WorldWideScience

Sample records for chloroplasts optimizes electron

  1. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  2. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  3. An optimized chloroplast DNA extraction protocol for grasses (Poaceae proves suitable for whole plastid genome sequencing and SNP detection.

    Directory of Open Access Journals (Sweden)

    Kerstin Diekmann

    Full Text Available BACKGROUND: Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. CONCLUSIONS/SIGNIFICANCE: The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus x giganteus, Panicoideae. The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.

  4. Structure of the ATP synthase from chloroplasts studied by electron microscopy and image processing

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van; Gräber, Peter

    1988-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been investigated by electron microscopy of negatively stained samples. The staining conditions, which are generally critical for such small objects as CF1, could be improved by mixing CF1 samples with a much large

  5. Structure of the ATP synthase from chloroplasts studied by electron microscopy. Localization of the small subunits

    NARCIS (Netherlands)

    Boekema, Egbert J.; Xiao, Jianping; McCarty, Richard E.

    1990-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been further investigated by electron microscopy and image analysis of negatively stained samples. The projections of three different types of CF1 were analyzed: the holoenzyme with five different subunits and two

  6. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    OpenAIRE

    Igamberdiev, Abir U.; Kleczkowski, Leszek A.

    2015-01-01

    The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, ...

  7. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  8. Digestive system of the sacoglossan Plakobranchus ocellatus (Gastropoda: Opisthobranchia): light- and electron-microscopic observations with remarks on chloroplast retention.

    Science.gov (United States)

    Hirose, Euichi

    2005-08-01

    The sacoglossan Plakobranchus ocellatus feeds by sucking the cytoplasmic contents from algae and retains intact algal chloroplasts within the cells of the digestive gland. Morphology of the entire digestive system of this species was firstly described by means of a combination of histology and electron microscopy (both SEM and TEM). The short alimentary canal is confined to the head, and the anus opens at the anterior right corner of the pericardial swelling, as is the case in many non-shelled sacoglossans. The alimentary canal of the specimens examined rarely contained ingesta, suggesting that the retained chloroplasts provide sufficient nourishment to the sacoglossan hosts and that sea slugs with empty stomachs survive well in the field. The digestive gland, with the retained chloroplasts, branches from the stomach and is sparsely distributed throughout the body, including the head region, but is aggregated mainly in the dorsal lamellae. Chloroplasts were occasionally found in the epithelial cells in the transitional region from the stomach wall to the digestive gland, which may be a site at which chloroplasts are incorporated into the animal cells by endocytosis. Numerous microvilli filling the lumen of the digestive gland suggest that molecules are actively transferred within the gland. The sea slug thus apparently provides a favorable environment to support the long-term retention and function of chloroplasts. PMID:16141704

  9. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    Science.gov (United States)

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  10. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    Science.gov (United States)

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  11. A Novel Nucleus-encoded Chloroplast Protein, PIFI, Is Involved in NAD(P)H Dehydrogenase Complex Mediated Chlororespiratory and Possibly Cyclic Electron Transport in Arabidopsis

    Science.gov (United States)

    A transient rise in chlorophyll fluorescence after a light-to-dark transition reflects non-photochemical reduction of the plastoquinone pool. This process is dependent on the activity of the chloroplast NAD(P)H-dehydrogease complex (NDH) which mediates electron flow from stromal reductants to the pl...

  12. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    Science.gov (United States)

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.; Stern, David B.

    2016-01-01

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators. PMID:27402360

  13. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    Directory of Open Access Journals (Sweden)

    Benoît Castandet

    2016-09-01

    Full Text Available Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.

  14. Ultrafast spectroscopy studies on the mechanism of electron transfer and energy conversion in the isolated pseudo ginseng, water hyacinth and spinach chloroplasts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The spectroscopy characteristics and the fluorescence lifetime for the chloroplasts isolated from the pseudo ginseng, water hyacinth and spinach plant leaves have been studied by absorption spectra, low temperature steady-state fluorescence spectroscopy and single photon counting measurement under the same conditions and by the same methods. The similarity of the absorption spectra for the chloroplasts at room temperature suggests that different plants can efficiently absorb light of the same wavelength. The fluorescence decays in PS II measured at the natural QA state for the chloroplasts have been fitted by a three-exponential kinetic model. The three fluorescence lifetimes are 30, 274 and 805 ps for the pseudo ginseng chloroplast; 138, 521 and 1494 ps for the water hyacinth chloroplast; 197, 465 and 1459 ps for the spinach chloroplast, respectively. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PS II and the middle lifetime component to the delay fluorescence of recombination of and Pheo-. The excitation energy conversion efficiency (η) in PS II RC is defined and calculated on the basis of the 20 ps electron transfer time constant model, 60%, 87% and 91% for the pseudo ginseng, water hyacinth and spinach chloroplasts, respectively. This interesting result is in unconformity with what is assumed to be 100% efficiency in PS II RC. Our result in this work stands in line with the 20 ps electron transfer time constant in PS II rather sound and the water hyacinth plant grows slower than the spinach plant does as envisaged on the efficiency. But, our results predict that those plants can perform highly efficient transfer of photo-excitation energy from the light-harvesting pigment system to the reaction center (closely to 100%). The conclusion contained in this paper reveals the plant growth characteristics expressed in the primary processes of

  15. Electron transport between plastoquinone and chlorophyll Ai in chloroplasts. II. Reaction kinetics and the function of plastocyanin in situ.

    Science.gov (United States)

    Haehnel, W

    1977-03-11

    The light-induced reaction kinetics of electron carriers between the two light reactions were studied in spinach chloroplasts. 1. The difference spectrum of the absorbance changes of plastocyanin in situ was separated from superimposing absorbance changes by flash titration described in the preceding paper (Haehnel, W. (1973) Biochim. Biophys. Acta 305, 618-631). Relative amounts of 2 : 1 electron equivalents were observed for plastocyanin and chlorophyll a1 (P-700). 2. A balance of the electron equivalents released from reduced plastoquinone and simultaneously accepted by oxidized plastocyanin, cytochrome f and chlorophyll a1 indicated a quantitative electron transfer. Additional electron carriers between plastoquinone and light reaction I can be excluded with an accuracy of about +/-0.3 electron equivalents per light reaction II. 3. The time course of the absorbance changes of plastocyanin was measured at 584 nm with negligible interference with other absorbance changes. The reduction kinetics show an initial lag followed by a rise with a half time of about 20 ms. The redox states of plastocyanin and chlorophyll a1 during this reduction via the rate-limiting step between the light reactions and during oxidation by weak far-red light suggest a true equilibrium constant of about 20. 4. The simultaneous oxidation and reduction kinetics of plastoquinone, cytochrome f, plastocyanin and chlorophyll a1 induced by two successive groups of saturating flashes after far-red illumination were measured. The oxidation kinetics of plastocyanin and the simultaneous reduction kinetics of chlorophyll a1 after the single flashes indicate a quantitative electron transfer with a half time of 200 mus. 5. The fast reduction of chlorophyll a1 by plastocyanin showed no effect of the inhibitors 3-(3',4'-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone or of reduced phenazine methosulfate. But it was completed inhibited after KCN incubation. 6. The

  16. Isolation of Chloroplasts from Plant Protoplasts.

    Science.gov (United States)

    Lung, Shiu-Cheung; Smith, Matthew D; Chuong, Simon D X

    2015-10-01

    Chloroplasts can be isolated from higher plants directly following homogenization; however, the resulting yield, purity, and intactness are often low, necessitating a large amount of starting material. This protocol is optimized to produce a high yield of pure chloroplasts from isolated Arabidopsis protoplasts. The two-part method is a simple, scaled-down, and low-cost procedure that readily provides healthy mesophyll protoplasts, which are then ruptured to release intact chloroplasts. Chloroplasts isolated using this method are competent for use in biochemical, cellular, and molecular analyses.

  17. Effects of 4f Electron Characteristics and Alternation Valence of Rare Earths on Photosynthesis: Regulating Distribution of Energy and Activities of Spinach Chloroplast

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaoqing; Su Mingyu; Liu Chao; Zhang Yi; Si Wenhui; Hong Fashui

    2007-01-01

    Chloroplasts were isolated from spinach treated with LaCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, energy transfer from LHCⅡ to PSⅡ, excitation energy distribution from PSⅠto PSⅡ, and fluorescence quantum yield around 680 nm. Compared with Ce treatment, Nd treatment resulted in relatively lower enhancement in these physiological indices, as Nd did not have alternation valence. La treatment presented the lowest enhancement, as La did not have either 4f electron or alternation valence. The increase in activities of whole chain electron transport, PSⅡ DCPIP photoreduction, and oxy gen evolution of chloroplasts was of the following order: Ce>Nd>La>control. However, the photoreduction activities of spinach PSⅠ almost did not change with La, Ce, or Nd treatments. The results suggested that 4f electron characteristics and alternation valence of rare earths had a close relationship with photosynthesis improvement.

  18. On the structure of the spinach chloroplast

    NARCIS (Netherlands)

    Thomas, J.B.; Bustraan, M.; Paris, C.H.

    1952-01-01

    The structure of spinach chloroplasts was investigated with the aid of the electron microscope. It has been established that: 1. 1. the outer membrane of the chloroplasts is composed of both proteins and lipoids. 2. 2. the stroma is also built up by these components. 3. 3. within the stroma memb

  19. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Piippo Mirva

    2010-03-01

    Full Text Available Abstract Background DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920, AtJ11 (At4 g36040 and AtJ20 (At4 g13830, was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed. Results Knockout of one of these proteins caused a series of events including a decrease in photosynthetic efficiency, destabilization of PSII complexes and loss of control for balancing the redox reactions in chloroplasts. Data obtained with DNA microarray analysis demonstrated that the lack of one of these DnaJ proteins triggers a global stress response and therefore confers the plants greater tolerance to oxidative stress induced by high light or methyl viologen treatments. Expression of a set of genes encoding enzymes that detoxify reactive oxygen species (ROS as well as a number of stress-related transcription factors behaved in the mutants at growth light similarly to that when wild-type (WT plants were transferred to high light. Also a set of genes related to redox regulation were upregulated in the mutants. On the other hand, although the three DnaJ proteins reside in chloroplasts, the expression of most genes encoding thylakoid membrane proteins was not changed in the mutants. Conclusion It is proposed that the tolerance of the DnaJ protein knockout plants to oxidative stress occurs at the expense of the flexibility of photosynthetic reactions. Despite the fact that the effects of the individual protein knockout on the response of plants to high light treatment are quite similar

  20. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts.

    Science.gov (United States)

    Nielsen, Agnieszka Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos; Wlodarczyk, Artur Jacek; Gnanasekaran, Thiyagarajan; Perestrello Ramos H de Jesus, Maria; King, Brian Christopher; Bakowski, Kamil; Jensen, Poul Erik

    2016-07-01

    Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts. PMID:27005523

  1. Nitrogen control of chloroplast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  2. Penumbra modifier for optimal electron fields combination

    International Nuclear Information System (INIS)

    Abutment of two or more electron fields to irradiate extended areas may lead to significant dose inhomogeneities in the junction region. This study describes the geometric and dosimetric characteristics of a device developed to modify the penumbra of an electron beam and therapy improve of dose uniformity in the over lap region when fields are abutted. The device is lipowitz metal block placed on top of the insertion plate of the electron applicator and positioned to stop part of he electron beam on side of field abutment. The air-scattered electrons beyond the block increase the penumbra width from about 1,4 to 2-7-43.4 cm at SSD 100 cm, the modified penumbra is broad and almost linear at all depths for the 6.8, and 15 MeV electron beams used. Film dosimetry was used to obtain profiles, iso-dose distributions, single modified beams and matched fields of 6, 10, and 15 MeV. Wellhofer dosimetry system was used to obtain beam profiles and iso-dose distributions of single modified beams needed for CADPLAN treatment planning system, which used to optimize and compare the skin gap to be used and to quantify the dose uniformity in a junction of the field separation for both modified and non-modified beams. Results are presented for various field configurations without the penumbra modifier; lateral setup error of 2-3 mm may introduce dose variations of 20% or more in the junction region. Similar setup error cause less than 5% dose variations when the penumbra modifier is used to match the field

  3. Techniques for optimizing inerting in electron processors

    International Nuclear Information System (INIS)

    The design of an ''inert gas'' distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NOx which can be transported from the process zone by the product into the work area. Since the tolerable levels for O3 in occupied areas around the processor are 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. The competition between radical loss through de-excitation and that from O2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O2 concentrations in the process zone to determine the tolerable ranges of parameter excursions for production quality control purposes. These techniques are described for an ink coating system on paperboard, where a broad range of process parameters have been studied (D, D radical, O2). It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O2) nitrogen gas for inerting, in combination with lower purity (2-20,000 ppm O2) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators. (author)

  4. 中国野生葡萄叶绿体分离及叶绿体DNA 提取的研究%An Optimized Chloroplast Isolation and Chloroplast DNA Extraction Protocol for Chinese Wild Grapes

    Institute of Scientific and Technical Information of China (English)

    谢海坤; 焦健; 樊秀彩; 张颖; 姜建福; 孙海生; 刘崇怀

    2016-01-01

    Mature leaves collected from Vitis davidii ,V .amurensis ,V .heyneana and V .chunganensis were used for chloroplast isolation and cpDNA extraction in this study .The two methods were the column plant chloroplast DNAout and modified high-salt low-pH method ,and the results were compared with each other .(1) Both methods had separated the chloroplast of Chinese wild grapes ,but the modified high-salt low-pH method obtained higher concentration and less impurity of chloroplast than that of column plant chloroplast DNAout .So the modified high-salt low-pH method was more suitable for chloroplast isolation . (2) The value of OD260/OD280 of cpDNA extracted by the column plant chloroplast DNAout was between 1 .28 and 1 .36 ,and the concentration was between 4 .2 ng・μL -1 and 7 .8 ng・μL -1 ,which did not meet the demand of subsequent chloroplast genome sequencing .In contrast ,the value of OD260/OD280 of cpDNA extracted by the modified high-salt low-pH method was between 1 .84 and 1 .90 and the concentration was between 2 514 .4 ng ・ μL -1 and 4 133 .7 ng・ μL -1 ,so the cpDNA extracted in this way was extremely high-quality and pure .As a result ,the cpDNA extracted by the modified high-salt low-pH method meet the demand of subsequent chloroplast genome sequencing .As a conclusion ,the modified high-salt low-pH method isolated intact chloroplast and extract high-quality cpDNA of Chinese wild grapes simply and quickly .And the cpDNA meet the demand of subsequent chloroplast genome sequencing .It was also a critical step to make further research of chloroplast genomes of V itis L .%以中国野生刺葡萄、山葡萄、桑叶葡萄和东南葡萄的成熟叶片为材料,比较柱式植物叶绿体DNAout试剂盒和改良的高盐-低pH法分离叶绿体及提取cpDNA效果。结果显示:(1)2种方法均分离得到了中国野生葡萄的叶绿体,但与柱式植物叶绿体DNAout试剂盒相比,改良的高盐-低pH法得到的叶绿体浓度高

  5. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function

    Directory of Open Access Journals (Sweden)

    Sandberg Laurence

    2009-04-01

    Full Text Available Abstract Background Transgenic chloroplasts are potential bioreactors for recombinant protein production, especially for achievement of high levels of protein expression and proper folding. Production of therapeutic proteins in leaves provides transgene containment by elimination of reproductive structures. Therefore, in this study, human Insulin like Growth Factor-1 is expressed in transgenic chloroplasts for evaluation of structural identity and function. Results Expression of the synthetic Insulin like Growth Factor 1 gene (IGF-1s, 60% AT was observed in transformed E. coli. However, no native IGF-1 gene (IGF-1n, 41% AT product was detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco chloroplast genome was confirmed after transformation using PCR. Southern blot analysis confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-1s expression levels of 11.3% of total soluble protein (TSP. The IGF-1n plants contained 9.5% TSP as IGF-1n, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity of human IGF-1 in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis acrylamide gel showed the correct amino acid sequence of human IGF-1 and the S. aureus Z-tag. Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast derived IGF-1 even in the presence of the S. aureus Z tag. Conclusion This study demonstrates that the human Insulin like Growth Factor-1 expressed in transgenic chloroplasts is identical to the native

  6. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function

    Science.gov (United States)

    Daniell, Henry; Ruiz, Gricel; Denes, Bela; Sandberg, Laurence; Langridge, William

    2009-01-01

    Background Transgenic chloroplasts are potential bioreactors for recombinant protein production, especially for achievement of high levels of protein expression and proper folding. Production of therapeutic proteins in leaves provides transgene containment by elimination of reproductive structures. Therefore, in this study, human Insulin like Growth Factor-1 is expressed in transgenic chloroplasts for evaluation of structural identity and function. Results Expression of the synthetic Insulin like Growth Factor 1 gene (IGF-1s, 60% AT) was observed in transformed E. coli. However, no native IGF-1 gene (IGF-1n, 41% AT) product was detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco chloroplast genome was confirmed after transformation using PCR. Southern blot analysis confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-1s expression levels of 11.3% of total soluble protein (TSP). The IGF-1n plants contained 9.5% TSP as IGF-1n, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity of human IGF-1 in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis acrylamide gel showed the correct amino acid sequence of human IGF-1 and the S. aureus Z-tag. Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast derived IGF-1 even in the presence of the S. aureus Z tag. Conclusion This study demonstrates that the human Insulin like Growth Factor-1 expressed in transgenic chloroplasts is identical to the native protein and is fully

  7. Electronic Commerce Logistics Network Optimization Based on Swarm Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yabing Jiao

    2013-09-01

    Full Text Available This article establish an efficient electronic commerce logistics operation system to reduce distribution costs and build a logistics network operation model based on around the B2C electronic commerce enterprise logistics network operation system. B2C electronic commerce transactions features in the enterprise network platform. To solve the NP-hard problem this article use hybrid ant colony algorithm, particle swarm algorithm and group swarm intelligence algorithm to get a best solution. According to the intelligent algorithm, design of electronic commerce logistics network optimization system, enter the national 22 electronic commerce logistics network for validation. Through the experiment to verify the optimized logistics cost greatly decreased. This research can help B2C electronic commerce enterprise logistics network to optimize decision-making under the premise of ensuring the interests of consumers and service levels also can be an effective way for enterprises to improve the efficiency of logistics services and reduce operation costs

  8. Optimization Model for Environmental Stress Screening of Electronic Components

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Environmental stress screening (ESS) is a technological process to reduce the costly early field failure ofelectronic components. This paper builds an optimization model for ESS of electronic components to obtain the optimalESS duration. The failure phenomena of ESS are modeled by mix ed distribution, and optimal ESS duration is definedby maximizing life-cycle cost savings under the condition of meeting reliability requirement.

  9. Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.

    Science.gov (United States)

    Bazzaz, M B; Govindjee

    1973-09-01

    Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C(4) plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at

  10. Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II

    NARCIS (Netherlands)

    Vredenberg, W.J.

    2008-01-01

    The fluorescence induction F(t) of dark-adapted chloroplasts has been studied in multi-turnover 1 s light flashes (MTFs). A theoretical expression for the initial fluorescence rise is derived from a set of rate equations that describes the sequence of transfer steps associated with the reduction of

  11. Nitrogen control of chloroplast development: Progress report

    International Nuclear Information System (INIS)

    A manifestation of nitrogen deficiency in vascular plants and algae is chlorosis, indicating that chloroplast biogenesis can be strongly restricted by direct or indirect effects of nitrogen assimilation products. To define the molecular basis of nitrogen responses we are using Chlamydomonas reinhardtii. Depending on the levels of ammonium, steady-state deficiency conditions are established such that the cellular levels of chlorophylls and xanthophylls are depressed. Chloroplasts in nitrogen-deficient cells contain appreciable levels of carbon assimilation enzyme and thylakoids with high electron transport activities. However, the light harvesting complexes are nearly absent and Photosystem I exhibits unusual characteristics. Studies of rates of protein synthesis by in vivo pulse-chase labeling and levels of RNAs encoded by the chloroplast and nuclear genomes have been initiated: the accumulation of transcripts for the nuclear light-harvesting apoproteins is dramatically altered qualitatively and quantitatively; there is no major effect on chloroplast RNAs but, in general, these are inefficiently utilized for protein synthesis until nitrogen is provided to the cultures. Supplying nitrogen results in an almost immediate release of chloroplast mRNAs from a translational arrest but the stimulation of the accumulation of nuclear transcripts for light-harvesting apoproteins does not occur until after a 1-2 hour lag

  12. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  13. Optimization of electron-beam pumped excimer laser

    Science.gov (United States)

    Lowum, T. F.; Swecker, J. L.

    The output energy of an electron-beam pumped xenon flouride laser has been enhanced by optimizing certain electron-gun and gas-mix parameters. The optimized e-gun parameters include anode-cathode spacing, magnetic field strength, and cathode voltage. The optimized laser gas parameters include NF3 concentration, Xe concentration, and total pressure. The shortest anode-cathode spacing (9 cm), the strongest magnetic guide field (1600 Gauss), and the highest cathode voltage (375 kV) gave the highest laser output. The optimum gas concentrations were 0.05 percent NF3, 0.3 percent Xe, with Ne added to bring the total gas pressure to 60 psia. The energy degraded by 2 percent per shot with this gas mix.

  14. Reactive Nitrogen Species-Dependent Effects on Soybean Chloroplasts

    OpenAIRE

    Puntarulo, Susana; Jasid, Sebastián; Simontacchi, Marcela

    2007-01-01

    Nitric oxide (NO) generation by soybean (Glycine max, var ADM 4800) chloroplasts was studied by electron paramagnetic resonance (EPR) spin-trapping technique.1 Both nitrite and L-arginine (arg) are the required substrates for enzymatic activities considered as possible sources of NO in plants. Soybean chloroplasts showed a NO production of 3.2 ± 0.2 nmol min−1 mg−1 protein in the presence of 1 mM NaNO2. Chloroplasts incubated with 1 mM arg showed a NO production of 0.76 ± 0.04 nmol min−1 mg−1...

  15. Electronic Nose Based on an Optimized Competition Neural Network

    Directory of Open Access Journals (Sweden)

    Haiping Zhang

    2011-05-01

    Full Text Available In view of the fact that there are disadvantages in that the class number must be determined in advance, the value of learning rates are hard to fix, etc., when using traditional competitive neural networks (CNNs in electronic noses (E-noses, an optimized CNN method was presented. The optimized CNN was established on the basis of the optimum class number of samples according to the changes of the Davies and Bouldin (DB value and it could increase, divide, or delete neurons in order to adjust the number of neurons automatically. Moreover, the learning rate changes according to the variety of training times of each sample. The traditional CNN and the optimized CNN were applied to five kinds of sorted vinegars with an E-nose. The results showed that optimized network structures could adjust the number of clusters dynamically and resulted in good classifications.

  16. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  17. Phase II Final Report Computer Optimization of Electron Guns

    Energy Technology Data Exchange (ETDEWEB)

    R. Lawrence Ives; Thuc Bui; Hien Tran; Michael Read; Adam Attarian; William Tallis

    2011-04-15

    This program implemented advanced computer optimization into an adaptive mesh, finite element, 3D, charged particle code. The routines can optimize electron gun performance to achieve a specified current, beam size, and perveance. It can also minimize beam ripple and electric field gradients. The magnetics optimization capability allows design of coil geometries and magnetic material configurations to achieve a specified axial magnetic field profile. The optimization control program, built into the charged particle code Beam Optics Analyzer (BOA) utilizes a 3D solid modeling package to modify geometry using design tables. Parameters within the graphical user interface (currents, voltages, etc.) can be directly modified within BOA. The program implemented advanced post processing capability for the optimization routines as well as the user. A Graphical User Interface allows the user to set up goal functions, select variables, establish ranges of variation, and define performance criteria. The optimization capability allowed development of a doubly convergent multiple beam gun that could not be designed using previous techniques.

  18. Discrete Optimization of Electronic Hyperpolarizabilities in a Chemical Subspace.

    Science.gov (United States)

    Rinderspacher, B Christopher; Andzelm, Jan; Rawlett, Adam; Dougherty, Joseph; Beratan, David N; Yang, Weitao

    2009-12-01

    We introduce a general optimization algorithm based on an interpolation of property values on a hypercube. Each vertex of the hypercube represents a molecule, while the interior of the interpolation represents a virtual superposition ("alchemical" mutation) of molecules. The resultant algorithm is similar to branch-and-bound/tree-search methods. We apply the algorithm to the optimization of the first electronic hyperpolarizability for several tolane libraries. The search includes structural and conformational information. Geometries were optimized using the AM1 Hamiltonian, and first hyperpolarizabilities were computed using the INDO/S method. Even for small libraries, a significant improvement of the hyperpolarizability, up to a factor of ca. 4, was achieved. The algorithm was validated for efficiency and reproduced known experimental results. The algorithm converges to a local optimum at a computational cost on the order of the logarithm of the library size, making large libraries accessible. For larger libraries, the improvement was accomplished by performing electronic structure calculations on less than 0.01% of the compounds in the larger libraries. Alternation of electron donating and accepting groups in the tolane scaffold was found to produce candidates with large hyperpolarizabilities consistently. PMID:26602512

  19. Electron-Cloud Maps for LHC Scrubbing Optimization

    CERN Document Server

    Dominguez, O

    2013-01-01

    Electron-cloud maps as alternative to detailed build-up simulations have already been applied in the past for a few accelerators, e.g. RHIC and the LHC at 7 TeV. We here report on a first application of maps to optimize the “beam scrubbing” of the LHC arcs at injection energy: Maps are used to efficiently determine the optimum bunch filling pattern which maximizes the electron flux on the chamber wall, while respecting constraints on the central cloud density to ensure beam stability. In addition, new features have been explored, e.g. by introducing thresholds which divide regions where either linear maps or cubic maps best describe the build-up and the decay of an electron cloud. In the near future we plan to extend the map formalism to individual slices in a dipole field in order to represent the vertical “stripes”.

  20. Electron-Cloud Maps for the LHC Scrubbing Optimization

    CERN Document Server

    Dominguez, O

    2013-01-01

    Electron-cloud maps as alternative to detailed build-up simulations have already been applied in the past for a few accelerators, e.g. RHIC and the LHC at 7 TeV. We here report on a first application of maps to optimize the “beam scrubbing” of the LHC arcs at injection energy: Maps are used to efficiently determine the optimum bunch filling pattern which maximizes the electron flux on the chamber wall, while respecting constraints on the central cloud density to ensure beam stability. In addition, new features have been explored, e.g. by introducing thresholds which divide regions where either linear maps or cubic maps best describe the build-up and the decay of an electron cloud. In the near future we plan to extend the map formalism to individual slices in a dipole field in order to represent the vertical “stripes”. Presented at IPAC'13 Shanghai, 12-17 May 2013

  1. Design optimization of a spreader heat sink for power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Maranzana, Gael; Perry, Isabelle; Maillet, Denis [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee UMR 7563 CNRS-INPL-UHP, 2, avenue de la foret de Haye, BP 160, 54504 cedex, Vandoeuvre-les-Nancy (France); Rael, Stephane [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2, avenue de la foret de Haye, 54516 cedex, Vandoeuvre-les-Nancy (France)

    2004-01-01

    This article deals with a design method for optimizing heat spreaders dedicated to electronic board cooling. The modeling is based on the thermal quadrupole method which is an analytical exact and rapid method that can be implemented for suitable geometries. Under some conditions, an optimal thickness can be found for the spreader (or the heat sink base). It correspond to a minimization of the average or the maximal temperature of the heat sources. This optimal thickness is given in an non-dimensional form by an abacus which can be used in a quantitative way to design heat spreaders or, in a more qualitative way, to assess the function and the performance of the spreader. Locations of the sources on the heat spreader as well as the shape of the spreader are also optimized. Finally, the case of a pyramidal multi-layer heat spreader is considered in order to test the efficiency of the quadrupole method as a tool for modeling conductive heat transfer for optimization applications. (authors)

  2. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  3. Optimization of harmonic sextupoles in Indus-2 electron storage ring

    International Nuclear Information System (INIS)

    Dynamic aperture is one of the deciding parameters of the low emittance electron storage ring performance. Sufficient dynamic aperture is required to reach higher injection efficiency as well as good beam lifetime. In low emittance storage rings, dynamic aperture is limited mainly by the chromaticity correcting sextupoles, which is enhanced by introducing more sextupole magnets in the dispersion free straight section of the ring lattice, known as “harmonic sextupoles”. In Indus-2 storage ring lattice also, there is a plan to accommodate harmonic sextupoles. In this paper we present, how the strength of harmonic sextupoles is optimized for suppressing resonance driving terms up to third order, those are responsible for reducing the dynamic aperture. In such optimization, one of the main difficulties is to choose the optimal weight factor for the different resonance driving terms. We evolved an approach for assigning the relative weight to the various resonances driving terms which is found to be working very well for Indus-2 storage ring. Following this approach, the strength of the harmonic sextupoles is optimized and there is a reasonable enhancement of dynamic aperture with harmonic sextupoles for two different working points of Indus-2

  4. Optimal Truncation in Ionization of hydrogen by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    张程华; 牛英煜; 吴炜; 邱卫; 辛君丽; 王晓伟; 王京阳

    2003-01-01

    An analytic expression for the ionization amplitude of hydrogen by electron impact is found to contain a polynomial by an optimal truncation in an asymptotic series and a convergent series. The ionization amplitude, i.e., the transition matrix element on the energy shell, is decomposed into two parts: the structure-scattering factor and correlation factor, based on an approximation of the projectile plane wave in coplanar asymmetric geometries.The contribution of these factors to the triple differential cross section is evaluated using the method of optional truncation of asymptotic and convergent series.

  5. Optimal VLF Parameters for Pitch Angle Scattering of Trapped Electrons

    Science.gov (United States)

    Albert, J. M.; Inan, U. S.

    2001-12-01

    VLF waves are known to determine the lifetimes of energetic radiation belt electrons in the inner radiation belt and slot regions. Artificial injection of such waves from ground- or space-based transmitters may thus be used to affect the trapped electron population. In this paper, we seek to determine the optimal parameters (frequency and wave normal angle) of a quasi-monochromatic VLF wave using bounce-averaged quasi-linear theory. We consider the cumulative effects of all harmonic resonances and determine the diffusion rates of particles with selected energies on particular L-shells. We also compare the effects of the VLF wave to diffusion driven by other whistler-mode waves (plasmaspheric hiss, lightning, and VLF transmitters). With appropriate choice of the wave parameters, it may be possible to substantially reduce the lifetime of selected classes of particles.

