WorldWideScience

Sample records for chloroplast shaping cell

  1. Chloroplast signaling within, between and beyond cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof eBobik

    2015-10-01

    Full Text Available The most conspicuous function of the plastid is oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that the plastid possesses its own genome whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nucleus, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet neglected aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order

  2. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.

    Science.gov (United States)

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A; Yoo, Ook Joon; Liu, Jang Ryol

    2002-05-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities.

  3. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae).

    Science.gov (United States)

    Sheue, Chiou-Rong; Sarafis, Vassilios; Kiew, Ruth; Liu, Ho-Yih; Salino, Alexandre; Kuo-Huang, Ling-Long; Yang, Yuen-Po; Tsai, Chi-Chu; Lin, Chun-Hung; Yong, Jean W H; Ku, Maurice S B

    2007-12-01

    Study of the unique leaf anatomy and chloroplast structure in shade-adapted plants will aid our understanding of how plants use light efficiently in low light environments. Unusual chloroplasts in terms of size and thylakoid membrane stacking have been described previously in several deep-shade plants. In this study, a single giant cup-shaped chloroplast, termed a bizonoplast, was found in the abaxial epidermal cells of the dorsal microphylls and the adaxial epidermal cells of the ventral microphylls in the deep-shade spike moss Selaginella erythropus. Bizonoplasts are dimorphic in ultrastructure: the upper zone is occupied by numerous layers of 2-4 stacked thylakoid membranes while the lower zone contains both unstacked stromal thylakoids and thylakoid lamellae stacked in normal grana structure oriented in different directions. In contrast, other cell types in the microphylls contain chloroplasts with typical structure. This unique chloroplast has not been reported from any other species. The enlargement of epidermal cells into funnel-shaped, photosynthetic cells coupled with specific localization of a large bizonoplast in the lower part of the cells and differential modification in ultrastructure within the chloroplast may allow the plant to better adapt to low light. Further experiments are required to determine whether this shade-adapted organism derives any evolutionary or ecophysiological fitness from these unique chloroplasts.

  4. Differential positioning of chloroplasts in C4 mesophyll and bundle sheath cells.

    Science.gov (United States)

    Maai, Eri; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2011-08-01

    Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have 2 types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C 4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. In this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.

  5. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  6. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.

    Science.gov (United States)

    Paves, H; Truve, E

    2007-01-01

    Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of myosins in chloroplast photorelocation in Arabidopsis thaliana mesophyll cells. None of these agents had an effect on the chloroplast high-fluence-rate avoidance movement but all of the three myosin inhibitors blocked the accumulation movement of chloroplasts after a high-fluence-rate irradiation of the leaves. The results suggest that myosins have a role in A. thaliana chloroplast photorelocation.

  7. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  8. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  9. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement.

    Science.gov (United States)

    Wang, Xiu-Ling; Gao, Xin-Qi; Wang, Xue-Chen

    2011-08-01

    Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.

  10. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  11. Chloroplast movement.

    Science.gov (United States)

    Wada, Masamitsu

    2013-09-01

    Chloroplast movement is important for plant survival under high light and for efficient photosynthesis under low light. This review introduces recent knowledge on chloroplast movement and shows how to analyze the responses and the moving mechanisms, potentially inspiring research in this field. Avoidance from the strong light is mediated by blue light receptor phototropin 2 (phot2) plausibly localized on the chloroplast envelop and accumulation at the week light-irradiated area is mediated by phot1 and phot2 localized on the plasma membrane. Chloroplasts move by chloroplast actin (cp-actin) filaments that must be polymerized by Chloroplast Unusual Positioning1 (CHUP1) at the front side of moving chloroplast. To understand the signal transduction pathways and the mechanism of chloroplast movement, that is, from light capture to motive force-generating mechanism, various methods should be employed based on the various aspects. Observation of chloroplast distribution pattern under different light condition by fixed cell sectioning is somewhat an old-fashioned technique but the most basic and important way. However, most importantly, precise chloroplast behavior during and just after the induction of chloroplast movement by partial cell irradiation using an irradiator with either low light or strong light microbeam should be recorded by time lapse photographs under infrared light and analyzed. Recently various factors involved in chloroplast movement, such as cp-actin filaments and CHUP1, could be traced in Arabidopsis transgenic lines with fluorescent protein tags under a confocal laser scanning microscope (CLSM) and/or a total internal reflection fluorescence microscope (TIRFM). These methods are listed and their advantages and disadvantages are evaluated.

