicals and inhibited radiation-induced plasmid DNA strand breaks in an in vitro assay. HS-1793 significantly decreased reactive oxygen species and cellular DNA damage in 2 Gy-irradiated Chinese hamster ovary (CHO)-K1 cells. In addition, HS-1793 dose-dependently reduced the levels of phosphorylated H2AX in irradiated CHO-K1 cells. These results indicate that HS-1793 has chemical radioprotective activity. Glutathione levels and superoxide dismutase activity in irradiated CHO-K1 cells increased significantly following HS-1793 treatment. The enhanced biological anti-oxidant activity and chemical radioprotective activity of HS-1793 maintained survival of irradiated CHO-K1 cells in a clonogenic assay. Therefore, HS-1793 may be of value as a radioprotector to protect healthy tissue surrounding tumor cells during radiotherapy to obtain better tumor control with a higher dose. (author)

  4. Lipid map of the mammalian cell

    NARCIS (Netherlands)

    van Meer, G.; de Kroon, A.I.P.M.

    2010-01-01

    Technological developments, especially in mass spectrometry and bioinformatics, have revealed that living cells contain thousands rather than dozens of different lipids [for classification and nomenclature, see Fahy et al. (Fahy et al., 2009)]. Now, the resulting questions are what is the relevance

  5. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    Science.gov (United States)

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-07-01

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  7. Analysis of native cellular DNA after heavy ion irradiation: DNA double-strand breaks in CHO-K1 cells

    International Nuclear Information System (INIS)

    Heilmann, J.; Taucher-Scholz, G.; Kraft, G.

    1994-11-01

    A fast assay for the detection of DNA double-strand breaks was developed involving constant field gel electrophoresis (Taucher-Scholz et al., 1994) and densitometric scanning of agarose gels stained with ethidium bromide. With this technique, DSB induction was investigated after irradiation of CHO cells with carbon ions with LET values between 14 keV/μm and 400 keV/μm. In parallel, a computer code was developed to simulate both the principle of the electrophoretic detection of DNA double-strand breaks and the action of radiations of different ionization density. The results of the experiments and the calculations are presented here and compared with each other. (orig./HSI)

  8. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  9. Sensing the Heat Stress by Mammalian Cells

    OpenAIRE

    Cates Jordan; Graham Garrett C; Omattage Natalie; Pavesich Elizabeth; Setliff Ian; Shaw Jack; Smith Caitlin; Lipan Ovidiu

    2011-01-01

    Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock ...

  10. DNA repair studies in mammalian germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.; Owens, J.G.

    1984-01-01

    In submammalian test systems, nitrosocarbamates (NEC) are 100-fold more mutagenic than are their corresponding nitrosourea homologues. To learn more about its interaction with germ-cell DNA in the mouse testis, male mice were given i.p. injections of NEC. Testicular injections of [ 3 H]dThd were given along with the NEC. Sixteen days after treatment, sperm were recovered from the caudal epididymides and assayed for an unscheduled-DNA-synthesis

  11. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  12. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  13. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    2011-04-01

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  14. Effects of γ (60Co) and β (90Sr) radiations in Chinese hamster ovarian cells (CHO-K1): induction of micronuclei and cell death

    International Nuclear Information System (INIS)

    Murakami, Daniella

    2003-01-01

    Among various types of ionising radiation, the beta emitter radionuclides are involved in many sectors of human activity, such as nuclear medicine, nuclear industries and biomedicine, with a consequent increased risk of accidental, occupational or therapeutic exposure. Despite their recognized importance, there is little information about the effect of beta particles at the cellular level when compared to other types of ionizing radiation. Thus, the objective of the present study was to evaluate the genotoxic and cytotoxic effects of 90 Sr, a pure, highly energetic beta source, on CHO-K1 cells and to compare them with data obtained with 60 Co. CHO-K1 cells irradiated with different doses (1.0, 2.5, 5.0, 7.5 Gy) of 60 Co (0.34 Gy.min -1 ) and 90 Sr (0.23 Gy.min -1 ) were processed for analysis of clonogenic death, induction of micronuclei (MN) and necrotic and apoptotic death. The survival curves obtained for both types of radiation were better fitted by the linear-quadratic model and were similar. However, the cytogenetic results showed that both the proportion of micronucleated cells and the magnitude of radioinduced lesions demonstrated by the analysis of MN distribution were significantly higher in cells irradiated with 60 Co than in cells irradiated with 90 Sr, whereas 90 Sr was more damaging than 60 Co in terms of cell death induction. Necrosis was the major type of death observed in CHO-K1 cells. The data obtained suggest that the low incidence of micronucleated cells after exposure to 90 Sr may be a consequence of selective elimination of severely damaged cells from the population by the necrotic process at a higher rate than observed with 60 Co exposure. The data obtained also demonstrated the need to use several parameters for a better estimate of cellular sensitivity to the action of genotoxic agents, which would be important in terms of radiobiology, oncology and therapeutics. (author)

  15. Saturation of DNA repair in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F E; Setlow, R B

    1979-01-01

    Excision repair seems to reach a plateau in normal human cells at a 254 nm dose near 20 J/m/sup 2/. We measured excision repair in normal human fibroblasts up to 80 J/m/sup 2/. The four techniques used (unscheduled DNA synthesis, photolysis of BrdUrd incorporated during repair, loss of sites sensitive to a UV endonuclease from Micrococcus luteus, and loss of pyrimidine dimers from DNA) showed little difference between the two doses. Moreover, the loss of endonuclease sites in 24h following two 20 J/m/sup 2/ doses separated by 24h was similar to the loss observed following one dose. Hence, we concluded that the observed plateau in excision repair is real and does not represent some inhibitory process at high doses but a true saturation of one of the rate limiting steps in repair.

  16. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors.

    Science.gov (United States)

    Kawabe, Yoshinori; Shimomura, Takuya; Huang, Shuohao; Imanishi, Suguru; Ito, Akira; Kamihira, Masamichi

    2016-07-01

    Retroviral vectors have served as efficient gene delivery tools in various biotechnology fields. However, viral DNA is randomly inserted into the genome, which can cause problems, such as insertional mutagenesis and gene silencing. Previously, we reported a site-specific gene integration system, in which a transgene is integrated into a predetermined chromosomal locus of Chinese hamster ovary (CHO) cells using integrase-defective retroviral vectors (IDRVs) and Cre recombinase. In this system, a Cre expression plasmid is transfected into founder cells before retroviral transduction. In practical applications of site-specific gene modification such as for hard-to-transfect cells or for in vivo gene delivery, both the transgene and the Cre protein into retroviral virions should be encapsulate. Here, we generated novel hybrid IDRVs in which viral genome and enzymatically active Cre can be delivered (Cre-IDRVs). Cre-IDRVs encoding marker genes, neomycin resistance and enhanced green fluorescent protein (EGFP), flanked by wild-type and mutated loxP sites were produced using an expression plasmid for a chimeric protein of Cre and retroviral gag-pol. After analyzing the incorporation of the Cre protein into retroviral virions by Western blotting, the Cre-IDRV was infected into founder CHO cells, in which marker genes (hygromycin resistance and red fluorescent protein) flanked with corresponding loxP sites are introduced into the genome. G418-resistant colonies expressing GFP appeared and the site-specific integration of the transgene into the expected chromosomal site was confirmed by PCR and sequencing of amplicons. Moreover, when Cre-IDRV carried a gene expression unit for a recombinant antibody, the recombinant cells in which the antibody expression cassette was integrated in a site-specific manner were generated and the cells produced the recombinant antibody. This method may provide a promising tool to perform site-specific gene modification according to Cre

  17. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results.

    Directory of Open Access Journals (Sweden)

    Natalie Bordag

    Full Text Available The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli as well as mammalian cells chinese hamster ovary (CHO and mouse myeloma cells (NS0.The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.

  18. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  19. Stable lentiviral transformation of CHO cells for the expression of the hemagglutinin H5 of avian influenza virus in suspension culture

    Directory of Open Access Journals (Sweden)

    Alaín González Pose

    2014-09-01

    Full Text Available Avian influenza virus H5N1 has caused extensive damage worldwide among poultry and humans. Effective expression systems are needed for the production of viral proteins required for monitoring this devastating disease. The present study deals with the establishment of a stable expression system for the hemagglutinin H5 (HAH5 of avian influenza virus using CHO cells in suspension culture transduced with a recombinant lentiviral vector. The synthetic gene coding the HAH5 protein was inserted in a lentiviral vector with the aim of performing a stable transduction of CHO cells. After the selection of recombinant clones, the one with the highest expression level was adapted to suspension culture and the HAH5 protein was purified by immunoaffinity chromatography from the culture supernatant. There were no significant differences when this protein, purified or direct from the culture supernatant of CHO or SiHa cells, was utilized in an immunologic assay using positive and negative sera as reference. It was also demonstrated that the HAH5 protein in its purified form is able to bind anti-HAH5 antibodies generated with proper and non-proper folded proteins. The results demonstrate that the CHO cell line stably transduced with a lentiviral vector coding the sequence of the HAH5 protein and cultured in suspension can be a suitable expression system to obtain this protein for diagnostic purpose in a consistent and reliable manner.

  20. A physiological threshold for protection against menadione toxicity by human NAD(P)H : quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells

    NARCIS (Netherlands)

    Haan, de L.H.J.; Boerboom, A.M.J.F.; Rietjens, I.M.C.M.; Capelle, van D.; Ruijter, de A.J.M.; Jaiswal, A.K.; Aarts, J.M.M.J.G.

    2002-01-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by

  1. Dual effects of muscarinic M2 acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists

    Czech Academy of Sciences Publication Activity Database

    Michal, Pavel; Lysíková, Michaela; Tuček, Stanislav

    2001-01-01

    Roč. 132, č. 6 (2001), s. 1217-1228 ISSN 0007-1188 R&D Projects: GA ČR GA309/99/0214; GA AV ČR IAA7011910 Institutional research plan: CEZ:AV0Z5011922 Keywords : cyclic AMP * muscarinic receptors * CHO cells Subject RIV: ED - Physiology Impact factor: 3.502, year: 2001

  2. Carbamazepine induces mitotic arrest in mammalian Vero cells

    International Nuclear Information System (INIS)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V.; Hazen, M.J.

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells

  3. Carbamazepine induces mitotic arrest in mammalian Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hazen, M.J. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: mariajose.hazen@uam.es

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.

  4. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells

    International Nuclear Information System (INIS)

    Huang, Chao; Li, Na; Yuan, Shengwu; Ji, Xiaoya; Ma, Mei; Rao, Kaifeng; Wang, Zijian

    2017-01-01

    Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity. - Highlights: • Mitochondrial impairment induced by PFRs was observed in CHO-k1 cells. • THP (an alkyl-PFR) induced a caspase-mediated apoptosis in CHO-k1 cells. • The cell death induced by CDP (an aryl-PFR) was not traditional apoptosis or necrosis.

  5. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism

    Directory of Open Access Journals (Sweden)

    Verónica S. Martínez

    2015-12-01

    Full Text Available Metabolic flux analysis (MFA is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity. Keywords: Dynamic, Metabolism, Flux analysis, CHO cells, Temperature shift, B-spline curve fitting

  6. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells

    International Nuclear Information System (INIS)

    Skalski, Michael; Coppolino, Marc G.

    2005-01-01

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of α 5 β 1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading

  7. Synchronized mammalian cell culture: part II--population ensemble modeling and analysis for development of reproducible processes.

    Science.gov (United States)

    Jandt, Uwe; Barradas, Oscar Platas; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    The consideration of inherent population inhomogeneities of mammalian cell cultures becomes increasingly important for systems biology study and for developing more stable and efficient processes. However, variations of cellular properties belonging to different sub-populations and their potential effects on cellular physiology and kinetics of culture productivity under bioproduction conditions have not yet been much in the focus of research. Culture heterogeneity is strongly determined by the advance of the cell cycle. The assignment of cell-cycle specific cellular variations to large-scale process conditions can be optimally determined based on the combination of (partially) synchronized cultivation under otherwise physiological conditions and subsequent population-resolved model adaptation. The first step has been achieved using the physical selection method of countercurrent flow centrifugal elutriation, recently established in our group for different mammalian cell lines which is presented in Part I of this paper series. In this second part, we demonstrate the successful adaptation and application of a cell-cycle dependent population balance ensemble model to describe and understand synchronized bioreactor cultivations performed with two model mammalian cell lines, AGE1.HNAAT and CHO-K1. Numerical adaptation of the model to experimental data allows for detection of phase-specific parameters and for determination of significant variations between different phases and different cell lines. It shows that special care must be taken with regard to the sampling frequency in such oscillation cultures to minimize phase shift (jitter) artifacts. Based on predictions of long-term oscillation behavior of a culture depending on its start conditions, optimal elutriation setup trade-offs between high cell yields and high synchronization efficiency are proposed. © 2014 American Institute of Chemical Engineers.

  8. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    Science.gov (United States)

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  9. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  10. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, Kevin M.; Schettino, Giuseppe; Folkard, Melvyn; Vojnovic, Borivoj; Michael, Barry D.; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells

  11. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  12. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis.

    Science.gov (United States)

    Yagnik, Bhrugu; Padh, Harish; Desai, Priti

    2016-04-01

    Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Effect of medium replenishment or composition on [3H] thymidine incorporation in uv-irradiated CHO-K1 cells

    International Nuclear Information System (INIS)

    Newman, C.N.; Miller, J.H.

    1985-03-01

    Because culture medium contains uv-absorbing material, it is usually removed just before uv-irradiation of tissue culture monolayers. However, medium removal and replenishment with fresh medium alone (sham-irradiation) causes up to a 10-fold reduction in the rate of [ 3 H]TdR incorporation in CHO-K1 cells which persists for several hours. This reduction, which is much smaller ( 3 H]TdR pulse-label in conditioned (spent) and in fresh medium; TdR in the former is converted by cells to thymine. When responses of uv-irradiated cells are normalized to responses of corresponding sham-irradiated cultures, considerable variation is observed in replicate experiments because fresh medium appears to induce transient metabolic imbalances in irradiated cells which are not readily controlled. This problem can, in part, be circumvented by replenishing treated cultures with the original spent medium; however, the presence of CdR in the growth medium still causes an anomalous 2-3-fold greater uv-induced reduction in [ 3 H]TdR incorporation than is observed in the absence of CdR. 17 refs., 3 figs., 1 tab

  14. Effects of hyperthermia and x irradiation on sister chromatid exchange (SCE) frequency in Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Livingston, G.K.; Dethlefsen, L.A.

    1979-01-01

    The BrdUrd labeling method was used to evaluate the effects of hyperthermia, x irradiation, and the combined treatment on the incidence of sister chromatid exchange (SCE) in Chinese hamster ovary (CHO) cells. Cells cultured in McCoy's 5A media containing 10 μM 5-bromodeoxyuridine were synchronized after one cell cycle by mitotic shake-off. Early-G 1 cells were heated by submerging culture flasks in a 44 +- 0.05 0 C water bath for periods of 20, 40, and 60 min. By the same method, other cultures were x irradiated at doses of 100, 200, 400, and 600 rad. A third protocol involved combined treatment of 20 min at 44 0 C followed immediately by one of the above radiation doses. A fourth protocol reversed the sequence of the combined treatment applying x irradiation (200 or 400 rad) followed immediately by hyperthermia. The data showed that hyperthermia and x irradiation both elevated the frequency of SCEs significantly whether applied separately or together. The combined treatment (heat: 20 min at 44 0 C plus varying x-radiation doses) produced results suggestive of a synergistic interaction. The sequence of the heat and x irradiation did not appear to have a significant effect on the production of SCE

  15. Sensitization of in vitro mammalian cells by nitrous oxide

    International Nuclear Information System (INIS)

    Ewing, D.