  6. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    Directory of Open Access Journals (Sweden)

    Sławomir Samardakiewicz

    Full Text Available Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed. An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2. In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the

  7. Standardless quantification by parameter optimization in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Limandri, Silvina P. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Bonetto, Rita D. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco (CINDECA), CONICET, 47 Street 257, (1900) La Plata (Argentina); Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1 and 47 Streets (1900) La Plata (Argentina); Josa, Victor Galvan; Carreras, Alejo C. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Trincavelli, Jorge C., E-mail: trincavelli@famaf.unc.edu.ar [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina)

    2012-11-15

    A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum Registered-Sign for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively. - Highlights: Black-Right-Pointing-Pointer A method for standardless quantification in EPMA is presented. Black-Right-Pointing-Pointer It gives better results than the commercial software GENESIS Spectrum. Black-Right-Pointing-Pointer It gives better results than the software DTSA. Black-Right-Pointing-Pointer It allows the determination of the conductive coating thickness. Black-Right-Pointing-Pointer It gives an estimation for the concentration uncertainties.

  8. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  9. Genetic Analysis of Chloroplast Translation

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  10. Gradient type optimization methods for electronic structure calculations

    CERN Document Server

    Zhang, Xin; Wen, Zaiwen; Zhou, Aihui

    2013-01-01

    The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its grad...

  11. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  12. Evolutionary Optimization of Electronic Circuitry Cooling Using Nanofluid

    Directory of Open Access Journals (Sweden)

    Manu Mital

    2012-01-01

    Full Text Available Liquid cooling electronics using microchannels integrated in the chips is an attractive alternative to bulky aluminum heat sinks. Cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer in a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The model predicts the thermal resistance and pumping power as a function of four design variables that include the channel diameter, velocity, number of channels, and nanoparticle fraction. The parameters are optimized with minimum thermal resistance as the objective function and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid and then with water. Comparing the minimized thermal resistances revealed only a small benefit since nanoparticle addition increases the pumping power that can alternately be diverted towards an increased velocity in a pure water heat sink. The benefit further diminishes with increase in available pumping power.

  13. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice.

    Science.gov (United States)

    Yamori, Wataru; Sakata, Naoki; Suzuki, Yuji; Shikanai, Toshiharu; Makino, Amane

    2011-12-01

    The role of NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow around photosystem I in photosynthetic regulation and plant growth at several temperatures was examined in rice (Oryza sativa) that is defective in CHLORORESPIRATORY REDUCTION 6 (CRR6), which is required for accumulation of sub-complex A of the chloroplast NDH complex (crr6). NdhK was not detected by Western blot analysis in crr6 mutants, resulting in lack of a transient post-illumination increase in chlorophyll fluorescence, and confirming that crr6 mutants lack NDH activity. When plants were grown at 28 or 35°C, all examined photosynthetic parameters, including the CO(2) assimilation rate and the electron transport rate around photosystems I and II, at each growth temperature at light intensities above growth light (i.e. 800 μmol photons m(-2) sec(-1)), were similar between crr6 mutants and control plants. However, when plants were grown at 20°C, all the examined photosynthetic parameters were significantly lower in crr6 mutants than control plants, and this effect on photosynthesis caused a corresponding reduction in plant biomass. The F(v)/F(m) ratio was only slightly lower in crr6 mutants than in control plants after short-term strong light treatment at 20°C. However, after long-term acclimation to the low temperature, impairment of cyclic electron flow suppressed non-photochemical quenching and promoted reduction of the plastoquinone pool in crr6 mutants. Taken together, our experiments show that NDH-dependent cyclic electron flow plays a significant physiological role in rice during photosynthesis and plant growth at low temperature.

  14. Chloroplast ribosomes and protein synthesis.

    OpenAIRE

    Harris, E. H.; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles i...

  15. Nitrogen control of chloroplast differentiation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  16. Factors affecting the stability of chloroplast membranes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Takaoki, T.; Torres-Pereira, J.; Packer, L.

    1974-01-01

    Factors which affect the stability of light-induced atebrin fluorescence quenching activity in chloroplast membranes, a measure of the electron transport dependent formation of energy-linked H/sup +/ gradients, were investigated in vitro. Class II spinach chloroplast membranes were isolated and stored at 0 to 4/sup 0/C and aliquots were subsequently tested for their retention of energizing capacity. The main factors which increase the stability of this activity were found to be (a) isolation in a potassium-containing medium but storage in a sucrose medium containing a low concentration of electrolytes; (b) the presence of butylated hydroxytoluene (an antioxidant), and a protein such as bovine serum albumin to remove free fatty acids in the medium during storage. Under these conditions, the energization capacity of chloroplasts is retained for more than 40 days.

  17. Fractionation and Analysis of Polypeptides of Euglena gracilis Chloroplasts.

    Science.gov (United States)

    Vasconcelos, A C; Mendiola-Morgenthaler, L R; Floyd, G L; Salisbury, J L

    1976-07-01

    Intact Euglena gracilis chloroplasts, purified on gradients of silica sol, were lysed osmotically and fractionated by centrifugation on discontinuous gradients of sucrose into their soluble, envelope membrane, and thylakoid membrane components. The proteins of the different subchloroplast fractions, as well as those of whole chloroplasts, were analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. The polypeptide profile of each fraction was distinctive and was in general similar to the profile obtained for analogous fractions of the chloroplasts of higher plants.The envelope membranes were separated into two fractions in the gradients according to their banding densities. Electron micrographs showed that the light envelope fraction consisted mostly of single-membrane vesicles, whereas the heavy envelope fraction consisted of multiple layers of folded membranes. Both envelope fractions were ultrastructurally distinct from the thylakoid membranes. PMID:16659627

  18. Chloroplast in Plant-Virus Interaction

    Science.gov (United States)

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  19. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

    Science.gov (United States)

    Joët, T; Cournac, L; Horvath, E M; Medgyesy, P; Peltier, G

    2001-04-01

    Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the involvement of this complex in cyclic electron flow around photosystem I (PSI). Photosynthetic activity was determined on leaf discs by measuring CO2 exchange and chlorophyll fluorescence quenchings during a dark-to-light transition. In the absence of treatment, both non-photochemical and photochemical fluorescence quenchings were similar in ndhB- and wild type (WT). When leaf discs were treated with 5 microM antimycin A, an inhibitor of cyclic electron flow around PSI, both quenchings were strongly affected. At steady state, maximum photosynthetic electron transport activity was inhibited by 20% in WT and by 50% in ndhB-. Under non-photorespiratory conditions (2% O2, 2,500 microL x L(-1) CO2), antimycin A had no effect on photosynthetic activity of WT, whereas a 30% inhibition was observed both on quantum yield of photosynthesis assayed by chlorophyll fluorescence and on CO2 assimilation in ndhB-. The effect of antimycin A on ndhB- could not be mimicked by myxothiazol, an inhibitor of the mitochondrial cytochrome bc1 complex, therefore showing that it is not related to an inhibition of the mitochondrial electron transport chain but rather to an inhibition of cyclic electron flow around PSI. We conclude to the existence of two different pathways of cyclic electron flow operating around PSI in higher plant chloroplasts. One of these pathways, sensitive to antimycin A, probably involves ferredoxin plastoquinone reductase, whereas the other involves the NDH complex. The absence of visible phenotype in ndhB- plants under normal conditions is explained by the complement of these two

  20. Treatment with antibiotics that interfere with peptidoglycan biosynthesis inhibits chloroplast division in the desmid Closterium.

    Directory of Open Access Journals (Sweden)

    Hiroko Matsumoto

    Full Text Available Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.

  1. Biosynthesis of starch in chloroplasts.

    Science.gov (United States)

    Nomura, T; Nakayama, N; Murata, T; Akazawa, T

    1967-03-01

    The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed. PMID:4292567

  2. Evolution of chloroplast vesicle transport.

    Science.gov (United States)

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  3. Mutational dynamics of aroid chloroplast genomes.

    Science.gov (United States)

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  4. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    CERN Document Server

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  5. Response of Chloroplast NAD(P)H Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress.

    Science.gov (United States)

    Essemine, Jemaa; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2016-01-01

    Cyclic electron flow (CEF) around photosystem I (PSI) can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and photosystem II (PSII) to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e., Q4149 with a high capacity (hcef) and C4023 with a low capacity (lcef). The absorbance change at 820 nm (ΔA820) was used here to assess the charge separation in the PSI reaction center (P700). The results obtained show that short-term heat stress abolishes the ferredoxin-quinone oxidoreductase (FQR)-dependent CEF in rice and accelerates the initial rate of P700 (+) re-reduction. The P700 (+) amplitude was slightly increased at a moderate heat-stress (35°C) because of a partial restriction of FQR but it was decreased following high heat-stress (42°C). Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149) was characterized by higher FQR- and chloroplast NAD(P)H dehydrogenase (NDH)-dependent CEF rates than lcef (C4023). Following thermal stress, the activation of NDH-pathway was 130 and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defense against heat stress after the main route, i.e., FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the

  6. Response of Chloroplast NAD(P)H Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress.

    Science.gov (United States)

    Essemine, Jemaa; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang

    2016-01-01

    Cyclic electron flow (CEF) around photosystem I (PSI) can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and photosystem II (PSII) to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e., Q4149 with a high capacity (hcef) and C4023 with a low capacity (lcef). The absorbance change at 820 nm (ΔA820) was used here to assess the charge separation in the PSI reaction center (P700). The results obtained show that short-term heat stress abolishes the ferredoxin-quinone oxidoreductase (FQR)-dependent CEF in rice and accelerates the initial rate of P700 (+) re-reduction. The P700 (+) amplitude was slightly increased at a moderate heat-stress (35°C) because of a partial restriction of FQR but it was decreased following high heat-stress (42°C). Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149) was characterized by higher FQR- and chloroplast NAD(P)H dehydrogenase (NDH)-dependent CEF rates than lcef (C4023). Following thermal stress, the activation of NDH-pathway was 130 and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defense against heat stress after the main route, i.e., FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the

  7. Optimization of Plasmon Decay Through Scattering and Hot Electron Transfer

    Science.gov (United States)

    DeJarnette, Drew

    Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With this knowledge, plasmon resonance was probed with incident electrons using electron energy loss spectroscopy in a transmission electron microscope. Nanoparticles were fabricated using electron beam lithography on 50 nanometer thick silicon nitride with some particles fabricated with a graphene layer between the silicon nitride and metal structure. Plasmon resonance was compared between ellipses on and off graphene to characterize hot electron transfer as a means of plasmon decay. It was observed that the presence of graphene caused plasmon energy to decrease by as much as 9.8% and bandwidth to increase by 25%. Assuming the increased bandwidth was solely from electron transfer as an additional plasmon decay route, a 20% efficiency of plasmon decay to graphene was calculated for the particular ellipses analyzed.

  8. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe;

    2010-01-01

    limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  9. [Value of electronic measuring instruments for optimizing functional TMJ diagnosis].

    Science.gov (United States)

    Zimmer, B; Keese, E; Kubein-Meesenburg, D

    1989-09-01

    In order to get additional information about the significance of electronic axiographic recordings in TMJ-diagnosis, 34 patients, who showed 47 clicking TMJs, were examined by use of an electronic axiographic instrument (SAS-system). The frequency of the detected findings emphasize the value of electronic axiographic devices for differential diagnosis. In detail the following conclusions could be drawn: examination of different types of movement is recommended because clicking must not exist in all types, recording in more than one plane is necessary in order to detect the (prevailing) plane of dislocation, a magnification of tracings provides addition information concerning different types of clicking.

  10. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species

    Indian Academy of Sciences (India)

    Qingpo Liu; Qingzhong Xue

    2005-04-01

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes in O. sativa, Z. mays, and T. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.

  11. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    Science.gov (United States)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  12. Optimization of companies’ activity on development of electronic product

    Directory of Open Access Journals (Sweden)

    K.V. Nalivaychenko

    2012-02-01

    Full Text Available The article considers modern processes of informatization of activity for business companies. There are generalized the makes of world companies, which create information technologies in global information environment: the electronic information product containing an universal development algorithm for it, is most effective. It is found that companies prefer opened program codes.

  13. Mechanisms of Protein Synthesis in Chloroplasts: How to Design Translatable mRNAs in Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    M. Sugiura

    2007-01-01

    @@ Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal Maliga group developed the high-frequency chloroplast transformation system in tobacco (Svab and Maliga, 1993).

  14. Evolutionary Optimization of Electronic Circuitry Cooling Using Nanofluid

    OpenAIRE

    Manu Mital

    2012-01-01

    Liquid cooling electronics using microchannels integrated in the chips is an attractive alternative to bulky aluminum heat sinks. Cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer in a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated int...

  15. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomomad prigin, not kleptochloroplasts

    DEFF Research Database (Denmark)

    Garcia, Lydia; Moestrup, Øjvind; Hansen, Per Juel;

    2010-01-01

    Most species belonging to the toxigenic genus Dinophysis have chloroplasts of cryptophyte origin. Whether these chloroplasts are temporarily sequestered from the prey, or permanently established under the control of the dinoflagellate is currently disputed. To investigate this, a culture...... of Dinophysis acuminata was established by feeding it the phototrophic ciliate Mesodinium rubrum (= Myrionecta rubra), which again was fed the cryptophyte Teleaulax amphioxeia. Molecular analysis comprising the nucleomorph LSU and two chloroplast markers (tufA gene and a fragment from the end of 16S r......DNA to the beginning of 23S rDNA) resulted in identical sequences for the three organisms. Yet, transmission electron microscopy of the three organisms revealed that several chloroplast features separated D. acuminata from both T. amphioxeia and M. rubrum. The thylakoid arrangement, the number of membranes around...

  16. Alleviation effects of Ce3+on inhibition of photochemical activity caused by linolenic acid in spinach chloroplast

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; HUANG Hao; LIU Chao; MA Linglan; LIU Jie; YIN Sitao; HONG Fashui

    2008-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. The function of Ce3+ on the improvement of chloro-plast photoreduction activity and oxygen evolution damaged by linolenic acid in spinach by in vitro investigation was studied. Results showed that adding Ce3+ to the linolenic acid treated chloroplast could greatly decrease the reduction linolenic acid exerted on the whole chain electron transport rate and the photoreduction activity of photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ) as well as the oxygen evolution rate of chloroplast. It indicated that Ce3+ had the ability to relieve the inhibition of the photochemical reaction of chloroplast caused by lino-lenic acid to some extent.

  17. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum,Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants.The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon us-age. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.

  18. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  19. 38: Optimization of electron arc therapy doses by dynamic collimator control

    International Nuclear Information System (INIS)

    The problem of delivering a uniform dose to a large curved surface such as a patient's chest wall has been addressed by the technique of electron arc therapy. Prospective computer simulations show that a dramatic improvement in dose uniformity can, in many clinical situations, be achieved by dynamic shaping of the electron arc collimator, under computer control, as a function of gantry angle and distance superior or inferior to the central plane. Computer optimization techniques applied to the design of a multivane dynamic electron arc collimator is presented, along with representative treatment plans resulting from inclusion of this dynamic technique in electron arc therapy. 17 refs.; 5 figs

  20. Chloroplasts as functional organelles in animal tissues.

    Science.gov (United States)

    Trench, R K; Greene, R W; Bystrom, B G

    1969-08-01

    The marine gastropod molluscs Tridachia crispata, Tridachiella diomedea, and Placobranchus ianthobapsus (Sacoglossa, Opisthobranchia) possess free functional chloroplasts within the cells of the digestive diverticula, as determined by observations on ultrastructure, pigment analyses, and experiments on photosynthetic capacity. In the light, the chloroplasts incorporate H(14)CO(3) (-)in situ. Reduced radiocarbon is translocated to various chloroplast-free tissues in the animals. The slugs feed on siphonaceous algae from which the chloroplasts are derived. Pigments from the slugs and from known siphonaceous algae, when separated chromatographically and compared, showed similar components. Absorption spectra of extracts of slugs and algae were very similar. The larvae of the slugs are pigment-free up to the post-veliger stage, suggesting that chloroplasts are acquired de novo. with each new generation. PMID:5792329

  1. Optimization of a plasma focus device as an electron beam source for thin film deposition

    Science.gov (United States)

    Zhang, T.; Lin, J.; Patran, A.; Wong, D.; Hassan, S. M.; Mahmood, S.; White, T.; Tan, T. L.; Springham, S. V.; Lee, S.; Lee, P.; Rawat, R. S.

    2007-05-01

    Electron beam emission characteristics from neon, argon, hydrogen and helium in an NX2 dense plasma focus (DPF) device were investigated in order to optimize the plasma focus device for deposition of thin films using energetic electron beams. A Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal characteristics, total electron charge and energy distributions of electron emission from the NX2 DPF device. It is found that hydrogen should be the first choice for thin film deposition as it produces the highest electron beam charge and higher energy (from 50 to 200 keV) electrons. Neon is the next best choice as it gives the next highest electron beam charge with mid-energy (from 30 to 70 keV) electrons. The operation of NX2 with helium at voltages above 12 kV produces a mid-energy (from 30 to 70 keV) electron beam with low-electron beam charge, however, argon is not a good electron beam source for our NX2 DPF device. Preliminary results of the first ever thin film deposition using plasma focus assisted pulsed electron deposition using a hydrogen operated NX2 plasma focus device are presented.

  2. OPTIMAL DESIGN ALGORITHM FOR FAULT TOLERANT INFORMATION SYSTEMS USED FOR PROCESSING ELECTRONIC MEDICAL RECORDS

    Directory of Open Access Journals (Sweden)

    P. V. Melyushin

    2014-01-01

    Full Text Available The paper considers problems on designing of medical information systems and proposes an approach to creation of a highly reliable automated system for processing electronic medical records on the basis of file allocation optimization in the network nodes. A mathematical model has been developed for optimal distribution of the files in the network nodes and an experimental investigation of two schemes of medical information systems has been executed in the paper.

  3. Search for the optimal size of printed circuit boards for mechanical structures for electronic equipment

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2014-12-01

    Full Text Available The authors present a method, an algorithm and a program, designed to determine the optimal size of printed circuit boards (PCB of mechanical structures and different kinds of electronic equipment. The PCB filling factor is taken as an optimization criterion. The method allows one to quickly determine the dependence of the filling factor on the size of the PCB for various components.

  4. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    International Nuclear Information System (INIS)

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions’ charge states, and therefore, the ions’ energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  5. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source.

    Science.gov (United States)

    Pikin, A; Beebe, E N; Raparia, D

    2013-03-01

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  6. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Beebe, E. N.; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  7. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  8. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    Science.gov (United States)

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  9. Optimal Allocation of Social Cost for Electronic Payment System: A Ramsey Approach

    OpenAIRE

    Pidong Huang; Young Sik Kim; Manjong Lee

    2014-01-01

    Using a standard Ramsey approach, we examine an optimal allocation of the social cost for electronic payment system in the context of a dynamic general equilibrium model where money is essential. The benevolent government provides electronic payment services and allocates the relevant social cost through taxation on the beneficiaries¡¯ labor and consumption. A higher tax rate on labor yields the following desirable allocations. First, it implies a lower welfare loss due to the distortionary c...

  10. Optimizing Effectiveness in Electronic Prescriptions for Pediatric Outpatients: A Call for Responsive Action

    OpenAIRE

    Parrish II, Richard H.; Sandra Benavides; Joseph T. Malak; Amy L Potts; Micheal Guirguis; Tracy Hagemann

    2014-01-01

    A pediatric compounded non-sterile products repository (pCNP) to optimize the effectiveness and safety of “off-label” use of compounded pharmacotherapy through complete transmission of electronic prescriptions across the continuum of care is described. The advent of electronic prescribing has the potential to refocus and resolve long-standing issues of prescription therapy for pediatric patients related to formulation, indication, dosing, and outcomes follow-up, among others. This white paper...

  11. [Optimization method of MOS sensor array for identification of traditional Chinese medicine based on electronic nose].

    Science.gov (United States)

    Zou, Hui-Qin; Liu, Yong; Tao, Ou; Lin, Hui; Su, Yu-Zhen; Lin, Xiang-Long; Yan, Yong-Hong

    2013-01-01

    Optimization of sensor array is a significant topic in the application of electronic nose (EN). Stepwise discriminant analysis and cluster analysis combining with screening of typical index were employed to optimize the original array in the classification of 100 samples from 10 kinds of traditional Chinese medicine based on alpha-FOX3000 EN. And the identification ability was evaluated by three algorithm including principle component analysis, Fisher discriminant analysis and random forest. The results showed that the identification ability of EN was improved since not only the effective information was maintained but also the redundant one was eliminated by the optimized array. The optimized method was eventually established, it was accurate and efficient. And the optimized array was built up, that is, S1, S2, S5, S6, S8, S12.

  12. Chloroplast ultrastructure in leaves of Cucumis sativus chlorophyll mutant

    Directory of Open Access Journals (Sweden)

    Irena Palczewska

    2014-02-01

    Full Text Available The developing and young leaves of Cucumis sativus chlorophyll mutants are yellow, when mature they become green and do not differ in their colour from those of control plants. The mesophyll of yellow leaves contains a diversiform plastid population with a varying degree of defectiveness, which is mainly manifested in the reduction or disorganization of the typical thylakoid system. DNA areas, ribosome-like particles and aggregates of electron-dense material are preserved in the stroma of mutated plastids. Starch grains are deficient. Apart from mutated plastids, chloroplasts with a normal structure, as in control plants, were also observed.The leaf greening process is accompanied by a reconstruction and rearrangement of the inner chloroplast lamellar system and an ability to accumulate starch. However, in the mutant chloroplasts as compared with control-plant ones, an irregular arrangement of grana and reduced number of inter-grana thylakoids can be seen. An osmiophilic substance stored in the stroma of mutated plastids and the vesicles formed from an internal plastid membrane take part in restoration of the membrane system.

  13. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Valeria R Turowski

    Full Text Available Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR and ferredoxin (Fd, two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  14. Interface for electronic data capture systems for clinical trials by optimal utilization of available hospital resources.

    Science.gov (United States)

    Kaushik, Sashank; Khan, Anzalee; Kaushik, Saurabh; Lindenmayer, Jean-Pierre

    2008-01-01

    We describe Clinical Trials System (CTS), an innovative EDC system utilizing data from existing hospital-based electronic databases that supports information gathering and storing for various clinical trials. The complexities of designing electronic clinical trials systems and their ideal features are outlined. CTS optimally utilizes existing electronic databases in a well-organized and easy-to-reference format. CTS is currently incorporated within a large psychiatric center, allowing easy sharing of information and data among multidisciplinary clinical and research teams. PMID:18999083

  15. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface.

  16. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov;

    2015-01-01

    and the SIMP (Solid Isotropic Material with Penalization) method was implemented in COMSOL Multiphysics. Several optimized designs were obtained for different operating conditions and their sensitivity to the change in the boundary conditions was evaluated. A final design for the electronics unit was selected...

  17. Molecule-optimized Basis Sets and Hamiltonians for Accelerated Electronic Structure Calculations of Atoms and Molecules

    CERN Document Server

    Gidofalvi, Gergely

    2014-01-01

    Molecule-optimized basis sets, based on approximate natural orbitals, are developed for accelerating the convergence of quantum calculations with strongly correlated (multi-referenced) electrons. We use a low-cost approximate solution of the anti-Hermitian contracted Schr{\\"o}dinger equation (ACSE) for the one- and two-electron reduced density matrices (RDMs) to generate an approximate set of natural orbitals for strongly correlated quantum systems. The natural-orbital basis set is truncated to generate a molecule-optimized basis set whose rank matches that of a standard correlation-consistent basis set optimized for the atoms. We show that basis-set truncation by approximate natural orbitals can be viewed as a one-electron unitary transformation of the Hamiltonian operator and suggest an extension of approximate natural-orbital truncations through two-electron unitary transformations of the Hamiltonian operator, such as those employed in the solution of the ACSE. The molecule-optimized basis set from the ACS...

  18. Chloroplast protein targeting involves localized translation in Chlamydomonas

    OpenAIRE

    Uniacke, James; Zerges, William

    2009-01-01

    The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted ...

  19. Intra-individual polymorphism in chloroplasts from NGS data: where does it come from and how to handle it?

    Science.gov (United States)

    Scarcelli, N; Mariac, C; Couvreur, T L P; Faye, A; Richard, D; Sabot, F; Berthouly-Salazar, C; Vigouroux, Y

    2016-03-01

    Next-generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra-individual polymorphic SNPs. Such observations could have several causes such as sequencing errors, the presence of heteroplasmy or transfer of chloroplast sequences in the nuclear and mitochondrial genomes. The occurrence of allelic diversity has practical important impacts on the identification of diversity, the analysis of the chloroplast data and beyond that, significant evolutionary questions. In this study, we show that the observed intra-individual polymorphism of chloroplast sequence data is probably the result of plastid DNA transferred into the mitochondrial and/or the nuclear genomes. We further assess nine different bioinformatics pipelines' error rates for SNP and genotypes calling using SNPs identified in Sanger sequencing. Specific pipelines are adequate to deal with this issue, optimizing both specificity and sensitivity. Our results will allow a proper use of whole chloroplast NGS sequence and will allow a better handling of NGS chloroplast sequence diversity.

  20. Possibilities of electronics and microelectronics for optimation of the fuel consumption of cars

    Energy Technology Data Exchange (ETDEWEB)

    Dziwisch, G.F.; Meissner, F.

    1980-01-01

    Electronics in cars have established themselves internationally not only because the increase in safety and comfort but also where optimation of energy transformation is concerned. Those elements and functional groups have to operate in wide ranges of operational temperature, they have to have a high tolerance for shocks and vibratory stresses, they must be resistent against air humidity and against aggressive and corrosive media. Further demands are: indifference to fluctuations of the voltage, active and passive interference safety, high reliability, low price. They can be used in: engine (electronic ignition, fuel metering, speed control); power transmission (automatic gear); control equipment (indication of momentary fuel consumption, board diagnosis, speed warning system, indicator for position of choke and handbrake). Further possibilities for successful use of microlectronics and electronics are recording and processing of traffic flows for tasks of traffic planning and channeling, optimization of routing, traffic stream control and utilization of transport capacities.

  1. The molecular architecture of the chloroplast thylakoid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Stefansson, H.

    1996-08-01

    Non-detergent procedure for isolation of sub-thylakoid vesicle populations derived from different structural domains of the chloroplast thylakoid membrane has been developed. Sub-thylakoid vesicles representing the grana, grana core, stroma lamellae, and the grana margins have been isolated and their protein composition has been investigated. Furthermore a novel non-detergent procedure for investigating the pigment composition of photosynthetic complexes located in the different structural domains has been developed. This procedure circumvents selective extractions, an perturbing effect often combined with detergent isolations of membrane bound protein complexes. The fractionation experiments show that the NADPH dehydrogenase, suggested to operate as NADPH or ferredoxin-plastoquinone oxidoreductase in cyclic electron transport around photosystem I, is stoichiometrically depleted on photosystem I basis in the grana domain. The fractionation studies are consistent with the model of the thylakoid membrane where the photosystems in the grana are operating in a linear electron transport whereas the site of cyclic electron transport is in the stroma lamellae. It is suggested that partial destacking of grana, as a result of light-induced protein phosphorylation, may promote the exposure of the granal photosystem I centers to the chloroplast stroma and thereby enhance their participation in cyclic electron transport activity. 146 refs, 18 figs

  2. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa).

    Science.gov (United States)

    Zhu, Xiaobo; Liang, Sihui; Yin, Junjie; Yuan, Can; Wang, Jing; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Chen, Xuewei

    2015-12-10

    DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.

  3. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    Science.gov (United States)

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  4. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.;

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...... developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted...

  5. Inheritance of chloroplast DNA in Chlamydomonas reinhardtii

    OpenAIRE

    Grant, David M; Nicholas W. Gillham; Boynton, John E.

    1980-01-01

    Two symmetrically located deletions of approximately 100 base pairs each have been identified in chloroplast DNA of Chlamydomonas reinhardtii. Although present in a mutant strain that requires acetate for growth, both deletions have been shown to be distinct from the nonphotosynthetic phenotype of this strain. These physical markers in the chloroplast genome and maternally inherited genetic markers showed strict cotransmission in reciprocal crosses. Thus, our results are consistent with the l...

  6. Optimization of operation parameters of 80-keV electron gun

    International Nuclear Information System (INIS)

    A Slowing Down Time Spectrometer (SDTS) system is a highly efficient technique for isotopic nuclear material content analysis. SDTS technology has been used to analyze spent nuclear fuel and the pyro-processing of spent fuel. SDTS requires an external neutron source to induce the isotopic fissile fission. A high intensity neutron source is required to ensure a high for a good fissile fission. The electron linear accelerator system was selected to generate proper source neutrons efficiently. As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

  7. Evolution of the chloroplast division machinery

    Institute of Scientific and Technical Information of China (English)

    Hongbo GAO; Fuli GAO

    2011-01-01

    Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.

  8. Analysis on the Metrics used in Optimizing Electronic Business based on Learning Techniques

    Directory of Open Access Journals (Sweden)

    Irina-Steliana STAN

    2014-09-01

    Full Text Available The present paper proposes a methodology of analyzing the metrics related to electronic business. The drafts of the optimizing models include KPIs that can highlight the business specific, if only they are integrated by using learning-based techniques. Having set the most important and high-impact elements of the business, the models should get in the end the link between them, by automating business flows. The human resource will be found in the situation of collaborating more and more with the optimizing models which will translate into high quality decisions followed by profitability increase.

  9. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha.

    Science.gov (United States)

    Boehm, Christian R; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-02-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  10. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha

    Science.gov (United States)

    Boehm, Christian R.; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-01-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  11. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.

    Science.gov (United States)

    Myouga, Fumiyoshi; Akiyama, Kenji; Tomonaga, Yumi; Kato, Aya; Sato, Yuka; Kobayashi, Megumi; Nagata, Noriko; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-02-01

    The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.

  12. Optimal control of the initiation of a pericyclic reaction in the electronic ground state

    Indian Academy of Sciences (India)

    Timm Bredtmann; Jörn Manz

    2012-01-01

    Pericyclic reactions in the electronic ground state may be initiated by down-chirped pump-dump sub-pulses of an optimal laser pulse, in the ultraviolet (UV) frequency and sub-10 femtosecond (fs) time domain. This is demonstrated by means of a quantum dynamics model simulation of the Cope rearrangement of Semibullvalene. The laser pulse is designed by means of optimal control theory, with detailed analysis of the mechanism. The theoretical results support the recent experimental initiation of a pericyclic reaction. The present approach provides an important step towards monitoring asynchronous electronic fluxes during synchronous nuclear pericyclic reaction dynamics, with femto-to-attosecond time resolution, as motivated by the recent prediction of our group.

  13. The ultrastructure of chloroplasts in variegata irregulare mutants of garden petunias (Petunia hybrida hort. superbissima

    Directory of Open Access Journals (Sweden)

    Stanisław Muszyński

    2015-05-01

    Full Text Available The ultrastructure of mutated chloroplasts in tetraploid garden petunias (Petunia hybrida hort. superbissima was analyzed by electron microscopy. The formation of grana structure is inhibited after secondary thylacoids start forming. Rapid dezintegration of the structure is observed. It is suggested that a substance responsible for photostabilization of grana structure is lacking.