  12. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.

  14. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells

    Institute of Scientific and Technical Information of China (English)

    Yuuki Sakai; Shin-Ichiro Inoue; Akiko Harada; Ken-Ichiro Shimazaki; Shingo Takagi

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces “chloroplast de‐anchoring”, a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast deanchoring is known induced within 1 min of irradiation with high‐fluence‐rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross‐reactive polypeptides of 120‐kDa exist in the plasma‐membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120‐kDa polypeptides were phosphorylated by exposure to blue light in a fluence‐dependent manner. The blue‐light‐induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calciumregulated chloroplast de‐anchoring, possibly mediated by phototropins, is an initial process of the blue‐light‐induced avoidance response of chloroplasts in Vallisneria.

  15. Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Suetsugu

    Full Text Available Blue light (BL induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we investigated the effects of RL on BL-dependent stomatal opening in isolated epidermis, guard cell protoplasts, and intact leaves of Arabidopsis thaliana. In isolated epidermal tissues and intact leaves, weak BL superimposed on RL enhanced stomatal opening while BL alone was less effective. In guard cell protoplasts, RL enhanced BL-dependent H+-pumping and DCMU, a photosynthetic electron transport inhibitor, eliminated this effect. RL enhanced phosphorylation levels of the H+-ATPase in response to BL, but this RL effect was not suppressed by DCMU. Furthermore, DCMU inhibited both RL-induced and BL-dependent stomatal opening in intact leaves. The photosynthetic rate in leaves correlated positively with BL-dependent stomatal opening in the presence of DCMU. We conclude that guard cell chloroplasts provide ATP and/or reducing equivalents that fuel BL-dependent stomatal opening, and that they indirectly monitor photosynthetic CO2 fixation in mesophyll chloroplasts by absorbing PAR in the epidermis.

  16. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    Science.gov (United States)

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  17. Expression of Amyloplast and Chloroplast DNA in Suspension-Cultured Cells of Sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Ngernprasirtsiri, J; Macherel, D; Kobayashi, H; Akazawa, T

    1988-01-01

    Green mutant cells of sycamore (Acer pseudoplatanus L.), which had been selected by mutagenic treatment of the white wild type, grow photoheterotrophically in auxin-depleted culture medium. In contrast to the wild-type cells, mutant cells exhibit photosynthetic O(2)-evolution activity during their growth coincident with increases of (a) chlorophyll, (b) protein, and (c) ribulose-1,5-bisphosphate (RuBP) carboxylase activity. Functionally competent chloroplasts were isolated from the green cells. Mechanism(s) governing gene expression of amyloplast DNA in the heterotrophically grown white cells were compared with those of the chloroplast DNA isolated from the mutant cells. We have demonstrated in both amyloplast and chloroplast DNAs the presence of sequences homologous to the maize chloroplast genes for photosynthesis, including the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO)(rbcL), the 32 kDa Q(B) protein (PG32) (psbA), the apoprotein of P700 (psaA) and subunits of CF(1) (atpA, atpB, and atpE). However, employing either enzyme assays or immunological techniques, RuBisCO and CF(1) cannot be detected in the white wild type cells. Northern blot hybridization of the RNA from the white cells showed high levels of transcripts for the 16S rRNA gene and low level of transcripts for psbA; based on comparison with results obtained using the green mutant cells, we propose that the amyloplast genome is mostly inactive except for the 16S rRNA gene and psbA which is presumably regulated at the transcriptional level.

  18. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom

    2004-01-01

    protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...

  19. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  20. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  1. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.

    Science.gov (United States)

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T; Lorenzo, Oscar; Revuelta, José L; McCabe, Paul F; Arellano, Juan B

    2014-07-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.