    1984-01-01

    Powers and his colleagues showed almost ten years ago that sensitization by nitrous oxide required two radiolytic products: OH radicals and hydrogen peroxide. That observation with bacterial spores has been confirmed and extended with spores and several strains of bacteria. OH must be present to form hydrogen peroxide, but, in addition, OH must also be present with the hydrogen peroxide for damage to occur. (Reagent hydrogen peroxide, except at very high concentrations, will not sensitize unless OH radicals are present.) The authors have now tested nitrous oxide with two Chinese hamster cell lines, V79 and CHO. The responses in nitrogen and nitrous oxide are the same for each. The authors have tentatively concluded that insufficient hydrogen peroxide is formed in the cells' suspending fluid for damage from nitrous oxide to occur. Several results support this conclusion: reagent hydrogen peroxide is a potent sensitizer of either cell line tested in nitrogen or nitrous oxide and an assay for radiolytic hydrogen peroxide confirms that only minimal levels are formed at the doses used in these survival curves. The authors also present results of other tests to further complement work with procaryotic cells

  16. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives.

    Directory of Open Access Journals (Sweden)

    Lena Thoring

    Full Text Available Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called "difficult-to-express" proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of "difficult-to-express" proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called "cell-free" protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various "difficult-to-express" proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.

  17. Mammalian target of rapamycin activity is required for expansion of CD34(+) hematopoietic progenitor cells

    NARCIS (Netherlands)

    Geest, Christian R.; Zwartkruis, Fried J.; Vellenga, Edo; Coffer, Paul J.; Buitenhuis, Miranda

    Background The mammalian target of rapamycin is a conserved protein kinase known to regulate protein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of rapamycin activity has been observed in hematopoietic malignancies, including acute leukemias and myelodysplastic

  18. Plasticity within stem cell hierarchies in mammalian epithelia.

    Science.gov (United States)

    Tetteh, Paul W; Farin, Henner F; Clevers, Hans

    2015-02-01

    Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur unidirectionally, with the arrows 'pointing away' from the stem cell. Recent studies, all based on genetic lineage tracing, describe various strategies employed by epithelial stem cell hierarchies to replace damaged or lost cells. While transdifferentiation from one tissue type into another ('metaplasia') appears to be generally forbidden in nonpathological contexts, plasticity within an individual tissue stem cell hierarchy may be much more common than previously appreciated. In this review, we discuss recent examples of such plasticity in selected mammalian epithelia, highlighting the different modes of regeneration and their implications for our understanding of cellular hierarchy and tissue self-renewal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Action spectra in mammalian cells exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A review is given of the literature published since 1977 on action spectra in mammalian cells exposed to ultraviolet radiation in the wavelength region above 220 nm. Action spectra for lethal events are discussed for cell inactivation in normal cells, growth arrested cells and photosensitive cells. Action spectra for non-lethal events are also discussed in relation to pyrimidine dimer formation, photoreactivation and the use of photosensitisers. It was concluded from these studies that damage to the DNA, and the extent of the repair of this damage, seems to determine a cell's response to such parameters as inactivation, mutation, transformation, latent viral activation, cellular viral capacity and ultraviolet enhanced viral reactivation. In addition to the direct effects of UV on DNA, photosensitization of cellular responses with chemicals such as 8-MOP extend the wavelength range at which damage can be demonstrated. (U.K.)

  1. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  3. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  4. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  5. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-06-01

    Full Text Available Genetic modification (“transfection” of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino ethyl methacrylate (DMAEMA building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293 and non-adherent (Jurkat, primary human T lymphocytes mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate, provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution, but also the concentrations adjusted during polyplex formation, affected the results.

  6. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cytoskeleton, endoplasmic reticulum and nucleus alterations in CHO-K1 cell line after Crotalus durissus terrificus (South American rattlesnake venom treatment

    Directory of Open Access Journals (Sweden)

    B. P. Tamieti

    2007-01-01

    Full Text Available Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

  8. Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.

    Science.gov (United States)

    Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin

    2016-01-01

    Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.

  9. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila; Firoozabadi, S. M. P.; Mozdarani, Hossein

    2015-01-01

    Background The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Due to numerous applications in medicine, biology and biotechnology, the introduction of impermeant molecules into biological cells has drawn considerable attention in the past years. One of the most famous methods in this field is electroporation, in which electric pulses with high intensity and short duration are applied to the cells. The aim of our study was to investigate...

  10. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman; Ang, Kok  Siong; Hanscho, Michael; Bordbar, Aarash; Ruckerbauer, David; Lakshmanan, Meiyappan; Orellana, Camila  A.; Baycin-Hizal, Deniz; Huang, Yingxiang; Ley, Daniel; Martinez, Veronica  S.; Kyriakopoulos, Sarantos; Jimé nez, Natalia  E.; Zielinski, Daniel  C.; Quek, Lake-Ee; Wulff, Tune; Arnsdorf, Johnny; Li, Shangzhong; Lee, Jae  Seong; Paglia, Giuseppe; Loira, Nicolas; Spahn, Philipp  N.; Pedersen, Lasse  E.; Gutierrez, Jahir  M.; King, Zachary  A.; Lund, Anne  Mathilde; Nagarajan, Harish; Thomas, Alex; Abdel-Haleem, Alyaa M.; Zanghellini, Juergen; Kildegaard, Helene  F.; Voldborg, Bjø rn  G.; Gerdtzen, Ziomara  P.; Betenbaugh, Michael  J.; Palsson, Bernhard  O.; Andersen, Mikael  R.; Nielsen, Lars  K.; Borth, Nicole; Lee, Dong-Yup; Lewis, Nathan  E.

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess

  11. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    DEFF Research Database (Denmark)

    Hefzi, Hooman; Ang, Kok Siong; Hanscho, Michael

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways...

  12. Labeling proteins on live mammalian cells using click chemistry.

    Science.gov (United States)

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  13. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  14. Combined effects of x irradiation and hyperthermia on CHO cells for various temperatures and orders of application

    International Nuclear Information System (INIS)

    Sapareto, S.A.; Hopwood, L.E.; Dewey, W.C.

    1978-01-01

    The survival of CHO cells to hyperthermic treatment combined with radiation indicates that heat given either immediately before or immediately after irradiation radiosensitizers S-phase cells more than G1 cells, thus resulting in similar absolute levels of survival for each phase. No difference in effect was observed for different temperatures (42.0 to 45.5 0 C) applied before irradiation in either G1 or S when times of heating were adjusted to obtain the same survival (0.5 to 0.6) from heat alone. When heat was administered after irradiation and the time between treatments was increased, repair during G1 of radiation damage which interacted with subsequent heat damage occurred over a 2-hr period. Survival increased from a synergistic level to an independent level with kinetics similar to those seen for repair between split x-ray doses. For this experiment, the heat treatments were administered at either 42.5 or 45.5 0 C with times of heating adjusted to obtain the same survival (0.15) from heat alone. When cells were treated similarly in S phase using either 42.5 or 45.5 0 C (survival from heat alone was 0.2), recovery from a synergistic level of survival was similar to that observed in G1; however, survival did not reach an independent level by 120 min between treatments. When relatively sublethal heat doses at either 42.5 or 45.5 0 C were applied either before, during, or after irradiation, the maximum reduction in survival of asynchronous cells occurred when heat was present during and immediately following irradation, presumably due to heat increasing the fixation of radiation damage. A sixfold difference in survival was observed with about a 5-min change in the timing of radiation with respect to heating. This sensitivity of survival to changes in protocol may have considerable implications in the combined use of hyperthermia and radiation for cancer therapy

  15. Regulation of Autophagy by Glucose in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Erwin Knecht

    2012-07-01

    Full Text Available Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focus on the signalling pathways by which environmental glucose directly, i.e., independently of insulin and glucagon, regulates autophagy in mammalian cells, but we will also briefly mention some data in yeast. Although glucose deprivation mainly induces autophagy via AMPK activation and the subsequent inhibition of mTORC1, we will also comment other signalling pathways, as well as evidences indicating that, under certain conditions, autophagy can be activated by glucose. A better understanding on how glucose regulates autophagy not only will expand our basic knowledge of this important cell process, but it will be also relevant to understand common human disorders, such as cancer and diabetes, in which glucose levels play an important role.

  16. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    Directory of Open Access Journals (Sweden)

    Tetsushi Sakuma

    2015-10-01

    Full Text Available Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc gene, in Chinese hamster ovary (CHO cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  17. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    Science.gov (United States)

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  18. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    Science.gov (United States)

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  19. Inertial picobalance reveals fast mass fluctuations in mammalian cells

    Science.gov (United States)

    Martínez-Martín, David; Fläschner, Gotthold; Gaub, Benjamin; Martin, Sascha; Newton, Richard; Beerli, Corina; Mercer, Jason; Gerber, Christoph; Müller, Daniel J.

    2017-10-01

    The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a ‘picobalance’), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.

  20. Membrane phospholipids and radiation-induced death of mammalian cells

    International Nuclear Information System (INIS)

    Wolters, H.

    1987-01-01

    Radiation-induced cell killing is generally believed to be a consequence of residual DNA damage or damage that is mis-repaired. However, besides this DNA damage, damage to other molecules or structures of the cell may be involved in the killing. Especially membranes have been suggested as a determinant in cellular radiosensitivity. In this thesis experiments are described, dealing with the possible involvement of membranes in radiation-induced killing of mammalian cells. A general treatise of membrane structure is followed by information concerning deleterious effects of radiation on membranes. Consequences of damage to structure and function of membranes are reviewed. Thereafter evidence relating to the possible involvement of membranes in radiation-induced cell killing is presented. (Auth.)

  1. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    Science.gov (United States)

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  2. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    Science.gov (United States)

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  3. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process.

    Science.gov (United States)

    Handlogten, Michael W; Lee-O'Brien, Allison; Roy, Gargi; Levitskaya, Sophia V; Venkat, Raghavan; Singh, Shailendra; Ahuja, Sanjeev

    2018-01-01

    A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in-depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra- and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally

  4. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  5. Rejoining of DNA double-strand breaks in X-irradiated CHO cells studied by constant- and graded-field gel electrophoresis

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.

    1996-01-01

    Induction and repair of double-strand breaks (dsb) were measured in exponentially growing CHO-10A cells using the constant- and graded-field gel electrophoresis. Dsb repair was studied after an X-ray dose of 60Gy. The repair curve obtained was biphasic with the respective half-times of τ 1 = 3.8 ± 0.9 and τ 2 = 118 ± 30 min. The number of non-reparable dsb was measured for X-ray doses up to 180 Gy and was found to be only a small fraction (14%) of all non-rejoinable breaks determined previously using the alkaline unwinding technique. The ratio of non-reparable dsb to the number of lethal events calculated from survival curves is 0.14:1. This result indicates that for CHO cells non-reparable dsb represent only a small fraction of lethal damage. This is in line with the cytogenic observation that cell killing mainly results from mis-rejoined events (i.e. exchange aberrations, translocations, interstitial delections). The kinetics of dsb rejoining were found to be independent of the size of the fragments involved (between 1 and 10 Mbp). In addition, the rejoining kinetics of DNA fragments ≤ 1 Mbp did not show the formation of new DNA fragments with time after irradiation indicating the absence of programmed cell death in irradiated CHO cells. (author)

  6. Investigations into, and development of, a lyophilized and formulated recombinant human factor IX produced from CHO cells.

    Science.gov (United States)

    Almeida, Aline G; Pinto, Rodrigo C V; Smales, C Mark; Castilho, Leda R

    2017-08-01

    To develop a recombinant human factor IX (rFIX) formulation equivalent to commercially available products in terms of cake appearance, residual moisture, proportion of soluble aggregates and activity maintenance for 3 months at 4-8 °C. NaCl and low bulking agent/cryoprotectant mass ratio had a negative impact on cake quality upon lyophilisation for a wide range of formulations tested. Particular devised formulations maintained rFIX activity after lyophilization with a similar performance when compared with the rFIX formulated using the excipients reported for a commercially available FIX formulation (Benefix). rFIX remained active after 3 months when stored at 4 °C, though this was not the case with samples stored at 40 °C. Interestingly, particular formulations had an increase in residual moisture after 3 months storage, but not above a 3% threshold. All four formulations tested were equivalent to the Benefix formulation in terms of particle size distribution and cake appearance. Three specific formulations, consisting of surfactant polysorbate-80, sucrose or trehalose as cryoprotectant, mannitol or glycine as bulking agent, L-histidine as buffering agent, and NaCl added in the reconstitution liquid at 0.234% (w/v) were suitable for use with a CHO cell-derived recombinant FIX.

  7. Does autophagy have a license to kill mammalian cells?

    Science.gov (United States)

    Scarlatti, F; Granata, R; Meijer, A J; Codogno, P

    2009-01-01

    Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the loss of interaction with the extracellular matrix, and the toxicity of cancer therapies. During periods of nutrient starvation, stimulating macroautophagy provides the fuel required to maintain an active metabolism and the production of ATP. Macroautophagy can inhibit the induction of several forms of cell death, such as apoptosis and necrosis. However, it can also be part of the cascades of events that lead to cell death, either by collaborating with other cell death mechanisms or by causing cell death on its own. Loss of the regulation of bulk macroautophagy can prime self-destruction by cells, and some forms of selective autophagy and non-canonical forms of macroautophagy have been shown to be associated with cell demise. There is now mounting evidence that autophagy and apoptosis share several common regulatory elements that are crucial in any attempt to understand the dual role of autophagy in cell survival and cell death.

  8. Ascorbic acid reduced mutagenicity at the HPRT locus in CHO cells against thermal neutron radiation

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Sakurai, Yoshinori; Masunaga, Shinichiro; Suzuki, Minoru; Nagata, Kenji; Ono, Koji

    2004-01-01

    We investigated the biological effects of the long-lived radicals induced following neutron irradiation. It has been reported that radiation-induced long-lived radicals were scavenged by post-irradiation treatment of ascorbic acid (Koyama, 1998). We studied the effects of ascorbic acid acting as a long-lived radical scavenger on cell killing and mutagenicity in Chinese hamster ovary cells against thermal neutrons produced at the Kyoto University Research reactor. Ascorbic acid was added to cells 30 min after neutron irradiation and removed 150 min after irradiation. The biological end point of cell survival was measured by colony formation assay. The mutagenicity was measured by the mutant frequency in the HPRT locus. The post-irradiation treatment of ascorbic acid did not alter the cell killing effect of neutron radiation. However, the mutagenicity was decreased, especially when the cells were irradiated with boron. Our results suggested that ascorbic acid scavenged long-lived radicals effectively and caused apparent protective effects against mutagenicity of boron neutron capture therapy

  9. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  10. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    Science.gov (United States)

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sensitization of ultraviolet radiation damage in bacteria and mammalian cells

    International Nuclear Information System (INIS)

    Fisher, G.J.; Watts, M.E.; Patel, K.B.; Adams, G.E.