  14. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Tyystjärvi, Esa

    2015-09-01

    A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell. PMID:25986411

  15. A Thesis on Design Optimization of Heat Sink in Power Electronics

    Directory of Open Access Journals (Sweden)

    P.Chennakesavarao

    2014-10-01

    Full Text Available The heat sinks are used in electronic systems to remove heat from the chip and effectively transfer it to the ambient. The heat sink geometry is designed by the mechanical engineers with the primary aim of reducing the thermal resistance of the heat sink for better cooling in the electronic systems. Due to the proximity of the heat sink with the ICs, the RF fields created by RF currents in the ICs/PCBs gets coupled to heat sinks. Hence, the coupled RF current can cause radiated emission. This radiated noise from the device can couple and disturb the functioning of the nearby electronic systems. Also this radiated emission from the device poses a problem to the system compliance with respect to EMI/EMC regulations. The international EMI/EMC standards require the radiated emission from the electronic devices to be kept below the specified limits. As a result the design of Heat Sink is very important factor for the efficient operation of the electronic equipment. In this project design optimization of a Heat sink in a Power amplifier is performed to reduce the weight and size .Power amplifier is electronic equipment mounted in an army vehicle. The power modules inside the amplifier generates a heat of 1440 Watts and a temperature of 140 0c.Two Heat sinks are used to dissipate the heat generated inside the equipment and maintain a temperature of less than 850c. The existing heat sink which is being used is weighing around 10.3kgs and height of 51mm; as a result the unit is very robust. The objective of my project is To design & optimize the heat sink to reduce the weight and size. The optimized heat sink should also dissipate heat generated by power modules and maintain a temperature of less than 850c inside. To achieve the design a steady state thermal analysis will be performed on the heat sink and plot the Temperature distribution on the fins. Based on the above analysis results we will increase/decrease the number of fins, thickness of fins, and

  16. Structure Optimization Design of the Electronically Controlled Fuel Control Rod System in a Diesel Engine

    OpenAIRE

    Hui Jin; Haosen Wang

    2015-01-01

    Poor ride comfort and shorter clutch life span are the key factors restricting the commercialization of automated manual transmission (AMT). For nonelectrically controlled engines or AMT where cooperative control between the engine and the transmission is not realizable, applying electronically controlled fuel control rod systems (ECFCRS) is an effective way to solve these problems. By applying design software such as CATIA, Matlab and Simulink, and MSC Adams, a suite of optimization design m...

  17. Optimizing read-out of the NECTAr front-end electronics

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.fr [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Falvard, A. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Ribo, M.; Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France)

    2012-12-11

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  18. Synthesis of medium-chain- length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    WANG Yuhua; WU Zhongyi; ZHANG Xiuhai; CHEN Guoqiang; WU Qiong; HUANG Conglin; YANG Qing

    2005-01-01

    Medium-chain-length-polyhydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters containing monomers ranging from 6 to 14 carbons in length. The key enzymes of their biosynthesis are PHA-polymerase (product of phaC gene) and 3-hydroxyacyl-acyl carrier protein-CoA transferase (product of phaG gene). With aadA (aminoglycoside 3′-adenylyltransferase) gene as screening marker, two chloroplast transformation vectors of pTC2 harboring phaC2 gene only and pTGC harboring both phaC and phaG genes were constructed and introduced into tobacco chloroplast genome through particle bombardment. PCR and Southern blot analysis confirmed the insertion of the introduced genes into chloroplast genome. The content of mcl-PHAs accumulated in transgenic plants was analyzed by gas chromatography, mcl-PHAs accumulated up to 4.8 mg/g dry weight (dw) in transgenic line S4-3; their monomers were 3-hydroxyoctanoate and 3-hydroxydecanoate. Accumulation of mcl-PHAs polymers in the tobacco chloroplast was also observed by transmission electron microscopy. To our knowledge, this is the first report on the synthesis of mcl- PHAs in tobacco via chloroplast genetic engineering.

  19. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  20. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  1. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.

    Science.gov (United States)

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A; González, Maricruz; Lindahl, Anna M; Cejudo, Francisco J

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  2. Simulated annealing method for electronic circuits design: adaptation and comparison with other optimization methods

    International Nuclear Information System (INIS)

    The circuit design problem consists in determining acceptable parameter values (resistors, capacitors, transistors geometries ...) which allow the circuit to meet various user given operational criteria (DC consumption, AC bandwidth, transient times ...). This task is equivalent to a multidimensional and/or multi objective optimization problem: n-variables functions have to be minimized in an hyper-rectangular domain ; equality constraints can be eventually specified. A similar problem consists in fitting component models. In this way, the optimization variables are the model parameters and one aims at minimizing a cost function built on the error between the model response and the data measured on the component. The chosen optimization method for this kind of problem is the simulated annealing method. This method, provided by the combinatorial optimization domain, has been adapted and compared with other global optimization methods for the continuous variables problems. An efficient strategy of variables discretization and a set of complementary stopping criteria have been proposed. The different parameters of the method have been adjusted with analytical functions of which minima are known, classically used in the literature. Our simulated annealing algorithm has been coupled with an open electrical simulator SPICE-PAC of which the modular structure allows the chaining of simulations required by the circuit optimization process. We proposed, for high-dimensional problems, a partitioning technique which ensures proportionality between CPU-time and variables number. To compare our method with others, we have adapted three other methods coming from combinatorial optimization domain - the threshold method, a genetic algorithm and the Tabu search method - The tests have been performed on the same set of test functions and the results allow a first comparison between these methods applied to continuous optimization variables. Finally, our simulated annealing program

  3. Multi-objective Optimizations of a Normal Conducting RF Gun Based Ultra Fast Electron Diffraction Beamline

    CERN Document Server

    Gulliford, C; Maxson, J; Bazarov, I

    2016-01-01

    We present the results of multi-objective genetic algorithm optimizations of a potential single shot ultra fast electron diffraction beamline utilizing a 100 MV/m 1.6 cell normal conducting rf (NCRF) gun, as well as a 9 cell 2pi/3 bunching cavity placed between two solenoids. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for a charge of 1e6 electrons. Analysis of the solutions is discussed, as are the effects of disorder induced heating. In particular, for a charge of $10^6$ electrons and final beam size greater than or equal to 25 microns, we found a relative coherence length of 0.07, 0.1, and 0.2 nm/micron for a final bunch length of approximately 5, 30, and 100 fs, respectively. These results demonstrate the viability of using geneti...

  4. A dose optimization method for electron radiotherapy using randomized aperture beams.

    Science.gov (United States)

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  5. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  6. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

    Directory of Open Access Journals (Sweden)

    Frauke eKracke

    2015-06-01

    Full Text Available Microbial electrochemical techniques describe a variety of emerging technologies that use electrode-bacteria-interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyse the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bio-electrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g. cytochromes, ferredoxin, quinones, flavins are identified and analysed regarding their possible role in electrode-microbe-interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bio

  7. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bohler, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gilevich, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ratner, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vetter, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  8. Multiobjective Optimization for Electronic Circuit Design in Time and Frequency Domains

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2013-04-01

    Full Text Available The multiobjective optimization provides an extraordinary opportunity for the finest design of electronic circuits because it allows to mathematically balance contradictory requirements together with possible constraints. In this paper, an original and substantial improvement of an existing method for the multiobjective optimization known as GAM (Goal Attainment Method is suggested. In our proposal, the GAM algorithm itself is combined with a procedure that automatically provides a set of parameters -- weights, coordinates of the reference point -- for which the method generates noninferior solutions uniformly spread over an appropriately selected part of the Pareto front. Moreover, the resulting set of obtained solutions is then presented in a suitable graphic form so that the solution representing the most satisfactory tradeoff can be easily chosen by the designer. Our system generates various types of plots that conveniently characterize results of up to four-dimensional problems. Technically, the procedures of the multiobjective optimization were created as a software add-on to the CIA (Circuit Interactive Analyzer program. This way enabled us to utilize many powerful features of this program, including the sensitivity analyses in time and frequency domains. As a result, the system is also able to perform the multiobjective optimization in the time domain and even highly nonlinear circuits can be significantly improved by our program. As a demonstration of this feature, a multiobjective optimization of a C-class power amplifier in the time domain is thoroughly described in the paper. Further, a four-dimensional optimization of a video amplifier is demonstrated with an original graphic representation of the Pareto front, and also some comparison with the weighting method is done. As an example of improving noise properties, a multiobjective optimization of a low-noise amplifier is performed, and the results in the frequency domain are shown

  9. Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Schramm, S.M. [Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2013-02-15

    The Contrast Transfer Function (CTF) describes the manner in which the electron microscope modifies the object exit wave function as a result of objective lens aberrations. For optimum resolution in C{sub 3}-corrected microscopes it is well established that a small negative value of C{sub 3}, offset by positive values of C{sub 5} and defocus C{sub 1} results in the most optimal instrument resolution, and optimization of the CTF has been the subject of several studies. Here we describe a simple design procedure for the CTF that results in a most even transfer of information below the resolution limit. We address not only the resolution of the instrument, but also the stability of the CTF in the presence of small disturbances in C{sub 1} and C{sub 3}. We show that resolution can be traded for stability in a rational and transparent fashion. These topics are discussed quantitatively for both weak-phase and strong-phase (or amplitude) objects. The results apply equally to instruments at high electron energy (TEM) and at very low electron energy (LEEM), as the basic optical properties of the imaging lenses are essentially identical. - Highlights: ► An optimized Contrast Transfer Function for aberration corrected electron microscopes is proposed. ► Based on the properties of the CTF near optimum settings, we address its stability. ► Over some range of parameters resolution can be traded for stability. ► These issues are addressed for weak-phase objects, as well as strong-phase and amplitude object. ► We compare our results with CTF settings previously proposed.

  10. Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy

    International Nuclear Information System (INIS)

    The Contrast Transfer Function (CTF) describes the manner in which the electron microscope modifies the object exit wave function as a result of objective lens aberrations. For optimum resolution in C3-corrected microscopes it is well established that a small negative value of C3, offset by positive values of C5 and defocus C1 results in the most optimal instrument resolution, and optimization of the CTF has been the subject of several studies. Here we describe a simple design procedure for the CTF that results in a most even transfer of information below the resolution limit. We address not only the resolution of the instrument, but also the stability of the CTF in the presence of small disturbances in C1 and C3. We show that resolution can be traded for stability in a rational and transparent fashion. These topics are discussed quantitatively for both weak-phase and strong-phase (or amplitude) objects. The results apply equally to instruments at high electron energy (TEM) and at very low electron energy (LEEM), as the basic optical properties of the imaging lenses are essentially identical. - Highlights: ► An optimized Contrast Transfer Function for aberration corrected electron microscopes is proposed. ► Based on the properties of the CTF near optimum settings, we address its stability. ► Over some range of parameters resolution can be traded for stability. ► These issues are addressed for weak-phase objects, as well as strong-phase and amplitude object. ► We compare our results with CTF settings previously proposed

  11. Three-Dimensional Visualization of the Tubular-Lamellar Transformation of the Internal Plastid Membrane Network during Runner Bean Chloroplast Biogenesis.

    Science.gov (United States)

    Kowalewska, Łucja; Mazur, Radosław; Suski, Szymon; Garstka, Maciej; Mostowska, Agnieszka

    2016-04-01

    Chloroplast biogenesis is a complex process that is integrated with plant development, leading to fully differentiated and functionally mature plastids. In this work, we used electron tomography and confocal microscopy to reconstruct the process of structural membrane transformation during the etioplast-to-chloroplast transition in runner bean (Phaseolus coccineus). During chloroplast development, the regular tubular network of paracrystalline prolamellar bodies (PLBs) and the flattened porous membranes of prothylakoids develop into the chloroplast thylakoids. Three-dimensional reconstruction is required to provide us with a more complete understanding of this transformation. We provide spatial models of the bean chloroplast biogenesis that allow such reconstruction of the internal membranes of the developing chloroplast and visualize the transformation from the tubular arrangement to the linear system of parallel lamellae. We prove that the tubular structure of the PLB transforms directly to flat slats, without dispersion to vesicles. We demonstrate that the grana/stroma thylakoid connections have a helical character starting from the early stages of appressed membrane formation. Moreover, we point out the importance of particular chlorophyll-protein complex components in the membrane stacking during the biogenesis. The main stages of chloroplast internal membrane biogenesis are presented in a movie that shows the time development of the chloroplast biogenesis as a dynamic model of this process. PMID:27002023

  12. Chloroplasts in seeds and dark-grown seedlings of lotus.

    Science.gov (United States)

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  13. Ultrastructural changes in chloroplasts of mesophyll cells of chlorotic and prematurely yellowed leaves of Betula pendula Rothr

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-04-01

    Full Text Available The ultrastructure of chloroplasts was studied in mesophyll cells of the leaves of silver birch (Betula pendula showing interveinal chlorosis or premature yellowing, in comparison with leaves without symptoms or exhibiting symptoms of natural senescence. The leaves were collected between May 26 to June 7 and additionally in the September 10-12 from the upper part of the crown, from increments of the past four years. No major difference in ultrastructure of chloroplasts was found between spongy and palisade mesophyll cells. The following senescencerelated changes were observed in chloroplasts of prematurely yellowed leaves and showing inteveinal chlorosis: reduced chloroplast size, degeneration of the membrane systems of thylakoids and increased electron density of plastoglobuli. The most electron dark globules (lipid droplets were found together with starch grains in cells of spongy mesophyll of leaves showing interveinal chlorosis. Abnormal, spherical and rounded chloroplasts with electron-dark inside of thylakoids or the electron-dark stroma between thylakoids were found only in yellowed and chlorotic leaves in spring.

  14. Thermal analysis and structural Optimization of electron gun for traveling wave tube

    International Nuclear Information System (INIS)

    Steady-state and transient thermal analysis of electron gun for a Ka-band traveling wave tube are theoretically performed with a newly-developed 2 mm cathode model by ANSYS software. The heat flux vector chart and temperature distribution chart as well as warm-up time are also derived. The discrepancy of 2% between simulation results and test results, proves that the finite element method is feasible. The ultimate temperature reached by cathode, at given heater power, remarkably depends on the thermal conduction mechanism through cathode module. Based on the heat flux vector chart, the structure of cathode support sleeve with the highest flux is optimized. After optimization, the temperature of cathode increases 28 ℃ the highest temperature of electron gun increases 27 ℃ and the warm-up time of cathode reduces 40 s under the same given heater power. The optimized structure can effectively shorten the warm-up time of cathode by 33% and thus improve fast warm-up the performance of cathode, enhancing the rapid response capability of traveling wave tube. (authors)

  15. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang;

    2004-01-01

    Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica......), which are both parental varieties of the super-hybrid rice, LYP9. Based on the patterns of high sequence coverage, we partitioned chloroplast sequence variations into two classes, intravarietal and intersubspecific polymorphisms. Intravarietal polymorphisms refer to variations within 93-11 or PA64S...... to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0...

  16. Genomics and chloroplast evolution: what did cyanobacteria do for plants?

    OpenAIRE

    Raven, J.A.; Allen, John

    2003-01-01

    The complete genome sequences of cyanobacteria and of the higher plant Arabidopsis thaliana leave no doubt that the plant chloroplast originated, through endosymbiosis, from a cyanobacterium. But the genomic legacy of cyanobacterial ancestry extends far beyond the chloroplast itself, and persists in organisms that have lost chloroplasts completely.

  17. A comparative approach to elucidate chloroplast genome replication

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2009-05-01

    Full Text Available Abstract Background Electron microscopy analyses of replicating chloroplast molecules earlier predicted bidirectional Cairns replication as the prevalent mechanism, perhaps followed by rounds of a rolling circle mechanism. This standard model is being challenged by the recent proposition of homologous recombination-mediated replication in chloroplasts. Results We address this issue in our current study by analyzing nucleotide composition in genome regions between known replication origins, with an aim to reveal any adenine to guanine deamination gradients. These gradual linear gradients typically result from the accumulation of deaminations over the time spent single-stranded by one of the strands of the circular molecule during replication and can, therefore, be used to model the course of replication. Our linear regression analyses on the nucleotide compositions of the non-coding regions and the synonymous third codon position of coding regions, between pairs of replication origins, reveal the existence of significant adenine to guanine deamination gradients in portions overlapping the Small Single Copy (SSC and the Large Single Copy (LSC regions between inverted repeats. These gradients increase bi-directionally from the center of each region towards the respective ends, suggesting that both the strands were left single-stranded during replication. Conclusion Single-stranded regions of the genome and gradients in time that these regions are left single-stranded, as revealed by our nucleotide composition analyses, appear to converge with the original bi-directional dual displacement loop model and restore evidence for its existence as the primary mechanism. Other proposed faster modes such as homologous recombination and rolling circle initiation could exist in addition to this primary mechanism to facilitate homoplasmy among the intra-cellular chloroplast population

  18. Chloroplast signaling within, between and beyond cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof eBobik

    2015-10-01

    Full Text Available The most conspicuous function of the plastid is oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that the plastid possesses its own genome whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nucleus, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet neglected aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order

  19. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    Science.gov (United States)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  20. Specialty Task Force: A Strategic Component to Electronic Health Record (EHR) Optimization.

    Science.gov (United States)

    Romero, Mary Rachel; Staub, Allison

    2016-01-01

    Post-implementation stage comes after an electronic health record (EHR) deployment. Analyst and end users deal with the reality that some of the concepts and designs initially planned and created may not be complementary to the workflow; creating anxiety, dissatisfaction, and failure with early adoption of system. Problems encountered during deployment are numerous and can vary from simple to complex. Redundant ticket submission creates backlog for Information Technology personnel resulting in delays in resolving concerns with EHR system. The process of optimization allows for evaluation of system and reassessment of users' needs. A solid and well executed optimization infrastructure can help minimize unexpected end-user disruptions and help tailor the system to meet regulatory agency goals and practice standards. A well device plan to resolve problems during post implementation is necessary for cost containment and to streamline communication efforts. Creating a specialty specific collaborative task force is efficacious and expedites resolution of users' concerns through a more structured process. PMID:27332478

  1. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation.

    Science.gov (United States)

    Wang, Wen-Hua; He, En-Ming; Chen, Juan; Guo, Ying; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2016-04-01

    Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.

  2. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Martin, Sophie; Robinson, Colin; Unwin, Patrick R

    2013-07-01

    Scanning electrochemical microscopy (SECM) offers a fast and quantitative method to measure local fluxes within photosynthesis. In particular, we have measured the flux of oxygen and ferrocyanide (Fe(CN)6(4-)), from the artificial electron acceptor ferricyanide (Fe(CN)6(3-)), using a stationary ultramicroelectrode at chloroplasts and thylakoid membranes (sourced from chloroplasts). Oxygen generation at films of chloroplasts and thylakoid membranes was detected directly during photosynthesis, but in the case of thylakoid membranes, this switched to sustained oxygen consumption at longer illumination times. An initial oxygen concentration spike was detected over both chloroplast and thylakoid membrane films, and the kinetics of the oxygen generation were extracted by fitting the experimental data to a finite element method (FEM) simulation. In contrast to previous work, the oxygen generation spike was attributed to the limited size of the plastoquinone pool, a key component in the linear electron transport pathway and a contributing factor in photoinhibition. Finally, the mobile nature of the SECM probe, and its high spatial resolution, also allowed us to detect ferrocyanide produced from a single thylakoid membrane. These results further demonstrate the power of SECM for localized flux measurements in biological processes, in this case photosynthesis, and that the high time resolution, combined with FEM simulations, allows the elucidation of quantitative kinetic information.

  3. Optimization Of Cms Endcap Muon Electronics For Major Physics Goals At Lhc

    CERN Document Server

    Vasilev, A

    2000-01-01

    A Large Hadron Collider (LHC) is expected to discover the Higgs particle(s) and will search for new physics beyond Standard Model (SM). However, the LHC environment is the most challenging one in High Energy Physics (HEP) with respect to the range of physics events and their expected rates. An optimized per major LHC physics goals approach to Compact Muon Solenoid (CMS) endcap front-end and readout electronics is investigated. This electronics is based on a low-noise Logarithmic Charge-to-Time and Time- to-Digital Converters that have very low readout latency. Extensive measurements and simulations were conducted not only to prove fulfillment of the design objectives but also to justify a radical change from the baseline approach. Far more superior performance of these circuits allows for digital readout architecture that will solve readout of Cathode Strip Chambers (CSC) problems such as event rate capability, resolution, integration density, radiation hardness and can potentially greatly simplify search for...

  4. Optimizing Effectiveness in Electronic Prescriptions for Pediatric Outpatients: A Call for Responsive Action

    Directory of Open Access Journals (Sweden)

    Richard H. Parrish II

    2014-09-01

    Full Text Available A pediatric compounded non-sterile products repository (pCNP to optimize the effectiveness and safety of “off-label” use of compounded pharmacotherapy through complete transmission of electronic prescriptions across the continuum of care is described. The advent of electronic prescribing has the potential to refocus and resolve long-standing issues of prescription therapy for pediatric patients related to formulation, indication, dosing, and outcomes follow-up, among others. This white paper describes the architecture and function of the pCNP repository. Further, it calls on professional societies, health information technology (HIT and pharmaceutical industries, universities, and government to create a safer pediatric pharmacotherapy system across the continuum of care. This system would include pCNPs within the existing federal and corporate database structures for medical language, and integrates advanced system safety features as requirements for prescribing, compounding, and dispensing non-mass produced prescription therapies for children.

  5. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Wang, F.; Graetz, J.; Moreno, M.S.; Ma, C.; Wu, L.; Volkov, V.

    2011-02-01

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  6. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Brookhaven National Lab. (BNL), Upton, NY (United States); Graetz, Jason [Brookhaven National Lab. (BNL), Upton, NY (United States); Moreno, M. Sergio [Centro Atomico Bariloche (Argentina); Ma, Chao [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Lijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Volkov, Vyacheslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-01-10

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  7. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    OpenAIRE

    Marta Brozynska; Agnelo Furtado; Robert James Henry

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genom...

  8. Multiobjective Genetic Algorithms Program for the Optimization of an OTA for Front-End Electronics

    Directory of Open Access Journals (Sweden)

    Abdelghani Dendouga

    2014-01-01

    Full Text Available The design of an interface to a specific sensor induces costs and design time mainly related to the analog part. So to reduce these costs, it should have been standardized like digital electronics. The aim of the present work is the elaboration of a method based on multiobjectives genetic algorithms (MOGAs to allow automated synthesis of analog and mixed systems. This proposed methodology is used to find the optimal dimensional transistor parameters (length and width in order to obtain operational amplifier performances for analog and mixed CMOS-(complementary metal oxide semiconductor- based circuit applications. Six performances are considered in this study, direct current (DC gain, unity-gain bandwidth (GBW, phase margin (PM, power consumption (P, area (A, and slew rate (SR. We used the Matlab optimization toolbox to implement the program. Also, by using variables obtained from genetic algorithms, the operational transconductance amplifier (OTA is simulated by using Cadence Virtuoso Spectre circuit simulator in standard TSMC (Taiwan Semiconductor Manufacturing Company RF 0.18 μm CMOS technology. A good agreement is observed between the program optimization and electric simulation.

  9. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    Science.gov (United States)

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  10. An optimized methodology to analyze biopolymer capsules by environmental scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Conforto, Egle, E-mail: egle.conforto@univ-lr.fr [LaSIE UMR 7356 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Joguet, Nicolas [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Buisson, Pierre [INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Vendeville, Jean-Eudes; Chaigneau, Carine [IDCAPS, filiale R and D INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Maugard, Thierry [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France)

    2015-02-01

    The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc.… This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. - Highlights: • We optimized a methodology using ESEM to analyze biopolymer capsules. • This methodology allows analyzing original surface samples without any preparation. • No preparation artefact are introduced which would mask important surface details. • Morphological details and chemical contrast from the original surface are preserved. • Capsule shape, volume, surface roughness and coating quality were reliably evaluated.

  11. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  12. Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-H.; Wang, C.-W.; Zhang, X. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States); Sastry, A.M. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States); Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2010-05-01

    Narrowing the gap between theoretical and actual capacity in key Li-based battery systems can be achieved through improvements in both electronic and ionic conductivities of materials, via addition of conductive species. Additives do, however, penalize both volumetric and gravimetric properties, and also limit liquid transport and high rate performance. In this work, we developed a technique to design and optimize cathode system based directly on the relationships among ionic and electronic conductivities and specific energy, for a range of commercially viable cathode electrochemistries and additives. Our results quantify trade-offs among ionic and electronic conductivity, and conductivity and specific energy. We also provide quantitative relationships for improved utilization and specific power, with higher specific energy. Finally, we provide quantitative guidance for the design of high energy density Li(Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3})O{sub 2} cells using conductive additives, and also provide guidelines for the design of cathode systems, based directly on solid and liquid phase transport limitations. Future work will focus on higher rates of performance, and will be based on analyses here. (author)

  13. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets.

    Science.gov (United States)

    Baginsky, Sacha

    2016-06-01

    The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation. PMID:26969742

  14. Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Suetsugu

    Full Text Available Blue light (BL induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we investigated the effects of RL on BL-dependent stomatal opening in isolated epidermis, guard cell protoplasts, and intact leaves of Arabidopsis thaliana. In isolated epidermal tissues and intact leaves, weak BL superimposed on RL enhanced stomatal opening while BL alone was less effective. In guard cell protoplasts, RL enhanced BL-dependent H+-pumping and DCMU, a photosynthetic electron transport inhibitor, eliminated this effect. RL enhanced phosphorylation levels of the H+-ATPase in response to BL, but this RL effect was not suppressed by DCMU. Furthermore, DCMU inhibited both RL-induced and BL-dependent stomatal opening in intact leaves. The photosynthetic rate in leaves correlated positively with BL-dependent stomatal opening in the presence of DCMU. We conclude that guard cell chloroplasts provide ATP and/or reducing equivalents that fuel BL-dependent stomatal opening, and that they indirectly monitor photosynthetic CO2 fixation in mesophyll chloroplasts by absorbing PAR in the epidermis.

  15. Optimizing the CEBAF Injector for Beam Operation with a Higher Voltage Electron Gun

    CERN Document Server

    Hannon, F E; Kazimi, R

    2011-01-01

    Recent developments in the DC gun technology used at CEBAF have allowed an increase in operational voltage from 100kV to 130kV. In the near future this will be extended further to 200kV with the purchase of a new power supply. The injector components and layout at this time have been designed specifically for 100kV operation. It is anticipated that with an increase in gun voltage and optimization of the layout and components for 200kV operation, that the electron bunch length and beam brightness can be improved upon. This paper explores some upgrade possibilities for a 200kV gun CEBAF injector through beam dynamic simulations.

  16. Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxypnictides.

    Science.gov (United States)

    Sanna, S; Carretta, P; Bonfà, P; Prando, G; Allodi, G; De Renzi, R; Shiroka, T; Lamura, G; Martinelli, A; Putti, M

    2011-11-25

    We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe(1-x)Ru(x)AsO(0.85)F(0.15) for 0.1≤x≲0.5. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and eventually disappear around a common critical threshold x(c)~0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x(c).

  17. 2-Dimensional CFD Simulation and Correlation Development for Optimization of Fin Heatsinks in Electronic Cooling

    Institute of Scientific and Technical Information of China (English)

    Jing YANG; Li WANG; Huazhi LI

    2001-01-01

    CFD has penetrated into the field of electronic cooling for some time. Both parallel and staggered plate fin heatsinks are widely used in modern computers. This paper presents the ways to make most use of CFD in optimization design of those heatsinks: the flow and heat transfer of staggered and parallel plate fm heatsinks of various geometry were simulated by using Fluent 5.0 commercial CFD code. Based on 60 different simulation solutions, two correlations, concerning Nusselt number and friction factor as the functions of geometrical and operational parameters of the heatsinks were developed. The presentation parameter examination was also performed by comparing the numerical solutions with the analytical solutions of parallel plate arrays, showing that the correct parameters are used in the correlations.

  18. Two methods for solving optimization problems arising in electronic measurements and electrical engineering

    CERN Document Server

    Sergeyev, Yaroslav D; Grimaldi, Domenico; Molinaro, Anna

    2011-01-01

    In this paper we introduce a common problem in electronic measurements and electrical engineering: finding the first root from the left of an equation in the presence of some initial conditions. We present examples of electrotechnical devices (analog signal filtering), where it is necessary to solve it. Two new methods for solving this problem, based on global optimization ideas, are introduced. The first uses the exact a priori given global Lipschitz constant for the first derivative. The second method adaptively estimates local Lipschitz constants during the search. Both algorithms either find the first root from the left or determine the global minimizers (in the case when the objective function has no roots). Sufficient conditions for convergence of the new methods to the desired solution are established in both cases. The results of numerical experiments for real problems and a set of test functions are also presented.

  19. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  20. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  1. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized the albino mutant emb1303-1 in Arabidopsis. The mutant displayed a severe dwarf phenotype with small albino rosette leaves and short roots on a synthetic medium containing sucrose. It is pigment-deficient and seedling lethal when grown in soil. Embryo development was delayed in the mutant, although seed germination was not significantly im-paired. The plastids of emb1303-1 were arrested in early developmental stages without the classical stack of thylakoid membrane. Genetic and molecular analyses uncovered that the EMB1303 gene encodes a novel chloroplast-localized protein. Mieroarray and RT-PCR analyses revealed that a number of nuclear-and plastid-encoded genes involved in photosynthesis and chloroplast biogenesis were substantially downregulated in the mutant. Moreover, the accu-mulation of several major chloroplast proteins was severely compromised in emb1303-1. These results suggest that EMBI303 is essential for chloroplast development.

  2. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  3. On-line optimization of intraoperative electron beam radiotherapy of the breast

    International Nuclear Information System (INIS)

    Purpose: To optimize the dose delivery to the breast lumpectomy target treated with intraoperative electron beam radiotherapy (IOERT). Materials and methods: Two tools have been developed in our MU calculation software NEMO X to improve the dose homogeneity and the in-vivo dosimetry effectiveness for IOERT treatments. Given the target (tumor bed) thickness measured by the surgeon, NEMO X can provide auto dose normalization to cover 95% of the target volume with 95% of the prescription dose (PD) and a “best guess” of the expected dosimeter dose (EDD) for a deep seated in-vivo dosimeter. The tools have been validated with the data of 91 patients treated with IOERT on a LIAC mobile accelerator. In-vivo dosimetry has been performed with microMOSFETs positioned on the shielding disk inserted between the tumor bed and the chest wall. Results: On average the auto normalization showed to provide better results if compared to conventional normalization rules in terms of mean target dose (|MTD–PD|/PD ⩽ 5% in 95% vs. 53% of pts) and V107 percentage (〈V107〉 = 19% vs. 32%). In-vivo dosimetry MOSFET dose (MD) showed a better correlation with the EDD guessed by our tool than just by assuming that EDD = PD (|MD–EDD|/EDD ⩽ 5% in 57 vs. 26% of pts). Conclusions: NEMO X provides two useful tools for the on-line optimization of the dose delivery in IOERT. This optimization can help to reduce unnecessary large over-dosage regions and allows introducing reliable action levels for in-vivo dosimetry.