  2. Study on the Relationship Between the Ploidy Level of Microspore-Derived Plants and the Number of Chloroplast in Stomatal Guard Cells in Brassica oleracea

    Institute of Scientific and Technical Information of China (English)

    YUAN Su-xia; LIU Yu-mei; FANG Zhi-yuan; YANG Li-mei; ZHUANG Mu; ZHANG Yang-yong; SUN Pei-tian

    2009-01-01

    The relationship between the ploidy level of microspore-derived plants and chloroplast number in stomatal guard cells was studied in cabbage, broccoli, and Chinese kale. In the experiment, distribution statistics analysis and t-test were used to perform statistical analysis on chloroplast number of different ploidy level in those stomatal guard cells mentioned above, and morphology identifying and chromosome counting were used to test accuracy of counting chloroplast number in stomatal guard cells. The chloroplast average number in stomatal guard cells was very similar among the different leaf positions on the same plant and among the different locations in the same leaf, while the chloroplast number varied significantly among the different ploidy stoma in the same variety. All the distributions of the chloroplast number in different ploidy stoma were normal distribution fitted. A correlation has been established between ploidy and chloroplast number in the stomatal guard cells. In every single stoma of microspore-derived plants, the chloroplast number for a haploid should not be more than 10, diploids 11 to 15, and polyploids more than 15. The accuracy of this method for identification of different ploidy plants was 93.93%. Furthermore, the accuracy of this method was reliable and did not vary with the plants growth conditions. Therefore, the chromosome ploidy of plants derived from microspore culture in cabbage, broccoli, and Chinese kale can be identified by simply counting the chloroplast number in stomatal guard cells.

  3. Ultrastructural changes in chloroplasts of mesophyll cells of chlorotic and prematurely yellowed leaves of Betula pendula Rothr

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-04-01

    Full Text Available The ultrastructure of chloroplasts was studied in mesophyll cells of the leaves of silver birch (Betula pendula showing interveinal chlorosis or premature yellowing, in comparison with leaves without symptoms or exhibiting symptoms of natural senescence. The leaves were collected between May 26 to June 7 and additionally in the September 10-12 from the upper part of the crown, from increments of the past four years. No major difference in ultrastructure of chloroplasts was found between spongy and palisade mesophyll cells. The following senescencerelated changes were observed in chloroplasts of prematurely yellowed leaves and showing inteveinal chlorosis: reduced chloroplast size, degeneration of the membrane systems of thylakoids and increased electron density of plastoglobuli. The most electron dark globules (lipid droplets were found together with starch grains in cells of spongy mesophyll of leaves showing interveinal chlorosis. Abnormal, spherical and rounded chloroplasts with electron-dark inside of thylakoids or the electron-dark stroma between thylakoids were found only in yellowed and chlorotic leaves in spring.

  4. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  5. Chloroplast evolution: secondary symbiogenesis and multiple losses.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-01-22

    Chloroplasts originated from cyanobacteria only once, but have been laterally transferred to other lineages by symbiogenetic cell mergers. Such secondary symbiogenesis is rarer and chloroplast losses commoner than often assumed.

  6. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici

    Science.gov (United States)

    Wimmer, Diana; Bohnhorst, Philipp; Shekhar, Vinay; Hwang, Inhwan; Offermann, Sascha

    2017-01-01

    Bienertia sinuspersici is a terrestrial plant that performs C4 photosynthesis within individual cells through operating a carbon concentrating mechanism between different subcellular domains including two types of chloroplasts. It is currently unknown how differentiation of two highly specialized chloroplasts within the same cell occurs as no similar cases have been reported. Here we show that this differentiation in photosynthetic cells of B. sinuspersici is enabled by a transit peptide (TP) mediated selective protein targeting mechanism. Mutations in the TPs cause loss of selectivity but not general loss of chloroplast import, indicating the mechanism operates by specifically blocking protein accumulation in one chloroplast type. Hybrid studies indicate that this selectivity is transferable to transit peptides of plants which perform C4 by cooperative function of chloroplasts between two photosynthetic cells. Codon swap experiments as well as introducing an artificial bait mRNA show that RNA affects are not crucial for the sorting process. In summary, our analysis shows how the mechanism of subcellular targeting to form two types of chloroplast within the same cell can be achieved. This information is not only crucial for understanding single-cell C4 photosynthesis; it provides new insights in control of subcellular protein targeting in cell biology. PMID:28112241

  7. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    Science.gov (United States)

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.