    1978-01-01

    Bacteria (Serratia marcescens) and mammalian cells (Chinese hamsters V79-379A) were irradiated in monolayers with ultraviolet light at 254 nm or 365 nm in the presence or absence of radiosensitizing drugs. At 254 nm, killing is very efficient (Dsub(37) approximately equal 1 J m -2 exposure, or approximately equal 6 x 10 4 photons absorbed by DNA per bacterium), and sensitizers have no effect. At 365 nm, cells are not killed in buffer, but are inactivated in the presence of nifurpipone or misonidazole. Lethal exposures (approximately equal 5 x 10 3 J m -2 at 10 nM misonidazole) correspond to about 10 7 photons absorbed by sensitizer molecules per bacterium. Toxicity of stable photoproducts of the drugs is not involved, nor is oxygen required. Hence the transient species formed by photo-excitation of radiosensitizer molecules are capable of killing cells in the absence of other types of radiation damage. (author)

  12. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  13. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    Science.gov (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  14. Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA

    OpenAIRE

    Vergara,Mauricio; Becerra,Silvana; Díaz-Barrera,Alvaro; Berrios,Julio; Altamirano,Claudia

    2012-01-01

    We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific pro...

  15. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Distinctive transforming genes in x-ray-transformed mammalian cells

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.

    1987-01-01

    DNAs from hamster embryo cells and mouse C3H/10T1/2 cells transformed in vitro by x-irradiation into malignant cells transmit the radiation transformation phenotype by producing transformed colonies (transfectants) in two mouse recipient lines, the NIH 3T3 and C3H/101/2 cells, and in a rat cell line, the Rat-2 cells. DNAs from unirradiated cells or irradiated and visibly untransformed cells do not produce transformed colonies. The transfectant grow in agar and form tumors in nude mice. Treatment of the DNAs with restriction endonucleases prior to transfection indicates that the same transforming gene (oncogene) is present in each of the transformed mouse cells and is the same in each of the transformed hamster cells. Southern blot analysis of 3T3 or Rat-2 transfectants carrying oncogenes from radiation-transformed C3H/10T1/2 or hamster cells indicates that the oncogenes responsible for the transformation of 3T3 cells are not the Ki-ras, Ha-ras, N-ras genes, nor are they neu, trk, raf, abl, or fms. The work demonstrates that DNAs from mammalian cells transformed into malignancy by direct exposure in vitro to radiation contain genetic sequences with detectable transforming activity in three recipient cell lines. The results provide evidence that DNA is the target of radiation carcinogenesis induced at a cellular level in vitro. The experiments indicate that malignant radiogenic transformation in vitro of hamster embryo and mouse C3H/10T1/2 cells involves the activation of unique non-ras transforming genes, which heretofore have not been described

  17. THERMAL RADIOSENSITIZATION IN HEAT-SENSITIVE AND RADIATION-SENSITIVE MUTANTS OF CHO CELLS

    NARCIS (Netherlands)

    KAMPINGA, HH; KANON, B; KONINGS, AWT; STACKHOUSE, MA; BEDFORD, JS

    Recently, it has been hypothesized (Iliakis and Seaner 1990) that DNA double-strand break (dsb) repair proficiency is a prerequisite for heat radiosensitization on the basis of the finding that the radiosensitive and dsb-repair-deficient mutant xrs-5 cell line shows no significant heat-induced

  18. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity

    DEFF Research Database (Denmark)

    Kwang Ha, Tae; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    . Addition of baicalein significantly reduced the expression level of BiP and CHOP along with reduced reactive oxygen species level, suggesting oxidative stress accumulated in the cells can be relieved using baicalein. As a result, addition of baicalein in batch cultures resulted in 1.7 - 1.8-fold increase...

  19. CHO Quasispecies—Implications for Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Florian M. Wurm

    2013-10-01

    Full Text Available Chinese hamster ovary (CHO cells are a source of multi-ton quantities of protein pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of genetic and phenotypic diversity. As is known for any biological system, this diversity is enhanced by selective forces when laboratories (no sharing of gene pools grow cells under (diverse conditions that are practical and useful. CHO cells have been used in culture for more than 50 years, and various lines of cells are available and have been used in manufacturing. This article tries to represent, in a cursory way, the history of CHO cells, particularly the origin and subsequent fate of key cell lines. It is proposed that the name CHO represents many different cell types, based on their inherent genetic diversity and their dynamic rate of genetic change. The continuing remodeling of genomic structure in clonal or non-clonal cell populations, particularly due to the non-standardized culture conditions in hundreds of different labs renders CHO cells a typical case for “quasispecies”. This term was coined for families of related (genomic sequences exposed to high mutation rate environments where a large fraction of offspring is expected to carry one or more mutations. The implications of the quasispecies concept for CHO cells used in protein manufacturing processes are significant. CHO genomics/transcriptomics may provide only limited insights when done on one or two “old” and poorly characterized CHO strains. In contrast, screening of clonal cell lines, derived from a well-defined starting material, possibly within a given academic or industrial environment, may reveal a more narrow diversity of phenotypes with respect to physiological/metabolic activities and, thus, allow more precise and reliable predictions of the potential of a clone for high-yielding manufacturing processes.

  20. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  1. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures

    OpenAIRE

    Vergara, Mauricio; Berrios, Julio; Mart?nez, Irene; D?az-Barrera, Alvaro; Acevedo, Cristian; Reyes, Juan G.; Gonzalez, Ramon; Altamirano, Claudia

    2015-01-01

    Background Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in ...

  2. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  3. Modification of the heat response and thermotolerance by cycloheximide, hydroxyurea, and lucanthone in CHO cells

    International Nuclear Information System (INIS)

    Henle, K.J.; Leeper, D.B.

    1982-01-01

    Exposure of Chinese hamster ovary cells to cycloheximide for 2 hr immediately prior to 45 0 C hyperthemia increased cell survival by a factor of 1.8. The increase in cell survival was independent of the heating time for heat treatments longer than 10 min at 45 0 C and was similar with cycloheximide concentrations of 1 and 10 μg/ml. Thermotolerance was induced by an initial treatment of 10 min at 45 0 C (conditioning), developed during a 7-hr incubation period at 37 0 C, and was defined by the hyperthermia dose response with a second 45 0 C heat treatment. When cycloheximide (1μg/ml) was added to the medium after heat conditioning and removed prior to the second heat treatment, the degree of thermotolerance was 50% less than that in medium controls. A 3-hr exposure to 10 μg/ml cycloheximide at 37 0 C by itself did not result in the progressive development of thermotolerance which occurs after a conditioning heat treatment. In contrast to the effects of cycloheximide, hydroxyurea (1 mM) and lucanthone (5 μg/ml) showed little effect on the heat sensitivity and the development of thermotolerance after heat conditioning. Although the results can be interpreted that the development of thermotolerance requires the synthesis of new proteins, but not that of DNA and RNA, alternate interpretations are possible based on known cycloheximide effects aside from its primary inhibition of protein synthesis

  4. THE GERMLINE STEM CELL NICHE UNIT IN MAMMALIAN TESTES

    Science.gov (United States)

    Oatley, Jon M.; Brinster, Ralph L.

    2014-01-01

    This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine. PMID:22535892

  5. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line

    Directory of Open Access Journals (Sweden)

    Ustav Mart

    2002-04-01

    Full Text Available Abstract Background The rationale of using bovine papillomavirus-1 (BPV-1 derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. Results The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. Conclusion Bovine papillomavirus type-1 (BPV-1-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1–5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.

  6. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  7. Centriole movements in mammalian epithelial cells during cytokinesis

    Directory of Open Access Journals (Sweden)

    Tanke Hans J

    2010-05-01

    Full Text Available Abstract Background In cytokinesis, when the cleavage furrow has been formed, the two centrioles in each daughter cell separate. It has been suggested that the centrioles facilitate and regulate cytokinesis to some extent. It has been postulated that termination of cytokinesis (abscission depends on the migration of a centriole to the intercellular bridge and then back to the cell center. To investigate the involvement of centrioles in cytokinesis, we monitored the movements of centrioles in three mammalian epithelial cell lines, HeLa, MCF 10A, and the p53-deficient mouse mammary tumor cell line KP-7.7, by time-lapse imaging. Centrin1-EGFP and α-Tubulin-mCherry were co-expressed in the cells to visualize respectively the centrioles and microtubules. Results Here we report that separated centrioles that migrate from the cell pole are very mobile during cytokinesis and their movements can be characterized as 1 along the nuclear envelope, 2 irregular, and 3 along microtubules forming the spindle axis. Centriole movement towards the intercellular bridge was only seen occasionally and was highly cell-line dependent. Conclusions These findings show that centrioles are highly mobile during cytokinesis and suggest that the repositioning of a centriole to the intercellular bridge is not essential for controlling abscission. We suggest that centriole movements are microtubule dependent and that abscission is more dependent on other mechanisms than positioning of centrioles.

  8. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    Science.gov (United States)

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radiation activation of transcription factors in mammalian cells

    International Nuclear Information System (INIS)

    Kraemer, M.; Stein, B.; Mai, S.; Kunz, E.; Koenig, H.; Ponta, H.; Herrlich, P.; Rahmsdorf, H.J.; Loferer, H.; Grunicke, H.H.

    1990-01-01

    In mammalian cells radiation induces the enhanced transcription of several genes. The cis acting elements in the control region of inducible genes have been delimited by site directed mutagenesis. Several different elements have been found in different genes. They do not only activate gene transcription in response to radiation but also in response to growth factors and to tumor promoter phorbol esters. The transcription factors binding to these elements are present also in non-irradiated cells, but their DNA binding activity and their transactivating capability is increased upon irradiation. The signal chain linking the primary radiation induced signal (damaged DNA) to the activation of transcription factors involves the action of (a) protein kinase(s). (orig.)

  10. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    DEFF Research Database (Denmark)

    Merz, G S; Benedikz, Eirikur; Schwenk, V

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C...... that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  11. Modification of radiation damage in CHO cells by hyperthermia at 40 and 450C

    International Nuclear Information System (INIS)

    Henle, K.J.; Leeper, D.B.

    1977-01-01

    Low hyperthermia at 40 0 C either before or after X irradiation did not alter the slope of the radiation dose-cell survival curve but reduced the D/sub q/ from 145 to 41 or to 0 rad for a pre- or postirradiation incubation period of 2 hr at 40 0 C, respectively. In contrast, hyperthermia at 45 0 C increased the slope of the radiation survival curve by a factor of 1.7 for a radiation pretreatment of 10 min at 45 0 C, but only by 1.3 for the same treatment immediately after irradiation. The corresponding D/sub q/'s were 262 and 138 rad, respectively. A combination of 45 and 40 0 C hyperthermia (10 min at 45 0 C + 2 hr at 40 0 C + X) resulted in a superposition of the individual effects of 45 or 40 0 C hyperthermia on the radiation survival curve. In addition, the radiation survival curve was shifted downward by a factor of three due to the potentiation of 45 0 C hyperthermia damage by postincubation at 40 0 C. Repair of sublethal radiation damage was completely suppressed during incubation at 40 following hyperthermia at 45 0 C. However, when cells were returned to 37 0 C, even after 6 hr at 40 following 45 0 C hyperthermia, the capacity to accumulate and repair sublethal radiation damage was immediately restored. These findings imply that the hyperthermia damage from low or high temperatures interacts differentially with radiation damage. Low hyperthermia at 40 0 C may affect principally the radiation repair system, whereas 45 0 C hyperthermia probably alters the radiation target more severely than the repair system

  12. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  13. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D.Wagner; Michael J.Plewa

    2017-01-01

    The disinfection of drinking water is an important public health service that generates high quality,safe and palatable tap water.The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20th century.An unintended consequence is the reaction of disinfectants with natural organic matter,anthropogenic contaminants and bromide/iodide to form disinfection by-products (DBPs).A large number of DBPs are cytotoxic,neurotoxic,mutagenic,genotoxic,carcinogenic and teratogenic.Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects.The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry.Progress in the analytical biology and toxicology of DBPs has been forthcoming.The objective of this review was to provide a detailed presentation of the methodology for the quantitative,comparative analyses on the induction of cytotoxicity and genotoxicity of 103 DBPs using an identical analytical biological platform and endpoints.A single Chinese hamster ovary cell line was employed in the assays.The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs.These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better.

  14. Supplementation of serum free media with HT is not sufficient to restore growth properties of DHFR-/- cells in fed-batch processes - Implications for designing novel CHO-based expression platforms.

    Science.gov (United States)

    Florin, Lore; Lipske, Carolin; Becker, Eric; Kaufmann, Hitto

    2011-04-10

    DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them. Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent. The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  16. Artificial acceleration of mammalian cell reprogramming by bacterial proteins.

    Science.gov (United States)

    Ikeda, Takashi; Uchiyama, Ikuo; Iwasaki, Mio; Sasaki, Tetsuhiko; Nakagawa, Masato; Okita, Keisuke; Masui, Shinji

    2017-10-01

    The molecular mechanisms of cell reprogramming and differentiation involve various signaling factors. Small molecule compounds have been identified to artificially influence these factors through interacting cellular proteins. Although such small molecule compounds are useful to enhance reprogramming and differentiation and to show the mechanisms that underlie these events, the screening usually requires a large number of compounds to identify only a very small number of hits (e.g., one hit among several tens of thousands of compounds). Here, we show a proof of concept that xenospecific gene products can affect the efficiency of cell reprogramming to pluripotency. Thirty genes specific for the bacterium Wolbachia pipientis were forcibly expressed individually along with reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that can generate induced pluripotent stem cells in mammalian cells, and eight were found to affect the reprogramming efficiency either positively or negatively (hit rate 26.7%). Mechanistic analysis suggested one of these proteins interacted with cytoskeleton to promote reprogramming. Our results raise the possibility that xenospecific gene products provide an alternative way to study the regulatory mechanism of cell identity. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. DNA-synthesis inhibition and repair DNA-synthesis in CHO Ade- C cells: An alternative approach to genotoxicity testing

    International Nuclear Information System (INIS)

    Slamenova, D.; Papsova, E.; Gabelova, A.; Dusinska, M.; Collins, A.; Wsolova, L.