  4. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    Science.gov (United States)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  5. An optimized electronic device for solar power harvesting dedicated to wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Le Cam, Vincent; Le Maulf, Regis; Lemarchand, Laurent; Martin, William; Le Pen, Mathieu [LUNAM Univ., Bouguenais (France). IFSTTAR, MACS Dept.

    2012-07-01

    For economics as for practical reasons, this last decade, the use and dissemination of wireless sensor networks (WSN) became obvious; particularly in structural heath monitoring (SHM) use-cases where distances between sensors could be long and access to the structure quite difficult. Even if efforts are leaded to design small components and RF modules that ask for low-power, the need of an external source is often necessary. After have acquired knowledge in solar cells as in batteries technologies and methods to control charge/discharge phases as in optimizing algorithms, IFSTTAR laboratory has designed an electronic device that integrates those progress. This electronic device has a quite generic mission: for a panel of batteries chemistry (Lithium, NiMh) and a panel of solar cells sources (frome mW to some W), the system acts as an improved battery charger whatever the load ask for power. The system applies control algorithms based on battery capacity and chemistry profile. It also applies the MPPT (Maximum Power Point Tracking) algorithm. At any time, battery State Of Charge (SOC) can be requested via I2C bus as well as a warning signal is output when SOC becomes critical. Through standard pin connectors and a simple I2C interface, the system can be used by many wireless devices (sensors) that have to run autonomously. After the presentation of this system, a focus on its application on a real use-case will be given. (orig.)

  6. Origin of a chloroplast protein importer

    OpenAIRE

    Bölter, Bettina; Soll, Jürgen; Schulz, Alexander; Hinnah, Silke; Wagner, Richard

    1998-01-01

    During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import s...

  7. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M.; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A.; González, Maricruz; Lindahl, Anna M.; Cejudo, Francisco J.

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlle...

  8. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Leonor ePuerto-Galán; Juan Manuel Pérez-Ruiz; Julia eFerrández; Beatriz eCano; Belén eNaranjo; Victoria Armario Nájera; Maricruz eGonzález; Anna Marika eLindahl; Francisco Javier Cejudo

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS), including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly con...

  9. Expressing PHB synthetic genes through chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.

  10. Growth parameter optimization and interface treatment for enhanced electron mobility in heavily strained GaInAs/AlInAs high electron mobility transistor structures

    Energy Technology Data Exchange (ETDEWEB)

    Fedoryshyn, Yuriy; Ostinelli, Olivier; Alt, Andreas; Pallin, Angel; Bolognesi, Colombo R., E-mail: colombo@ieee.org [Millimeter-Wave-Electronics Group, ETH Zurich, 8092 Zurich (Switzerland)

    2014-01-28

    The optimization of heavily strained Ga{sub 0.25}In{sub 0.75}As/Al{sub 0.48}In{sub 0.52}As high electron mobility transistor structures is discussed in detail. The growth parameters and the channel layer interfaces were optimized in order to maximize the mobility of the two-dimensional electron gas. Structures composed of an 11 nm thick channel layer and a 4 nm thick spacer layer exhibited electron mobilities as high as 15 100 cm{sup 2}/Vs and 70 000 cm{sup 2}/Vs at 300 and 77 K, respectively, for channels including InAs strained layers. The sheet carrier density was kept above 2.5 × 10{sup 12} cm{sup −2} throughout the entire study.

  11. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    Science.gov (United States)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  12. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  13. Effects of Exogenous Silicon on Photosynthetic Capacity and Antioxidant Enzyme Activities in Chloroplast of Cucumber Seedlings Under Excess Manganese

    Institute of Scientific and Technical Information of China (English)

    FENG Jian-peng; SHI Qing-hua; WANG Xiu-feng

    2009-01-01

    Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem Ⅱ photochemical reactions (Fv/Fm) and the quantum yield of photosysytem Ⅱelectron transport(φPSⅡ),application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.

  14. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E., E-mail: evelyne.meier@synchrotron.org.a [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia) and Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia) and FERMI-Elettra, Sincrotrone Trieste, S.S. 14 km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Biedron, S.G., E-mail: biedron@anl.go [Department of Defense Project Office, Argonne National Laboratory, IL 60439 (United States); FERMI-Elettra, Sincrotrone Trieste, S.S. 14 km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); LeBlanc, G., E-mail: greg.leblanc@synchrotron.org.a [Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia); Morgan, M.J., E-mail: Michael.J.Morgan@monash.ed [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia)

    2011-03-11

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI-Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  15. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    International Nuclear Information System (INIS)

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI-Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  16. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    Science.gov (United States)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.

    2011-03-01

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  17. Digital pulse processing and optimization of the front-end electronics for nuclear instrumentation.

    Science.gov (United States)

    Bobin, C; Bouchard, J; Thiam, C; Ménesguen, Y

    2014-05-01

    This article describes an algorithm developed for the digital processing of signals provided by a high-efficiency well-type NaI(Tl) detector used to apply the 4πγ technique. In order to achieve a low-energy threshold, a new front-end electronics has been specifically designed to optimize the coupling to an analog-to-digital converter (14 bit, 125 MHz) connected to a digital development kit produced by Altera(®). The digital pulse processing is based on an IIR (Infinite Impulse Response) approximation of the Gaussian filter (and its derivatives) that can be applied to the real-time processing of digitized signals. Based on measurements obtained with the photon emissions generated by an (241)Am source, the energy threshold is estimated to be equal to ~2 keV corresponding to the physical threshold of the NaI(Tl) detector. An algorithm developed for a Silicon Drift Detector used for low-energy x-ray spectrometry is also described. In that case, the digital pulse processing is specifically designed for signals provided by a reset-type preamplifier ((55)Fe source). PMID:24326314

  18. Thermoelectric properties optimization of Fe2VGa by tuning electronic density of states via titanium doping

    International Nuclear Information System (INIS)

    We report the correlation between thermoelectric properties and electronic band structure of thermoelectric Heusler alloy Fe2V1-xTixGa by comparing experimental measurements with theoretical calculations. The electrical resistivity data show that the semiconducting-like behavior of pure Fe2VGa is transformed to a more metallic-like behavior at x = 0.1. Meanwhile, an enhancement of the Seebeck coefficient was observed for all Ti doped specimens at elevated temperatures with a peak value of 57 μV/K for x = 0.05 at 300 K. The experimental results can be elucidated by the calculated band structure, i.e., a gradual shifting of the Fermi level from the middle of the pseudogap to the region of valence bands. With optimized doping, the thermoelectric power factor can be significantly enhanced to 3.95 mW m−1 K−2 at room temperature, which is comparable to the power factors of Bi2Te3-based compounds. The synergy of thermal conductivity reduction due to the alloying effect and the significant increase of the thermoelectric power factor leads to higher order zT values than that of prime Fe2VGa

  19. Optimization of deformations and hoop stresses in TSV liners to boost interconnect reliability in electronic appliances

    Science.gov (United States)

    Juma, Mary Atieno; Zhang, Xuliang; He, Song Bai; Abusabah, Ahmed I. A.

    2015-12-01

    Recently, there has been a lot of research with electronic products because more and different functions are integrated into devices and the final product sizes have to be small to meet the market demand. A lot of research has been done on the (TSVs) Through Silicon Vias. In this paper, through silicon via liners are investigated. The liners: silicon dioxide, polystyrene and polypropylene carbonate are exposed to pressure on their inner surfaces and this yielded hoop stresses within their thickness. Deflections too occurred and this is a proof that deformation really took place. In one of our papers, hoop stresses for the same materials were investigated. The values were a little higher but different for each material used. In this paper, we use global cylindrical, partial cylinder model with different theta in Analysis system 14 to model the through silicon via liners. The values are lower meaning the reliability of the liners have been optimized and boosted. However, silicon dioxide liner had the lowest hoop stress around its circumference and lowest deflection value meaning that it's still one of the most reliable materials in the manufacture of through silicon via liners in the industry; but overdependence can be avoided if the other liners are used too.

  20. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    Science.gov (United States)

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  1. Orientation of the pigment molecules in the chloroplast

    NARCIS (Netherlands)

    Goedheer, J.C.

    1955-01-01

    Dichroism, absorption anisotropy, and anomal dispersion of birefringence were measured in the big lamellate chloroplasts of Mougeotia. The results of these measurements indicate a certain orientation of the chlorophyll molecules, and to a smaller extent, of the carotenoids in the chloroplast. In sp

  2. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    Science.gov (United States)

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  3. Origin and evolution of the chloroplast division machinery.

    Science.gov (United States)

    Miyagishima, Shin-Ya

    2005-10-01

    Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. PMID:16143878

  4. Response of Chloroplast NAD(PH Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    Directory of Open Access Journals (Sweden)

    Jemaa eEssemine

    2016-03-01

    Full Text Available Cyclic electron flow around PSI can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and PSII to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e. Q4149 with a high capacity (hcef and C4023 with a low capacity (lcef. The absorbance change at 820 nm (ΔA820 was used here to assess the charge separation in the photosystem I (PSI reaction center (P700. The results obtained show that short-term heat stress abolishes the FQR-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C because of a partial restriction of FQR but it was decreased following high heat-stress (42°C. Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than photosystem II (PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149 was characterized by higher FQR- and NDH-dependent CEF rates than lcef (C4023. Following thermal stress, the activation of NDH-pathway was 130% and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defence against heat stress after the main route, i.e. FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

  5. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  6. Optimizing cost and minimizing energy loss in the recirculating race-track design of the LHeC electron linac

    CERN Document Server

    Skrabacz, J

    2008-01-01

    The objective of this project is to propose an optimal design of a recirculating electron linac for a future LHC-based e-p collider_the LHeC [1, 2]. Primary considerations are the cost, structure, shape, and size of the recirculating track, the optimal number of revolutions through which the e-beam should be accelerated, and radiative energy loss in the bends. Secondary considerations are transverse emittance growth due to radiation, the number of dipoles needed in order to maintain an upper bound on the emittance growth, the average length of such dipoles, and the maximum bending dipole field needed to recirculate the beam. These effects will be studied macroscopically with respect to the overall structure, in that smaller effects related to machine optics of the lattice structure will be neglected. The scope of the optimization problem is, in essence, a "first order" insight into optimal dimensions, centered on minimizing the most important parameter_cost.

  7. Chloroplast division during leaf development of Xanthium pensylvanicum Wallr. (Compositae

    Directory of Open Access Journals (Sweden)

    Roman Maksymowych

    2014-02-01

    Full Text Available Division and growth of chloroplasts was studied during leaf development of Xanthium pensylvanicum at various stages of development represented by the leaf plastochron index.Between leaf plastochron indices -1.00 and 2.56 chloroplast division was observed with little enlargement. Between 2.50 and 5.00 chloroplasts enlarged in diameter with an average rate of 0.21 µm per day. At leaf plastochron index 5.00 chloroplasts attained their mature size of 6.12 µm. No chloroplast division was found after leaf plastochron index 2.50. A change in shape of plastids from spherical proplastids to discoidal accompanied their growth during stages 2.50 and 5.00.

  8. Optimization studies of photo-neutron production in high- metallic targets using high energy electron beam for ADS and transmutation

    Indian Academy of Sciences (India)

    V C Petwal; V K Senecha; K V Subbaiah; H C Soni; S Kotaiah

    2007-02-01

    Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥ 100 MeV for appropriate thickness of the target. It is also noticed that it can be maximized by further increasing the thickness of the target. Further, at higher electron beam energy heat gradient in the target decreases, which facilitates easier heat removal from the target. This can help in developing a photo-neutron source based on electron LINAC by choosing appropriate electron beam energy and target thickness to optimize the neutron flux for ADS, transmutation studies and as high energy neutron source etc. Photo-neutron yield for different targets, optimum target thickness and photo-neutron energy spectrum and heat deposition by electron beam for different incident energy is presented.

  9. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  10. Multi-objective Optimizations of a Novel Cryo-cooled DC Gun Based Ultra Fast Electron Diffraction Beamline

    CERN Document Server

    Gulliford, C; Bazarov, I

    2015-01-01

    We present the results of multi-objective genetic algorithm optimizations of a potential single shot ultra fast electron diffraction beamline utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at sample location have been performed for three different sample radii: 50, 100, 200 microns, for two final bunch charges: 100k and 1000k electrons. Analysis of the solutions is discussed, as are the effects of disorder induced heating. In particular, a coherence length per rms spot size of 0.27 nm/micron was obtained for a final bunch charge of 100k electrons and final rms bunch length of approximately 100 fs. For a final charge of 1000k electrons the cryogun produces a coherence length per rms spot size...

  11. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  12. Photosynthetic Characteristics and Ultrastructure of Chloroplast of Cucumber Under Low Light Density in Solar-Greenhouse

    Institute of Scientific and Technical Information of China (English)

    AI Xi-zhen; GUO Yan-kui; CHEN Li-ping; XING Yu-xian

    2004-01-01

    The photosynthetic characteristics and ultrastructure of chloroplast of cucumber in solargreenhouse were studied. The result showed that the photosynthetic rate (Pn), photosynthetic ability (A350), carboxylation efficiency, light saturation point and light compensation point all declined remarkably under lowlight density, indicating that the photosynthetic characteristics of cucumber were closely related to light environment. Under iow light density, the minimal fluorescence (Fo), alterable fluorescence (Fv), photochemical efficiency of PS Ⅱ (Fv/Fm), steady fluorescence in light (Fs), maximal fluorescence (Fm′) and actual efficiency of PS Ⅱ (φPSⅡ)etc increased, indicating that the photochemical activity and efficiency for solar energy transformation enhanced, thus the light proportion used to electron transport also increased. The chlorophyll a, b, a/b and carotenoid of shading leaves decreased. However, the depressed extent of Chl a and Chl a/b were obviously larger than that of Chl b. The number of chloroplast and starch grain in cucumber leaves descended, but that of grana and lamella increased as a shaded result. The size of chloroplast and starch grain of shading leaves minished.

  13. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress.

    Science.gov (United States)

    Joaquín-Ramos, Ahuitzolt; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; Baginsky, Sacha; Barba de la Rosa, Ana P

    2014-09-15

    The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant. PMID:25046763

  14. Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment

    Science.gov (United States)

    Chen, Lin; Tian, Jinshou; Liu, Chunliang; Wang, Yifang; Zhao, Tianchi; Liu, Hulin; Wei, Yonglin; Sai, Xiaofeng; Chen, Ping; Wang, Xing; Lu, Yu; Hui, Dandan; Guo, Lehui; Liu, Shulin; Qian, Sen; Xia, Jingkai; Yan, Baojun; Zhu, Na; Sun, Jianning; Si, Shuguang; Li, Dong; Wang, Xingchao; Huang, Guorui; Qi, Ming

    2016-08-01

    A novel large-area (20-inch) photomultiplier tube based on microchannel plate (MCP-PMTs) is proposed for the Jiangmen Underground Neutrino Observatory (JUNO) experiment. Its photoelectron collection efficiency Ce is limited by the MCP open area fraction (Aopen). This efficiency is studied as a function of the angular (θ), energy (E) distributions of electrons in the input charge cloud and the potential difference (U) between the PMT photocathode and the MCP input surface, considering secondary electron emission from the MCP input electrode. In CST Studio Suite, Finite Integral Technique and Monte Carlo method are combined to investigate the dependence of Ce on θ, E and U. Results predict that Ce can exceed Aopen, and are applied to optimize the structure and operational parameters of the 20-inch MCP-PMT prototype. Ce of the optimized MCP-PMT is expected to reach 81.2%. Finally, the reduction of the penetration depth of the MCP input electrode layer and the deposition of a high secondary electron yield material on the MCP are proposed to further optimize Ce.

  15. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  16. Optimization of the skin total irradiation technique with electrons; Optimizacion de la tecnica de irradiacion cutanea total con electrons

    Energy Technology Data Exchange (ETDEWEB)

    Reggio, F. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Fisica; Davila, J. [Instituto Medico La Floresta, Caracas (Venezuela). Unidad de Radioterapia Oncologica GURVE

    2004-07-01

    The Total Skin Electron Irradiation (TSEI) is one of the special techniques of radiotherapy, and it allows achieving an effective Mycosis Fungoides (MF) control. The general objective of this research was to reduce the dose variations on patients surface with MF treated with the TSEI used in La Floresta Medical Institute Radiation Unit, Caracas, Venezuela. The first step was a dosimetry evaluation of the initial technique. According with these results, we proposed several modifications, which produced a great improvement about dose uniformity on the patients skin, and at the same time simplify the initial technique. (author)

  17. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  18. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    Science.gov (United States)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  19. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.

    Science.gov (United States)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-04-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway fromSorghum bicolorinto the chloroplasts ofNicotiana tabacum(tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integratingCYP79A1,CYP71E1, andUGT85B1into a neutral site of theN. tabacumchloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  20. Chloroplast genome variation in upland and lowland switchgrass

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individu...

  1. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  2. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    Science.gov (United States)

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  3. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    Science.gov (United States)

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  4. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  5. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    Science.gov (United States)

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  6. The optimization of production and control of hot-electron plasmas

    International Nuclear Information System (INIS)

    The research discussed in this paper consist of the following: Hot-Electron Plasma Formation in AMPHED; Kinectic Models of Hot-Electron Plasma Formation; Resonator Design and Tests; Results of 1-D Fokker-Planck ECH Study of TEXT; and AMPC/TEXT Collaboration

  7. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    Science.gov (United States)

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-09-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.

  8. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome.

    Directory of Open Access Journals (Sweden)

    Alison Gonçalves Nazareno

    Full Text Available Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq. L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp and a small single copy region (SSC, 17,586 bp separated by inverted repeat regions (IRs, 25,789 bp. In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering

  9. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    Science.gov (United States)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  10. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    YANG Zongqi; LI yinü; CHEN Feng; LI Dong; ZHANG Zhifang; LIU Yanxin; ZHENG Dexian; WANG Yong; SHEN Guifang

    2006-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selectively apoptosis in various tumor cells and virus-infected cells, but rarely in normal cells. A chloroplast expression vector, p64TRAIL, containing the cDNA coding for the soluble TRAIL (sTRAIL), was constructed with clpP-trnL-petB-chlL-rpl23-rpl2 as Chlamydomonas reinhardtii plastid homologous recombinant fragments and spectinomycin-resistant aadA gene as a select marker. The plasmid p64TRAIL was transferred into the chloroplast genome of C. reinhardtii by the biolistic method. Three independently transformed lines were obtained by 100 mg/L spectinomycin selection. PCR amplification, Southern blot analysis of the sTRAIL coding region DNA and cultivation cells in the dark all showed that the exogenous DNA had been integrated into chloroplast genome of C. reinhardtii. Western blot analysis showed that human soluble TRAIL was expressed in C. reinhardtii chloroplast. The densitometric analysis of Western blot indicated that the expressed human sTRAIL protein in the chloroplasts of C. reinhardtii accounted for about 0.43%-0.67% of the total soluble proteins.These experimental results demonstrated the possibility of using transgenic chloroplasts of green alga as bioreactors for production of biopharmaceuticals.

  11. Optimization of metallic magnetic calorimeters for high resolution measurement of the {sup 163}Ho electron capture spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Haehnle, Sebastian [Kirchhoff-Institute for Physics, Heidelberg University (Germany); Collaboration: ECHo-Collaboration

    2015-07-01

    The absolute scale of the neutrino mass eigenstates is one of the puzzles in modern particle physics. One method to investigate the value of the electron neutrino mass is to analyse the high energy region of the {sup 163}Ho electron capture spectrum. In the ECHo experiment low temperature metallic magnetic calorimeters (MMCs) are used for the calorimetric measurements of the EC spectrum of {sup 163}Ho. To ensure 100% quantum efficiency, the {sup 163}Ho ions are implanted into the gold absorber. Experiments carried out with a first detector prototype have demonstrated that MMC-based detectors fulfill the requirements in terms of energy resolution, rise-time and energy calibration. We discuss methods to further optimize the performance of MMCs with implanted {sup 163}Ho. Our aim is to achieve an energy resolution Δ E{sub FWHM} < 5 eV and a signal rise-time τ < 100 ns. An important aspect of this optimization is to define the maximum activity per pixel. This will result from a compromise between allowed unresolved pile-up fraction, additional heat capacity in the absorber due to Ho ions in the absorber material and minimization of the pixel number. We discuss experimental approaches for the determination of the optimal activity per pixel.

  12. Optimization of fuel supply map during starting process of electronic controlled diesel engine

    Institute of Scientific and Technical Information of China (English)

    Jinguang LIANG; Xiumin YU; Yue GAO; Yunkai WANG; Hongyang YU; Baoli GONG

    2008-01-01

    Tests were conducted to study influence of fuel supply map during the starting process of an electronic con-trolled diesel engine using an electronic controlled diesel engine which was made up of a CA498Z diesel engine, a VP37 elec-tronic controlled distributor injection pump management system and a VS100 calibration system. The calibration pro-cess of starting fuel supply map was educed under the principle of low HC emission and rapid starting velocity. The cal-ibration methods of starting fuel supply map were obtained.

  13. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm.

    Science.gov (United States)

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C₆H₆), toluene (C₇H₈), formaldehyde (CH₂O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms' applications in all E-nose application areas. PMID

  14. Optimization of Electron Beam Melting for Production of Small Components in Biocompatible Titanium Grades

    OpenAIRE

    Karlsson, Joakim

    2015-01-01

    Additive manufacturing (AM), also called 3D-printing, are technologies where parts are formed from the bottom up by adding material layer-by-layer on top of each other. Electron Beam Melting (EBM) is an AM technique capable of manufacturing fully solid metallic parts, using a high-intensity electron beam to melt powder particles in layers to form finished components. Compared to conventional machining, EBM offers enhanced efficiency for production of customized and patient specific parts such...

  15. Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule: N-methyl-6-quinolone

    Science.gov (United States)

    Klamroth, Tillmann

    2006-04-01

    We report time-dependent configuration interaction singles calculations for the ultrafast laser driven many-electron dynamics in a polyatomic molecule, N-methyl-6-quinolone. We employ optimal control theory to achieve a nearly state-selective excitation from the S0 to the S1 state, on a time scale of a few (≈6) femtoseconds. The optimal control scheme is shown to correct for effects opposing a state-selective transition, such as multiphoton transitions and other, nonlinear phenomena, which are induced by the ultrashort and intense laser fields. In contrast, simple two-level π pulses are not effective in state-selective excitations when very short pulses are used. Also, the dependence of multiphoton and nonlinear effects on the number of states included in the dynamical simulations is investigated.

  16. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  17. The stay-green phenotype of TaNAM-RNAi wheat plants is associated with maintenance of chloroplast structure and high enzymatic antioxidant activity.

    Science.gov (United States)

    Checovich, Mariana L; Galatro, Andrea; Moriconi, Jorge I; Simontacchi, Marcela; Dubcovsky, Jorge; Santa-María, Guillermo E

    2016-07-01

    TaNAM transcription factors play an important role in controlling senescence, which in turn, influences the delivery of nitrogen, iron and other elements to the grain of wheat (Triticum aestivum) plants, thus contributing to grain nutritional value. While lack or diminished expression of TaNAMs determines a stay-green phenotype, the precise effect of these factors on chloroplast structure has not been studied. In this work we focused on the events undergone by chloroplasts in two wheat lines having either control or diminished TaNAM expression due to RNA interference (RNAi). It was found that in RNAi plants maintenance of chlorophyll levels and maximal photochemical efficiency of photosystem II were associated with lack of chloroplast dismantling. Flow cytometer studies and electron microscope analysis showed that RNAi plants conserved organelle ultrastructure and complexity. It was also found that senescence in control plants was accompanied by a low leaf enzymatic antioxidant activity. Lack of chloroplast dismantling in RNAi plants was associated with maintenance of protein and iron concentration in the flag leaf, the opposite being observed in control plants. These data provide a structural basis for the observation that down regulation of TaNAMs confers a functional stay-green phenotype and indicate that the low export of iron and nitrogen from the flag leaf of these plants is concomitant, within the developmental window studied, with lack of chloroplast degradation and high enzymatic antioxidant activity.

  18. Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Atxitia, U., E-mail: Unai.Atxitia@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, D-78457 Konstanz (Germany); Zukunftskolleg, Universität Konstanz, D-78457 Konstanz (Germany); Ostler, T. A., E-mail: t.ostler@exeter.ac.uk [Department of Physics, University of York, York YO105DD (United Kingdom); College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4SB (United Kingdom); Chantrell, R. W. [Department of Physics, University of York, York YO105DD (United Kingdom); Chubykalo-Fesenko, O. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2015-11-09

    Using large-scale computer simulations, we thoroughly study the minimum energy required to thermally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated electrons is increased, the minimum power required to produce TIMS can be reduced by an order of magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic heterostructures.

  19. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  20. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  1. Chloroplast genome structure in Ilex (Aquifoliaceae).

    Science.gov (United States)

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  2. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  3. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    Science.gov (United States)

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  4. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  5. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Chloroplastic respiration was monitored by measuring 14CO2 from 14C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The Km for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of 14CO2 was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO2 evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO2 evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH4Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co2 and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism

  6. Chloroplast DNA Diversity of Oak Species in Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioan Calin MOLDOVAN

    2010-12-01

    Full Text Available The chloroplast DNA of 34 sessile oak (Quercus petraea and 27 pedunculate oak (Q. robur populations covering the entire natural distribution of the two oak species in Eastern Romania was investigated using four large regions of the chloroplast genome by PCR and RFLP technique. A total of seven chloroplast DNA haplotypes sensu lato have been observed by analysing 305 mature trees. However, due to the high resolution of the electrophoresis method a total of 22 chloroplast variants could have been detected, with new mutations and fragment combinations in two of the amplified regions: psbC/trnD and trnT/trnF. All of the haplotypes belong to the phylogenetic lineages A and E, which originate from the Balkan Peninsula. Most of genetic diversity is distributed among populations (GST=0.779. The chloroplast DNA haplotypes are shared by the two oak species. Different dispersal abilities may explain the higher value of genetic differentiation among populations in sessile oak than in pedunculate oak.

  7. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    Science.gov (United States)

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  8. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    OpenAIRE

    Lu, Xianhai; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2014-01-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. Small transverse dimension of the drive laser is found crit...

  9. Optimizing the electronic control loop of a solid-state ring laser gyroscope

    OpenAIRE

    Schwartz, Sylvain; Rebut, Maxence; Feugnet, Gilles; Colineau, Joseph; Pocholle, Jean-Paul

    2007-01-01

    We study in this Letter the dynamical effects of the limited bandwidth of the control electronics in a solid-state (Nd-YAG) ring laser gyroscope. We derive a stability condition for the rotation-sensing regime in the case of a first-order control loop, showing that the smallest measurable rotation speed depends directly on the cutoff frequency value. Our experimental measurements are in good agreement with this prediction.

  10. Electronic neural network for solving traveling salesman and similar global optimization problems

    Science.gov (United States)

    Thakoor, Anilkumar P. (Inventor); Moopenn, Alexander W. (Inventor); Duong, Tuan A. (Inventor); Eberhardt, Silvio P. (Inventor)

    1993-01-01

    This invention is a novel high-speed neural network based processor for solving the 'traveling salesman' and other global optimization problems. It comprises a novel hybrid architecture employing a binary synaptic array whose embodiment incorporates the fixed rules of the problem, such as the number of cities to be visited. The array is prompted by analog voltages representing variables such as distances. The processor incorporates two interconnected feedback networks, each of which solves part of the problem independently and simultaneously, yet which exchange information dynamically.

  11. Transmission electron microscopy for the evaluation and optimization of crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Hilary P.; Lin, Guowu; Barnes, Christopher O.; Sutkeviciute, Ieva; Krzysiak, Troy; Weiss, Simon C.; Reynolds, Shelley; Wu, Ying; Nagarajan, Veeranagu; Makhov, Alexander M.; Lawrence, Robert; Lamm, Emily; Clark, Lisa; Gardella, Timothy J.; Hogue, Brenda G.; Ogata, Craig M.; Ahn, Jinwoo; Gronenborn, Angela M.; Conway, James F.; Vilardaga, Jean-Pierre; Cohen, Aina E.; Calero, Guillermo

    2016-04-26

    The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.

  12. Optimal Operation of Distribution Electronic Power Transformer Using Linear Quadratic Regulator Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Rezaei

    2011-10-01

    Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage flicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.

  13. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  14. Importance of the tuning of band position in optimizing the electronic coupling and photocatalytic activity of nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoyan; Mok, Eun Kyung; Baek, Ji-Won [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Park, Sang-Hyun [Smithers-Oasis Korea, 196-4 YongJungDoHa-Gil 157, Cheonan, Chungnum-Do (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2015-10-15

    The electronic coupling and photocatalytic activity of Ag{sub 2}CO{sub 3}–TiO{sub 2} nanocomposite can be optimized by the fine-tuning of the band position of titanium oxide with nitrogen doping. The increase of the valence band energy of TiO{sub 2} by N-doping leads not only to the enhanced absorption of visible light but also to the promoted hole transfer from Ag{sub 2}CO{sub 3} to TiO{sub 2}, resulting in the efficient spatial separation of photogenerated electrons and holes. While the undoped Ag{sub 2}CO{sub 3}–TiO{sub 2} nanocomposite shows an inferior photocatalytic activity to the pure Ag{sub 2}CO{sub 3}, the photocatalyst performance of N-doped nanocomposite is better than those of Ag{sub 2}CO{sub 3} and undoped Ag{sub 2}CO{sub 3}–TiO{sub 2} nanocomposite. This observation underscores a significant enhancement of the photocatalytic activity of nanocomposite upon N-doping, a result of enhanced electronic coupling between the hybridized species. The present results clearly demonstrate the importance of the fine-tuning of band position in optimizing the photocatalytic activity of hybrid-type photocatalysts. - Highlights: • The band position of Ag{sub 2}CO{sub 3}–TiO{sub 2} can be effectively tailored by nitrogen doping. • The N-doping leads to the improvement of charge separation. • The N-doped Ag{sub 2}CO{sub 3}–TiO{sub 2} shows high photocatalytic activity.

  15. Molecular biology and physiology of isolated chloroplasts from the algae Vaucheria

    OpenAIRE

    Didriksen, Alena

    2010-01-01

    Sea slugs of the genus Elysia (e.g. E. chlorotica) are known for their ability to incorporate chloroplasts from the yellow-green alga Vaucheria litorea. These “kleptoplasts” stay active in the digestive tract of the sea slug for several months. Chloroplasts from Vaucheria litorea are also reported to be significantly more stable after in vitro isolation than chloroplasts of other algae or of higher plants. In organello assays with isolated chloroplasts are used in studies on photosynthetical ...

  16. Chloroplast degeneration and its inhibition by kinetin in detached leaves of Cichorium intybus L.

    OpenAIRE

    F. Młodzianowski; L. Młodzanowska

    2015-01-01

    In the chicory (Cichorium intybus L. var. sativum cv. Polanowicka) leaves two types of chloroplasts are present differing by their degree of osmiophility of the thylakoid inside. This type of differentiation of chloroplasts has so far been found only in several plant species. The process of chloroplast degeneration in darkness is described. In osmiophilic chloroplasts at certain stage of degeneration minutely layered giant grana were found. Kinetin markedly inhibited the process of chloroplas...