  8. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  9. Automatic Chloroplast Movement Analysis.

    Science.gov (United States)

    Johansson, Henrik; Zeidler, Mathias

    2016-01-01

    In response to low or high intensities of light, the chloroplasts in the mesophyll cells of the leaf are able to increase or decrease their exposure to light by accumulating at the upper and lower sides or along the side walls of the cell respectively. This movement, regulated by the phototropin blue light photoreceptors phot1 and phot2, results in a decreased or increased transmission of light through the leaf. This way the plant is able to optimize harvesting of the incoming light or avoid damage caused by excess light. Here we describe a method that indirectly measures the movement of chloroplasts by taking advantage of the resulting change in leaf transmittance. By using a microplate reader, quantitative measurements of chloroplast accumulation or avoidance can be monitored over time, for multiple samples with relatively little hands-on time.

  10. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  11. Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement.

    Science.gov (United States)

    Lim, Hyoun-Sub; Vaira, Anna Maria; Bae, Hanhong; Bragg, Jennifer N; Ruzin, Steven E; Bauchan, Gary R; Dienelt, Margaret M; Owens, Robert A; Hammond, John

    2010-08-01

    Cell-to-cell movement of potexviruses requires coordinated action of the coat protein and triple gene block (TGB) proteins. The structural properties of Alternanthera mosaic virus (AltMV) TGB3 were examined by methods differentiating between signal peptides and transmembrane domains, and its subcellular localization was studied by Agrobacterium-mediated transient expression and confocal microscopy. Unlike potato virus X (PVX) TGB3, AltMV TGB3 was not associated with the endoplasmic reticulum, and accumulated preferentially in mesophyll cells. Deletion and site-specific mutagenesis revealed an internal signal VL(17,18) of TGB3 essential for chloroplast localization, and either deletion of the TGB3 start codon or alteration of the chloroplast-localization signal limited cell-to-cell movement to the epidermis, yielding a virus that was unable to move into the mesophyll layer. Overexpression of AltMV TGB3 from either AltMV or PVX infectious clones resulted in veinal necrosis and vesiculation at the chloroplast membrane, a cytopathology not observed in wild-type infections. The distinctive mesophyll and chloroplast localization of AltMV TGB3 highlights the critical role played by mesophyll targeting in virus long-distance movement within plants.

  12. Shape of growth cells in directional solidification.

    Science.gov (United States)

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  13. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  14. Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination.

    Science.gov (United States)

    Naydov, I A; Mubarakshina, M M; Ivanov, B N

    2012-02-01

    The dye H(2)DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H(2)O(2), was used to study light-induced H(2)O(2) production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H(2)O(2) production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H(2)O(2) export from chloroplasts to

  15. Modeling the Shapes of Cells

    Science.gov (United States)

    Garimella, Umadevi I.; Robertson, Belinda M.

    2015-01-01

    A solid understanding of the structure and function of cells can help establish the foundation for learning advanced concepts in the biological sciences. The concept of the cell is introduced in middle school life science courses and is continued at the undergraduate level in college (NRC 2012; Reece et al. 2014). Cells are introduced to students…

  16. Oriented Shape Index Histograms for Cell Classification

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Dahl, Anders Bjorholm; Larsen, Rasmus

    2015-01-01

    evaluate our new feature descriptor using a public dataset consisting of HEp-2 cell images from indirect immunoflourescence lighting. Our results show that we can improve classification performance significantly when including the shape index orientation. Notably, we show that shape index orientation......We propose a novel extension to the shape index histogram feature descriptor where the orientation of the second-order curvature is included in the histograms. The orientation of the shape index is reminiscent but not equal to gradient orientation which is widely used for feature description. We...

  17. Shaping the Archaeal Cell Envelope

    Directory of Open Access Journals (Sweden)

    Albert F. Ellen

    2010-01-01

    Full Text Available Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane.

  18. Shaping the Archaeal Cell Envelope

    NARCIS (Netherlands)

    Ellen, Albert F.; Zolghadr, Behnam; Driessen, Arnold M. J.; Albers, Sonja-Verena

    2010-01-01

    Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface st

  19. Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens.