    1997-01-01

    We describe an alternative assay to determine genotoxicity. Its main feature is that it combines two measures in a single experiment; the inhibition of replicative DNA synthesis together with the stimulation of DNA repair. We show that, in tests of four different genotoxic agents, the assay gives results that are entirely consistent with what is known about the mode of action of these agents. In addition, we have demonstrated that chemical carcinogens requiring metabolic activation can be examined using a standard procedure of incubation with a microsomal activating fraction. We consider the combined assay for DNA synthesis inhibition and repair synthesis to be a useful way for the rapid pre-screening of chemicals suspected of genotoxic activity on the level of mammalian cells. (author)

  18. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  19. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    International Nuclear Information System (INIS)

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-01-01

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  20. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Paro, Rita [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Tiboni, Gian Mario [Department of Medicine and Aging, Section of Reproductive Sciences, University “G. D' Annunzio”, Chieti-Pescara (Italy); Buccione, Roberto [Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti (Italy); Rossi, Gianna; Cellini, Valerio [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Canipari, Rita [Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, “Sapienza” University of Rome, Rome (Italy); Cecconi, Sandra, E-mail: sandra.cecconi@cc.univaq.it [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy)

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  1. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    Science.gov (United States)

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  2. Evaluation of the radio modifier effect of propolis on chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with 60-CO

    International Nuclear Information System (INIS)

    Santos, Geyza Spigoti

    2011-01-01

    In the last decades, it has been given a great interest to investigations concerning natural, effective, nontoxic compounds with radioprotective potential together with the increasing utilization of different types of ionizing radiation for various applications. Among them propolis, a resinous compound produced by honeybees (Apis mellifera), has been considered quite promising, since it presents several advantageous biological characteristics, i. e., anti-inflammatory, antimicrobial, anticarcinogenic, antioxidant and also free radical scavenging action. The purpose of the present study was to evaluate the effect of Brazilian propolis, collected in the State of Rio Grande do Sul, on Chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with 60 Co γ radiation. For this purpose, three interlinked parameters were analyzed: micronucleus induction, cell viability and clonogenic death. The choice of these parameters was justified by their biological significance, in addition to the fact that they are readily observable and measurable in irradiated cells. The cytogenetic data obtained showed a radioprotective effect of propolis (5-100 μg/ml) in the induction of DNA damage for both cell lines, irradiated with doses of 1 - 4 Gy. The cytotoxicity assay, however, showed a prominent antiproliferative effect of propolis (50 - 400μ/ml) in PC3 cells irradiated with 5 Gγ. The survival curves obtained were adequately fitted by a linear-quadratic model, where the α coefficient was higher in CHO-K1 cells. Concerning the clonogenic capacity, PC3 cells were more radiosensitive than CHO-K1 cells at the higher doses of the survival curve. Propolis at the concentrations of 30 - 100 μg/ml, did not influence the clonogenic potential of PC3 cells, since the survival curves, associated or not with propolis, were found similar, although the combined treatment in CHO-K1 cells exhibited a stimulating proliferative effect. The data obtained in vitro showed a

  3. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  4. Antioxidation activities of pteridines in mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Shen, R. (Univ. of Texas, Galveston (United States))

    1991-03-11

    L-erythro-5,6,7,8-Tetrahydrobiopterin (BH{sub 4}), the cofactor for aromatic amino acid hydroxylases (AAA-H), is a predominant form of pteridines which occur ubiquitously in nature. When BH{sub 4} is oxidized to quinonoid dihydrobiopterin by AAA-H, it is regenerated by dihydropteridine reductase (DHPR) at the expense of NADH. The role of BH{sub 4} other than serving as the hydroxylase cofactor is not clear. The existence of BH{sub 4} and DHPR in tissues which are devoid of AAA-H suggests that BH{sub 4} may play an as yet undiscovered physiological function. This study demonstrates a BH{sub 4}-mediated antioxidation system, which consists of BH{sub 4}, DHPR, peroxidase and NADH in rat pheochromocytoma PC 12 cells and mouse macrophages J774A.1. This system was as effective as catalase and ascorbic acid in protecting cells against H{sub 2}O{sub 2} and xanthine/xanthine oxidase-induced toxicity and was more effective than catalase in defense against nitrofurantoin-induced toxicity. The antioxidation effect of this system was not due to peroxidase and was improved when synthetic pteridines were substituted for BH{sub 4}. Since BH{sub 4}, DHPR, peroxidases and NADH are widely distributed in major organs and blood cells, they may constitute an as yet little known antioxidation system in mammalian cells.

  5. Combined effects of hyperthermia and radiation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Elkind, M.M.; Riklis, E.

    1977-01-01

    Hyperthermia (temperatures of 39 0 C or higher) enhances the killing of mammalian cells by ionizing radiation (fission-spectrum neutrons and x-rays). The nature and the magnitude of the enhanced radiation killing varies with temperature and for a fixed temperature during irradiation, the enhanced lethality varies inversely with dose rate. For temperatures up to 41 0 C, dose fractionation measurements indicate that hyperthermia inhibits the repair of sublethal damage. At higher temperatures, the expression of potentially lethal damage is enhanced. Since the effect of heat is greatest in cells irradiated during DNA synthesis, the radiation age-response pattern is flattened by hyperthermia. In addition to the enhanced cell killing described above, three other features of the effect of hyperthermia are important in connection with the radiation treatment of cancer. The first is that heat selectively sensitizes S-phase cells to radiation. The second is that it takes radiation survivors 10 to 20 hrs after a modest heat treatment to recover their ability to repair sublethal damage. And the third is that hyperthermia reduces the magnitude of the oxygen enhancement ratio. Thus, heat if applied selectively, could significantly increase the margin of damage between tumors and normal tissues

  6. Heavy ion induced genetic effects in mammalian cells. Final report

    International Nuclear Information System (INIS)

    Kiefer, J.; Brend'amour, M.; Casares, A.; Egenolf, R.; Gutermuth, F.; Ikpeme, S.E.; Koch, S.; Kost, M.; Loebrich, M.; Pross, H.D.; Russmann, C.; Schmidt, P.; Schneider, E.; Stoll, U.; Weber, K.J.

    2001-01-01

    DNA double-strand breaks (DSBs) are generally assumed to be the most relevant initial event producing radiation-induced cellular lethality, as well as mutations and transformations. The dependence of their formation on radiation quality has been recently reviewed. Contrary to earlier observations there seems to be now agreement that the RBE does not increase above unity with increasing LET in mammalian cells when conventional techniques are applied which are not able to resolve smaller fragments. If they are, however, included in the analysis maximum RBE values around 2 are obtained. The situation is different with yeast: An increased effectiveness for DSB induction has been reported with alpha particles, as well as for heavy ions. This may be due to differences in methods or to chromosomal structure, as discussed in more detail in this paper. DSB induction was measured for a LET range of 100 to 11500 keV/? m in yeast cells using pulsed field gel electrophoresis. Under the conditions applied the chromosomes of the yeast cells could be separated according to size allowing the direct quantification of the DSB yield by measuring the intensity of the largest chromosomes. The results demonstrate clearly that DSB induction in yeast depends on radiation quality. The derived cross-sections for DSB induction were also compared to those for cell inactivation determined in parallel experiments under identical irradiation conditions. (orig.)

  7. Structure and function of stem cell pools in mammalian cell renewal systems

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Nothdurft, W.

    1979-01-01

    Stem cells play a key-role in the maintenance of the equilibrium between cell loss and cell production in cell renewal systems as well as in the understanding of the radiation pathophysiology of mammalian organisms. The integrity of mammalian organisms with the need to maintain a constant ''millieu interior'' is depending on the normal functioning of cell renewal systems, especially those of epithelial surfaces and blood cell forming organs. All cell renewal systems of bodies have a very similar functional structure consisting of functional, proliferative - amplifying and stem cell compartments. They differ in transit and cell cycle times and in the number of amplification division - aside from the difference in their functional and biochemical make-up. The stem cell pools are providing the cells capable of differentiation without depleting their own kind. This can be achieved by symmetrical or assymmetrical stem cell division. In normal steady state, 50% of the stem cell division remain in the stem cell pool, while the other 50% leave it to differentiate, proliferate and mature, hemopoietic system is distributed throughout bodies. This is an important factor in the radiation biology of mammalian organisms since the loss of function in one area can be compensated for by more production in other areas, and locally depleted sites can be reseeded with the stem cells migrating in from blood. (Yamashita, S.)

  8. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Fujitani, Yuji; Furuyama, Akiko [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Kanno, Sanae [Department of Legal Medicine, St. Marianna School of Medicine (Japan)

    2012-02-15

    The toxicity of carbon nanotubes (CNTs), a highly promising nanomaterial, is similar to that of asbestos because both types of particles have a fibrous shape and are biopersistent. Here, we investigated the characteristics of macrophage receptor with collagenous structure (MARCO), a membrane receptor expressed on macrophages that recognizes environmental or unopsonized particles, and we assessed whether and how MARCO was involved in cellular uptake of multi-walled CNTs (MWCNTs). MARCO-transfected Chinese hamster ovary (CHO-K1) cells took up polystyrene beads irrespective of the particle size (20 nm–1 μm). In the culture of MARCO-transfected CHO-K1 cells dendritic structures were observed on the bottom of culture dishes, and the edges of these dendritic structures were continually renewed as the cell body migrated along the dendritic structures. MWCNTs were first tethered to the dendritic structures and then taken up by the cell body. MWCNTs appeared to be taken up via membrane ruffling like macropinocytosis, rather than phagocytosis. The cytotoxic EC{sub 50} value of MWCNTs in MARCO-transfected CHO-K1 cells was calculated to be 6.1 μg/mL and transmission electron microscopic observation indicated that the toxicity of MWCNTs may be due to the incomplete inclusion of MWCNTs by the membrane structure. -- Highlights: ►Carbon nanotubes (CNTs) were tethered to MARCO in vitro. ►CNTs were taken up rapidly into the cell body via MARCO by membrane ruffling. ►The incomplete inclusion of CNTs by membranes caused cytotoxicity.

  9. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.L. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata (1900) (Argentina); Reigosa, M. [Instituto Multidisciplinario de Biologia Celular (IMBICE), Calle 526 y Camino Gral. Belgrano (entre 10 y 11), La Plata 1900 (Argentina); Arnal, P.M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina); Fernandez Lorenzo de Mele, M., E-mail: mmele@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina)

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO{sub 2}) and aluminium oxide (Al{sub 2}O{sub 3}) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24 h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24 h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 {mu}g/mL TiO{sub 2} and 0.5-10 {mu}g/mL Al{sub 2}O{sub 3}. SCE frequencies were higher for cells treated with 1-5 {mu}g/mL TiO{sub 2}. The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO{sub 2}. No SCE induction was achieved after treatment with 1-25 {mu}g/mL Al{sub 2}O{sub 3}. In conclusion, findings showed cytotoxic and genotoxic effects of TiO{sub 2} and Al{sub 2}O{sub 3} NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on.

  10. Quantitative live imaging of endogenous DNA replication in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Andrew Burgess

    Full Text Available Historically, the analysis of DNA replication in mammalian tissue culture cells has been limited to static time points, and the use of nucleoside analogues to pulse-label replicating DNA. Here we characterize for the first time a novel Chromobody cell line that specifically labels endogenous PCNA. By combining this with high-resolution confocal time-lapse microscopy, and with a simplified analysis workflow, we were able to produce highly detailed, reproducible, quantitative 4D data on endogenous DNA replication. The increased resolution allowed accurate classification and segregation of S phase into early-, mid-, and late-stages based on the unique subcellular localization of endogenous PCNA. Surprisingly, this localization was slightly but significantly different from previous studies, which utilized over-expressed GFP tagged forms of PCNA. Finally, low dose exposure to Hydroxyurea caused the loss of mid- and late-S phase localization patterns of endogenous PCNA, despite cells eventually completing S phase. Taken together, these results indicate that this simplified method can be used to accurately identify and quantify DNA replication under multiple and various experimental conditions.

  11. Automatic Control of Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  12. Stimulation of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine uptake in Chinese hamster ovary (CHO-K1) cells by tyrosine esters

    Energy Technology Data Exchange (ETDEWEB)

    Shikano, Naoto [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato; Sagara, Jun-ichi; Nakajima, Syuichi [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kobayashi, Masato [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan); Baba, Takeshi; Yamaguchi, Naoto; Iwamura, Yukio; Kubota, Nobuo [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kawai, Keiichi [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan)

    2010-02-15

    Introduction: Transport of the amino acid analog {sup 123}I-3-iodo-{alpha}-methyl-L-tyrosine, which is used in clinical SPECT imaging, occurs mainly via L-type amino acid transporter type 1 (LAT1; an amino acid exchanger). As LAT1 is highly expressed in actively proliferating tumors, we made a preliminary investigation of the effects of amino acid esters on enhancement of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine (IMT) uptake via LAT1 in Chinese hamster ovary (CHO-K1) cells. Methods: Because the sequence of the CHO-K1 LAT1 gene is not available, we confirmed LAT1 expression through IMT (18.5 kBq) uptake mechanisms using specific inhibitors. L-Gly, L-Ser, L-Leu, L-Phe, L-Met, L-Tyr, D-Tyr, L-Val and L-Lys ethyl/methyl esters were tested in combination with IMT. Time-course studies over a 3-h period were conducted, and the concentration dependence of L-Tyr ethyl and methyl esters (0.001 to 10 mM) in combination with IMT was also examined. For a proof of de-esterification of L- and D-Tyr ethyl and methyl esters in the cells (by enzymatic attack or other cause), the concentration of L- and D-Tyr was analyzed by high-performance liquid chromatography of the esters in phosphate buffer (pH 7.4) and cell homogenates at 37 deg. C or under ice-cold conditions. Results: Inhibition tests suggested that LAT1 is involved in IMT uptake by CHO-K1 cells. Co-administration of 1 mM of L-Tyr ethyl or methyl ester with IMT produced the greatest enhancement. The de-esterification reaction was stereo selective and temperature dependent in the homogenate. De-esterification kinetics were very fast in the homogenate and very slow in the phosphate buffer. Conclusions: The L-Tyr ethyl or methyl esters were the most effective enhancers of IMT uptake into CHO-K1 cells and acted by trans-stimulation of the amino acid exchange function of LAT1. This result suggests that de-esterification in the cells may be caused by enzymatic attack. We will use IMT and L-Tyr ethyl or methyl esters to examine

  13. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  14. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    Science.gov (United States)

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  15. UVC-induced stress granules in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Mohamed Taha Moutaoufik

    Full Text Available Stress granules (SGs are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α. We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.

  16. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  17. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    CSIR Research Space (South Africa)

    Mthunzi, P

    2014-02-01

    Full Text Available Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including...

  18. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  19. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Directory of Open Access Journals (Sweden)

    Velia Siciliano

    2011-06-01

    Full Text Available Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL by generating a clonal population of mammalian cells (CHO carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA, whose expression is regulated by a tTA responsive promoter (CMV-TET, thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP, thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL, by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off, and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  20. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Science.gov (United States)

    Siciliano, Velia; Menolascina, Filippo; Marucci, Lucia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego

    2011-06-01

    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  1. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.

    Science.gov (United States)

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  3. S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; van Loenen, Pieter B.; Hajji, Najat; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Sphingosine-1-phosphate (S1P) signalling via G protein-coupled receptors is important for the regulation of cell function and differentiation. Specific Regulators of G protein Signalling (RGS) proteins modulate the function of these receptors in many cell types including vascular smooth muscle cells

  4. Modelling a tethered mammalian sperm cell undergoing hyperactivation

    KAUST Repository

    Curtis, M.P.

    2012-09-01

    The beat patterns of mammalian sperm flagella can be categorised into two different types. The first involves symmetric waves propagating down the flagellum with a net linear propulsion of the sperm cell. The second, hyperactive, waveform is classified by vigorous asymmetric waves of higher amplitude, lower wavenumber and frequency propagating down the flagellum resulting in highly curved trajectories. The latter beat pattern is part of the capacitation process whereby sperm prepare for the prospective penetration of the zona pellucida and fusion with the egg. Hyperactivation is often observed to initiate as sperm escape from epithelial and ciliary bindings formed within the isthmic regions of the female oviducts, leading to a conjecture in the literature that this waveform is mechanically important for sperm escape. Hence, we explore the mechanical effects of hyperactivation on a tethered sperm, focussing on a Newtonian fluid. Using a resistive force theory model we demonstrate that hyperactivation can indeed generate forces that pull the sperm away from a tethering point and consequently a hyperactivated sperm cell bound to an epithelial surface need not always be pushed by its flagellum. More generally, directions of the forces generated by tethered flagella are insensitive to reductions in beat frequency and the detailed flagellar responses depend on the nature of the binding at the tethering point. Furthermore, waveform asymmetry and amplitude increases enhance the tendency for a tethered flagellum to start tugging on its binding. The same is generally predicted to be true for reductions in the wavenumber of the flagellum beat, but not universally so, emphasising the dynamical complexity of flagellar force generation. Finally, qualitative observations drawn from experimental data of human sperm bound to excised female reproductive tract are also presented and are found to be consistent with the theoretical predictions. © 2012 Elsevier Ltd.