  17. Expression and function analysis of the metallo-thionein-like (MT-like) gene from Festuca rubra in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cDNA of the metallothionein-like (MT-like) gene from Festuca rubra cv. Merlin was optimized with bias codon of Chlamydomonous reinhardtii chloroplast genome. The optimized MT-like gene was de-livered into C. reinhardtii chloroplast and the transgenic strains expressing MT-like gene was obtained. PCR-Southern blot and RT-PCR-Southern blot analysis demonstrated that the MT-like gene was inte-grated into chloroplast genome of C. reinhardtii and expressed at the transcriptional level. The cad-mium binding capacity of the transgenic C. reinhardtii was determined by hydride generation-atomic fluorescence spectrometry (HG-AFS) and the binding properties were analyzed. Results showed that the transgenic C. reinhardtii expressing the MT-like gene exhibited remarkably higher Cd2+ binding capacity and grew to higher densities at toxic Cd2+ concentrations (40-100 μmol/L) than the wild type strain, and that the IC50 of Cd2+ (3-d treating ) to algal cell growth of transgenic strain was 55.43% higher than that of the wild type strain, indicating that the Cd2+ binding capacity and Cd2+ tolerance of C. reinhardtii was enhanced through the expression of the foreign MT-like gene in chloroplast.

  18. Expression and function analysis of the metallo-thionein-like (MT-like) gene from Festuca rubra in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    HAN SiHai; HU ZhangLi; LEI AnPing

    2008-01-01

    The cDNA of the metallothionein-like (MT-like) gene from Festuca rubra cv. Merlin was optimized with bias codon of Chlamydomonous reinhardtii chloroplast genome. The optimized MT-like gene was delivered into C. reinhardtii chloroplast and the transgenic strains expressing MT-like gene was obtained. PCR-Southern blot and RT-PCR-Southern blot analysis demonstrated that the MT-like gene was integrated into chloroplast genome of C. reinhardtii and expressed at the transcriptional level. The cadmium binding capacity of the transgenic C. reinhardtii was determined by hydride generation-atomic fluorescence spectrometry (HG-AFS) and the binding properties were analyzed. Results showed that the transgenic C. reinhardtii expressing the MT-like gene exhibited remarkably higher Cd2+ binding capacity and grew to higher densities at toxic Cd2+ concentrations (40-100 μmol/L) than the wild type strain, and that the IC50 of Cd2+ (3-d treating) to algal cell growth of transgenic strain was 55.43% higher than that of the wild type strain, indicating that the Cd2+ binding capacity and Cd2+ tolerance of C. reinhardtii was enhanced through the expression of the foreign MT-like gene in chloroplast.

  19. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43 Is Required for Chloroplast Development and Photosynthesis.

    Directory of Open Access Journals (Sweden)

    Xiang-guang Lv

    Full Text Available A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS-induced IR64 (Oryza sativa L. ssp. indica mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43 with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43 was required for the normal development of chloroplasts and photosynthesis in rice.

  20. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    Science.gov (United States)

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  1. Simulation and optimization for a 30-MeV electron accelerator driven neutron source

    International Nuclear Information System (INIS)

    A neutron source driven by electron accelerator is proposed in Shanghai Institute of Applied Physics (SINAP). The facility is planned for the study of nuclear data in Thorium-Uranium cycling system, and for material research. A detailed simulation of the neutron source is performed for the program to get the neutron generation maximum economically. Several parameters of the facility, which affect the neutron yield and the neutron escape from outer surface of the target, are analyzed respectively. Besides, the yielding neutron spectrum and the escaping neutron angular distribution are calculated and discussed. (authors)

  2. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    CERN Document Server

    Lu, Xianhai; Huang, Wenhui; Tang, Chuanxiang

    2014-01-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. Small transverse dimension of the drive laser is found critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  3. Electrons

    International Nuclear Information System (INIS)

    Fast electrons are used to produce isotopes for studying the cooper metabolism: Cu-64 in a cyclotron and Cu-67 in a linear accelerator. Localized electrons are responsible for the chemical and physiological characteristics of the trace elements. Studied are I, Cu, Co, Zn, Mo, Mn, Fe, Se, Mg. The Cu/Mo and Cu/Zn interactions are investigated. The levels of molybdenum, sulfate and zinc in the food are analysed. The role of the electrons in free radicals is discussed. The protection action of peroxidases and super oxidases against electron dangerous effect on normal physiology is also considered. Calculation of radiation damage and radiation protection is made. (author)

  4. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  5. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    Science.gov (United States)

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  6. Nucleotide sequence of a spinach chloroplast valine tRNA.

    OpenAIRE

    Sprouse, H M; Kashdan, M; Otis, L; Dudock, B

    1981-01-01

    The nucleotide sequence of a spinach chloroplast valine tRNA (sp. chl. tRNA Val) has been determined. This tRNA shows essentially equal homology to prokaryotic valine tRNAs (58-65% homology) and to the mitochondrial valine tRNAs of lower eukaryotes (yeast and N. crassa, 61-62% homology). Sp. chl. tRNA Val shows distinctly lower homology to mouse mitochondrial valine tRNA (53% homology) and to eukaryotic cytoplasmic valine tRNAs (47-53% homology). Sp. chl. tRNA Val, like all other chloroplast ...

  7. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-05-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  8. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  9. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  10. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  11. Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation

    Science.gov (United States)

    Atriana Palma, Bianey; Ureba Sánchez, Ana; Salguero, Francisco Javier; Arráns, Rafael; Míguez Sánchez, Carlos; Walls Zurita, Amadeo; Romero Hermida, María Isabel; Leal, Antonio

    2012-03-01

    The purpose of this study was to present a Monte-Carlo (MC)-based optimization procedure to improve conventional treatment plans for accelerated partial breast irradiation (APBI) using modulated electron beams alone or combined with modulated photon beams, to be delivered by a single collimation device, i.e. a photon multi-leaf collimator (xMLC) already installed in a standard hospital. Five left-sided breast cases were retrospectively planned using modulated photon and/or electron beams with an in-house treatment planning system (TPS), called CARMEN, and based on MC simulations. For comparison, the same cases were also planned by a PINNACLE TPS using conventional inverse intensity modulated radiation therapy (IMRT). Normal tissue complication probability for pericarditis, pneumonitis and breast fibrosis was calculated. CARMEN plans showed similar acceptable planning target volume (PTV) coverage as conventional IMRT plans with 90% of PTV volume covered by the prescribed dose (Dp). Heart and ipsilateral lung receiving 5% Dp and 15% Dp, respectively, was 3.2-3.6 times lower for CARMEN plans. Ipsilateral breast receiving 50% Dp and 100% Dp was an average of 1.4-1.7 times lower for CARMEN plans. Skin and whole body low-dose volume was also reduced. Modulated photon and/or electron beams planned by the CARMEN TPS improve APBI treatments by increasing normal tissue sparing maintaining the same PTV coverage achieved by other techniques. The use of the xMLC, already installed in the linac, to collimate photon and electron beams favors the clinical implementation of APBI with the highest efficiency.

  12. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    Science.gov (United States)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  13. A Simplified Model for Fast Optimization of Free-Electron Laser Oscillator

    CERN Document Server

    Li, Kai; Deng, Haixiao

    2016-01-01

    A simplified theoretical model for free-electron laser oscillator (FELO) simulation which reserves the main physics is proposed. In stead of using traditional macro particles sampling method, the theoretical model takes advantages of low gain theory to calculate the optical power single-pass gain in the undulator analytically, and some reasonable approximations are made to simplify the calculation of power growth in the cavity. The theoretical analysis of single-pass gain, power growth, time-dependent laser profile evolution and cavity desynchronism are accomplished more efficiently. We present the results of infrared wavelength FELO and X-ray FELO with the new model. The results is checked by simulation with GENESIS and OPC which demonstrates the validity of the theoretical model.

  14. Data Mining and Electronic Health Records: Selecting Optimal Clinical Treatments in Practice

    CERN Document Server

    Bennett, Casey

    2011-01-01

    Electronic health records (EHR's) are only a first step in capturing and utilizing health-related data - the problem is turning that data into useful information. Models produced via data mining and predictive analysis profile inherited risks and environmental/behavioral factors associated with patient disorders, which can be utilized to generate predictions about treatment outcomes. This can form the backbone of clinical decision support systems driven by live data based on the actual population. The advantage of such an approach based on the actual population is that it is "adaptive". Here, we evaluate the predictive capacity of a clinical EHR of a large mental healthcare provider (~75,000 distinct clients a year) to provide decision support information in a real-world clinical setting. Initial research has achieved a 70% success rate in predicting treatment outcomes using these methods.

  15. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  16. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons.

    Directory of Open Access Journals (Sweden)

    Nora Scarcelli

    Full Text Available Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC. Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon and non-coding regions (intron and intergenic spacer. They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC and 15 in the Inverted Repeat region (IR. Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae, Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae, Digitaria excilis and Pennisetum glaucum (Poaceae. The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR. We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies.

  17. Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps.

    Science.gov (United States)

    DiMaio, F; Chiu, W

    2016-01-01

    Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data. PMID:27572730

  18. Electron Irradiation of Conjunctival Lymphoma—Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    International Nuclear Information System (INIS)

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  19. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  20. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment

    Science.gov (United States)

    Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.

    2014-01-01

    This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724

  1. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Lee Kang Hyuck

    2010-01-01

    Full Text Available Abstract The photovoltaic (PV performance of flexible inverted organic solar cells (IOSCs with an active layer consisting of a blend of poly(3-hexylthiophene and [6, 6]-phenyl C61-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs. A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO-coated polyethersulphone (PES substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C. The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths.

  2. Optimization of gaseous helium heater for 2 K cryogenic system for VECC’s superconducting electron linac

    Science.gov (United States)

    Ahammed, Manir; Ghosh, Siddhartha; Saha, Subrata; Singh, Sandeep Kumar; Bhattacharya, Tamal Kumar; DuttaGupta, Anjan; Pal, Gautam; Naik, Vaishali; Chakrabarti, Alok

    2014-09-01

    Niobium superconducting radiofrequency cavities are generally operated at around 2 K temperature to achieve a high quality factor by reducing residual surface losses. 2 K temperature is produce by lowering down the pressure of the helium by employing a sub-atmospheric vacuum pumping system. The cavities are immersed in liquid helium bath, maintained in the helium chamber. A special heater is optimized for warming up the helium gas coming out from the helium chamber to 300 K before it enters the pumping system. Keeping in view the uninterrupted and reliable operation of the superconducting electron linac and safe running of the liquid helium plant, a tubular heat exchanger type of heater is designed. Current is passed through the tubes of the heater so as to let the tube banks themselves act as heating element. He gas, passing through the tubes, absorbs the heat and warms up to the desired temperature. Unlike common notion, it has been observed that heater with longer length could reduce the requirement of the heater power but at the cost of extra pumping power, required to counter balance the excess pressure drop caused by the additional length of the heater. Pressure drop is kept within 50 Pa for 2 g/s helium flow rate. The whole lot of tubes, divided into 4 bundles, are electrically connected in series so that current rating of the feed-through could be kept within 750 A. This paper discusses the methodology used for optimizing the design of the heater.

  3. Optimal Placement and Sizing of Capacitor and Power-Electronic Interfaced Distributed Generation in Heavy Harmonic Polluted Systems

    Directory of Open Access Journals (Sweden)

    Mohamadreza Heydari Sharafdarkolai

    2014-06-01

    Full Text Available Presence of distributed generation (DG in distribution systems has significant impacts on the operational characteristics of these systems, also using capacitor for reactive compensation and loss reduction is so common. Injected harmonic currents from non-linear loads into distribution system distort all of voltages and currents and must be considered when placing the capacitor banks so that the resonance will not occur. Distributed Generation is often connected to the network via power-electronic interfaces for a proper coupling with the distribution networks. Inverters are capable of producing harmonic components and can be used as ancillary services for reducing harmonics by designing of a proper controlling system. In this paper discrete particle swarm optimization (DPSO approach is used for the optimal placement and sizing of distributed generations and capacitors in distorted distribution systems for simultaneous voltage profile improvement, loss and total harmonic distortion (THD reduction. Constraints include voltage limit, voltage THD, number/ size of capacitors and generators. For evaluating the proposed algorithm, the IEEE 33-bus test system is modified and employed.

  4. The ALICE TPC Readout Electronics Design, performance optimization and verification of the DAQ circuit

    CERN Document Server

    Attiq, urRehman; Dieter, Røhrich

    2012-12-03

    ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion experiment at CERN’s LHC (Large Hadron Collider). It is designed to study the physics of strongly interacting matter and the quark-gluon plasma in heavy-ion collisions. It contains a large volume Time Projection Chamber (TPC) as its main tracking device. The ALICE TPC is the largest ever built gaseous TPC, both in terms of dimensions and number of read-out channels (557,578). A total number of 128 channels are packed in one TPC Front End Card (FEC) and 4,356 FECs are distributed over 216 independent readout partitions. Each readout partition steered by a single Readout Control Unit (RCU) functions as an independent unit in the data acquisition system of the TPC. The RCU functions as an interface between the FECs, Data AcQuisition system (DAQ), the Trigger and Timing Circuit (TTC) and the Detector Control System (DCS). The ALICE TPC readout electronics is in operation since the start of the LHC in November 2009. The primary objectives of the wo...

  5. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.

    1998-04-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  6. Computational 3D reconstructions by optimization for cryo-electron microscopy

    Science.gov (United States)

    Yin, Zhye; Zheng, Yili; Doerschuk, Peter C.; Johnson, John E.

    2003-06-01

    An algorithm for the simultaneous 3-D reconstruction of several types of object, where each type of object may possibly have a rotational symmetry, from 2-D projection images, where for each image the type of object imaged, the projection orientation used to create the image, and the location of the object in the image are unknown, is described. The motivating application is the determination of the 3-D structure of small spherical viruses from cryo electron microscopy images. The algorithm is a maximum likelihood estimator which is computed by expectation maximization (EM). Due to the structure of the statistical model, the maximization step of EM can be easily computed but the expectation step requires 5-D numerical quadrature. The computational burden of the quadratures necessitates parallel computation and three different implementations of two different types of parallelism have been developed using pthreads (for shared memory processors) and MPI (for distributed memory processors). An example applying one of the MPI implementations, running on a 32 node PC cluster, to experimental images of Flock House Virus with comparison to the x-ray crystal diffraction structure of the virus is described.

  7. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  8. Chloroplast degeneration and its inhibition by kinetin in detached leaves of Cichorium intybus L.

    Directory of Open Access Journals (Sweden)

    F. Młodzianowski

    2015-05-01

    Full Text Available In the chicory (Cichorium intybus L. var. sativum cv. Polanowicka leaves two types of chloroplasts are present differing by their degree of osmiophility of the thylakoid inside. This type of differentiation of chloroplasts has so far been found only in several plant species. The process of chloroplast degeneration in darkness is described. In osmiophilic chloroplasts at certain stage of degeneration minutely layered giant grana were found. Kinetin markedly inhibited the process of chloroplast degeneration, and after prolonged treatment even stimulated the stacking. process of grana thylakoids.

  9. Optimization of Optical and Electronic properties of Carbon Fullerenes: Symmetry-Reduced C60 and Dumbbell-Like Novel Structures

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, M R

    2008-06-13

    Using quantum chemical density functional calculations, we study two possible pathways for manipulating the optical and electronic properties of all-carbon fullerenes structures. In the first, the optical properties of C{sub 60} are shown to be enhanced via reduction of the perfectly spherical Ih symmetry structure to energetically feasible lower symmetries. A D{sub 3d} symmetry structure of C{sub 60} proved to be 39 meV lower in energy than the Ih conformation. This reduction in symmetry activates otherwise silent modes in the IR and Raman spectra, possibly achievable via solvation effects. In the second pathway, fusing a building block of an-all carbon hexagonal unit as a connector between two C{sub 60} cages is considered. Optimizations on a resulting series of dumbbell-like structures, molecular C{sub 126}, C{sub 132}, C{sub 138}, C{sub 144}, and C{sub 180}, impart distinct variation in the electronic properties of these novel structures with size. These structures are further shown to support stable anionic radical forms.

  10. Advanced module for model parameter extraction using global optimization and sensitivity analysis for electron beam proximity effect correction

    Science.gov (United States)

    Figueiro, Thiago; Choi, Kang-Hoon; Gutsch, Manuela; Freitag, Martin; Hohle, Christoph; Tortai, Jean-Hervé; Saib, Mohamed; Schiavone, Patrick

    2012-11-01

    In electron proximity effect correction (PEC), the quality of a correction is highly dependent on the quality of the model. Therefore it is of primary importance to have a reliable methodology to extract the parameters and assess the quality of a model. Among others the model describes how the energy of the electrons spreads out in the target material (via the Point Spread Function, PSF) as well as the influence of the resist process. There are different models available in previous studies, as well as several different approaches to obtain the appropriate value for their parameters. However, those are restricted in terms of complexity, or require a prohibitive number of measurements, which is limited for a certain PSF model. In this work, we propose a straightforward approach to obtain the value of parameters of a PSF. The methodology is general enough to apply for more sophisticated models as well. It focused on improving the three steps of model calibration procedure: First, it is using a good set of calibration patterns. Secondly, it secures the optimization step and avoids falling into a local optimum. And finally the developed method provides an improved analysis of the calibration step, which allows quantifying the quality of the model as well as enabling a comparison of different models. The methodology described in the paper is implemented as specific module in a commercial tool.

  11. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption.

    Science.gov (United States)

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-01-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L(-1), and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton. PMID:26108166

  12. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts

    DEFF Research Database (Denmark)

    Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos;

    2016-01-01

    on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals, as well as complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression...

  13. Role of the chloroplast in the predatory dinoflagellate Karlodinium armiger

    DEFF Research Database (Denmark)

    Berge, Terje; Hansen, Per Juel

    2016-01-01

    ABSTRACT: Karlodinium armiger is a phagotrophic dinoflagellate that synthesizes several small chloroplasts of haptophyte origin. It depends on light, but it grows very poorly in standard nutrient growth media (f/2) without food. When fed prey in the light, growth rates increase dramatically (µ=0...

  14. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  15. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India

    Science.gov (United States)

    Parameswaran, Sriram; Sundar, Durai

    2016-01-01

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

  16. The complete chloroplast genome sequence of medicinal plant Pinellia ternata.

    Science.gov (United States)

    Han, Limin; Chen, Chen; Wang, Bin; Wang, Zhe-Zhi

    2016-07-01

    Pinellia ternata is an important medicinal plant used in the treatment of cough, to dispel phlegm, to calm vomiting and to terminate early pregnancy, as an anti-ulcer and anti-tumor medicine. In this study, we found that the complete chloroplast genome of Pinellia ternata was 164 013 bp in length, containing a pair of inverted repeats of 25 625 bp separated by a large single-copy region and a small single-copy region of 89 783 bp and 22 980 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The chloroplast DNA is GC-rich (36.7%). The phylogenetic analysis showed a strong sister relationship with Colocasia esculenta, which also strongly supports the position of Pinellia ternata. The complete chloroplast genome sequence of Pinellia ternata reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:26153849

  17. Mitochondrial and chloroplast DNA based phylogeny of Pelargonium (Geraniaceae)

    NARCIS (Netherlands)

    Bakker, F.T.; Culham, A.; Pankhurst, C.E.; Gibby, M.

    2000-01-01

    Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as ou

  18. Global Chloroplast Phylogeny and Biogeography of Bracken (Pteridium: Dennstaedtiaceae)

    OpenAIRE

    J.P.;; Thomson, J. A.; Stratford, J. K.; Paul G Wolf

    2009-01-01

    Bracken ferns (genus Pteridium) represent an ancient species complex with a natural worldwide distribution. Pteridium has historically been treated as comprising a single species, but recent treatments have recognized several related species. Phenotypic plasticity, geographically structured morphological variation, and geographically biased sampling have all contributed to taxonomic confusion in the genus. We sampled bracken specimens worldwide and used variable regions of the chloroplast gen...

  19. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae

    OpenAIRE

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D.; Mayfield, Stephen P

    2015-01-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly,...

  20. Structure of "Arabidopsis" chloroplastic monothiol glutaredoxin AtGRXcp

    Science.gov (United States)

    Monothiol glutaredoxins (Grxs) play important roles in maintaining redox homeostasis in living cells and are conserved across species. "Arabidopsis thaliana" monothiol glutaredoxin AtGRXcp, is critical for protection from oxidative stress in chloroplasts. The crystal structure of AtGRXcp has been de...

  1. Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

    Directory of Open Access Journals (Sweden)

    Cristian A. Carrión

    2014-11-01

    Full Text Available Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, “senescence-associated vacuoles” (SAVs, characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.

  2. Photosynthetic activity of spinach chloroplasts after isopycnic centrifugation in gradients of silica.

    Science.gov (United States)

    Morgenthaler, J J; Price, C A

    1974-10-01

    Chloroplast suspensions from spinach (Spinacia oleracea L.) were clearly resolved into intact and stripped chloroplasts by isopycnic centrifugation in density gradients of silica sol ("Ludox") and polyethlene glycol. The intact chloroplasts fixed CO(2) and evolved O(2) more rapidly than the crude suspensions; the stripped chloroplasts were inactive. During the photosynthetic fixation of (14)CO(2) in the intact chloroplasts recovered from the gradient, the (14)C label was observed to spread through the photosynthetic intermediate pools, as well as into starch, which indicates that the purified chloroplasts are metabolically competent. This appears to be the first report of the retention of photosynthetic activity following the purification of chloroplasts in density gradients. PMID:16658922

  3. Chloroplast Genome Sequence of the Moss Tortula ruralis: Gene Content and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes

    Science.gov (United States)

    Tortula ruralis, a widely distributed moss species in the family Pottiaceae, is increasingly being used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of Tortula ruralis, only the second publishe...

  4. A versatile DSP, FPGA structure optimized for rapid prototyping and digital real-time simulation of power electronic and electrical drive systems

    OpenAIRE

    Karipidis, Claus-Ulrich

    2001-01-01

    A Versatile DSP/ FPGA Structure optimized for Rapid Prototyping and Digital Real-Time Simulation of Power Electronic and Electrical Drive Systems This thesis is devoted to the development of a powerful digital computer equipped with flexible interfaces. It is designed to suit Rapid Prototyping and digital real-time simulation methods of power electronic and electrical drive (PE&ED) systems. This universal hardware basis unites the possibilities (benefit) to implement control equipment and com...

  5. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    Science.gov (United States)

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  6. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    Science.gov (United States)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  7. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  8. Thermoelectric properties optimization of Fe{sub 2}VGa by tuning electronic density of states via titanium doping

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, 11529 Taipei, Taiwan (China); Huang, Ta-Sung; Chen, Yang-Yuan, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, 11529 Taipei, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, 11605 Taipei, Taiwan (China); Lin, Shu-Wei [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Guo, Guang-Yu [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Physics Division, National Center for Theoretical Sciences, 30013 Hsinchu, Taiwan (China)

    2015-10-28

    We report the correlation between thermoelectric properties and electronic band structure of thermoelectric Heusler alloy Fe{sub 2}V{sub 1-x}Ti{sub x}Ga by comparing experimental measurements with theoretical calculations. The electrical resistivity data show that the semiconducting-like behavior of pure Fe{sub 2}VGa is transformed to a more metallic-like behavior at x = 0.1. Meanwhile, an enhancement of the Seebeck coefficient was observed for all Ti doped specimens at elevated temperatures with a peak value of 57 μV/K for x = 0.05 at 300 K. The experimental results can be elucidated by the calculated band structure, i.e., a gradual shifting of the Fermi level from the middle of the pseudogap to the region of valence bands. With optimized doping, the thermoelectric power factor can be significantly enhanced to 3.95 mW m{sup −1} K{sup −2} at room temperature, which is comparable to the power factors of Bi{sub 2}Te{sub 3}-based compounds. The synergy of thermal conductivity reduction due to the alloying effect and the significant increase of the thermoelectric power factor leads to higher order zT values than that of prime Fe{sub 2}VGa.

  9. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

  10. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package. PMID:12086529

  11. Interlayer-I-doped BiOIO3 nanoplates with an optimized electronic structure for efficient visible light photocatalysis.

    Science.gov (United States)

    Sun, Yanjuan; Xiong, Ting; Dong, Fan; Huang, Hongwei; Cen, Wanglai

    2016-07-01

    The success in the synthesis of Bi-based layered photocatalysts with high photocatalytic activities has triggered intensive studies. Herein, we prepared interlayer-I-doped BiOIO3 nanoplates by a facile method. Interestingly, it was found that I atoms were doped into the BiOIO3 interlayers instead of substituting for the lattice atoms based on theoretical and experimental results. The interbedded I atoms endowed BiOIO3 with an extended light response from the UV to the visible region by narrowing the bandgap and generating a middle level. The enhanced oxidation capability via positive-shifting the valence band position and improved carrier separation efficiency via forming charge delivery channels at the adjacent two layers can be achieved simultaneously. As expected, I-intercalated BiOIO3 with an optimized electronic structure demonstrated outstanding NO removal ability under visible light irradiation, much superior to pure BiOIO3. The present success in fabricating interlayer-I-doped BiOIO3 would open a promising route to prepare other Bi-based layered semiconductors with efficient visible-light photocatalysis. PMID:27284595

  12. Localisation of chlorophyll within the chloroplast

    NARCIS (Netherlands)

    Thomas, J.B.; Post, L.C.; Vertregt, N.

    1954-01-01

    Silver nitrate reduction was shown to occur in illuminated suspensions of Hibiscus grana. The action spectrum of this reduction, the reaction, proved to coincide satisfactorily with the chlorophyll absorption spectrum. Electron micrographs reveal that this reaction occurs in single lamellae. From

  13. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond.

    Science.gov (United States)

    Chan, Kai Xun; Phua, Su Yin; Crisp, Peter; McQuinn, Ryan; Pogson, Barry J

    2016-04-29

    The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses. PMID:26735063

  14. The complete chloroplast genome of North American ginseng, Panax quinquefolius.

    Science.gov (United States)

    Han, Zeng-Jie; Li, Wei; Liu, Yuan; Gao, Li-Zhi

    2016-09-01

    We report complete nucleotide sequence of the Panax quinquefolius chloroplast genome using next-generation sequencing technology. The genome size is 156 359 bp, including two inverted repeats (IRs) of 52 153 bp, separated by the large single-copy (LSC 86 184 bp) and small single-copy (SSC 18 081 bp) regions. This cp genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Overall GC content of the genome is 38.08%. A phylogenomic analysis of the 10 complete chloroplast genomes from Araliaceae using Daucus carota from Apiaceae as outgroup showed that P. quinquefolius is closely related to the other two members of the genus Panax, P. ginseng and P. notoginseng. PMID:27158867

  15. The complete chloroplast genome of Torreya fargesii (Taxaceae).

    Science.gov (United States)

    Tao, Ke; Gao, Lei; Li, Jia; Chen, Shanshan; Su, Yingjuan; Wang, Ting

    2016-09-01

    The complete chloroplast genome sequence of Torreya fargesii (Taxaceae), a relic plant endemic to China, is presented in this study. The genome is 137 075 bp in length, with 35.47% average GC content. One copy of the large inverted repeats is lost from this genome. The T. fargesii chloroplast genome encodes 118 unique genes, in which trnI-CAU, trnQ-UUG, trnN-GUU are duplicated. Protein-coding, tRNA and rRNA genes represent 54.7%, 1.9% and 3.4% of the genome, respectively. There are 17 intron-containing genes, of which 6 are tRNA genes. A maximum likelihood phylogenetic analysis revealed a strong sister relationship between Torreya and Amentotaxus. PMID:27158868

  16. The complete chloroplast genome sequence of Fagopyrum cymosum.

    Science.gov (United States)

    Yang, Jun; Lu, Chaolong; Shen, Qi; Yan, Yuying; Xu, Changjiang; Song, Chi

    2016-07-01

    Fagopyrum cymosum is a traditional medicinal plant. In this study, the complete chloroplast genome of Fagopyrum cymosum is presented. The total genome size is 160,546 bp in length, containing a pair of inverted repeats (IRs) of 32,598 bp, separated by large single copy (LSC) and small single copy (SSC) of 84,237 bp and 11,014 bp, respectively. Overall GC contents of the genome were 36.9%. The chloroplast genome harbors 126 annotated genes, including 91 protein coding genes, 29 tRNA genes, and six rRNA genes. Eighteen genes contain one or two introns. Phylogenetic analyses indicated a clear evolutionary relationship among species of Caryophyllales. PMID:26119127

  17. Signal integration by chloroplast phosphorylation networks: An update

    Directory of Open Access Journals (Sweden)

    Anna eSchoenberg

    2012-11-01

    Full Text Available Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.

  18. Localized hypermutation and associated gene losses in legume chloroplast genomes

    OpenAIRE

    KAVANAGH, THOMAS; WOLFE, KENNETH; POWELL, ANTOINETTE

    2010-01-01

    PUBLISHED Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual p...

  19. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  20. Study on Chloroplast Ultrastructure in Different Color Period of Euphorbia pulcherrima

    Institute of Scientific and Technical Information of China (English)

    FU Jia; NIU De; WANG Lijuan

    2008-01-01

    By the observation of chloroplast ultrastructure in different period of bract colors of Euphorbia pulcherrima,the paper studied the change of chloroplast ultrastructrural in the transition process of bract colors, identified the rehtionship between E.pulcherrima color change and the chloroplast ultrastructure to provide theorical bases for the cultivation management and further study of E.pulcherrima.Ultrastructural study showed that in the process of change from green to red,the chloroplast of bracts disintegrated gradually,lamellar structure was destroyed gradually,and the content of chloroplasts in mesophyll cells was also reduced gradually. When bracts color resumed to turn green gradually,the content of chloroplasts in mesophyll cells was also increased gradually.

  1. GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein

    OpenAIRE

    Spetea, Cornelia; Hundal, Torill; Lohmann, Felix; Andersson, Bertil

    1999-01-01

    Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the photodamaged reaction center D1 protein. Based on experiments with isolated chloroplast thylakoid membr...