    Science.gov (United States)

    Yamashita, Hiroko; Sato, Yoshikatsu; Kanegae, Takeshi; Kagawa, Takatoshi; Wada, Masamitsu; Kadota, Akeo

    2011-02-01

    Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.

  20. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and theand chloroplast development established by TCP20 and theand chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors

    NARCIS (Netherlands)

    Andriankaja, M.E.; Danisman, S.D.; Mignolet-Spruyt, L.F.; Claeys, H.; Kochanke, I.; Vermeersch, M.; Milde, De L.; Bodt, De S.; Storme, V.; Skirycz, A.; Maurer, F.; Bauer, P.; Mühlenbock, P.; Breusegem, Van F.; Angenent, G.C.; Immink, R.G.H.; Inzé, D.

    2014-01-01

    The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined wh

  1. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light

    OpenAIRE

    Königer, Martina; Delamaide, Joy A.; Marlow, Elizabeth D.; Harris, Gary C.

    2008-01-01

    The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission wa...

  2. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  3. Physics of cell elasticity, shape and adhesion

    Science.gov (United States)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  4. Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss

    Directory of Open Access Journals (Sweden)

    Yuto Hatakeyama

    2016-10-01

    Full Text Available In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC. Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3–C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.

  5. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement.

    Science.gov (United States)

    Oikawa, Kazusato; Yamasato, Akihiro; Kong, Sam-Geun; Kasahara, Masahiro; Nakai, Masato; Takahashi, Fumio; Ogura, Yasunobu; Kagawa, Takatoshi; Wada, Masamitsu

    2008-10-01

    Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.

  6. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  7. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Science.gov (United States)

    Chotewutmontri, Prakitchai; Barkan, Alice

    2016-07-01

    Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally

  8. Cell shape dynamics: from waves to migration.

    Directory of Open Access Journals (Sweden)

    Meghan K Driscoll

    Full Text Available We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at -35 µm/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography.

  9. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by ou

  10. Cell shape recognition by colloidal cell imprints

    NARCIS (Netherlands)

    Borovička, Josef; Stoyanov, S.D.; Paunov, V.N.

    2015-01-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into accou

  11. Chloroplast avoidance movement reduces photodamage in plants.

    Science.gov (United States)

    Kasahara, Masahiro; Kagawa, Takatoshi; Oikawa, Kazusato; Suetsugu, Noriyuki; Miyao, Mitsue; Wada, Masamitsu

    When plants are exposed to light levels higher than those required for photosynthesis, reactive oxygen species are generated in the chloroplasts and cause photodamage. This can occur even under natural growth conditions. To mitigate photodamage, plants have developed several protective mechanisms. One is chloroplast avoidance movement, in which chloroplasts move from the cell surface to the side walls of cells under high light conditions, although experimental support is still awaited. Here, using different classes of mutant defective in chloroplast avoidance movement, we show that these mutants are more susceptible to damage in high light than wild-type plants. Damage of the photosynthetic apparatus and subsequent bleaching of leaf colour and necrosis occur faster under high light conditions in the mutants than in wild-type plants. We conclude that chloroplast avoidance movement actually decreases the amount of light absorption by chloroplasts, and might therefore be important to the survival of plants under natural growth conditions.

  12. Cell shape identification using digital holographic microscopy

    CERN Document Server

    Zakrisson, Johan; Andersson, Magnus

    2015-01-01

    We present a cost-effective, simple and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld back propagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semi-transparent spherical beads and living red blood cells. Our results show that by only using the real part of the back-reconstructed amplitude the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.

  13. A Bacterial Cell Shape-Determining Inhibitor.

    Science.gov (United States)

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  14. Shape recognition of microbial cells by colloidal cell imprints

    Science.gov (United States)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  15. Cell sorting using efficient light shaping approaches

    DEFF Research Database (Denmark)

    Banas, Andrew; Palima, Darwin; Villangca, Mark Jayson;

    2016-01-01

    distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the catapulted cells. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading...... is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers...... and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam...