  5. Modelling a tethered mammalian sperm cell undergoing hyperactivation

    KAUST Repository

    Curtis, M.P.; Kirkman-Brown, J.C.; Connolly, T.J.; Gaffney, E.A.

    2012-01-01

    The beat patterns of mammalian sperm flagella can be categorised into two different types. The first involves symmetric waves propagating down the flagellum with a net linear propulsion of the sperm cell. The second, hyperactive, waveform is classified by vigorous asymmetric waves of higher amplitude, lower wavenumber and frequency propagating down the flagellum resulting in highly curved trajectories. The latter beat pattern is part of the capacitation process whereby sperm prepare for the prospective penetration of the zona pellucida and fusion with the egg. Hyperactivation is often observed to initiate as sperm escape from epithelial and ciliary bindings formed within the isthmic regions of the female oviducts, leading to a conjecture in the literature that this waveform is mechanically important for sperm escape. Hence, we explore the mechanical effects of hyperactivation on a tethered sperm, focussing on a Newtonian fluid. Using a resistive force theory model we demonstrate that hyperactivation can indeed generate forces that pull the sperm away from a tethering point and consequently a hyperactivated sperm cell bound to an epithelial surface need not always be pushed by its flagellum. More generally, directions of the forces generated by tethered flagella are insensitive to reductions in beat frequency and the detailed flagellar responses depend on the nature of the binding at the tethering point. Furthermore, waveform asymmetry and amplitude increases enhance the tendency for a tethered flagellum to start tugging on its binding. The same is generally predicted to be true for reductions in the wavenumber of the flagellum beat, but not universally so, emphasising the dynamical complexity of flagellar force generation. Finally, qualitative observations drawn from experimental data of human sperm bound to excised female reproductive tract are also presented and are found to be consistent with the theoretical predictions. © 2012 Elsevier Ltd.

  6. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells......In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity...... and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary...

  7. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  8. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis.

    Science.gov (United States)

    Godfrey, Charlotte L; Mead, Emma J; Daramola, Olalekan; Dunn, Sarah; Hatton, Diane; Field, Ray; Pettman, Gary; Smales, C Mark

    2017-08-01

    mRNA translation is a key process determining growth, proliferation and duration of a Chinese hamster ovary (CHO) cell culture and influences recombinant protein synthesis rate. During bioprocessing, CHO cells can experience stresses leading to reprogramming of translation and decreased global protein synthesis. Here we apply polysome profiling to determine reprogramming and translational capabilities in host and recombinant monoclonal antibody-producing (mAb) CHO cell lines during batch culture. Recombinant cell lines with the fastest cell specific growth rates were those with the highest global translational efficiency. However, total ribosomal capacity, determined from polysome profiles, did not relate to the fastest growing or highest producing mAb cell line, suggesting it is the ability to utilise available machinery that determines protein synthetic capacity. Cell lines with higher cell specific productivities tended to have elevated recombinant heavy chain transcript copy numbers, localised to the translationally active heavy polysomes. The highest titre cell line was that which sustained recombinant protein synthesis and maintained high recombinant transcript copy numbers in polysomes. Investigation of specific endogenous transcripts revealed a number that maintained or reprogrammed into heavy polysomes, identifying targets for potential cell engineering or those with 5' untranslated regions that might be utilised to enhance recombinant transcript translation. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Suzuki, Keiji; Prise, K.M.

    2005-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population. Here, we analysed the mechanism of such a bystander effect from targeted cells to non-targeted cells. Firstly, in order to investigate the bystander effect in Chinese hamster ovary (CHO) cell lines we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population, of double strand break repair deficient xrs5 cells, was targeted with 1 Gy of Al-K soft X-rays, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells. The induction of micronuclei was also observed when conditioned medium was transferred from irradiated to non-irradiated xrs5 cells. These results suggest that DNA double strand breaks are caused by factors secreted in the medium from irradiated cells. To clarify the involvements of radical species in the bystander response, cells were treated with 0.5%DMSO 1 hour before irradiation and then bystander effects were estimated in xrs5 cells. The results showed clearly that DMSO treatment during X-irradiation suppress the induction of micronuclei in bystander xrs5 cells, when conditioned medium was transferred from irradiated xrs5 cells. Therefore, it is suggested that radical species induced by ionizing radiation are important for producing bystander signals. (author)

  10. Vitamin C (Vit C) added after irradiation reduces the number and alters the spectrum of CD59- mutants in human/CHO AL cells exposed to high LET carbon ions

    International Nuclear Information System (INIS)

    Vannais, D.B.; Hirai, Y.; Waldren, C.A.; Ueno, A.

    2003-01-01

    Full text: Miyazaki, Watanabe, Kumagai and colleagues discovered the existence in mammalian cells of long-lived radicals (LLR) with half-lives of minutes to hours. They further showed that concentrations of LLR were increased in a dose dependent manner by X-rays; that LLR were transforming and mutagenic but not clastogenic or lethal; that they were scavenged by Vit C but not by DMSO, and that they occured mainly (>99.8%) in proteins from which they escape by atomic tunneling. They also showed that Vit C added after radiation (but not DMSO) eliminated HPRT mutants in human cells exposed to X-rays. Following on their work, we found that Vit C (5 mM) added 30 min after radiation significantly reduced, but did not eliminate, induction of CD59- mutants in human-CHO hybrid AL cells exposed to high LET carbon beam radiation (NIRS-HIMAC, 290 MeV/nucleon, LET 100 KeV/μ: m). Lethality of the carbon beam was not affected by Vit C. DMSO decreased mutation and killing, only when present during radiation. Lycopene, reported to reduce spontaneous mutation, did not affect radiation killing or mutagenesis. Our findings with Vit C for high LET generally support the results reported for X-rays. Analysis of the spectrum of mutations in CD59- mutant cells isolated after carbon beam irradiation (2.5 Gy), indicates a substantial reduction by post-radiation Vit C in mutants with small mutations and those displaying genomic instability, seen as increased levels of translocations. Our results substantiate a role for LLR in radiation mutagenesis and implicate them in radiation-induced genomic instability

  11. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.

    Directory of Open Access Journals (Sweden)

    Mauricio Vergara

    Full Text Available Chinese hamster ovary (CHO cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum.In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA were carried out at two temperatures (37°C and 33°C and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system or ERAD II (Autophagosoma/Lisosomal system pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1 and low (0.012 h-1 dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA.Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO

  12. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  13. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology?

    Science.gov (United States)

    Kelley, Brian; Kiss, Robert; Laird, Michael

    2018-05-03

    As biopharmaceutical companies have optimized cell line and production culture process development, titers of recombinant antibodies have risen steadily to 3-8 g/L for fed-batch mammalian cultures at production scales of 10 kL or larger. Most new antibody products are produced from Chinese Hamster Ovary (CHO) cell lines, and there are relatively few alternative production hosts under active evaluation. Many companies have adopted a strategy of using the same production cell line for early clinical phases as well as commercial production, which reduces the risk of product comparability issues during the development lifecycle. Product quality and consistency expectations rest on the platform knowledge of the CHO host cell line and processes used for the production of many licensed antibodies. The lack of impact of low-level product variants common to this platform on product safety and efficacy also builds on the established commercial history of recombinant antibodies, which dates back to 1997.Efforts to increase titers further will likely yield diminishing returns. Very few products would benefit significantly from a titer greater than 8 g/L; in many cases, a downstream processing bottleneck would preclude full recovery from production-scale bioreactors for high titer processes. The benefits of a process platform based on standard fed-batch production culture include predictable scale-up, process transfer, and production within a company's manufacturing network or at a contract manufacturing organization. Furthermore, the confidence in an established platform provides key support towards regulatory flexibility (e.g., design space) for license applications following a quality-by-design strategy.These factors suggest that novel technologies for antibody production may not provide a substantial return on investment. What, then, should be the focus of future process development efforts for companies that choose to launch antibody products using their current

  14. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  15. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  16. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman

    2016-11-23

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

  17. Endoplasmic reticulum-directed recombinant mRNA displays subcellular localization equal to endogenous mRNA during transient expression in CHO cells

    DEFF Research Database (Denmark)

    Beuchert Kallehauge, Thomas; Kol, Stefan; Andersen, Mikael Rørdam

    2016-01-01

    When expressing pharmaceutical recombinant proteins in mammalian cells, the protein is commonly directed through the secretory pathway, in a signal peptide-dependent manner, to acquire specific post-translational modifications and to facilitate secretion into the culture medium. One key premise...

  18. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    International Nuclear Information System (INIS)

    Magno, A.C.G.; Oliveira, I.L.; Hauck, J.V.S.

    2016-01-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation (paper)

  19. Algal autolysate medium to label proteins for NMR in mammalian cells.

    Science.gov (United States)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  20. Algal autolysate medium to label proteins for NMR in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia [University of Florence, Magnetic Resonance Center (CERM) (Italy); Neri, Sara [Giotto Biotech S.R.L. (Italy); Fragai, Marco, E-mail: fragai@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-04-15

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in {sup 15}N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  1. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.

    Science.gov (United States)

    Usaj, Marko; Kanduser, Masa

    2012-09-01

    The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells' response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41 ± 9 % yield, while in isotonic buffer 32 ± 11 % yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1 % in isotonic buffer to 10 ± 4 % in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.

  2. Influence of incorporated bromodeoxyuridine on the induction of chromosomal alterations by ionizing radiation and long-wave UV in CHO cells.

    Science.gov (United States)

    Zwanenburg, T S; van Zeeland, A A; Natarajan, A T

    1985-01-01

    Incorporation of BrdUrd into nuclear DNA sensitizes CHO cells (1) to the induction of chromosomal aberrations by X-rays and 0.5 MeV neutrons and (2) to induction of chromosomal aberrations and SCEs by lw-UV. We have attempted to establish a correlation between induced chromosomal alterations and induced single- or double-strand breaks in DNA. The data show that while DSBs correlate very well with X-ray-induced aberrations, no clear correlation could be established between lw-UV induced SSBs (including alkali-labile sites) and chromosomal alterations. In addition the effect of 3-aminobenzamide (3AB) on the induction of chromosomal aberrations and SCEs induced by lw-UV has been determined. It is shown that 3AB is without any effect when lw-UV-irradiated cells are posttreated with this inhibitor. The significance of these results is discussed.

  3. PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p

    NARCIS (Netherlands)

    Okumoto, K.; Shimozawa, N.; Kawai, A.; Tamura, S.; Tsukamoto, T.; Osumi, T.; Moser, H.; Wanders, R. J.; Suzuki, Y.; Kondo, N.; Fujiki, Y.

    1998-01-01

    Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and

  4. Heavy ion effects on mammalian cells: Inactivation measurements with different cell lines

    International Nuclear Information System (INIS)

    Wulf, H.; Kraft-Weyrather, W.; Miltenburger, H.G.; Kraft, G.

    1985-07-01

    In track segment experiments, the inactivation of different mammalian cells by heavy charged particles between helium and uranium in the energy range between 1 and 1000 MeV/u has been measured at the heavy ion accelerator Unilac, Darmstadt, the Tandem Van de Graaf, Heidelberg and the Bevalac, Berkeley. The inactivation cross sections calculated from the final slope of the dose effect curves are given as a function of the particle energy and the LET. (orig.)

  5. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  6. Differences in inhibition by beta-arabinofuranosyladenine (araA) of radiation induced DNA damage repair in exponentially growing and plateau-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Seaner, R.

    1988-01-01

    The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to X-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0-1500 μM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau-phase cells treated in their conditioned medium, as well as in plateau-phase cells that were transferred in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication. (orig.)

  7. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM BY ION-EXCHANGE MEMBRANES

    Science.gov (United States)

    Metabolites such as ammonia and lactic acid formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. Cell culture conducted in the presence of such accumulated metabolites is therefore limited in pro...

  8. Gamma-ray induced DNA breaks and repair studied by immuno-labelling of poly(ADP-ribose) polymerase (PARP) in chinese hamster ovary cells (CHO)

    International Nuclear Information System (INIS)

    Bidon, N.; Noel, G.; Averbeck, D.; Varlet, P.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly(ADP-ribose)polymerase is a nuclear ubiquitous enzyme capable of binding to DNA breaks. Chinese hamster ovary cells were (CHO-K1) cultured on slides and γ-irradiated ( 137 Cs) at a high (12.8 Gy/min) or medium dose rate (5 Gy/min), and immuno-labelling against (ADP-ribose) polymers immediately or three hours after irradiation. Quantification and localisation of γ-ray induced breaks was performed by confocal microscopy. The results show a dose effect relationship, a dose-rate effect and the signal disappearance after 3 hours at 37 deg.C. The presence of PARP activity appears to reflect γ-rays induced DNA fragmentation. (authors)

  9. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  10. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage

    International Nuclear Information System (INIS)

    Warters, R.L.; Hofer, K.G.; Harris, C.R.; Smith, J.M.

    1978-01-01

    Synchronized suspension cultures of Chinese hamster ovary cells (CHO) were labeled with various doses of 3 H-thymidine or 125 I-iododeoxyuridine to evaluate the cytocidal effects of intranuclear radionuclide decay. Damage produced by radionuclide decay outside the cell nucleus was studied on cells exposed to 125 I labeled, monovalent concanavalin A. After labeling, the cells were resynchronized in G 1 -phase and incubated for 36 h at 4 0 C to permit dose accumulation. Cell lethality was evaluated by the standard colony assay. Based on radionuclide incorporation data, cellular dimensions, and subcellular radionuclide distributions, the cumulative dose to whole cells, cell nuclei, and cellular cytoplasm was calculated from the known decay properties of 3 H and 125 I. (Auth.)

  11. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    International Nuclear Information System (INIS)

    Busch, Wibke; Bastian, Susanne; Trahorsch, Ulrike; Iwe, Maria; Kühnel, Dana; Meißner, Tobias; Springer, Armin; Gelinsky, Michael; Richter, Volkmar; Ikonomidou, Chrysanthy; Potthoff, Annegret; Lehmann, Irina; Schirmer, Kristin

    2011-01-01

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  12. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells.

    Science.gov (United States)

    Minshall, R D; Tan, F; Nakamura, F; Rabito, S F; Becker, R P; Marcic, B; Erdös, E G

    1997-11-01

    Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.

  13. Serum-Free Cryopreservation of Five Mammalian Cell Lines in Either a Pelleted or Suspended State

    Directory of Open Access Journals (Sweden)

    Corsini Joe

    2004-01-01

    Full Text Available Herein we have explored two practical aspects of cryopreserving cultured mammalian cells during routine laboratory maintenance. First, we have examined the possibility of using a serum-free, hence more affordable, cryopreservative. Using five mammalian lines (Crandell Feline Kidney, MCF7, A72, WI 38 and NB324K, we found that the serum-free alternative preserves nearly as efficiently as the serum-containing preservatives. Second, we compared cryostorage of those cells in suspended versus a pellet form using both aforementioned cryopreservatives. Under our conditions, cells were in general recovered equally well in a suspended versus a pellet form.

  14. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  15. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?

    Science.gov (United States)

    Levine, Zebulon G; Walker, Suzanne

    2016-06-02

    O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.