  2. Chloroplast quality control - balancing energy production and stress.

    Science.gov (United States)

    Woodson, Jesse D

    2016-10-01

    Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery. PMID:27533783

  3. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  4. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    Science.gov (United States)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  5. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Yong Hu; Jingjing Jia; Dapeng Li; Runjie Zhang; Hongbo Gao; Yikun He

    2009-01-01

    Chloroplasts are plant-specific organelles that evolved from endosymbiotic cyanobacteria. They divide through binary fission. Selection of the chloroplast division site is pivotal for the symmetric chloroplast division. In E. coli, positioning of the division site at the midpoint of the cell is regulated by dynamic oscillation of the Min system, which includes MinC, MinD and MinE. Homologs of Mind and MinE in plants are involved in chloroplast division. The homolog of MinC still has not been identified in higher plants. However, an FtsZ-like protein, ARC3, was found to be involved in chloroplast division site positioning. Here, we report that chloroplast division site positioning 1 (AtCDP1) is a novel chloroplast division protein involved in chloroplast division site placement in Arabidopsis. AtCDP1 was dis-covered by screening an Arabidopsis cDNA expression library in bacteria for colonies with a cell division phenotype. AtCDP1 is exclusively expressed in young green tissues in Arabidopsis. Elongated chloroplasts with multiple division sites were observed in the loss-of-function cdpl mutant. Overexpression of AtCDPI caused a chloroplast division phe-notype too. Protein interaction assays suggested that AtCDP1 may mediate the chloroplast division site positioning through the interaction with ARC3. Overall, our results indicate that AtCDP1 is a novel component of the chloroplast division site positioning system, and the working mechanism of this system is different from that of the traditional MinCDE system in prokaryotic cells.

  6. Combined effects of light and water stress on chloroplast volume regulation.

    OpenAIRE

    McCain, D.C.

    1995-01-01

    A nuclear magnetic resonance technique was used to measure changes in the water content of Acer platanoides chloroplasts in leaf discs that had reached osmotic equilibrium with external solutions either in the dark or under exposure to light. Results showed that chloroplast volume regulation (CVR) maintained constant water content in the chloroplasts over a range of water potentials in the dark, but CVR failed when the water potential fell below a critical value. The critical potential was lo...

  7. Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

    OpenAIRE

    Stettler, Michaela; Eicke, Simona; Mettler, Tabea; Messerli, Gaëlle; Hörtensteiner, Stefan; Zeeman, Samuel C.

    2009-01-01

    In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels...

  8. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    Science.gov (United States)

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. PMID:23976990

  9. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    Directory of Open Access Journals (Sweden)

    Nisha Shabnam

    Full Text Available In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant and Spinacia oleracea (a terrestrial plant turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles.

  10. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1997-06-17

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focused on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The research focused on the isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  11. Use of Silica Sol Step Gradients to Prepare Bundle Sheath and Mesophyll Chloroplasts from Panicum maximum.

    Science.gov (United States)

    Walbot, V

    1977-07-01

    The first method for the direct separation of mesophyll and bundle sheath chloroplasts from whole tissue homogenates of a C(4) plant is described. Centrifugation of mixed chloroplast preparations from Panicum maximum through low viscosity silica sol gradients effectively separates large, starch-containing chloroplasts from smaller plastids. The large chloroplasts are judged to be bundle sheath chloroplasts on the basis of microscopic appearance, the presence of starch grains, the protein complement displayed on sodium dodecyl sulfate acrylamide gels, and the exclusive localization of ribulose bisphosphate carboxylase activity in these plastids. As a measure of intactness both the large (bundle sheath) and small (mesophyll) chloroplasts contain glyceralde-hyde-3-phosphate NADP-dependent dehydrogenase activity that is greatly enhanced by plastid lysis and both chloroplast preparations are impermeable to deoxyribonuclease. Chloroplast enzyme activities are inhibited by silica sol due to the Mg(2+) chelating activity of this reagent. However, well washed chloroplasts separated on silica gradients had enzyme activities similar to reported values in which silica sol gradients were not used. PMID:16660019

  12. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro.

    Science.gov (United States)

    Nomura, Yuhta; Takabayashi, Taito; Kuroda, Hiroshi; Yukawa, Yasushi; Sattasuk, Kwanchanok; Akita, Mitsuru; Nozawa, Akira; Tozawa, Yuzuru

    2012-01-01

    Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.

  13. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    CERN Document Server

    McMullan, G; Clare, D; Henderson, R

    2014-01-01

    Low dose electron imaging applications such as electron cyro-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE 20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimising how each is used. Results at 300 keV for both the modulation transfer function (MTF) and detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II.

  14. Integrated approach to planning and optimization processes maintenance and repair of vehicles using telemetry systems for remote electronic diagnostic

    OpenAIRE

    Аулін, Віктор Васильович; Панарін, Д. Є.

    2014-01-01

    In article the modern condition of questions, on systems of remote electronic diagnostics is analysed, the interrelation of remote electronic diagnostics with process of maintenance service of cars is considered.Opportunities of remote electronic diagnostics of automobile systems, and advantages of this type of diagnostics during maintenance service and operating repair are investigated. Having considered opportunities of electronic control systems in units and units of the car while in servi...

  15. Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L.

    Science.gov (United States)

    Zhang, Ying; Zhang, Hui; Sun, Xin; Wang, Lei; Du, Na; Tao, Yue; Sun, Guoqiang; Erinle, Kehinde O; Wang, Pengjie; Zhou, Changjian; Duan, Shuwei

    2016-01-01

    Pollution of agricultural soils caused by widely employed plastic products, such as phthalic acid esters (PAEs), are becoming widespread in China, and they have become a threat to human health and the environment. However, little information is available on the influence of PAEs on vegetable crops. In this study, effects of different dimethyl phthalate (DMP) treatments (0, 30, 50, 100, and 200 mg L(-1)) on seed germination and growth of cucumber seedlings were investigated. Although germination rate showed no significant difference compared to control, seed germination time was significantly delayed at DMP greater than 50 mg L(-1). Concentrations of DMP greater than 30 mg L(-1) reduced cucumber lateral root length and number. The measurement of five physiological indexes in cucumber leaves with increasing DMP concentration revealed a decrease in leaf chlorophyll content, while proline and H2O2 contents increased. Peroxidase (POD) and catalase (CAT) activities increased in cucumber plants under 30 and 50 mg L(-1) DMP treatments compared to control; while after a 7-day treatment, these activities were seriously reduced under 100 and 200 mg L(-1) DMP treatments. According to transmission electron microscopy (TEM) micrographic images, the control and 30 mg L(-1) DMP treatments caused no change to leaf chloroplast shape with well-structured thylakoid membrane and parallel pattern of lamellae. At concentrations higher than 30 mg L(-1), DMP altered the ultrastructure of chloroplast, damaged membrane structure, disordered the lamellae, and increased the number and volume of starch grains. Moreover, the envelope of starch grains began to degrade under 200 mg L(-1) DMP treatment. PMID:26631021

  16. Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction

    Institute of Scientific and Technical Information of China (English)

    何茂伟; 孙丽玲; 胡琨元; 朱云龙; 陈瀚宁

    2015-01-01

    The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand (DoD) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling (LEM) and the artificial bee colony (ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model (DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.

  17. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  18. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  19. A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Douchi, Damien; Qu, Yujiao; Longoni, Paolo; Legendre-Lefebvre, Linnka; Johnson, Xenie; Schmitz-Linneweber, Christian; Goldschmidt-Clermont, Michel

    2016-05-01

    The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain. PMID:27113776

  20. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis

    OpenAIRE

    Kodama, Yutaka; Suetsugu, Noriyuki; Kong, Sam-Geun; Wada, Masamitsu

    2010-01-01

    Chloroplasts move toward weak light (accumulation response) and away from strong light (avoidance response). The fast and accurate movement of chloroplasts in response to ambient light conditions is essential for efficient photosynthesis and photodamage prevention in chloroplasts. Here, we report that two Arabidopsis mutants, weak chloroplast movement under blue light 1 (web1) and web2, are defective in both the avoidance and the accumulation responses. Map-based cloning revealed that both ge...

  1. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast.

    Science.gov (United States)

    Brillouet, Jean-Marc; Verdeil, Jean-Luc; Odoux, Eric; Lartaud, Marc; Grisoni, Michel; Conéjéro, Geneviève

    2014-06-01

    A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) β-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a 'phenyloplast'.

  2. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  3. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...... strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research....

  4. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    Science.gov (United States)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  5. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle

    DEFF Research Database (Denmark)

    Träger, Chantal; Rosenblad, Magnus Alm; Ziehe, Dominik;

    2012-01-01

    The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of ...

  6. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions. PMID:26367332

  7. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy

    Science.gov (United States)

    McMullan, G.; Faruqi, A.R.; Clare, D.; Henderson, R.

    2014-01-01

    Low dose electron imaging applications such as electron cryo-microscopy are now benefitting from the improved performance and flexibility of recently introduced electron imaging detectors in which electrons are directly incident on backthinned CMOS sensors. There are currently three commercially available detectors of this type: the Direct Electron DE-20, the FEI Falcon II and the Gatan K2 Summit. These have different characteristics and so it is important to compare their imaging properties carefully with a view to optimise how each is used. Results at 300 keV for both the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are presented. Of these, the DQE is the most important in the study of radiation sensitive samples where detector performance is crucial. We find that all three detectors have a better DQE than film. The K2 Summit has the best DQE at low spatial frequencies but with increasing spatial frequency its DQE falls below that of the Falcon II. PMID:25194828

  8. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  9. A Point Mutation in the Pentatricopeptide repeat Motif of the AtECB2 Protein Causes Delayed Chloroplast Development

    Institute of Scientific and Technical Information of China (English)

    Zhi-Lin Cao; Qing-Bo Yu; Yue Sun; Yang Lu; Yong-Lan Cui; Zhong-Nan Yang

    2011-01-01

    AtECB2 encodes a pentatricopeptide repeat (PPR) protein that regulates the editing of the plastid genes accD and ndhF. The ecb2-1 knockout shows an albino phenotype and is seedling lethal. In this study,we isolated an allelic mutant of the AtECB2 gene, ecb2-2, which showed delayed greening phenotype but could complete their life cycle. In this mutant, the Thr500 is converted to lle500 in the 13th PPR motif of the AtECB2 protein. Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant. An investigation of the chloroplast gene expression profile indicated that PEP (plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected, whereas it was severely impaired in ecb2-1. This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants. The editing efficiency of the three editing sites of accD (C794 and C1568) and ndhF (C290) in the mutant was dynamically altered,which was in agreement with the phenotype. This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype. As ecb2-2 can survive and set seeds, this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis.

  10. Chloroplast transformation of Platymonas (Tetraselmis subcordiformis with the bar gene as selectable marker.

    Directory of Open Access Journals (Sweden)

    Yulin Cui

    Full Text Available The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left and trnA-rrn23S (right as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga.

  11. Update on Chloroplast Research: New Tools, New Topics, and New Trends

    Institute of Scientific and Technical Information of China (English)

    Ute Armbruster; Paolo Pesaresi; Mathias Pribil; Alexander Hertle; Dario Leister

    2011-01-01

    Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.

  12. YGL9, encoding the putative chloroplast signal recognition particle 43 kDa protein in rice, is involved in chloroplast development

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-wei; LI Yun-feng; LING Ying-hua; SANG Xian-chun; HE Guang-hua; ZHANG Tian-quan; XING Ya-di; ZENG Xiao-qin; WANG Ling; LIU Zhong-xian; SHI Jun-qiong; ZHU Xiao-yan; MA Ling

    2016-01-01

    The nuclear-encoded light-harvesting chlorophyla/b-binding proteins (LHCPs) are speciifcaly translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle (cpSRP) pathway. The cpSRP is composed of a cpSRP43 protein and a cpSRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identiifed theYGL9gene that is predicted to encode the probable rice cpSRP43 protein from a rice yelow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cpSRP43, is present in almost al green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcelular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated thatYGL9is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in theygl9mutant. These results indicated thatYGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.

  13. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  14. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.

  15. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Yongbing eZhao

    2015-01-01

    Full Text Available Panax ginseng C.A. Meyer (P. ginseng is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY, Ermaya (EMY, Gaolishen (GLS and Yeshanshen (YSS. The total chloroplast genome sequence length for DMY, EMY and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR is lower than that of its counterparts, large single copy region (LSC and small single copy region (SSC. A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF of ≥ 0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng

  16. The complete chloroplast genome of banana (Musa acuminata, Zingiberales: insight into plastid monocotyledon evolution.

    Directory of Open Access Journals (Sweden)

    Guillaume Martin

    Full Text Available BACKGROUND: Banana (genus Musa is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp and a Small Single Copy region (SSC, 10,768 bp separated by Inverted Repeat regions (IRs, 35,433 bp. Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1 and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  17. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  18. Android平板电脑的电子菜单优化设计%Optimization design of electronic menu for Android tablet personal computer

    Institute of Scientific and Technical Information of China (English)

    唐诗

    2016-01-01

    An effective optimization design scheme of electronic menu for android tablet personal computer is studied. 900 subjects from the discrete age group were selected,and their motion parameters when they used the tablet personal computer were captured with high⁃speed camera. The perceptual quantitative evaluations before and after the subjects using the optimized electronic menu are investigated. The perceptual quantitative evaluations show that the operation speed,pause time and opera⁃tion steps of the subjects were optimized,and the subjects tend to optimized menu from the perceptual quantitative evaluations. The optimized scheme is feasible.%研究一种行之有效的android平板电脑的电子菜单优化设计方案。选择离散年龄段的900个受试志愿者,使用高速摄像机捕捉其使用平板电脑时的动作参数,同时考察受试者对优化前后平板电脑方案的感性量化评价。试验结果表明,菜单优化前后受试者操作速度、停顿时间、操作步数均有优化,受试者感性量化评价更倾向于优化后菜单,证明了优化方案的可行性。

  19. Chloroplast ultra structure, photosynthesis and enzyme activities in regenerated plants of Stevia rebaudiana (Bert.) Bertoni as influenced by copper sulphate in the medium.

    Science.gov (United States)

    Jain, Pourvi; Kachhwaha, Sumita; Kothari, S L

    2014-09-01

    Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5 microM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5 microM CuSO4 in the medium. PMID:25241590

  20. Chloroplast ultra structure, photosynthesis and enzyme activities in regenerated plants of Stevia rebaudiana (Bert.) Bertoni as influenced by copper sulphate in the medium.

    Science.gov (United States)

    Jain, Pourvi; Kachhwaha, Sumita; Kothari, S L

    2014-09-01

    Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5 microM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5 microM CuSO4 in the medium.

  1. The complete chloroplast genome of Cinnamomum kanehirae Hayata (Lauraceae).

    Science.gov (United States)

    Wu, Chia-Chen; Ho, Cheng-Kuen; Chang, Shu-Hwa

    2016-07-01

    The complete chloroplast genome of Cinnamomum kanehirae (Hayata), the first to be completely sequenced of Lauraceae family, is presented in this study. The total genome size is 152,700 bp, with a typical circular structure including a pair of inverted repeats (IRa/b) of 20,107 bp of length separated by a large single-copy region (LSC) and a small single-copy region (SSC) of 93,642 bp and 18,844 bp of length, respectively. The overall GC content of the genome is 39.1%. The nucleotide sequence shows 91% identities with Liriodendron tulipifera in the Magnoliaceae. In total, 123 annotated genes consisted of 79 coding genes, eight rRNA genes, and 36 tRNA genes. Among all 79 coding genes, seven genes (rpoC1, atpF, rpl2, ndhB, ndhA, rps16, and rpl2) contain one intron, while two genes (ycf3 and clpP) contain two introns. The maximum likelihood phylogenetic analysis revealed that C. kanehirae chloroplast genome is closely related to Calycanthus fertilis within Laurales order. PMID:26053940

  2. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  3. Optimization of beam parameters of electron gun for 2.5 MeV/100 kW high power industrial accelerator

    International Nuclear Information System (INIS)

    A 2.5 MeV/100 kW transformer type industrial accelerator is being developed at RRCAT. A Pierce type electron gun consisting of 10 mm diameter LaB6 disc (indirectly heated) is used as a source of electron beam. The cathode assembly is put on the top of the accelerating structure, which consists of many electrostatic lenses of which the first lens acts as anode of the gun. The quality of the beam injected into the accelerating structure depends on the anode voltage, shape and size of anode and its distance from the cathode. The anode is subjected to variable voltage during the operation of accelerator from energy 1 MeV to 2.5 MeV, which results in variable emittance at the exit of the electron gun. The electron beam from the gun should provide parallel or slightly convergent beam with long focal length and the emittance of the beam at the exit of electron gun should match the beam acceptance limit of the accelerating structure. The EGUN code is used to optimize the shape and size of the anode, its distance from the cathode to achieve above objectives. Our study suggests that the desired beam parameters at the exit of the anode can be obtained by reducing the aperture size of the anode and by applying suitable voltage gradient to the anode. (author)

  4. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  5. Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast.

    Science.gov (United States)

    Hochmal, Ana Karina; Zinzius, Karen; Charoenwattanasatien, Ratana; Gäbelein, Philipp; Mutoh, Risa; Tanaka, Hideaki; Schulze, Stefan; Liu, Gai; Scholz, Martin; Nordhues, André; Offenborn, Jan Niklas; Petroutsos, Dimitris; Finazzi, Giovanni; Fufezan, Christian; Huang, Kaiyao; Kurisu, Genji; Hippler, Michael

    2016-01-01

    Calcium (Ca(2+)) and redox signalling play important roles in acclimation processes from archaea to eukaryotic organisms. Herein we characterized a unique protein from Chlamydomonas reinhardtii that has the competence to integrate Ca(2+)- and redox-related signalling. This protein, designated as calredoxin (CRX), combines four Ca(2+)-binding EF-hands and a thioredoxin (TRX) domain. A crystal structure of CRX, at 1.6 Å resolution, revealed an unusual calmodulin-fold of the Ca(2+)-binding EF-hands, which is functionally linked via an inter-domain communication path with the enzymatically active TRX domain. CRX is chloroplast-localized and interacted with a chloroplast 2-Cys peroxiredoxin (PRX1). Ca(2+)-binding to CRX is critical for its TRX activity and for efficient binding and reduction of PRX1. Thereby, CRX represents a new class of Ca(2+)-dependent 'sensor-responder' proteins. Genetically engineered Chlamydomonas strains with strongly diminished amounts of CRX revealed altered photosynthetic electron transfer and were affected in oxidative stress response underpinning a function of CRX in stress acclimation. PMID:27297041

  6. Electronic structure of crystalline uranium nitrides UN, U2N3 and UN2: LCAO calculations with the basis set optimization

    International Nuclear Information System (INIS)

    The results of LCAO DFT calculations of lattice parameters, cohesive energy and bulk modulus of the crystalline uranium nitrides UN, U2N3 and UN2 are presented and discussed. The LCAO computer codes Gaussian03 and Crystal06 are applied. The calculations are made with the uranium atom relativistic effective small core potential by Stuttgart-Cologne group (60 electrons in the core). The calculations include the U atom basis set optimization. Powell, Hooke-Jeeves, conjugated gradient and Box methods are implemented in the author's optimization package, being external to the codes for molecular and periodic calculations. The basis set optimization in LCAO calculations improves the agreement of the lattice parameter and bulk modulus of UN crystal with the experimental data, the change of the cohesive energy due to the optimization is small. The mixed metallic-covalent chemical bonding is found both in LCAO calculations of UN and U2N3 crystals; UN2 crystal has the semiconducting nature

  7. [Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress].

    Science.gov (United States)

    Qian, Qiong-Qiu; Zai, Wen-San; Zhu, Zhu-Jun; Yu, Jing-Quan

    2006-02-01

    With K(2)SiO(4) (1.0 mmol/L) treatment, the effects of Si on the distribution of Na(+), K(+) to chloroplasts and antioxidant system of cucumber leaves under 50 mmol/L NaCl stress were studied. The results showed that there was a selective transport of K(+) into the chloroplasts so that Na(+) content of chloroplasts was lower under Si treatment (Table 1); H(2)O(2) and MDA contents in chloroplasts were significantly decreased (Fig.1), and the activities of SOD, APX, GR and DHAR were increased simultaneity (Fig.2), and AsA, GSH contents were also increased in chloroplasts of salt-stressed cucumber by additional Si treatment (Fig.3). It may be concluded that Si could decrease absorption of Na(+) and increase ability of active oxygen scavenging in chloroplasts, therefore the injury of chloroplast membrane under salinity stress in cucumber was alleviated. PMID:16477139

  8. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  9. Is Chloroplast Movement in Tobacco Plants Influenced Systemically after Local Illumination or Burning Stress?

    Institute of Scientific and Technical Information of China (English)

    Jan Naus; Monika Rolencova; Vladimira Hlavackova

    2008-01-01

    Chloroplast movement has been studied In many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive pedodic movement of chloroplasts was used in high or low (2 000 or 50 μmol/m2 per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough tovoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.

  10. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  11. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, C.A.; Hanson, M.R. [Cornell Univ., Ithaca, NY (United States); Zoubenko, O.V.; Maliga, P. [State Univ. of New Jersey, Piscataway, NJ (United States)

    1995-03-01

    RNA editing occurs in two higher-plant organelles, chloroplasts, and mitochondria. Because chloroplasts and mitochondria exhibit some similarity in editing site selection, we investigated whether mitochondrial RNA sequences could be edited in chloroplasts. We produced transgenic tobacco plants that contained chimeric genes in which the second exon of a Petunia hybrida mitochondrial coxII gene was under the control of chloroplast gene regulatory sequences. coxII transcripts accumulated to low or high levels in transgenic chloroplasts containing chimeric genes with the plastid ribosomal protein gene rps16 or the rRNA operon promoter, respectively. Exon 2 of coxII was chosen because it carries seven editing sites and is edited in petunia mitochondria even when located in an abnormal context in an aberrant recombined gene. When editing of the coxII transcripts in transgenic chloroplasts was examined, no RNA editing at any of the usual sites was detected, nor was there any novel editing at any other sites. These results indicate that the RNA editing mechanisms of chloroplasts and mitochondria are not identical but must have at least some organelle-specific components. 33 refs., 5 figs.

  12. The Chloroplast Outer Envelope Membrane: The Edge of Light and Excitement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites Including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.

  13. The chloroplast genome of a symbiodinium sp. clade C3 isolate

    KAUST Repository

    Barbrook, Adrian C.

    2014-01-01

    Dinoflagellate algae of the genus Symbiodinium form important symbioses within corals and other benthic marine animals. Dinoflagellates possess an extremely reduced plastid genome relative to those examined in plants and other algae. In dinoflagellates the plastid genes are located on small plasmids, commonly referred to as \\'minicircles\\'. However, the chloroplast genomes of dinoflagellates have only been extensively characterised from a handful of species. There is also evidence of considerable variation in the chloroplast genome organisation across those species that have been examined. We therefore characterised the chloroplast genome from an environmental coral isolate, in this case containing a symbiont belonging to the Symbiodinium sp. clade C3. The gene content of the genome is well conserved with respect to previously characterised genomes. However, unlike previously characterised dinoflagellate chloroplast genomes we did not identify any \\'empty\\' minicircles. The sequences of this chloroplast genome show a high rate of evolution relative to other algal species. Particularly notable was a surprisingly high level of sequence divergence within the core polypeptides of photosystem I, the reasons for which are currently unknown. This chloroplast genome also possesses distinctive codon usage and GC content. These features suggest that chloroplast genomes in Symbiodinium are highly plastic. © 2013 Adrian C. Barbrook.

  14. Free radical generation and antioxidant content in chloroplasts from soybean leaves expsoed to ultraviolet-B

    Energy Technology Data Exchange (ETDEWEB)

    Galatro, A.; Simontacchi, M.; Puntarulo, S. [Univ. of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry, Buenos Aires (Argentina)

    2001-07-01

    The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean (Glycine max cv. Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m{sup -2} day{sup -1} of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m{sup -2} day{sup -1} UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of {beta}-carotene or {alpha}-tocopherol was affected by the irradiation. The results: presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content. (au)

  15. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  16. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  17. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  18. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  19. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    OpenAIRE

    Seigo Ito; Nazeeruddin, Mohammad K.; Zakeeruddin, Shaik M.; Peter Péchy; Pascal Comte; Michael Grätzel; Takaki Mizuno; Atsushi Tanaka; Tsuguo Koyanagi

    2009-01-01

    In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs), it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-secti...

  20. Design and optimization of a highly efficient optical multipass system for γ-ray beam production from electron laser beam Compton scattering

    Science.gov (United States)

    Dupraz, K.; Cassou, K.; Delerue, N.; Fichot, P.; Martens, A.; Stocchi, A.; Variola, A.; Zomer, F.; Courjaud, A.; Mottay, E.; Druon, F.; Gatti, G.; Ghigo, A.; Hovsepian, T.; Riou, J. Y.; Wang, F.; Mueller, A. C.; Palumbo, L.; Serafini, L.; Tomassini, P.

    2014-03-01

    A new kind of nonresonant optical recirculator, dedicated to the production of γ rays by means of Compton backscattering, is described. This novel instrument, inspired by optical multipass systems, has its design focused on high flux and very small spectral bandwidth of the γ-ray beam. It has been developed to fulfill the project specifications of the European Extreme Light Infrastructure "Nuclear Pillar," i.e., the Gamma Beam System. Our system allows a single high power laser pulse to recirculate 32 times synchronized on the radio frequency driving accelerating cavities for the electron beam. Namely, the polarization of the laser beam and crossing angle between laser and electrons are preserved all along the 32 passes. Moreover, optical aberrations are kept at a negligible level. The general tools developed for designing, optimizing, and aligning the system are described. A detailed simulation demonstrates the high efficiency of the device.

  1. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

    Science.gov (United States)

    Cocaliadis, Maria Florencia; Fernández-Muñoz, Rafael; Pons, Clara; Orzaez, Diego; Granell, Antonio

    2014-08-01

    Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.

  2. Optimization of a Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Method for High-Throughput Analysis of Nicotine and Related Compounds: Application to Electronic Cigarette Refill Liquids.

    Science.gov (United States)

    Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas

    2016-06-21

    Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples. PMID:27173877

  3. Arabidopsis thaliana AMY3 Is a Unique Redox-regulated Chloroplastic α-Amylase

    DEFF Research Database (Denmark)

    Seung, David; Thalmann, Matthias; Sparla, Francesca;

    2013-01-01

    α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from...... to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion...... of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases...

  4. The complete chloroplast genome sequence of Anoectochilus emeiensis.

    Science.gov (United States)

    Zhu, Shuying; Niu, Zhitao; Yan, Wenjin; Xue, Qingyun; Ding, Xiaoyu

    2016-09-01

    The complete chloroplast (cp) genome sequence of Anoectochilus emeiensis, an extremely endangered medical plant with important economic value, was determined and characterized. The genome size was 152 650 bp, containing a pair of inverted repeats (IRs) (26 319 bp) which were separated by a large single copy (LSC) (82 670 bp) and a small single copy (SSC) (17 342 bp). The cpDNA of A. emeiensis contained 113 unique genes, including 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. Among them, 18 genes contained one or two introns. The overall AT content of the genome was 63.1%. PMID:26403535

  5. Development of novel chloroplast microsatellite markers for Ginkgo biloba.

    Science.gov (United States)

    Xu, M; Xu, L A; Cao, F L; Zhang, H J; Yu, F X

    2015-07-13

    Ginkgo biloba is considered to be a living fossil that can be used to understand the ancient evolutionary history of gymnosperms, but little attention has been given to the study of its population genetics, molecular phylogeography, and genetic resources assessment. Chloroplast simple sequence repeat (cpSSR) markers are powerful tools for genetic studies of plants. In this study, a total of 30 perfect cpSSRs of Ginkgo were identified and characterized, including di-, tri, tetra-, penta-, and hexanucleotide repeats. Fifteen of 21 designed primer pairs were successfully amplified to yield specific polymerase chain reaction products from 16 Ginkgo cultivars. Polymorphic cpSSRs were further applied to determine the genetic variation of 116 individuals in 5 populations of G. biloba. The results showed that 24 and 76% genetic variation existed within and among populations of this species, respectively. These polymorphic and monomorphic cpSSR markers can be used to trace the origin and evolutionary history of Ginkgo.

  6. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    Science.gov (United States)

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars. PMID:26329384

  7. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    Science.gov (United States)

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  8. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  9. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    Science.gov (United States)

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  10. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus. PMID:26407184

  11. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    Science.gov (United States)

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP. PMID:26601486

  12. Determination of the Optimal Energy Denominator Shift Parameter of KRb Electronic States in Quantum Chemical Computations Using Perturbation Theory

    Science.gov (United States)

    Shundalau, M. B.; Minko, A. A.

    2016-01-01

    The influence of the energy denominator shift (EDS) parameter and the quantitative and qualitative compositions of electronic states included in CASSCF(2,14)/XMCQDPT2 ab initio calculations of the ground state equilibrium internuclear distance and dissociation energy of polar KRb was determined.

  13. Optimal electron irradiation as a tool for functionalization of MoS{sub 2}: Theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Debjani, E-mail: karmakar.debjani@gmail.com; Padma, N.; Ghosh, M.; Kaur, M.; Chandrasekhar Rao, T. V. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Halder, Rumu; Abraham, Geogy [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vaibhav, K. [Computer Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, D. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-04-07

    We demonstrate the utility of electron irradiation as a tool to enhance device functionality of graphene-analogous MoS{sub 2}. With the help of first-principles based calculations, vacancy-induced changes of various electronic properties are shown to be a combined result of crystal-field modification and spin-orbital coupling. A comparative theoretical study of various possible vacancy configurations both in bulk and monolayer MoS{sub 2} and related changes in their respective band-structures help us to explain plausible irradiation induced effects. Experimentally, various structural forms of MoS{sub 2} in bulk, few layered flakes, and nanocrystals are observed to exhibit important modification of their magnetic, transport, and vibrational properties, following low doses of electron irradiation. While irradiated single crystals and nanocrystals show an enhanced magnetization, transport properties of few-layered devices show a significant increase in their conductivity, which can be very useful for fabrication of electronic devices. Our theoretical calculations reveal that this increase in n-type conductivity and magnetization can be correlated with the presence of sulfur and molybdenum vacancies.

  14. Electron uptake and delivery sites on plastocyanin in its reactions with the photosynthetic electron transport system

    DEFF Research Database (Denmark)

    Farver, O; Shahak, Y; Pecht, I

    1982-01-01

    investigated. The photoreduction and photooxidation by chloroplasts or by photosystem I reaction centers, respectively, chloroplasts or by photosystem I reaction centers, respectively, of native and Cr(III)-labeled plastocyanin have been compared. It was found that whereas the photoreduction rates of native...... and Cr-labeled plastocyanin were indistinguishable, the rates of photooxidation of the modified protein were markedly attenuated relative to those of the native one. This difference in reactivity clearly reflects the perturbation of the electron transfer pathway to P700. These findings, in conjunction...