  16. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    Report 3. DATES COVERED (From – To) March 2013 to July 2015 4. TITLE AND SUBTITLE Electroporation of mammalian cells by nanosecond electric field...Prescribed by ANSI Std. Z39.18 1Scientific RepoRts | 5:13818 | DOi: 10.1038/srep13818 www.nature.com/scientificreports Electroporation of mammalian cells...first to demonstrate that mammalian cells can be electroporated by damped sine wave electric stimuli of nanosecond duration. By comparing the

  17. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  18. Host cell reactivation and UV-enhanced reactivation in synchronized mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Schmidt, B.J.

    1981-01-01

    Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle. The answer could be useful for interpreting UVER and or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-l monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D 0 's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G 1 early S phase or late S early G 2 phase but not during early G 1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle: and (2) the ''induction'' of UVER is not as rapid for cell-irradiation in early G 1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells. (author)

  19. Mammalian cell transformation: Mechanisms of carcinogenesis and assays for carcinogens

    International Nuclear Information System (INIS)

    Barrett, J.C.; Tennant, R.W.

    1985-01-01

    This book contains nine sections, each consisting of several papers. The section titles are: Molecular Changes in Cell Transformation; Differentiation, Growth Control, and Cell Transformation; Mutagenesis and Cell Transformation; Tumor Promotion and Cell Transformation; Mechanisms of Transformation of Human Fibroblasts; Mechanisms of Transformation of Epithelial Cells; Mechanisms of C 3 H 10T12 Cell Transformation; Mechanisms of Radiation-Induced Cell Transformation; and Use of Cell Transformation Assays for Carcinogen Testing

  20. G1- and S-phase syntheses of histones H1 and H1o in mitotically selected CHO cells: utilization of high-performance liquid chromatography

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Thayer, M.M.; Tobey, R.A.; Gurley, L.R.

    1985-01-01

    The authors have employed high-performance liquid chromatography (HPLC) to investigate the syntheses of histones H1 and H1o as synchronized cells traverse from mitosis to S phase. Chinese hamster (line CHO) cells were synchronized by mitotic selection, and, at appropriate times, they were pulse labeled for 1 h with [ 3 H]lysine. Histones H1 and H1o were extracted by blending radiolabeled and carrier cells directly in 0.83 M HC1O 4 ; the total HC1O 4 -soluble, Cl 3 CCO 2 H-precipitable proteins were then separated by a modification of an HPLC system employing three mu Bondapak reversed-phase columns. These procedures (1) produce minimally perturbed populations of synchronized proliferating cells and (2) maximize the recovery of radiolabeled histones during isolation and analysis. Measurements of rates of synthesis indicate that the rate of H1 synthesis increases as cells traverse from early to mid G1; as cells enter S phase, the rate of H1 synthesis increases an additional congruent to 22-fold and is proportional to the number of S-phase cells. In contrast to H1, the rate of H1o synthesis is nearly constant throughout G1. As cells progress into S phase, the rate of H1o synthesis increases so that it also appears to be proportional to the number of S-phase cells. Except for the first 1-2 h after mitotic selection, these results are similar to those obtained when cells are synchronized in G1 with the isoleucine deprivation procedure

  1. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K

    2002-01-01

    Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein wil...

  2. Reactivation of neutron killed mammalian cells by gamma irradiation: The observations, possible mechanism and implication

    International Nuclear Information System (INIS)

    Calkins, J.; Harrison, W.; Einspenner, M.

    1990-01-01

    We have observed that combinations of neutron plus gamma ray exposure can significantly increase the colony forming ability of monkey and human cell cultures over the neutron dose alone. The 'reactivation' of neutron killed mammalian cells by gamma rays is analogous to observations made in lower eukaryotic organisms and fits the pattern termed 'T repair' previously postulated for yeast and protozoans. (orig.)

  3. Wnt/β-catenin signaling in adult mammalian epithelial stem cells

    NARCIS (Netherlands)

    Kretzschmar, Kai; Clevers, Hans

    2017-01-01

    Adult stem cells self-renew and replenish differentiated cells in various organs and tissues throughout a mammal's life. Over the last 25 years an ever-growing body of knowledge has unraveled the essential regulation of adult mammalian epithelia by the canonical Wnt signaling with its key

  4. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    Science.gov (United States)

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  5. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    Science.gov (United States)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  6. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    Science.gov (United States)

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The use of a cloned bacterial gene to study mutation in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.; Debenham, P.G.; Stretch, A.; Webb, M.B.T.

    1983-01-01

    The recombinant DNA molecule pSV2-gpt, which contains the bacterial gene coding for xanthine-guanine phosphoribosyl transferase (XGPRT) activity, was introduced into a hamster cell line lacking the equivalent mammalian enzyme (HGPRT). Hamster cell sublines were found with stable expression of XGPRT activity and were used to study mutation of the integrated pSV2-gpt DNA sequence. Mutants were selected by their resistance to 6-thioguanine (TG) under optimal conditions which were found to be very similar to those for selection of HGPRT-deficient mutants of mammalian cells. The frequency of XGPRT-deficient mutants was increased by treatment with X-rays, ethyl methanesulphonate and ethyl nitrosourea. X-Ray induction of mutants increased approximately linearly with dose up to about 500 rad, but the frequency of mutants per rad was very much higher than that usually found for 'native' mammalian genes. (orig./AJ)

  8. Intracellular pH and 42.00 C heat response of CHO cells cultured at pH 6.6

    International Nuclear Information System (INIS)

    Cook, J.A.; Fox, M.H.

    1987-01-01

    The authors previously reported that cells under chronic low pH (6.6) conditions have altered thermotolerance. They further characterized both the doubling time (t/sub d/) and the internal pH (pH/sub 1/) of CHO cells continuously cultured at pH 6.6 for times greater than one year. The following differences were noted: 1) A t/sub d/ of 16 hr compared to a t/sub d/ of 12 hr for cells at normal pH (7.3) and a t/sub d/ of 25 hr for the acute low pH cells (pH = 6.6; incubation time = 4 hr). 2) A pH/sub i/ 0.1-0.15 pH units > normal cells and 0.3 pH units > acute low pH cells. 3) Survival at 42.0 0 C which differed from both normal and acute low pH cells. The chronic culture was still quite sensitive to 42.0 0 C treatments during the first 5 hr, but developed tolerance at a higher level than cells under acute low pH conditions. The pH/sub i/ of the chronic culture responded to 42.0 0 C heating in a manner similar to that for acute low pH cells. Whether this culture represents a normal response to long term low pH exposure, or was the response of a mutant population is at the present unknown

  9. Evaluation of the radio modifier effect of propolis on chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with 60-CO; Avaliacao do efeito radiomodificador da propolis em celulas de ovario de hamster chines (CHO-K1) e em celulas tumorais de prostata (PC3), irradiadas com CO-60

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Geyza Spigoti

    2011-07-01

    In the last decades, it has been given a great interest to investigations concerning natural, effective, nontoxic compounds with radioprotective potential together with the increasing utilization of different types of ionizing radiation for various applications. Among them propolis, a resinous compound produced by honeybees (Apis mellifera), has been considered quite promising, since it presents several advantageous biological characteristics, i. e., anti-inflammatory, antimicrobial, anticarcinogenic, antioxidant and also free radical scavenging action. The purpose of the present study was to evaluate the effect of Brazilian propolis, collected in the State of Rio Grande do Sul, on Chinese hamster ovary (CHO-K1) and human prostate cancer (PC3) cells, irradiated with {sup 60}Co {gamma} radiation. For this purpose, three interlinked parameters were analyzed: micronucleus induction, cell viability and clonogenic death. The choice of these parameters was justified by their biological significance, in addition to the fact that they are readily observable and measurable in irradiated cells. The cytogenetic data obtained showed a radioprotective effect of propolis (5-100 {mu}g/ml) in the induction of DNA damage for both cell lines, irradiated with doses of 1 - 4 Gy. The cytotoxicity assay, however, showed a prominent antiproliferative effect of propolis (50 - 400{mu}/ml) in PC3 cells irradiated with 5 G{gamma}. The survival curves obtained were adequately fitted by a linear-quadratic model, where the {alpha} coefficient was higher in CHO-K1 cells. Concerning the clonogenic capacity, PC3 cells were more radiosensitive than CHO-K1 cells at the higher doses of the survival curve. Propolis at the concentrations of 30 - 100 {mu}g/ml, did not influence the clonogenic potential of PC3 cells, since the survival curves, associated or not with propolis, were found similar, although the combined treatment in CHO-K1 cells exhibited a stimulating proliferative effect. The data

  10. The different shades of mammalian pluripotent stem cells

    NARCIS (Netherlands)

    Kuijk, E.W.; Lopes, S.M.; Geijsen, N.; Macklon, N.; Roelen, B.A.

    2011-01-01

    BACKGROUND: Pluripotent stem cells have been derived from a variety of sources such as from the inner cell mass of preimplantation embryos, from primordial germ cells, from teratocarcinomas and from male germ cells. The recent development of induced pluripotent stem cells demonstrates that somatic

  11. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Roesch, W.C.; Nelson, J.M.

    1985-01-01

    Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus the authors believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. They have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for their CHO cells

  12. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  13. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  14. Radiosensitization of CHO cells by the combination of glutathione depletion and low concentrations of oxygen: The effect of different levels of GSH depletion

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Zachgo, E.A.; Biaglow, J.E.

    1984-01-01

    Recently, the authors have examined the effect of GSH depletion by BSO on CHO cells equilibrated with oxygen at various concentrations (0.05-4.0%) and irradiated with 50 kVp x-rays. This is of interest because of the uncertain radiosensitizing effect GSH depletion may have on cells equilibrated with low oxygen concentrations. GSH depletion (0.1 mM BSO/24 hrs reduced [GSH] ≅ 10% of control) enhanced the radiosensitizing action of moderate (0.4-4.0%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by ≅ 2-3 fold. However, GSH depletion was much more effective as a rediosensitizer when cells were equilibrated with low (<0.4%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by 8-10 fold. Furthermore, while the addition of exogenous 5 mM GSH restored the ER to that observed when GSH was not depleted, the intracellular [GSH] was not increased. The results of these studies carried out at different levels of GSH depletion are presented

  15. Effect of ethanolic extract of propolis on cell viability of chinese hamster ovary cells (CHO-K1) irradiated with {sup 60}CO gamma-rays using differential staining technique

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marcos P.M. de; Castro, Renato F. de; Okazaki, Kayo; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of present study was to assess the effect of Brazilian propolis (AF-08) on CHO-K1 cells irradiated with {sup 60}Co, through the differential staining technique, using acridine orange and ethidium bromide. The cells were pre-incubated with different concentrations of propolis (50, 100 and 200 μg/mL) for 24h and irradiated with 5 Gy, analyzed at 24 and 48h after exposure. This technique is based on the cell capacity to incorporate fluorescent DNA dyes, where the viable (green), apoptotic (orange/yellow) and necrotic (red) cells can be identified through fluorescence microscopy. Digital high-resolution images were acquired from at least 5 visualization fields, and cells were analyzed using ImageJ and Flowing software. This approach permitted to analyze a large number of cells/sample with the time reduction, much easier and faster, proportioning more statistical power of the technique. The treatment with propolis only was not cytotoxic at 24 and 48h, except for the higher concentration of 200 μg/mL associated or not with radiation, increasing apoptotic and mainly necrotic cells (p<0.001). The data showed a promising use of propolis as well as technique used, pointing out that 200 μg/mL of propolis was cytotoxic, but at lower one (50 μg/mL) presented a radioprotective effect in irradiated CHO-K1 cells. (author)

  16. Effect of ethanolic extract of propolis on cell viability of chinese hamster ovary cells (CHO-K1) irradiated with 60CO gamma-rays using differential staining technique

    International Nuclear Information System (INIS)

    Castro, Marcos P.M. de; Castro, Renato F. de; Okazaki, Kayo; Vieira, Daniel P.

    2013-01-01

    The objective of present study was to assess the effect of Brazilian propolis (AF-08) on CHO-K1 cells irradiated with 60 Co, through the differential staining technique, using acridine orange and ethidium bromide. The cells were pre-incubated with different concentrations of propolis (50, 100 and 200 μg/mL) for 24h and irradiated with 5 Gy, analyzed at 24 and 48h after exposure. This technique is based on the cell capacity to incorporate fluorescent DNA dyes, where the viable (green), apoptotic (orange/yellow) and necrotic (red) cells can be identified through fluorescence microscopy. Digital high-resolution images were acquired from at least 5 visualization fields, and cells were analyzed using ImageJ and Flowing software. This approach permitted to analyze a large number of cells/sample with the time reduction, much easier and faster, proportioning more statistical power of the technique. The treatment with propolis only was not cytotoxic at 24 and 48h, except for the higher concentration of 200 μg/mL associated or not with radiation, increasing apoptotic and mainly necrotic cells (p<0.001). The data showed a promising use of propolis as well as technique used, pointing out that 200 μg/mL of propolis was cytotoxic, but at lower one (50 μg/mL) presented a radioprotective effect in irradiated CHO-K1 cells. (author)

  17. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  18. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production.

    Science.gov (United States)

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S; Polizzi, Karen M

    2017-06-01

    Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  19. Whole‐cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    Science.gov (United States)

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.

    2017-01-01

    ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405

  20. Differential effect of procaine on irradiated mammalian cells in culture

    International Nuclear Information System (INIS)

    Djordjevic, B.

    1979-01-01

    HeLa and V-79 Chinese hamster cells temporarily stored in ampoules were treated with the local anesthetic procaine. Postirradiation treatment increased lethality in HeLa cells depending on drug concentration, duration of treatment, and cell density, as measured by colony-forming ability upon plating. If present during irradiation only, procaine protected from irradiation. In V-79 cells, procaine potentiated radiation lethality only in freshly trypsinized cells. Procaine effect was thus cell type specific and most likely involved the cell membrane

  1. Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems.

    Science.gov (United States)

    Jayapal, Karthik P; Goudar, Chetan T

    2014-01-01

    DNA microarray-based transcriptomics have been used to determine the time course of laboratory and manufacturing-scale perfusion bioreactors in an attempt to characterize cell physiological state at these two bioreactor scales. Given the limited availability of genomic data for baby hamster kidney (BHK) cells, a Chinese hamster ovary (CHO)-based microarray was used following a feasibility assessment of cross-species hybridization. A heat shock experiment was performed using both BHK and CHO cells and resulting DNA microarray data were analyzed using a filtering criteria of perfect match (PM)/single base mismatch (MM) > 1.5 and PM-MM > 50 to exclude probes with low specificity or sensitivity for cross-species hybridizations. For BHK cells, 8910 probe sets (39 %) passed the cutoff criteria, whereas 12,961 probe sets (56 %) passed the cutoff criteria for CHO cells. Yet, the data from BHK cells allowed distinct clustering of heat shock and control samples as well as identification of biologically relevant genes as being differentially expressed, indicating the utility of cross-species hybridization. Subsequently, DNA microarray analysis was performed on time course samples from laboratory- and manufacturing-scale perfusion bioreactors that were operated under the same conditions. A majority of the variability (37 %) was associated with the first principal component (PC-1). Although PC-1 changed monotonically with culture duration, the trends were very similar in both the laboratory and manufacturing-scale bioreactors. Therefore, despite time-related changes to the cell physiological state, transcriptomic fingerprints were similar across the two bioreactor scales at any given instance in culture. Multiple genes were identified with time-course expression profiles that were very highly correlated (> 0.9) with bioprocess variables of interest. Although the current incomplete annotation limits the biological interpretation of these observations, their full potential may be

  2. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  3. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.

    Science.gov (United States)

    Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A

    2018-04-01

    The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.

  4. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Laser flow microphotometry for rapid analysis and sorting of mammalian cells

    International Nuclear Information System (INIS)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation

  6. Laser flow microphotometry for rapid analysis and sorting of mammalian cells. [X and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation. (HLW)

  7. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Guillaume, J P; Noyer, M; Gillard, M; Daliers, J; Henichart, J P; Bollen, A

    1995-01-01

    A cDNA clone for the human histamine H1 receptor was isolated from a lung cDNA library and stably expressed in CHO cells. The recombinant receptor protein present in the cell membranes, displayed the functional and binding characteristics of histamine H1 receptors. Mutation of Ser155 to Ala in the fourth transmembrane domain did not significantly change the affinity of the receptor for histamine and H1 antagonists. However, mutation of the fifth transmembrane Asn198 to Ala resulted in a dramatic decrease of the affinity for histamine binding, and for the histamine-induced polyphosphoinositides breakdown, whereas the affinity towards antagonists was not significantly modified. In addition, mutation of another fifth transmembrane amino acid, Thr194 to Ala also diminished, but to a lesser extent, the affinity for histamine. These data led us to propose a molecular model for histamine interaction with the human H1 receptor. In this model, the amide moiety of Asn198 and the hydroxyl group of Thr194 are involved in hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. Moreover, mutation of Thr194 to Ala demonstrated that this residue is responsible for the discrimination between enantiomers of cetirizine.

  8. Bystander effects on mammalian cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang Jufang; Zhao Jing; Ma Qiufeng; Chinese Academy of Sciences, Beijing; Li Weijian; Zhou Guangming; Dang Bingrong; Mao Limin; Feng Yan

    2004-01-01

    Bystander effects on unirradiated V79 cells were observed by irradiated conditioned medium (ICM) method and co-cultured with carbon-ion-irradiated V79 cells. The results showed that the colony formation efficiency of unirradiated cells is obviously decreased by ICM. After co-culture with carbon-ion-irradiated cells for some time, the colony formation efficiency of co-cultured cells was lower than expected results assuming no bystander effects. The micronucleus frequency and hprt gene mutation rate was almost the same as expected results. Cytotoxic factor(s), which was effective for cell growth but not for micronucleus and mutation on unirradiated cells, might be released by irradiated cells. (authors)

  9. Lack of radiation protective effect of orgotein in normal and malignant mammalian cells

    International Nuclear Information System (INIS)

    Overgaard, J.; Nielsen, O.S.; Overgaard, M.; Steenholdt, S.; Jakobsen, A.; Sell, A.

    1979-01-01

    The potential radiation protective effect of orgotein, a metalloprotein with superoxide dismutase activity, was investigated in L 1 A 2 tumour cells in vitro, jejunal crypt cells and C 3 H mouse mammary carcinoma in vivo. No effect of orgotein, given either 2 hours before irradiation or 30 min after, was observed compared to the effect of irradiation alone. Thus, it was concluded that orgotein did not influence the primary radiation response in air in mammalian cells. (Auth.)

  10. Lack of radiation protective effect of orgotein in normal and malignant mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Overgaard, J; Nielsen, O S; Overgaard, M; Steenholdt, S; Jakobsen, A; Sell, A [Institute of Cancer Research and The Department of Radiation Therapy and Oncology, The Radium Centre, Aarhus, Denmark

    1979-01-01

    The potential radiation protective effect of orgotein, a metalloprotein with superoxide dismutase activity, was investigated in L/sub 1/A/sub 2/ tumour cells in vitro, jejunal crypt cells and C/sub 3/H mouse mammary carcinoma in vivo. No effect of orgotein, given either 2 hours before irradiation or 30 min after, was observed compared to the effect of irradiation alone. Thus, it was concluded that orgotein did not influence the primary radiation response in air in mammalian cells.

  11. Repetitious nature of repaired DNA in mammalian cells

    International Nuclear Information System (INIS)

    1978-01-01

    The report consists of three appendices, as follows: summary of preliminary studies of the comparative DNA repair in normal lymphoblastoid and Burkitt's lymphoma cell lines; nonuniform reassociation of human lymphoblastoid cell DNA repair replicated following methyl methane sulfonate treatment; and preliminary DNA single-strand breakage studies in the L5178Y cell line

  12. Binucleate cell formation correlates to loss of colony-forming ability in X-irradiated cultured mammalian cells

    International Nuclear Information System (INIS)

    Sasaki, H.; Yoshinaga, H.; Kura, S.

    1986-01-01

    The relationship between binucleate cell formation and the loss of colony-forming ability was examined in several cultured mammalian cell lines irradiated with X rays. The maximum fraction of binucleate cells after X irradiation increased dose-dependently within the range in which reproductive cell death might predominate over interphase cell death. When the logarithm of percentage survival was plotted against the percentage binucleate cells, a similar correlation was found for all cell lines tested, with the exception of mouse leukemia L5178Y cells, the most radiosensitive cells used. These observations suggest that the fraction of binucleate cells in the cell population can serve as a measure of cellular radiation damage

  13. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  14. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  15. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  16. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  17. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    International Nuclear Information System (INIS)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-01-01

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  18. The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination

    DEFF Research Database (Denmark)

    Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro

    2011-01-01

    with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES...

  19. A validated system for ligation-free USER™ -based assembly of expression vectors for mammalian cell engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram

    The development in the field of mammalian cell factories require fast and high-throughput methods, this means a high need for simpler and more efficient cloning techniques. For optimization of protein expression by genetic engineering and for allowing metabolic engineering in mammalian cells, a new...

  20. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  1. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Recent topics on the effect of high LET radiation on microorganisms and cultured mammalian cells

    International Nuclear Information System (INIS)

    Takahashi, Tan; Nakano, Kazushiro; Yatagai, Fumio; Kaneko, Ichiro; Kosaka, Toshifumi; Kasai, Kiyomi.

    1989-01-01

    Interpretation of inactivation cross sections of E. coli K-12 JC 1553 and AB 1157 by track structure of heavy ions and recent topics on the effect of heavy ions on mammalian cells are described. Calculation of the dose around the trajectory of an ion has also been made and the radial dose distribution has been compared with a recent experiment. (author)

  3. Structural and functional characterization of the conserved salt bridge in mammalian paneth cell alpha-defensins

    DEFF Research Database (Denmark)

    Rosengren, K Johan; Daly, Norelle L; Fornander, Liselotte M

    2006-01-01

    alpha-Defensins are mediators of mammalian innate immunity, and knowledge of their structure-function relationships is essential for understanding their mechanisms of action. We report here the NMR solution structures of the mouse Paneth cell alpha-defensin cryptdin-4 (Crp4) and a mutant (E15D)-C...

  4. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  5. Isolation and partial characterisation of a mammalian cell mutant hypersensitive to topoisomerase II inhibitors and X-rays

    International Nuclear Information System (INIS)

    Davies, S.M.; Davies, S.L.; Hickson, I.D.; Hall, A.G.

    1990-01-01

    The authors have isolated, following one-step mutagenesis, a Chinese hamster ovary cell mutant hypersensitive to the intercalating agent, adriamycin. This agent exerts at least part of its cytotoxic action via inhibition of the nuclear enzyme, topoisomerase II. The mutant, designated ADR-3, showed hypersensitivity to all classes of topoisomerase II inhibitors, inlcuding actinomycin D, amsacrine (m-AMSA), etoposide (VP16) and mitoxantrone. ADR-3 cells also showed cross-sensitivity to ionizing radiation, but not no UV light. Topoisomerase II activity was elevated to a small but significant degree in ADR-3 cells, and this was reflected in a 1.5-fold higher level of topoisomerase II protein in ADR-3 than in CHO-K1 cells, as judged by Western blotting. ADR-3 cells were hypersensitive to cumene hydroperoxide but cross-resistant to hydrogen peroxide, suggesting possible abnormality in the detoxification of peroxides by glutathione peroxidase or catalase. Glutathione peroxidase activity against hydroperoxide was elevated to a small but significant extent in mutant cells. Catalase levels were not significantly different in ADR-3 and CHO-K1 cells. ADR-3 cells were recessive in hybrids with parental CHO-K1 cells with respect to sensitivity to topoisomerase II inhibitors and X-rays, and represent a different genetic complementation group from the previously reported adriamycin-sensitive mutant, ADR-1. (author). 34 refs.; 5 figs.; 3 tabs

  6. Golgi structure formation, function, and post-translational modifications in mammalian cells.

    Science.gov (United States)

    Huang, Shijiao; Wang, Yanzhuang

    2017-01-01

    The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.

  7. Cell thickness of UV absorption by the cell: relation to UV action spectrum shift in mammalian cells in culture

    International Nuclear Information System (INIS)

    Sakharov, V.H.; Voronkova, L.N.; Blokhin, A.V.

    1985-01-01

    By means of reconstruction of series half - thin transverse sections the three - dimensional morphometry of SPEV cells for a series of their specific states in culture is performed: for exponential growth in a monolayer, in a merged monolayer, in the mitosis phase, for giant cells and suspension cells. In the monolayer the cell thickness in its central part depended mainly on the nucleus thickness and in average changed but slightly despite a wide range of changes in volumes of nuclei and cells and their density in culture. The cell thickness has noticeably increased in mitosis. For the above states of cells UV radiation absorption spectra are determined. It is shown that a certain shift of action spectrus of death of mammalian cells as compared with that for bacterial cell can be a seguence of selfshielding and not differences in the nature of active chromophores

  8. Use of 2-color flow cytometry to assess radiation induced geotoxic damage on CHO-KI cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luma Ramirez de; Bonfim, Leticia; Vieira, Daniel Perez, E-mail: lrcarvalho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The micronucleus assay is an important technique used to evaluate genotoxic damage of chemical or physical agents (as ionizing radiations) on cells, based on quantification of cells bearing micronuclei, which are fragments derived from damage (breakage) of the DNA. Currently, this technique was updated to an automated approach that relies on plasma membrane dissolution to analyze fluorescent dye-labelled nuclei and micronuclei by flow cytometry. Cell suspensions were irradiated in PBS by a {sup 60}Co source in doses between 0 and 16Gy, and incubated by 48h. Cell membranes were lysed in the presence of SYTOX Green and EMA dyes, so EMA-stained nuclei could be discriminated as from dead cells, and nuclei and micronuclei could be quantified. Amounts of micronuclei (percent of events) in the samples, were found to be proportional to radiation doses, and could be fitted to a linear-quadratic model (R² = 0.993). Only higher doses (8 and 16Gy) and positive control could induce relevant increases in micronucleus amounts. The incorporation EMA showed an increase in irradiated cells. Mid to high doses (4, 8 and 16Gy) induced reduction of cell proliferation. Experiments showed the suitability of the technique to replace traditional microscopy analysis in evaluation of the effects of ionizing radiations on cells, with possibility to use in biological dosimetry. (author)

  9. Genomic footprinting in mammalian cells with ultraviolet light

    International Nuclear Information System (INIS)

    Becker, M.M.; Wang, Z.; Grossmann, G.; Becherer, K.A.

    1989-01-01

    A simple and accurate genomic primer extension method has been developed to detect ultraviolet footprinting patterns of regulatory protein-DNA interactions in mammalian genomic DNA. The technique can also detect footprinting or sequencing patterns introduced into genomic DNA by other methods. Purified genomic DNA, containing either damaged bases or strand breaks introduced by footprinting or sequencing reactions, is first cut with a convenient restriction enzyme to reduce its molecular weight. A highly radioactive single-stranded DNA primer that is complementary to a region of genomic DNA whose sequence or footprint one wishes to examine is then mixed with 50 micrograms of restriction enzyme-cut genomic DNA. The primer is approximately 100 bases long and contains 85 radioactive phosphates, each of specific activity 3000 Ci/mmol (1 Ci = 37 GBq). A simple and fast method for preparing such primers is described. Following brief heat denaturation at 100 degrees C, the solution of genomic DNA and primer is cooled to 74 degrees C and a second solution containing Taq polymerase (Thermus aquaticus DNA polymerase) and the four deoxynucleotide triphosphates is added to initiate primer extension of genomic DNA. Taq polymerase extends genomic hybridized primer until its polymerization reaction is terminated either by a damaged base or strand break in genomic DNA or by the addition of dideoxynucleotide triphosphates in the polymerization reaction. The concurrent primer hybridization-extension reaction is terminated after 5 hr and unhybridized primer is digested away by mung bean nuclease. Primer-extended genomic DNA is then denatured and electrophoresed on a polyacrylamide sequencing gel, and radioactive primer extension products are revealed by autoradiography

  10. Premature chromosome condensation following x irradiation of mammalian cells: expression time and dose-response

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.

    1979-01-01

    Premature chromosome condensation (PCC) in Chinese hamster ovary (CHO) cells following exposure to 300-kVp x rays was first detected in the mitosis that followed the second postirradiation S phase. Thus, cells irradiated in G1 first expressed PCC at the second postirradiation mitosis while cells irradiated in G2 did not express PCC until the third postirradiation mitosis. Cells irradiated in the S phase expressed PCC at the second postirradiation mitosis with a frequency that was related to the position of the cells in the S phase at the time of exposure, cells in the first half of the S phase (at the time of exposure) showing a higher frequency than cells positioned in the second half. Thus, DNA replication during the first postirradiation S phase may be involved in the processing of lesions that eventually give rise to PCC. For cells in G1 at the time of exposure, the D/sub o/ for PCC expression at the second postirradiation mitosis was around 825 rad, indicating that PCC may play only a minor role in x-ray-induced cell killing. Autoradiographic analysis indicated approximately 50% of the PCC patches scored were replicating DNA at the time condensation was attempted. Daughter cells derived from such cells would suffer loss of genetic material

  11. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    Science.gov (United States)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  12. Plasticity within stem cell hierarchies in mammalian epithelia

    NARCIS (Netherlands)

    Tetteh, Paul W; Farin, Henner F; Clevers, Hans

    Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur

  13. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  14. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  15. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  16. Radiosensitive xrs-5 and parental CHO cells show identical DNA neutral filter elution dose-response: implications for a relationship between cell radiosensitivity and induction of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Iliakis, George; Okayasu, Ryuichi; Seaner, Robert

    1988-01-01

    The purpose of this work was to investigate a possible correlation between DNA elution dose-response and cell radiosensitivity. For this purpose neutral (pH 9.6) DNA filter elution dose-response curves were measured with radiosensitive xrs-5 and the parental Chinese hamster ovary (CHO) cells in the logarithmic and plateau phase of growth. No difference was observed between the two cell types in the DNA elution dose-response curves either in logarithmic or plateau phase, despite the dramatic differences in cell radiosensitivity. This observation indicates that the shape of the DNA elution dose-response curve and the shape of the cell survival curve are not causally related. It is proposed that the shoulder observed in the DNA elution dose-response curve reflects either partial release of DNA from chromatin, or cell cycle-specific alterations in the physicochemical properties of the DNA. (author)

  17. Assessment of cytotoxic and cytogenetic effects of a 1,2,5-thiadiazole derivative on CHO-K1 cells. Its application as corrosion inhibitor

    International Nuclear Information System (INIS)

    Grillo, C.A.; Mirifico, M.V.; Morales, M.L.; Reigosa, M.A.; Mele, M. Fernandez Lorenzo de

    2009-01-01

    This work focuses on the possible use of phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxide (TDZ) as a harmless corrosion inhibitor. TDZ range-dose providing minimum adverse effects to the environment and human health, with satisfactory corrosion-inhibiting properties was evaluated. Cytotoxicity and genotoxicity of TDZ at 0.57-12.50 μM concentration range were tested by neutral red, chromosomal aberrations, mitotic index, and colony formation assays. Results showed a significant increase of chromatid-type aberrations for the highest concentration of TDZ assayed (12.50 μM). Additionally, a reduction in the proliferative rate for lower concentrations was detected by the MI assay. We concluded that TDZ should be used at concentrations lower than 1.16 μM. Corrosion assays performed showed good inhibition effect (ca. 50%) at low (0.65 μM) TDZ concentration. Consequently, our results indicated that TDZ induced a time- and dose-dependent genotoxic and cytotoxic response on CHO-K1 cells. Short assays should be complemented with long exposure tests to simulate chronic contact with TDZ since lower threshold levels may be found for shorter exposures and a wrong safety range could be determined.