  15. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    Science.gov (United States)

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  16. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana

    2016-04-10

    In organic donor-acceptor systems, ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) are key determinants of the overall performance of photovoltaic devices. However, a profound understanding of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy are examined to provide the fundamental information necessary to fabricate and optimize organic solar cell devices. In real time, CT and CS are monitored at the interface between three fullerene acceptors (FAs) (PC71BM, PC61BM, and IC60BA) and the PTB7-Th donor polymer. Femtosecond transient absorption (fs-TA) data demonstrates that photoinduced electron transfer from the PTB7-Th polymer to each FA occurs on the sub-picosecond time scale, leading to the formation of long-lived radical ions. It is also found that the power conversion efficiency improves from 2% in IC60BA-based solar cells to >9% in PC71BM-based devices, in support of our time-resolved results. The insights reported in this manuscript provide a clear understanding of the key variables involved at the device interface, paving the way for the exploitation of efficient CS and subsequently improving the photoconversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Establishment of a Gene Expression System in Rice Chloroplast and Obtainment of PPT-Resistant Rice Plants

    Institute of Scientific and Technical Information of China (English)

    LI Yi-nü; SUN Bing-yao; SU Ning; MENG Xiang-xun; ZHANG Zhi-fang; SHEN Gui-fang

    2009-01-01

    In contrast to the situation of random integration of foreign genes in nuclear transformation,the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination.To establish an expression system for alien genes in rice chloroplast,the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study.Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique,and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator of psbA gene 3'sequence.Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct.Subsequently,the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained.Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome.Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome.Thus,the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome,but PPT-resistant trait for rice plants as well.It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.

  18. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    CERN Document Server

    Yüce, Emre; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2015-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities operating in the "original" telecom band by exploiting the instantaneous electronic Kerr effect. We demonstrate that resonance frequency reversibly shifts within a picosecond and the magnitude of the shift is affected by the backbone of the $\\lambda-$layer. We investigate experimentally and theoretically the role of the quality factor in terms of its effect on resonance frequency shift. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the cavity cavity storage time is matched. Our experiments and our calculations indicate that the resonance frequency shift induced via the electronic Kerr effect can be maximized by judicious tuning of the pump frequency, pump power and pump pulse duration relative to the storage time of the cavity.

  19. Optimized electron-optical system of a static mass-spectrometer for simultaneous isotopic and chemical analysis

    Science.gov (United States)

    Gall', L. N.; Masyukevich, S. V.; Sachenko, V. D.; Gall', N. R.

    2016-01-01

    A new approach to control the linear dimensions of analytical electrophysical systems is suggested. This approach uses the lens properties of electron-optical elements with a curvilinear axis. It is shown that such an approach can be effectively applied, in particular, to synthesize ion-optical systems (IOSs) for static magnetic mass spectrometers and can be implemented owing to off-axis fundamental points, the "poles" of an electron-optical system, introduced earlier by one of the authors. The capabilities of the new approach are demonstrated with the synthesis of the IOS of a static mass spectrometer dedicated for isotopic and chemical analysis with an increased resolution. A new IOS not only provides desired high ion-optical parameters at decreased dimensions of the mass spectrometer as a whole but also makes it possible to loosen requirements for the manufacturing accuracy of IOS main elements.

  20. Development of the First Chloroplast Microsatellite Loci in Ginkgo biloba (Ginkgoaceae

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Xie

    2013-07-01

    Full Text Available Premise of the study: To investigate population genetics, phylogeography, and cultivar origin of Ginkgo biloba, chloroplast microsatellite primers were developed. Methods and Results: Twenty-one chloroplast microsatellite markers were identified referring to the two published chloroplast genomes of G. biloba. Polymorphisms were assessed on four natural populations from the two refugia in China. Eight loci were detected to be polymorphic in these populations. The number of alleles per locus ranged from three to seven, and the unbiased haploid diversity per locus varied from 0.441 to 0.807. Conclusions: For the first time, we developed 21 chloroplast microsatellite markers for G. biloba, including 13 monomorphic and eight polymorphic ones within the assessed natural populations. These markers should provide a powerful tool for the study of genetic variation of both natural and cultivated populations of G. biloba, as well as cultivars.

  1. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  2. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  3. Running a little late: chloroplast Fe status and the circadian clock

    OpenAIRE

    Wilson, Grandon T; Erin L Connolly

    2013-01-01

    Iron homeostasis is essential for plant growth and survival. Two papers now report that chloroplast Iron levels also regulate the period of the circadian clock, which might confer fitness advantage by linking iron status to daily changes in environmental conditions.

  4. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta).

    Science.gov (United States)

    Fučíková, Karolina; Lewis, Louise A; Lewis, Paul O

    2016-06-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in "Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution" (Fučíková et al., In review) [1]. PMID:27054159

  5. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    Science.gov (United States)

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.

  6. Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty, and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.

  7. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Science.gov (United States)

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L.

    2016-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central $\\lambda-$layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth.

  8. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology

    OpenAIRE

    Daniell, Henry; Khan, Muhammad S.; Allison, Lori

    2002-01-01

    Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene e...

  9. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  10. The conserved endoribonuclease YbeY is required for chloroplast ribosomal RNA processing in Arabidopsis.

    Science.gov (United States)

    Liu, Jinwen; Zhou, Wenbin; Liu, Guifeng; Yang, Chuanping; Sun, Yi; Wu, Wenjuan; Cao, Shenquan; Wang, Chong; Hai, Guanghui; Wang, Zhifeng; Bock, Ralph; Huang, Jirong; Cheng, Yuxiang

    2015-05-01

    Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5' and 3' ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development.

  11. Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts

    Directory of Open Access Journals (Sweden)

    Naoki eSato

    2016-02-01

    Full Text Available Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  12. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    OpenAIRE

    Chebolu, S.; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antib...

  13. THE OCCURRENCE AND SIGNIFICANCE OF ENDOSYMBIOTIC CHLOROPLASTS IN THE DIGESTIVE GLANDS OF HERBIVOROUS OPISTHOBRANCHS(1).

    Science.gov (United States)

    Taylor, D L

    1967-12-01

    Intact algal chloroplasts have been found in the digestive glands of 5 species of Opisthobranchia belonging to the order Saccoglossa. Preliminary studies on 3 of these confirm their endosymbiotic nature. It is suggested that the occurrence of these endosymbiotic organelles may be widespread among related species of Saccoglossa. Their independent functional existence supports the view that chloroplasts possess a system of nonchromosomal inheritance. PMID:27065036

  14. Complete Chloroplast Genome Sequence of Omani Lime (Citrus aurantiifolia) and Comparative Analysis within the Rosids

    OpenAIRE

    Huei-Jiun Su; Hogenhout, Saskia A.; Al-Sadi, Abdullah M.; Chih-Horng Kuo

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C....

  15. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome

    OpenAIRE

    Tanaka, Katsunori; Akashi, Yukari; FUKUNAGA, Kenji; Yamamoto, Tatsuya; Aierken, Yasheng; Nishida, Hidetaka; Long, Chun Lin; Yoshino, Hiromichi; Sato, Yo-Ichiro; KATO, Kenji

    2013-01-01

    Molecular analysis encouraged discovery of genetic diversity and relationships of cultivated melon (Cucumis melo L.). We sequenced nine inter- and intra-genic regions of the chloroplast genome, about 5500 bp, using 60 melon accessions and six reference accessions of wild species of Cucumis to show intra-specific variation of the chloroplast genome. Sequence polymorphisms were detected among melon accessions and other Cucumis species, indicating intra-specific diversification of the chloroplas...

  16. Time Gating of Chloroplast Autofluorescence Allows Clearer Fluorescence Imaging In Planta.

    Directory of Open Access Journals (Sweden)

    Yutaka Kodama

    Full Text Available Chloroplast, an organelle facilitating photosynthesis, exhibits strong autofluorescence, which is an undesired background signal that restricts imaging experiments with exogenous fluorophore in plants. In this study, the autofluorescence was characterized in planta under confocal laser microscopy, and it was found that the time-gated imaging technique completely eliminates the autofluorescence. As a demonstration of the technique, a clearer signal of fluorescent protein-tagged phototropin, a blue-light photoreceptor localized at the chloroplast periphery, was visualized in planta.

  17. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii

    OpenAIRE

    Uniacke, James; Zerges, William

    2008-01-01

    Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the lar...

  18. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.

    Directory of Open Access Journals (Sweden)

    Boris Zybailov

    Full Text Available Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP. The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence

  19. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta)

    OpenAIRE

    Fučíková, Karolina; Lewis, Louise A.; Lewis, Paul O.

    2016-01-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophy...

  20. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development

    OpenAIRE

    Juan de Dios Barajas-López; Dmitry Kremnev; Jehad Shaikhali; Aurora Piñas-Fernández; Asa Strand

    2013-01-01

    The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the...

  1. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    Directory of Open Access Journals (Sweden)

    Claude Alban

    Full Text Available Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division. Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.

  2. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    OpenAIRE

    Guillaume Martin; Franc-Christophe Baurens; Céline Cardi; Jean-Marc Aury; Angélique D'Hont

    2013-01-01

    BACKGROUND: Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads e...

  3. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    International Nuclear Information System (INIS)

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs

  4. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  5. Effect of kinetin and chloramphenicol on chlorophyll synthesis and chloroplast development in detached lupin cotyledons under low light intensity

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2015-05-01

    Full Text Available Chlorophyll synthesis in detached lupin cotyledons under low light intensity was stimulated by kinetin at 20 mg/l and inhibited by chloramphenicol at 50 mg/1. Kinetin not only conteracted the inhibitory effect of chloramphenicol, but stimulated1 the chlorophyll syntesis to a greater level than in the control material. Kinetin accelerated the starch degradation and the development of chloroplast; its prolonged, action, however, produced some abnormalities, such as an excessive growth of plastids resulting in some cases in bursting of their envelopes, the formation and release f r om plastids of numerous membrane - bound bodies and the accumulation in released and swollen thylakoids of electron - dense substance. In the presence of chloramphenicol, some disturbances in structure of the stroma thylakoids and the appearance of vesicular structures in the stroma and the enlargement of grana and swelling of their thylakoids were observed. Kinetin prevented some of these abnormalities.

  6. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.

    Science.gov (United States)

    Rozier, C; Mache, R

    1984-10-11

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.

  8. Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga, Halimeda macroloba.

    Directory of Open Access Journals (Sweden)

    Anthony W D Larkum

    Full Text Available BACKGROUND: The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time. METHODOLOGY/PRINCIPAL FINDINGS: Growth of new segments was visualised by epifluorescence and confocal microscopy and by pulse amplitude modulation (PAM fluorimetry. Apical colourless proto-segments were initiated on day 1, and formed a loose network of non-calcified, non-septate filaments, containing no chloroplasts. Rapid greening was initiated at dusk by i the mass movement of chloroplasts into these filaments from the parent segment and ii the growth of new filaments containing chloroplasts. Greening was usually complete in 3-5 h and certainly before dawn on day 2 when the first signs of calcification were apparent. Mass chloroplast movement took place at a rate of ∼0.65 µm/s. Photosynthetic yield and rate remained low for a period of 1 to several hours, indicating that the chloroplasts were made de novo. Use of the inhibitors colchicine and cytochalasin d indicated that the movement process is dependent on both microtubules and microfilaments. SIGNIFICANCE: This unusual process involves the mass movement of chloroplasts at a high rate into new segments during the night and rapid calcification on the following day and may be an adaptation to minimise the impact of herbivorous activity.

  9. Effects of Ce3+ on Chloroplast Senescence of Spinach under Light

    Institute of Scientific and Technical Information of China (English)

    Yang Fan; Ma Zhenni; Liu Chao; Wu Cheng; Zhou Juan; Gao Fengqing; Hong Fashui

    2005-01-01

    The effects of Ce3+ on the chloroplast senescence of spinach under light were studied. The results show that when the chloroplasts are illuminated for 1, 5 and 10 min with 500 μmol·cm-2·min-1 light intensity, the oxygen evolution rate is rapidly increased. When the chloroplasts are treated for 20, 30 and 40 min with 500 μmol·cm-2·min-1 light intensity, the oxygen evolution rate is gradually decreased. While spinach is treated with 16 μmol·L-1 Ce3+, the rate of oxygen evolution of chloroplasts in different illumination time (1,5, 10, 20, 30, 40 min) is higher than that of control, and when illumination time is over 10 min, the reduction of the oxygen evolution rate is lower than that of control. It suggests that Ce3+ treatment can protect chloroplasts from aging for long time illumination. The mechanism research results indicate that Ce3+ treatment can significantly decrease accumulation of active oxygen free radicals such as O2·- and H2O2, and reduce the level of malondialdehyde (MDA), and maintain stability of membrane structure of chloroplast under light. It is shown that the redox took place between cerium and free radicals, which are eliminated in a large number, leading to protect the membrane from peroxidating.

  10. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells

    Institute of Scientific and Technical Information of China (English)

    Yuuki Sakai; Shin-Ichiro Inoue; Akiko Harada; Ken-Ichiro Shimazaki; Shingo Takagi

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces “chloroplast de‐anchoring”, a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast deanchoring is known induced within 1 min of irradiation with high‐fluence‐rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross‐reactive polypeptides of 120‐kDa exist in the plasma‐membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120‐kDa polypeptides were phosphorylated by exposure to blue light in a fluence‐dependent manner. The blue‐light‐induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calciumregulated chloroplast de‐anchoring, possibly mediated by phototropins, is an initial process of the blue‐light‐induced avoidance response of chloroplasts in Vallisneria.

  11. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    Science.gov (United States)

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria. PMID:25231366

  12. Gustav Senn (1875-1945):The pioneer of chloroplast movement research

    Institute of Scientific and Technical Information of China (English)

    Hironao Kataoka

    2015-01-01

    Gustav Senn analyzed for the first time light-induced movement and arrangement of chloroplasts. Using many plant species he performed physiological analyses of chloroplast migration in response to external stimuli, with emphasis on light. He determined light paths within a cel by measuring refractive indices and optical thickness of cel ular compartments and confirmed that chloroplasts migrate towards the region where the light intensity is optimum. After 6 to 7 years’ concentrated study, Senn published the famous monograph “Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren”(The Changes in Shape and Position of Plant Chloroplasts) in 1908. This book has stimulated many plant physiologists and photobiologists, because Senn not only thoroughly classified and defined various types of light-induced chloroplast migration but also already described possible interaction of different photoreceptor systems in Mougeotia more than 50 years before the discovery of phytochrome. This book also contains stil useful experimental hints and over-looked findings on the interaction between light and other factors, such as temperature, water content, and nourishment. After publishing this book, Senn retreated from the study of chloroplasts and became a researcher of the Greek philoso-pher, Theophrastus. In this review, I introduce his biographical background and then summarize some of his key research accomplishment.

  13. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo

    2010-05-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  14. Valence State Driven Site Preference in the Quaternary Compound Ca5MgAgGe5: An Electron-Deficient Phase with Optimized Bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ponou, Simeon [Centre for Analysis and Synthesis, Lund University; Lidin, Sven [Centre for Analysis and Synthesis, Lund University; Zhang, Yuemei [Ames Laboratory; Miller, Gordon J. [Ames Laboratory

    2014-04-18

    The quaternary phase Ca5Mg0.95Ag1.05(1)Ge5 (3) was synthesized by high-temperature solid-state techniques, and its crystal structure was determined by single-crystal diffraction methods in the orthorhombic space group Pnma – Wyckoff sequence c12 with a = 23.1481(4) Å, b = 4.4736(1) Å, c = 11.0128(2) Å, V = 1140.43(4) Å3, Z = 4. The crystal structure can be described as linear intergrowths of slabs cut from the CaGe (CrB-type) and the CaMGe (TiNiSi-type; M = Mg, Ag) structures. Hence, 3 is a hettotype of the hitherto missing n = 3 member of the structure series with the general formula R2+nT2X2+n, previously described with n = 1, 2, and 4. The member with n = 3 was predicted in the space group Cmcm – Wyckoff sequence f5c2. The experimental space group Pnma (in the nonstandard setting Pmcn) corresponds to a klassengleiche symmetry reduction of index two of the predicted space group Cmcm. This transition originates from the switching of one Ge and one Ag position in the TiNiSi-related slab, a process that triggers an uncoupling of each of the five 8f sites in Cmcm into two 4c sites in Pnma. The Mg/Ag site preference was investigated using VASP calculations and revealed a remarkable example of an intermetallic compound for which the electrostatic valency principle is a critical structure-directing force. The compound is deficient by one valence electron according to the Zintl concept, but LMTO electronic structure calculations indicate electronic stabilization and overall bonding optimization in the polyanionic network. Other stability factors beyond the Zintl concept that may account for the electronic stabilization are discussed.

  15. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  16. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae.

    OpenAIRE

    Baldauf, S L; Manhart, J R; J.D. Palmer

    1990-01-01

    Previous work suggested that the tufA gene, encoding protein synthesis elongation factor Tu, was transferred from the chloroplast to the nucleus within the green algal lineage giving rise to land plants. In this report we investigate the timing and mode of transfer by examining chloroplast and nuclear DNA from the three major classes of green algae, with emphasis on the class Charophyceae, the proposed sister group to land plants. Filter hybridizations reveal a chloroplast tufA gene in all Ul...

  17. Differential tuning of the electron transfer parameters in 1,3,5-triarylpyrazolines: a rational design approach for optimizing the contrast ratio of fluorescent probes.

    Science.gov (United States)

    Cody, John; Mandal, Subrata; Yang, Liuchun; Fahrni, Christoph J

    2008-10-01

    A large class of cation-responsive fluorescent sensors utilizes a donor-spacer-acceptor (D-A) molecular framework that can modulate the fluorescence emission intensity through a fast photoinduced intramolecular electron transfer (PET) process. The emission enhancement upon binding of the analyte defines the contrast ratio of the probe, a key property that is particularly relevant in fluorescence microscopy imaging applications. Due to their unusual electronic structure, 1,3,5-triarylpyrazoline fluorophores allow for the differential tuning of the excited-state energy DeltaE(00) and the fluorophore acceptor potential E(A/A(-)), both of which are critical parameters that define the electron transfer (ET) thermodynamics and thus the contrast ratio. By systematically varying the number and attachment positions of fluoro substituents on the fluorophore pi-system, DeltaE(00) can be adjusted over a broad range (0.4 eV) without significantly altering the acceptor potential E(A/A(-)). Experimentally measured D-A coupling and reorganization energies were used to draw a potential map for identifying the optimal ET driving force that is expected to give a maximum fluorescence enhancement for a given change in donor potential upon binding of the analyte. The rational design strategy was tested by optimizing the fluorescence response of a pH-sensitive probe, thus yielding a maximum emission enhancement factor of 400 upon acidification. Furthermore, quantum chemical calculations were used to reproduce the experimental trends of reduction potentials, excited-state energies, and ET driving forces within the framework of linear free energy relationships (LFERs). Such LFERs should be suitable to semiempirically predict ET driving forces with an average unsigned error of 0.03 eV, consequently allowing for the computational prescreening of substituent combinations to best match the donor potential of a given cation receptor. Within the scaffold of the triarylpyrazoline platform, the

  18. Electron-beam induced disorder effects in optimally doped Bi2Sr2CaCu2O8+x single crystal samples

    Science.gov (United States)

    Vobornik, I.; Berger, H.; Pavuna, D.; Margaritondo, G.; Forro, L.; Grioni, M.; Rullier-Albenque, F.; Onellion, M.; EPFL Collaboration; Laboratoire Des Solides Irradiés Collaboration

    2000-03-01

    We report on the effects of electron-beam induced disorder in optimally doped Bi2Sr2CaCu2O8+x single crystal samples, measured with angle-resolved photoemission. In the superconducting state, the disorder fills in the gap, without changing the binding energy or the width of the narrow coherent feature.[1] In the normal state, disorder leads to an anisotropic pseudogap in angle-resolved photoemission, with the largest pseudogap near the (0,p) point and no pseudogap in the direction.[2,3] We discuss implications of these data. 1. I. Vobornik et.al., Phys. Rev. Lett. 82 , 3128 (1999). 2. I. Vobornik, Ph.D. thesis, EPFL, Lausanne, Switzerland, October, 1999. 3. I. Vobornik et.al., unpublished.

  19. Electronic optimization for an energy harvesting system based on magnetoelectric Metglas/poly(vinylidene fluoride)/Metglas composites

    Science.gov (United States)

    Reis, S.; Silva, M. P.; Castro, N.; Correia, V.; Rocha, J. G.; Martins, P.; Lasheras, A.; Gutierrez, J.; Lanceros-Mendez, S.

    2016-08-01

    Harvesting magnetic energy from the environment is becoming increasingly attractive for being a renewable and inexhaustible power source, ubiquitous and accessible in remote locations. In particular, magnetic harvesting with polymer-based magnetoelectric (ME) materials meet the industry demands of being flexible, showing large area potential, lightweight and biocompatibility. In order to get the best energy harvesting process, the extraction circuit needs to be optimized in order to be useful for powering devices. This paper discusses the design and performance of five interface circuits, a full-wave bridge rectifier, two Cockcroft–Walton voltage multipliers (with 1 and 2 stages) and two Dickson voltage multipliers (with 2 and 3 stages), for the energy harvesting from a Fe61.6Co16.4Si10.8B11.2 (Metglas)/polyvinylidene fluoride/Metglas ME composite. Maximum power and power density values of 12 μW and 0.9 mW cm‑3 were obtained, respectively, with the Dickson voltage multiplier with two stages, for a load resistance of 180 kΩ, at 7 Oe DC magnetic field and a 54.5 kHz resonance frequency. Such performance is useful for microdevice applications in hard-to-reach locations and for traditional devices such as electric windows, door locking, and tire pressure monitoring.

  20. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.

  1. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation

    Institute of Scientific and Technical Information of China (English)

    Xiayan Liu; Mengdi Zheng; Rui Wang; Ruijuan Wang; Lijun An; Steve R. Rodermel; Fei Yu

    2013-01-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.

  2. Genetic interactions reveal that specific defects of chloroplast translation are associated with the suppression of var2-mediated leaf variegation.

    Science.gov (United States)

    Liu, Xiayan; Zheng, Mengdi; Wang, Rui; Wang, Ruijuan; An, Lijun; Rodermel, Steve R; Yu, Fei

    2013-10-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development. PMID:23721655

  3. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  4. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  5. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available BACKGROUND: Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC region of 82,740 bp, a small single copy (SSC region of 18,394 bp and a pair of inverted repeats (IRs of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae based on ndhF and trnL-F sequence comparisons. CONCLUSION: The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome

  6. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  7. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads.

    Science.gov (United States)

    Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi

    2013-01-01

    Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo-cycad sister-group hypothesis.

  8. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  9. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    Science.gov (United States)

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  10. Preferential translation of chloroplast ribosomal proteins in Chlamydomonas reinhardtti

    International Nuclear Information System (INIS)

    The nuclear cr-1 mutant of C. reinhardtii is deficient in the 30S subunit of the chloroplast (cp) ribosome and in cp protein synthesis. The cp spectinomycin resistant mutant, spr-u-1-27-3, has a normal level of 70S ribosomes but only a low rate of cp protein synthesis with spectinomycin present. In both mutants there is little accumulation of the large subunit of ribulose 1,5-bisphosphate carboxylase (Rubisco LSU), but near wild-type levels of cp synthesized r-proteins. In cells pulse-labelled with 35SO4 and immunoprecipitated with specific antisera, the ratio of the rate of synthesis of cp r-proteins to that of Rubisco LSU is 7 times greater in both mutants than in wild-type. No difference in the rate of turnover between r-proteins and Rubisco LSU in mutant and wild-type cells was observed during a one hour chase. The mRNA levels for r-protein L1 and Rubisco LSU actually increase slightly in the mutants. These data suggest that C. reinhardtii has a translation mechanism for preferential synthesis of cp r-proteins that operates under conditions of reduced total cp protein synthesis

  11. Two complete chloroplast genome sequences of Cannabis sativa varieties.

    Science.gov (United States)

    Oh, Hyehyun; Seo, Boyoung; Lee, Seunghwan; Ahn, Dong-Ha; Jo, Euna; Park, Jin-Kyoung; Min, Gi-Sik

    2016-07-01

    In this study, we determined the complete chloroplast (cp) genomes from two varieties of Cannabis sativa. The genome sizes were 153,848 bp (the Korean non-drug variety, Cheungsam) and 153,854 bp (the African variety, Yoruba Nigeria). The genome structures were identical with 131 individual genes [86 protein-coding genes (PCGs), eight rRNA, and 37 tRNA genes]. Further, except for the presence of an intron in the rps3 genes of two C. sativa varieties, the cp genomes of C. sativa had conservative features similar to that of all known species in the order Rosales. To verify the position of C. sativa within the order Rosales, we conducted phylogenetic analysis by using concatenated sequences of all PCGs from 17 complete cp genomes. The resulting tree strongly supported monophyly of Rosales. Further, the family Cannabaceae, represented by C. sativa, showed close relationship with the family Moraceae. The phylogenetic relationship outlined in our study is well congruent with those previously shown for the order Rosales.

  12. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts

    Science.gov (United States)

    Burgess, Steven J.; Taha, Hussein; Yeoman, Justin A.; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G.; Bialek, Wojciech; Murray, James W.; Nixon, Peter J.

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD+-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a ‘lactate valve’ for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  13. Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Kumar, Ranjeet; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-09-28

    Silicon photonic microchips may be useful for compact, inexpensive, room-temperature optically pumped photon-pair sources, which unlike conventional photon-pair generators based on crystals or optical fibers, can be manufactured using CMOS-compatible processes on silicon wafers. It has been shown that photon pairs can be created in simple structures such as microring resonators at a rate of a few hundred kilohertz using less than a milliwatt of optical pump power, based on the process of spontaneous four-wave mixing. To create a practical photon-pair source, however, also requires some way of monitoring the device and aligning the pump wavelength when the temperature varies, since silicon resonators are highly sensitive to temperature. In fact, monitoring photodiodes are standard components in classical laser diodes, but the incorporation of germanium or InGaAs photodiodes would raise the cost and fabrication complexity. Here, we present a simple and effective all-electronic technique for finding the optimum operating point for the microring used to generate photon pairs, based on measuring the reverse-biased current in a silicon p-i-n junction diode fabricated across the waveguide that constitutes the silicon microring. We show that by monitoring the current, and using it to tune the pump laser wavelength, the photon-pair generation properties of the microring can be preserved over a temperature range of more than 30 °C.

  14. [Hill reaction and photophosphorylation of isolated chloroplasts in relation to water content : II. Removal of water by CaCl2].

    Science.gov (United States)

    Santarius, K A; Heber, U

    1967-06-01

    1. Isolated chloroplasts from leaves of spinach and beets were dehydrated by drying for 3 hours in vacuo over CaCl2 at +2°C in the absence and in the presence of different substances. After rehydration ferricyanide reduction, cyclic photophosphorylation with PSM as cofactor, noncyclic photophosphorylation and the level of free SH groups were investigated. Furthermore, the quantity of water bound under the conditions of the test by the chloroplast lamellae and by the different substances was determined. 2. Isolated chloroplasts, which were dehydrated for 3 hours over CaCl2 lost 98-99% of their water content. Under these conditions a sharp increase of SH groups occurred indicating protein denaturation. In addition Hill reaction and photophosphorylation were inactivated. The presence of sugars, soluble proteins and polypeptides during dehydration protected chloroplasts, fully or in part, against denaturation. At low concentrations of the protective substances preservation increased more or less linearly with increasing concentration. Inorganic and organic salts could not prevent the destruction of the system during dehydration. On the contrary, salts abolish the protection afforded by sugars. More sugar was required to give protection for photophosphorylation than for the electron transfer reactions of the Hill reaction. Uncoupling of photophosphorylation from electron transport therefore precedes the destruction of electron transfer due to dehydration. In principle, cyclic and noncyclic photophosphorylation showed the same behaviour. - In spinach and bett leaves, the critical limit for the dehydration of the protoplasmic structures seemed to be nearly 10-15% of the total water content. Removal of the "critical" water leads to injury. 3. The protective action of sugars and, at least in part, of peptone and bovine albumin may be explained by their ability to retain water during the drying. Under specified conditions 1 mol of sucrose binds twice as much water as the

  15. Growth optimization and characterization of high mobility two-dimensional electron systems in AlAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Shivaji

    2009-02-15

    In this work two-dimensional electron systems (2DESs) based on AlAs/AlGaAs heterostructures doped with Si are investigated. The electrons are confined in AlAs quantum wells (QWs) sandwiched between AlGaAs buffers. Analytical calculations and simulations for AlAs QWs are presented in the first chapter. The results show a cross-over width, above which the wide (001)-oriented QWs show double valley occupancy and wide (110)-oriented QWs show single valley occupancy. We solve the Schroedinger equation analytically for anisotropic masses. The solution shows the orientation dependence of the elliptical cyclotron orbit due to the anisotropic mass. We also present an introduction to the Landau level crossings based on g{sup *}m{sup *} product. In the next chapter, we present experimental results for the double-valley (001)-oriented AlAs QWs. We present the different structures of the deep AlAs QWs along with the low temperature magnetotransport data for these QWs. Thereafter, we present the results on shallow AlAs QWs. We achieved a mobility of 4.2 x 10{sup 5} cm{sup 2}/Vs at 330 mK for the deep backside doped AlAs QW. For the shallow QWs, we achieved a mobility of2.3 x 10{sup 5} cm{sup 2}/Vs at 330 mK, for a density of 2.9 x 10{sup 11} cm{sup -2}. From the magneto-transport data, we see evidence of the double-valley occupation for the (001)-oriented AlAs wide QWs. In the next chapter, we present experimental results for the single-valley (110)-oriented AlAs QWs. We deduced the donor binding energy and the doping efficiency for this facet from a doping series of double-sided doped QWs. Thereafter, we designed different structures for the (110)-oriented AlAs QWs, which we present along with their respective low temperature magneto-transport data. We measured one of the double-sided doped AlAs QWs at very high magnetic fields and low temperatures, down to 60 mK. At the end of the chapter, we present a spike feature observed in the magneto-transport data of these QWs. This

  16. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiaomei; SHI Xiaobing; SHEN Yungang

    2004-01-01

    The ε subunit of the chloroplast ATP synthase and the truncated ε mutants which lack some amino acid residues from the N-terminus or C-terminus were overexpressed in E. coli. When the ε subunit or the truncated ε proteins was added to the spinach chloroplast suspension, both the intensity of the fast phase of millisecond delayed light emission (ms-DLE) and the cyclic and noncyclic photophosphorylation activity of chloroplast were enhanced. With an increase in the number of residues deleted from the N-terminus, the enhancement effect of the N-terminal truncated proteins decreased gradually. For the C-terminal truncated proteins, the enhancement effect increased gradually with an increase in the number of residues deleted from the C-terminus. Besides, the ATP synthesis activity of ε-deficient membrane reconstituted with the ε subunit or the truncated ε proteins was compared. The ATP synthesis activity of reconstituted membrane with the N-terminal truncated proteins decreased gradually as the number of residues deleted from the N-terminus increased. For the C-terminal truncated proteins, the ATP synthesis activity of reconstituted membrane increased gradually with an increase in the number of residues deleted from the C-terminus, but was still lower than that of the wild type ε protein. These results suggested that: (a) the N-terminal domain of the ε subunit of the chloroplast ATP synthase could affect the ATP synthesis activity of ATP synthase by regulating the efficiency of blocking proton leakage of ε subunit; and (b) the C-terminal domain of the ε subunit of the chloroplast ATP synthase had a subtle function in modulating the ATP synthesis ability of ATP synthase.

  17. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division.