  18. InXy and SeXy, compact heterologous reporter proteins for mammalian cells.

    Science.gov (United States)

    Fluri, David A; Kelm, Jens M; Lesage, Guillaume; Baba, Marie Daoud-El; Fussenegger, Martin

    2007-10-15

    Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream

  19. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Tuca, Silviu-Sorin; Gramse, Georg; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Hinterdorfer, Peter; Badino, Giorgio; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry

    2016-01-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S _1_1 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y _c_e_l_l = 185 μS + j285 μS and Y _b_a_c_t_e_r_i_a = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance–capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement. (paper)

  20. Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival.

    LENUS (Irish Health Repository)

    Creagh, Emma M

    2009-01-01

    Members of the caspase family of cysteine proteases coordinate cell death through restricted proteolysis of diverse protein substrates and play a conserved role in apoptosis from nematodes to man. However, while numerous substrates for the mammalian cell death-associated caspases have now been described, few caspase substrates have been identified in other organisms. Here, we have utilized a proteomics-based approach to identify proteins that are cleaved by caspases during apoptosis in Drosophila D-Mel2 cells, a subline of the Schneider S2 cell line. This approach identified multiple novel substrates for the fly caspases and revealed that bicaudal\\/betaNAC is a conserved substrate for Drosophila and mammalian caspases. RNAi-mediated silencing of bicaudal expression in Drosophila D-Mel2 cells resulted in a block to proliferation, followed by spontaneous apoptosis. Similarly, silencing of expression of the mammalian bicaudal homologue, betaNAC, in HeLa, HEK293T, MCF-7 and MRC5 cells also resulted in spontaneous apoptosis. These data suggest that bicaudal\\/betaNAC is essential for cell survival and is a conserved target of caspases from flies to man.

  1. UV-enhanced reactivation in mammalian cells: increase by caffeine

    International Nuclear Information System (INIS)

    Lytle, C.D.; Iacangelo, A.L.; Lin, C.H.; Goddard, J.G.

    1981-01-01

    It has been reported that caffeine decreases UV-enhanced reactivation of UV-irradiated Herpes simplex virus in CV-l monkey kidney cells. That occurred when there was no delay between cell irradiation and virus infection. In the present study, virus infection was delayed following cell irradiation to allow an 'induction' period separate from the 'expression' period which occurs during the virus infection. Thus, the effects of caffeine on 'induction' and 'expression' could be determined separately. Caffeine increased the expression of UV-enhanced reactivation, while causing a small decrease in the 'induction' of enhanced reactivation. (author)

  2. Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.

    Science.gov (United States)

    Shiratori, Masaru; Kiss, Robert

    2017-11-14

    Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.

  3. Inhibition of topoisomerase IIα activity in CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    International Nuclear Information System (INIS)

    Grdina, D.J.

    1993-06-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector and antimutagenic agent when it is administered 30 min prior to radiation exposure to Chinese hamster ovary Kl cells at a concentration of 4 mM. Under these exposure conditions, topoisomerase (topo) I and II activities and associated protein contents were measured in the K1 cell line using the DNA relaxation assay, the P4 unknotting assay, and immunoblotting, respectively. WR-1065 was ineffective in modifying topo I activity, but it did reduce topo IIa activity by an average of 50 percent. The magnitude of topo IIa protein content, however, was not affected by these exposure conditions. Cell cycle effects were monitored by the method of flow cytometry. Exposure of cells to 4 mM WR-1065 for a period of up to 6 h resulted in a buildup of cells in the G2 compartment. However, in contrast to topo II inhibitors used in chemotherapy, WR-1065 is an effective radioprotector agent capable of protecting against both radiation-induced cell lethality and mutagenesis. One of several mechanisms of radiation protection attributed to aminothiol compounds such as WR-1065 has been their ability to affect endogenous enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results are consistent with such a proposed mechanism and demonstrate in particular a modifying effect by 2-[(aminopropyl)amino]ethanethiol on type II topoisomerase, which is involved in DNA synthesis

  4. Inhibition of topoisomerase II{alpha} activity in CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    Energy Technology Data Exchange (ETDEWEB)

    Grdina, D.J. [Argonne National Lab., IL (United States)]|[Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Constantinou, A. [Illinois Univ., Chicago, IL (United States). Specialized Cancer Center; Shigematsu, N.; Murley, J.S. [Argonne National Lab., IL (United States)

    1993-06-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector and antimutagenic agent when it is administered 30 min prior to radiation exposure to Chinese hamster ovary Kl cells at a concentration of 4 mM. Under these exposure conditions, topoisomerase (topo) I and II activities and associated protein contents were measured in the K1 cell line using the DNA relaxation assay, the P4 unknotting assay, and immunoblotting, respectively. WR-1065 was ineffective in modifying topo I activity, but it did reduce topo IIa activity by an average of 50 percent. The magnitude of topo IIa protein content, however, was not affected by these exposure conditions. Cell cycle effects were monitored by the method of flow cytometry. Exposure of cells to 4 mM WR-1065 for a period of up to 6 h resulted in a buildup of cells in the G2 compartment. However, in contrast to topo II inhibitors used in chemotherapy, WR-1065 is an effective radioprotector agent capable of protecting against both radiation-induced cell lethality and mutagenesis. One of several mechanisms of radiation protection attributed to aminothiol compounds such as WR-1065 has been their ability to affect endogenous enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results are consistent with such a proposed mechanism and demonstrate in particular a modifying effect by 2-[(aminopropyl)amino]ethanethiol on type II topoisomerase, which is involved in DNA synthesis.

  5. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  6. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: Characteristics of point mutations by sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)], E-mail: kinashi@rri.kyoto-u.ac.jp; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    To investigate bystander mutagenic effects induced by alpha particles during boron neutron capture therapy (BNCT), we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, with cells that did not contain the boron compound. BSH-containing cells were irradiated with {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were only affected by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was examined in Chinese hamster ovary (CHO) cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the surviving cell population. Using multiplex polymerase chain reactions (PCRs), molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were lower than those resulting from the {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction or the neutron beam from the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The types of point mutations induced by the BNCT bystander effect were analyzed by cloning and sequencing methods. These mutations were comprised of 65.5% base substitutions, 27.5% deletions, and 7.0% insertions. Sequence analysis of base substitutions showed that transversions and transitions occurred in 64.7% and 35.3% of cases, respectively. G:C{yields}T:A transversion induced by 8-oxo-guanine in DNA occurred in 5.9% of base substitution mutants in the BNCT bystander group. The characteristic mutations seen in this group, induced by BNCT {alpha} particles

  7. Expression of human FcgammaRIIIa as a GPI-linked molecule on CHO cells to enable measurement of human IgG binding.

    Science.gov (United States)

    Armour, Kathryn L; Smith, Cheryl S; Clark, Michael R

    2010-03-31

    The efficacy of a therapeutic IgG molecule may be as dependent on the optimisation of the constant region to suit its intended indication as on the selection of its variable regions. A crucial effector function to be maximised or minimised is antibody-dependent cell-mediated cytotoxicity by natural killer cells. Traditional assays of ADCC activity suffer from considerable inter-donor and intra-donor variability, which makes the measurement of antibody binding to human FcgammaRIIIa, the key receptor for ADCC, an attractive alternative method of assessment. Here, we describe the development of cell lines and assays for this purpose. The transmembrane receptor, FcgammaRIIIa, requires co-expression with signal transducing subunits to prevent its degradation, unlike the homologous receptor FcgammaRIIIb that is expressed as a GPI-anchored molecule. Therefore, to simplify the production of cell lines as reliable assay components, we expressed FcgammaRIIIa as a GPI-anchored molecule. Separate, stable CHO cell lines that express either the 158F or the higher-affinity 158V allotype of FcgammaRIIIa were isolated using fluorescence-activated cell sorting. The identities of the expressed receptors were confirmed using a panel of monoclonal antibodies that distinguish between subclasses and allotypes of FcgammaRIII and the cell lines were shown to have slightly higher levels of receptor than FcgammaRIII-positive peripheral blood mononuclear cells. Because the affinity of FcgammaRIIIa for IgG is intermediate amongst the receptors that bind IgG, we were able to use these cell lines to develop flow cytometric assays to measure the binding of both complexed and monomeric immunoglobulin. Thus, by choosing the appropriate method, weakly- or strongly-binding IgG can be efficiently compared. We have quantified the difference in the binding of wildtype IgG1 and IgG3 molecules to the two functional allotypes of the receptor and report that the FcgammaRIIIa-158V-antibody interaction is 3

  8. The Effects of Ionizing Radiation on Mammalian Cells.

    Science.gov (United States)

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  9. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    OpenAIRE

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2005-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyba...

  10. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.

    Science.gov (United States)

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J; Hofmann, Marie-Claude

    2005-12-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO(3)) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro.

  11. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    Science.gov (United States)

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  12. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    Science.gov (United States)

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  13. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells.

    Science.gov (United States)

    Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick

    2008-11-01

    The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further

  14. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    Science.gov (United States)

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of tributyltin on mammalian endothelial cell integrity.

    Science.gov (United States)

    Botelho, G; Bernardini, C; Zannoni, A; Ventrella, V; Bacci, M L; Forni, M

    2015-01-01

    Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mechanisms of radiation-induced changes in mammalian cell properties

    International Nuclear Information System (INIS)

    Elkind, M.M.; Han, A.; Ben-Hur, E.; Hill, C.K.; Myers, C.; Suzuki, F.; Utsumi, H.; Liu, C.M.; Theriot, L.D.

    1981-01-01

    The primary focus of this research is to determine the presence or absence of repair processes relative to linear or so-called single-hit dose effects. Experimental techniques and protocols are developed to test if repair processes contribute to the linear components of the induction of cell killing, mutation, and transformation and, if the slopes of such linear components are dependent upon dose rate. Principal methods are those cell culture techniques for assessing survival, altered phenotype, and transformation. Chinese hamster cells incubated in medium containing 90% D 2 O are inhibited from repairing potentially lethal x-ray and neutron damage (fisson-spectrum neutrons). The sector of damage whose repair is affected by D 2 O medium partially overlaps with that affected by anisotonic buffer. As in the instance of anisotonic buffer, enhanced cell killing due to D 2 O medium does not prevent cells from repairing sublethal damage when incubation in normal medium is resumed. Usng lt of human risk associated with nuclearing collective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  17. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    Science.gov (United States)

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  18. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    . Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  19. Radiosensitizers and the oxygen effects in mammalian cells

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Steele, J.J.

    1979-01-01

    The survival curves for Chinese Hamster cells irradiated under various oxygen tensions have been determined. The variation in OER with oxygen concentration shows two distinct components. Between 1.4 and 7.0 μM the OER is constant with a value of 1.9. Experiments with nitroaromatic radiosensitizers in combination with low concentrations of oxygen show that they can all mimic the 'low concentration' oxygen effect. Of the compounds tested only misonidazole can apparently mimic the 'high concentration' oxygen effect although the full OER cannot be obtained with the authors cell line because of toxicity by the sensitizer. (Auth.)

  20. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Science.gov (United States)

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  1. Enhanced induction of SCEs in hypoxic mammalian cells by ionizing radiation

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Meyn, R.E.

    1985-01-01

    Ionizing radiation is, in general, a poor inducer of sister chromatoid exchanges (SCEs). However, the authors previously observed an increase in X-ray induced DNA-protein crosslinks in hypoxic cells, as compared to aerated cells, suggesting that in the absence of oxygen, X rays induce a qualitatively different DNA lesion. Therefore, they examined the effect of X-rays on SCE induction under hypoxic conditions. CHO cells were rendered hypoxic by incubation at 37 0 for 3 hr. in evacuated glass ampules and irradiated with graded doses of X-rays. After irradiation, cells were incubated in medium containing BrdUrd and the SCE assay performed. At each dose tested (0-900 rads) the number of SCEs induced by X-rays in hypoxic cells was approximately 2.5 fold the number induced in aerated cells. When a 16-hr. repair-incubation interval was allowed between irradiation and BrdUrd labeling, the number of SCEs returned to background levels. In further experiments, repair-deficient cells, incapable of completely removing crosslinks from their DNA, did not completely restore SCE levels to background within the repair period. These data provide further evidence suggesting that hypoxic cells respond differently to radiation in a qualitative sense, in addition to the well known quantitative sense

  2. Modeling population dynamics of mitochondria in mammalian cells

    Science.gov (United States)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  3. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Sabanero, M.; Flores V, L. L.; Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M.; Castruita D, J. P.; Barbosa S, G.

    2015-10-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H 2 O 2 /1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  4. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  5. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  6. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    International Nuclear Information System (INIS)

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-01-01

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  7. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  8. Chromium cytotoxic effects on mammalian cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Levis, A G; Buttignol, M; Vettorato, L

    1975-01-01

    Chromium compounds, which have several industrial uses, are reported to be carcinogenic. The author, have, therefore, undertaken the study of K/sub 2/Cr/sub 2/O/sub 7/ effects on a cell line of Hamster fibroblasts (BHK), using specific radioactive precursors and determining the acid soluble pool, the RNA, DNA, and protein contents and specific activities. The K/sub 2/Cr/sub 2/O/sub 7/ induced changes in nucleic acid and protein specific activities are related to two different, dissociable effects: (1) a sudden inhibition of macromolecular syntheses, followed by a recovery period, and (2) an immediate, drastic stimulation of nucleoside transport into the cell, whereas amino acid transport is reduced. The effects on precursor permeability are not related to non specific changes of the plasma membrane, but they seem to be due to specific simulations and inhibitions of nucleoside and amino acid transport mechanisms. A human cell line (HEp) has been also tested, which is more sensitive to K/sup 2/Cr/sub 2/O/sub 7/ action than the BHK line. DNA synthesis as well as survival in single cell plating conditions show the same difference in sensitivity to K/sub 2/Cr/sub 2/O/sub 7/. Thus, the loss of indefinite cell division ability could be due to the blockage of DNA replication. It is suggested that the main chromium cytotoxic effect lies in a multiple attack to the DNA molecule, which gradually alters the DNA tertiary structure resulting in the blockage of replication capacity. This blockage may be reversible owing to the breakage of chromium-DNA bonds and to the induced instability of phosphodiester internucleotide bonds.

  9. Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System.

    Science.gov (United States)

    Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram

    2018-01-01

    In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  11. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    Science.gov (United States)

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  12. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    Science.gov (United States)

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  13. Influence of ornithine deca