    Science.gov (United States)

    Gao, Yuefang; Liu, Han; An, Chuanjing; Shi, Yuhong; Liu, Xia; Yuan, Wanqiong; Zhang, Bing; Yang, Jin; Yu, Caixia; Gao, Hongbo

    2013-09-01

    ARC5 is a dynamin-related GTPase essential for the division of chloroplasts in plants. The arc5 mutant frequently exhibits enlarged, dumbbell-shaped chloroplasts, indicating a role for ARC5 in the constriction of the chloroplast division site. In a screen for chloroplast division mutants with a phenotype similar to arc5, two mutants, cpd25 and cpd45, were obtained. CPD45 was identified as being the same gene as FHY3, a key regulator of far-red light signaling recently shown to be involved in the regulation of ARC5. CPD25 was previously named FRS4 and is homologous to FHY3. We found that CPD25 is also required for the expression of ARC5, suggesting that its function is not redundant to that of FHY3. Moreover, cpd25 does not have the far-red light-sensing defect present in fhy3 and far1. Both FRS4/CPD25 and FHY3/CPD45 could bind to the FBS-like 'ACGCGC' motifs in the promoter region of ARC5, and the binding efficiency of FRS4/CPD25 was much higher than that of FHY3/CPD45. Unlike FHY3/CPD45, FRS4/CPD25 has no ARC5 activation activity. Our data suggest that FRS4/CPD25 and FHY3/CPD45 function as a heterodimer that cooperatively activates ARC5, that FRS4/CPD25 plays the major role in promoter binding, and that FHY3/CPD45 is largely responsible for the gene activation. This study not only provides insight into the mechanisms underlying the regulation of chloroplast division in higher plants, but also suggests a model that shows how members of a transcription factor family can evolve to have different DNA-binding and gene activation features.

  18. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins.

    Science.gov (United States)

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  19. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Jungeun Lee

    Full Text Available BACKGROUND: Antarctic hairgrass (Deschampsia antarctica Desv. is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. RESULTS: The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp and small (SSC: 12,519 bp single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp. It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. CONCLUSIONS: We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers

  20. A web-deployed interface for performing ab initio molecular dynamics, optimization, and electronic structure in FIREBALL

    Science.gov (United States)

    Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.

    2009-03-01

    FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are

  1. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice.

    Science.gov (United States)

    Kusumi, Kensuke; Hirotsuka, Shoko; Shimada, Hiroshi; Chono, Yoko; Matsuda, Osamu; Iba, Koh

    2010-07-01

    Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.

  2. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae)1

    Science.gov (United States)

    Chaney, Lindsay; Mangelson, Ryan; Ramaraj, Thiruvarangan; Jellen, Eric N.; Maughan, Peter J.

    2016-01-01

    Premise of the study: The amaranth genus contains many important grain and weedy species. We further our understanding of the genus through the development of a complete reference chloroplast genome. Methods and Results: A high-quality Amaranthus hypochondriacus (Amaranthaceae) chloroplast genome assembly was developed using long-read technology. This reference genome was used to reconstruct the chloroplast genomes for two closely related grain species (A. cruentus and A. caudatus) and their putative progenitor (A. hybridus). The reference genome was 150,518 bp and possesses a circular structure of two inverted repeats (24,352 bp) separated by small (17,941 bp) and large (83,873 bp) single-copy regions; it encodes 111 genes, 72 for proteins. Relative to the reference chloroplast genome, an average of 210 single-nucleotide polymorphisms (SNPs) and 122 insertion/deletion polymorphisms (indels) were identified across the analyzed genomes. Conclusions: This reference chloroplast genome, along with the reported simple sequence repeats, SNPs, and indels, is an invaluable genetic resource for studying the phylogeny and genetic diversity within the amaranth genus. PMID:27672525

  3. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    Science.gov (United States)

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P plants possesses relatively more genomic diversity compared to higher plants.

  4. CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    Science.gov (United States)

    Gutiérrez, Carla L; Gimpel, Javier; Escobar, Carolina; Marshall, Sergio H; Henríquez, Vitalia

    2012-08-01

    At present, there is strong commercial demand for recombinant proteins, such as antigens, antibodies, biopharmaceuticals, and industrial enzymes, which cannot be fulfilled by existing procedures. Thus, an intensive search for alternative models that may provide efficiency, safety, and quality control is being undertaken by a number of laboratories around the world. The chloroplast of the eukaryotic microalgae Haematococcus pluvialis Flotow has arisen as a candidate for a novel expression platform for recombinant protein production. However, there are important drawbacks that need to be resolved before it can become such a system. The most significant of these are chloroplast genome characterizations, and the development of chloroplast transformation vectors based upon specific endogenous promoters and on homologous targeting regions. In this study, we report the identification and characterization of endogenous chloroplast sequences for use as genetic tools for the construction of H. pluvialis specific expression vectors to efficiently transform the chloroplast of this microalga via microprojectile bombardment. As a consequence, H. pluvialis shows promise as a platform for expressing recombinant proteins for biotechnological applications, for instance, the development of oral vaccines for aquaculture. PMID:27009007

  5. Delayed fluorescence spectroscopy and mechanism of the 730 nm component of chloroplast

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-long; XING Da; FAN Duo-wang; QIAN Long; LU Mai

    2006-01-01

    Charge recombination in reaction center (RC) of photosystem Ⅱ(PS Ⅱ)is regarded as the location of 685 nm delayed fluorescence (DF). The mechanism of 730 nm component appearing in the DF spectrum for chloroplast was studied by various spectral analysis methods. Experimental results of the DF spectrum at different chloroplast concentration show that the intensity of peaks at 685nm and 730 nm ascends with the chloroplast concentration increasing when the concentration is relatively low. When the concentration increases to the level of 7.8 μg/ml, a maximum intensity of the peak at 685 nm appears but the intensity of 730 nm peak still increases. The peak at 730 nm finally reaches a maximum intensity at the chloroplast concentration of 31.2 μg/ml while the intensity of the 685 nm peak has apparently fallen down. The results of absorption spectrum show that the ratios of A685 to A730 keep almost constant with the increasing of chloroplast concentration. Furthermore, the excitation spectrum for 730 nm fluorescence shows that the 685nm light has high excitation efficiency.These results indicate that the 730nm component of DF spectrum is the fluorescence of chlorophyll in PS Ⅰ RC excited by 685 nm DF. Meanwhile, this can be further verified by the invariability of DF spectrum at different delay time (1 second~9 seconds).

  6. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  7. Comparative Analysis of Codon Usage Patterns Among Mitochondrion, Chloroplast and Nuclear Genes in Triticum aestivum L.

    Institute of Scientific and Technical Information of China (English)

    Wen-Juan Zhang; Jie Zhou; Zuo-Feng Li; Li Wang; Xun Gu; Yang Zhong

    2007-01-01

    In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion,chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of rnitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level.The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.

  8. Homologous Comparisons of Photosynthetic System 1 Genes among Cyanobacteria and Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    Jie Yu; Pei-Jun Ma; Ding-Ji Shi; Shi-Ming Li; Chang-Lu Wang

    2008-01-01

    It has now believed that chloroplasts arose from cyanobacteria,however,during endosymbiosis,the photosynthetic genes in chloroplasts have been reduced.How these changes occurred during plant evolution was the focus of the present study.Beginning with photosystem Ⅰ (PSI) genes,a homologous comparison of amino acid sequences of 18 subunits of PSI from 10 species of cyanobacteria,chloroplasts in 12 species of eucaryotic algae,and 28 species of plants (including bryophytes,pteridophytes,gymnospermae,dicotyledon and monocotyledon) was undertaken.The data showed that 18 genes of PSIcan be divided into two groups: Part Ⅰ including seven genes (psaA,psaB,psaC,psaI,psaJ,yct3 and ycf4) shared both by cyanobacteria and plant chloroplasts;Part Ⅱ containing another 11 genes (psaD,psaE,psaF,psaK,psaL,psaM,btpA,ycf37,psaG,psaH and psaN) appeared to have diversified in different plant groups.Among Part I genes,psaC,psaA and psaB had higher homology in all species of cyanobacteria and chloroplasts.Among Part II genes,only psaG,psaH and psaN emerged in seed plants.

  9. Recombination and Heterologous Expression of Allophycocyanin Gene in the Chloroplast of Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang SU; Kai-Xian QIAN; Cong-Ping TAN; Chun-Xiao MENG; Song QIN

    2005-01-01

    Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.

  10. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  11. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    Cuiju Cui; Guangxiao Yang; Guangyuan He; Fei Song; Yi Tan; Xuan Zhou; Wen Zhao; Fengyun Ma; Yunyi Liu; Javeed Hussain; Yuesheng Wang

    2011-01-01

    Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences. respectively. A wheat chloroplast sitespecific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase Ⅱ (nptⅡ) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.

  12. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    Science.gov (United States)

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  13. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin.

    Science.gov (United States)

    He, Yang; Xiao, Hongtao; Deng, Cao; Xiong, Liang; Yang, Jian; Peng, Cheng

    2016-01-01

    Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species. PMID:27275817

  14. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  15. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia and comparative analysis within the rosids.

    Directory of Open Access Journals (Sweden)

    Huei-Jiun Su

    Full Text Available The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia. The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  16. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids.

    Science.gov (United States)

    Su, Huei-Jiun; Hogenhout, Saskia A; Al-Sadi, Abdullah M; Kuo, Chih-Horng

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  17. Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress

    Institute of Scientific and Technical Information of China (English)

    PENG Qian; ZHOU Qing

    2009-01-01

    In order to investigate the effects of lanthanum(Ⅲ) on cell ultrastructure of soybean leaves under elevated ultraviolet-B irradiation (UV-B, 280-320 rim), the chloroplast ultrastructure of soybean seedlings was studied by hydroponics under laboratory conditions. The re-sults showed that the thylakoid in chloroplast was orderly and clearly as soybean leaves were pretreated by La(Ⅲ). The thylakoid was indis-tinctly disordered, expanded and even indiscoverable in the chloroplast under UV-B stress. The impact on the thylakoid by the high in-tensity UV-B irradiation (T2) was bigger than that by the low intensity UV-B irradiation (T1). However, the destruction of the chloroplast structure caused by UV-B stress was alleviated by La(Ⅲ), and the arrangement of the thylakoid in the chloroplast became orderly and clearly. The effect of the alleviation by La(Ⅲ) under the low intensity UV-B irradiation (T1) was better than that under the high intensity UV-B irradiation (T2).

  18. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  19. Synthesis of poly(A)-containing RNA by isolated spinach chloroplasts.

    Science.gov (United States)

    Bartolf, M; Price, C A

    1979-05-01

    Chloroplasts were isolated from spinach leaves and the intact chloroplasts separated by centrifugation on gradients of silica sol. Chloroplasts prepared in this way were almost completely free of cytoplasmic rRNA. The purified chloroplasts were incubated with 32PO4 in the light. The nucleic acids were then extracted and the RNA was fractionated into poly(A)-lacking RNA and poly(A)-containing RNA (poly(A)-RNA) via oligo(dT)-cellulose chromatography. The poly(A)-RNA had a mean size of approximately 18--20 S as determined by polyacrylamide gel electrophoresis. The poly(A)-RNA was digested with RNase A and RNase T1, and the resulting poly(A) segments were subjected to electrophoresis on a 10% w/v polyacrylamide gel 98% v/v formamide). Radioactivity was incorporated into both poly(A)-RNA and poly(A)-lacking RNA and into the poly(A) segments themselves. The poly(A) segments were between 10 and 45 residues long and alkaline hydrolysis of poly(A) segments followed by descending paper chromatography showed that they were composed primarily of adenine residues. There was no 32PO4 incorporation into acid-insoluble material in the dark. We conclude that isolated chloroplasts are capable of synthesizing poly(A)-RNA. PMID:435477

  20. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  1. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Directory of Open Access Journals (Sweden)

    Heubl Günther

    2010-11-01

    Full Text Available Abstract Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a

  2. Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae)

    Institute of Scientific and Technical Information of China (English)

    Shi-Chao CHEN; Li ZHANG; Jie ZENG; Fei SHI; Hong YANG; Yun-Rui MAO; Cheng-Xin FU

    2012-01-01

    The monotypic genus Platycarya (Juglandaceae) is one of the most widespread temperate tree species in East Asia.In this research,we implemented a phylogeographical study using chloroplast DNA (cpDNA) (psbA-trnH and atpB-rbcL intergenic spacer) sequences on Platycarya strobilacea,in order to identify the locations of the species' main refugia and migration routes.A total of 180 individuals of P.stobilacea from 27 populations from China and Jeju Island (Korea) were collected.The results revealed that P.strobilacea had 35 haplotypes for the two intergenic spacers and high genetic diversity (hT =0.926).This surprisingly high diversity ofhaplotypes indicates its long evolutionary history,which is in agreement with previous phylogenetic analyses and fossil records.Significant cpDNA population subdivision was detected (GST =0.720; NST =0.862),suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (NST > GST,P < 0.05).The construction of phylogenetic relationships of the 35 chlorotypes detected four major cpDNA clades.Divergence dating analyses using BEAST suggest that the divergence of the major cpDNA clades occurred before the Miocene.Demographic analysis indicated that the Eastern clade underwent localized demographic expansions.The molecular phylogenetic data,together with the geographic distribution of the haplotypes,suggest the existence of multiple glacial refugia in most of its current range in China through Quaternary climatic oscillations.

  3. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  4. Dynamic remodeling of the plastid envelope membranes – a tool for chloroplast envelope in vivo localizations

    Directory of Open Access Journals (Sweden)

    Frederique KH Breuers

    2012-01-01

    Full Text Available Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity. Here, we describe a novel approach to distinguish the localization of proteins between the two membranes using a straightforward approach based on live cell imaging coupled with transient expression. We base our approach on analyses of the distribution of GFP-fusions, which were aimed to verify outer-envelope-membrane proteomics data. To distinguish between outer envelope and inner envelope protein localization, we used AtTOC64-GFP and AtTIC40-GFP, as respective controls. During our analyses, we observed membrane proliferations and loss of chloroplast shape in conditions of protein overexpression. The morphology of the proliferations varied in correlation with the suborganellar distribution of the overexpressed proteins. In particular, while layers of membranes built up in the inner envelope membrane, the outer envelope formed long extensions into the cytosol. Using electron microscopy, we showed that these extensions were stromules, a dynamic feature of plastids. Since the behavior of the membranes is different and is related to the protein localization, we propose that in vivo studies based on the analysis of morphological differences of the membranes can be used to distinguish between inner and outer envelope localizations of proteins. To demonstrate the applicability of this approach, we demonstrated the localization of AtLACS9 to the outer envelope membrane. We also discuss protein impact on membrane behavior and regulation of protein insertion into membranes, and provide new hypotheses on the formation of stromules.

  5. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data

    Science.gov (United States)

    Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta. The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  6. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  7. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data.

    Science.gov (United States)

    Stadermann, Kai Bernd; Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  8. The complete chloroplast genome sequence of Lilium hansonii Leichtlin ex D.D.T.Moore.

    Science.gov (United States)

    Kim, Kyunghee; Hwang, Yoon-Jung; Lee, Sang-Choon; Yang, Tae-Jin; Lim, Ki-Byung

    2016-09-01

    Lilium hansonii is a lily species native to Korea and an important wild species for lily breeding. The chloroplast genome of L. hansonii was completed by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. hansonii was 152 655 bp long and consisted of large single copy region (82 051 bp), small single copy region (17 620 bp) and a pair of inverted repeat regions (26 492 bp). A total of 115 genes were annotated, which included 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. hansonii is most closely related to L. superbum (Turk's-cap lily) and L. longiflorum (Easter lily). PMID:26404645

  9. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.

    Science.gov (United States)

    Aslan, Selcuk; Sun, Chuanxin; Leonova, Svetlana; Dutta, Paresh; Dörmann, Peter; Domergue, Frédéric; Stymne, Sten; Hofvander, Per

    2014-09-01

    In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts.

  10. Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Zedler, Julie A Z; Gangl, Doris; Hamberger, Björn Robert;

    2015-01-01

    Chlamydomonas reinhardtii has been shown to hold significant promise as a production platform for recombinant proteins, but transformation of the nuclear genome is still a non-trivial process due to random gene insertion and frequent silencing. Insertion of transgenes into the chloroplasts...... is an alternative strategy, and we report here the stable expression of a large (91 kDa) protein in the chloroplast using a recently developed low-cost transformation protocol. Moreover, selection of transformants is based on restoration of prototrophy using an endogenous gene (psbH) as the marker, thereby allowing...... the generation of transgenic lines without the use of antibiotic-resistance genes. Here, we have expressed a bifunctional diterpene synthase in C. reinhardtii chloroplasts. Homoplasmic transformants were obtained with the expressed enzyme accounting for 3.7 % of total soluble protein. The enzyme was purified...

  11. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    Science.gov (United States)

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera. PMID:27672522

  12. The complete chloroplast genome sequence of the medicinal plant Rheum palmatum L. (Polygonaceae).

    Science.gov (United States)

    Fan, Kai; Sun, Xiao-Jie; Huang, Min; Wang, Xu-Mei

    2016-07-01

    The complete chloroplast genome of the medicinal plant Rheum palmatum L. (Polygonaceae) has been reconstructed from the whole-genome Illumina sequencing data. The genome is 161 541 bp in length, and exhibits a typical quadripartite structure of the large (LSC, 86 518 bp) and small (SSC, 13 111 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 30 956 bp each). The chloroplast genome contains 131 genes, including 84 protein-coding genes (78 PCG species), eight ribosomal RNA genes (four rRNA species) and 37 transfer RNA genes (28 tRNA species). Phylogenetic tree based on the maximum parsimony (MP) analysis of 65 chloroplast protein-coding genes for 13 taxa demonstrated a close relationship between R. palmatum and Fagopyrum esculentum subsp. ancestrale in Polygonaceae. PMID:26153751

  13. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  14. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    Science.gov (United States)

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera.

  15. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; LI Tianyong; QIAN Hao; SUN Jing; WANG Liang; YU Jun; REN Lufeng; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events.

  16. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Directory of Open Access Journals (Sweden)

    Dong-Ho Shin

    2016-05-01

    Full Text Available Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC region, a small single-copy (SSC region, and a pair of inverted repeat (IR regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.

  17. The Complete Chloroplast Genome of the Hare's Ear Root, Bupleurum falcatum: Its Molecular Features.

    Science.gov (United States)

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  18. Slugs' last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda).

    Science.gov (United States)

    Händeler, Katharina; Wägele, Heike; Wahrmund, Ute; Rüdinger, Mareike; Knoop, Volker

    2010-11-01

    Some sacoglossan sea slugs have become famous for their unique capability to extract and incorporate functional chloroplasts from algal food organisms (mainly Ulvophyceae) into their gut cells. The functional incorporation of the so-called kleptoplasts allows the slugs to rely on photosynthetic products for weeks to months, enabling them to survive long periods of food shortage over most of their life-span. The algal food spectrum providing kleptoplasts as temporary, non-inherited endosymbionts appears to vary among sacoglossan slugs, but detailed knowledge is sketchy or unavailable. Accurate identification of algal donor species, which provide the chloroplasts for long-term retention is of primary importance to elucidate the biochemical mechanisms allowing long-term functionality of the captured chloroplast in the foreign animal cell environment. Whereas some sacoglossans forage on a variety of algal species, (e.g. Elysia crispata and E. viridis) others are more selective. Hence, characterizing the range of functional sacoglossan-chloroplast associations in nature is a prerequisite to understand the basis of this enigmatic endosymbiosis. Here, we present a suitable chloroplast gene (tufA) as a marker, which allows identification of the respective algal kleptoplast donor taxa by analysing DNA from whole animals. This novel approach allows identification of donor algae on genus or even species level, thus providing evidence for the taxonomic range of food organisms. We report molecular evidence that chloroplasts from different algal sources are simultaneously incorporated in some species of Elysia. NeigborNet analyses for species assignments are preferred over tree reconstruction methods because the former allow more reliable statements on species identification via barcoding, or rather visualize alternative allocations not to be seen in the latter. PMID:21565106

  19. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.

    Science.gov (United States)

    Tozawa, Y; Nomura, Y

    2011-09-01

    The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.

  20. Long-day photoperiod induced unhealthy development of chloroplasts in the photoperiod-sensitive genie male-sterile rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By measurement of photochemical activities of chloroplasts and observation on supramolecular archi tecture of thylakoids in chloroplasts, it was found that compared with the effects of short-day photoperiod, long-day pho toperiod could induce normal development of chloroplasts in seedlings of NK58S (photoperiod-sensitive genie male-sterile rice) and NK58 (original line) which do not enter the photoperiod sensitive phase and in seedlings of NK58 just enter the photoperiod-sensitive phase. However, it could induce unhealthy development of chloroplasts in seedlings of NK58S which also just enter the photoperiod sensitive phase. This special effect of long-day photoperiod on the development of chloroplasts in NK58S is probably one of main reasons why long-day photoperiod induces rale-sterility in NK58S and normal fertility in NK58.

  1. Cloning and functional analysis of chloroplast division gene NtFtsZ2-1 in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    FtsZ protein plays an important role in the division of chloroplasts. With the finding and functional analysis of higher plant FtsZ proteins, people have deepened the understanding in the molecular mechanism of chloroplast division. Multiple ftsZ genes are diversified into two families in higher plants, ftsZ1 and ftsZ2. On the basis of the research on ftsZ1 family, we analyzed the function of NtFtsZ2-1 gene in Nicotiana tabacum. Microscopic analysis of the sense and antisense NtFtsZ2-1 transgenic tobacco plants revealed that the chloroplasts were abnormal in size and also in number when compared with wild-type tobacco chloroplasts. Our investigations confirmed that the NtFtsZ2-1 gene is involved in plant chloroplast division.

  2. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    International Nuclear Information System (INIS)

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of 14CO2 from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [14C]glucose and [14C]fructose, respectively. CO2 release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m-2. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO2 release was relatively rapid compared to the restoration of CO2 release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO2 from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs

  3. Spectral characteristics and orientation of native forms of pigment in chloroplasts of barley seedlings under intermittent and continuous irradiation

    International Nuclear Information System (INIS)

    Chorophyll (Chl) form at 710-712 nm localized on the small protein simultaneously connected with the reaction centre of photosystem 1 (RC PS1) and the light-harvesting complex I (LHC-I) polypeptides is supposed to be the source of long-wavelength band of low-temperature fluorescence of chloroplasts at 735-740 nm. Chloroplasts of intermittently irradiated seedlings (or chloroplasts of the Chl b-less barley mutant) did not differ from chloroplasts of continuously irradiated seedlings (or chloroplasts of wild type barley) in the set of Chl a and beta-carotene forms and their orientation in the membrane. A competition for the newly synthesized Chl a molecules occurred between the RC PS 2 and LHC-II polypeptides

  4. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins

    DEFF Research Database (Denmark)

    Peltier, J B; Friso, G; Kalume, D E;

    2000-01-01

    the twin arginine motif that is characteristic for substrates of the TAT pathway. Logoplots were used to provide a detailed analysis of the lumenal targeting signals, and all nuclear-encoded proteins identified on the two-dimensional gels were used to test predictions for chloroplast localization...... and transit peptides made by the software programs ChloroP, PSORT, and SignalP. A combination of these three programs was found to provide a useful tool for evaluating chloroplast localization and transit peptides and also could reveal possible alternative processing sites and dual targeting. The potential...

  5. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  6. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.

    Science.gov (United States)

    Sakai, Yuuki; Takagi, Shingo

    2005-08-01

    In epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light (BL) induces the avoidance response of chloroplasts. We examined simultaneous BL-induced changes in the configuration of actin filaments in the cytoplasmic layers that face the outer periclinal wall (P side) and the anticlinal wall (A side). The results clearly showed that dynamic reorganization of the actin cytoskeleton occurs on both sides. Upon BL irradiation, thick, long bundles of actin filaments appeared, concomitant with the directed migration of chloroplasts from the P side to the A side. After 15-20 min of BL irradiation, fine actin bundles on only the A side appeared to associate with chloroplasts that had migrated from the P side. To examine the role of the fine actin bundles, we evaluated the anchorage of chloroplasts by centrifuging living cells. Upon BL irradiation, the resistance of chloroplasts on both the P and A sides to the centrifugal force decreased remarkably. After 20 min of BL irradiation, the resistance of chloroplasts on the A side increased again, but chloroplasts on the P side could still be displaced. The BL-induced recovery of resistance of chloroplasts on the A side was sensitive to photosynthesis inhibitors but insensitive to an inhibitor of flavoproteins. The photosynthesis inhibitors also prevented the fine actin bundles from appearing on the A side under BL irradiation. These results strongly suggest that the BL-induced avoidance response of chloroplasts includes photosynthesis-dependent and actin-dependent anchorage of chloroplasts on the A side of epidermal cells. PMID:15809866

  7. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Institute of Scientific and Technical Information of China (English)

    孙洪涛; 王小平; 寇志起; 王丽军; 王金烨; 孙义清

    2015-01-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10−5 Ω·cm and an average optical transmittance of 86%in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 ◦C reaches a minimum resistivity of 5.9×10−5 Ω·cm and an average optical transmittance of 88%in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications.

  8. Nonlinear undulator tapering in conventional SASE regime at baseline electron beam parameters as a way to optimize the radiation characteristics of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-09-15

    We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of undulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulations in the deep nonlinear SASE regime with tapered undulator using the code ALICE.

  9. Optimal site-centered electronic structure basis set from a displaced-center expansion: Improved results via a priori estimates of saddle points in the density

    Science.gov (United States)

    Alam, Aftab; Johnson, D. D.

    2009-09-01

    Site-centered, electronic-structure methods use an expansion inside nonoverlapping “muffin-tin” (MT) spheres plus an interstitial basis set. As the boundary separating the more spherical from nonspherical density between atoms, the “saddle-point” radii (SPR) in the density provide an optimal spherical region for expanding in spherical harmonics, as used in augmented plane wave, muffin-tin orbital, and multiple-scattering [Korringa, Kohn, and Rostoker (KKR)] methods. These MT-SPR guarantee unique, convex Voronoi polyhedra at each site, in distinction to Bader topological cells. We present a numerically fast, two-center expansion to find SPR a priori from overlapping atomic charge densities, valid also for disordered alloys. We adopt this MT-SPR basis for KKR in the atomic sphere approximation and study (dis)ordered alloys with large differences in atomic size (fcc CoPt and bcc CrW). For this simple and unique improvement, we find formation energies and structural parameters in strikingly better agreement with more exact methods or experiment, and resolve issues with former results.

  10. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.

    Directory of Open Access Journals (Sweden)

    Bart Ghysels

    Full Text Available Like a majority of photosynthetic microorganisms, the green unicellular alga Chlamydomonas reinhardtii may encounter O2 deprived conditions on a regular basis. In response to anaerobiosis or in a respiration defective context, the photosynthetic electron transport chain of Chlamydomonas is remodeled by a state transition process to a conformation that favours the photoproduction of ATP at the expense of reductant synthesis. In some unicellular green algae including Chlamydomonas, anoxia also triggers the induction of a chloroplast-located, oxygen sensitive hydrogenase, which accepts electrons from reduced ferredoxin to convert protons into molecular hydrogen. Although microalgal hydrogen evolution has received much interest for its biotechnological potential, its physiological role remains unclear. By using specific Chlamydomonas mutants, we demonstrate that the state transition ability and the hydrogenase function are both critical for induction of photosynthesis in anoxia. These two processes are thus important for survival of the cells when they are transiently placed in an anaerobic environment.

  11. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.

    Science.gov (United States)

    Ghysels, Bart; Godaux, Damien; Matagne, René F; Cardol, Pierre; Franck, Fabrice

    2013-01-01

    Like a majority of photosynthetic microorganisms, the green unicellular alga Chlamydomonas reinhardtii may encounter O2 deprived conditions on a regular basis. In response to anaerobiosis or in a respiration defective context, the photosynthetic electron transport chain of Chlamydomonas is remodeled by a state transition process to a conformation that favours the photoproduction of ATP at the expense of reductant synthesis. In some unicellular green algae including Chlamydomonas, anoxia also triggers the induction of a chloroplast-located, oxygen sensitive hydrogenase, which accepts electrons from reduced ferredoxin to convert protons into molecular hydrogen. Although microalgal hydrogen evolution has received much interest for its biotechnological potential, its physiological role remains unclear. By using specific Chlamydomonas mutants, we demonstrate that the state transition ability and the hydrogenase function are both critical for induction of photosynthesis in anoxia. These two processes are thus important for survival of the cells when they are transiently placed in an anaerobic environment. PMID:23717558

  12. The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts?

    Science.gov (United States)

    Molik, S; Karnauchov, I; Weidlich, C; Herrmann, R G; Klösgen, R B

    2001-11-16

    The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways. PMID:11526115

  13. Identifying the North American plum species phylogenetic signal using nuclear, mitochondrial, and chloroplast DNA markers

    Science.gov (United States)

    Premise of the study: Prunus L. phylogeny has extensively studied using cpDNA sequences. CpDNA has a slow rate of evolution which is beneficial to determine species relationships at a deeper level. However, a limitation of the chloroplast based phylogenies is its transfer by interspecific hybridizat...

  14. Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences

    NARCIS (Netherlands)

    König, A.O.; Ziegenhagen, B.; Dam, van B.C.; Csaikl, U.M.; Coart, E.; Degen, B.; Burg, K.; Vries, de S.M.G.; Petit, R.J.

    2002-01-01

    Oak chloroplast DNA (cpDNA) variation was studied in a grid-based inventory in western Central Europe, including Belgium, The Netherlands, Luxembourg, Germany, the Czech Republic, and the northern parts of Upper and Lower Austria. A total of 2155 trees representing 426 populations of Quercus robur L

  15. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory

    Science.gov (United States)

    Plant responses to damage vary dependant upon the nature of the biotic and abiotic stresses. We recently described an elicitor, from Fall armyworm (Spodoptera frugiperda) oral secretions (OS) termed inceptin, derived from chloroplastic ATP synthase '-subunit (cATPC) proteins that activate phytohormo...

  16. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    Science.gov (United States)

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico. PMID:11005290

  17. Cladistic biogeography of Juglans (Juglandaceae) based on chloroplast DNA intergenic spacer sequences

    Science.gov (United States)

    The phylogenetic utility of sequence variation from five chloroplast DNA intergenic spacer (IGS) regions: trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM was examined in the genus Juglans. A total of seventeen taxa representing the four sections within Juglans and an outgroup taxon, ...

  18. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.

    Science.gov (United States)

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-09-16

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. PMID:27493208

  19. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    Science.gov (United States)

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.

  20. The Research of Bt and OC Gene Cotransformation in Tobacco Chloroplast

    Institute of Scientific and Technical Information of China (English)

    SU Ning; YANG Bo; MENG Kun; LI Yi-nü; SUN Meng; SUN Bing-yao; SHEN Gui-fang

    2002-01-01

    The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry IA (C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza sativa. L) chloroplast, the gene:trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm ( helicoverpa zea ).