  16. Chloroplasts can move in any direction to avoid strong light.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2011-01-01

    Chloroplasts migrate in response to different light intensities. Under weak light, chloroplasts gather at an illuminated area to maximize light absorption and photosynthesis rates (the accumulation response). In contrast, chloroplasts escape from strong light to avoid photodamage (the avoidance response). Photoreceptors involved in these phenomena have been identified in Arabidopsis thaliana and Adiantum capillus-veneris. Chloroplast behavior has been studied in detail during the accumulation response, but not for the avoidance response. Hence, we analyzed the chloroplast avoidance response in detail using dark-adapted Adiantum capillus-veneris gametophyte cells and partial cell irradiation with a microbeam of blue light. Chloroplasts escaped from an irradiated spot. Both duration of this response and the distance of the migrated chloroplasts were proportional to the total fluence irradiated. The speed of movement during the avoidance response was dependent on the fluence rate, but the speed of the accumulation response towards the microbeam from cell periphery was constant irrespective of fluence rate. When a chloroplast was only partially irradiated with a strong microbeam, it moved away towards the non-irradiated region within a few minutes. During this avoidance response two additional microbeam irradiations were applied to different locus of the same chloroplast. Under these conditions the chloroplast changed the moving direction after a lag time of a few minutes without rolling. Taken together, these findings indicate that chloroplasts can move in any direction and never have an intrinsic polarity. Similar phenomenon was observed in chloroplasts of Arabidopsis thaliana palisade cells.

  17. Biology and physics of cell shape changes in development.

    Science.gov (United States)

    Paluch, Ewa; Heisenberg, Carl-Philipp

    2009-09-15

    Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.

  18. Pearling in cells: A clue to understanding cell shape

    CERN Document Server

    Bar-Ziv, Roy; Moses, Elisha; Safran, Samuel A; Bershadsky, Alexander

    2010-01-01

    Gradual disruption of the actin cytoskeleton induces a series of structural shape changes in cells leading to a transformation of cylindrical cell extensions into a periodic chain of "pearls". Quantitative measurements of the pearling instability give a square-root behavior for the wavelength as a function of drug concentration. We present a theory that explains these observations in terms of the interplay between rigidity of the submembranous actin shell and tension that is induced by boundary conditions set by adhesion points. The theory allows estimation of the rigidity and thickness of this supporting shell. The same theoretical considerations explain the shape of nonadherent edges in the general case of untreated cells.

  19. Nitrogen control of chloroplast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  20. Gustav Senn (1875-1945): the pioneer of chloroplast movement research.

    Science.gov (United States)

    Kataoka, Hironao

    2015-01-01

    Gustav Senn analyzed for the first time light-induced movement and arrangement of chloroplasts. Using many plant species he performed physiological analyses of chloroplast migration in response to external stimuli, with emphasis on light. He determined light paths within a cell by measuring refractive indices and optical thickness of cellular compartments and confirmed that chloroplasts migrate towards the region where the light intensity is optimum. After 6 to 7 years' concentrated study, Senn published the famous monograph "Die Gestalts- und Lageveränderung der Pflanzen- Chromatophoren" (The Changes in Shape and Position of Plant Chloroplasts) in 1908. This book has stimulated many plant physiologists and photobiologists, because Senn not only thoroughly classified and defined various types of light-induced chloroplast migration but also already described possible interaction of different photoreceptor systems in Mougeotia more than 50 years before the discovery of phytochrome. This book also contains still useful experimental hints and overlooked findings on the interaction between light and other factors, such as temperature, water content, and nourishment. After publishing this book, Senn retreated from the study of chloroplasts and became a researcher of the Greek philosopher, Theophrastus. In this review, I introduce his biographical background and then summarize some of his key research accomplishment.

  1. Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life

    Directory of Open Access Journals (Sweden)

    Krug Patrick J

    2009-12-01

    Full Text Available Abstract Background Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia. Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. Results Three levels of photosynthetic activity were detected: (1 no functional retention; (2 short-term retention lasting about one week; and (3 long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum. Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species. Conclusion We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon

  2. Cell sorting using efficient light shaping approaches

    Science.gov (United States)

    Bañas, Andrew; Palima, Darwin; Villangca, Mark; Glückstad, Jesper

    2016-03-01

    Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam's propagation and its interaction with the catapulted cells.

  3. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    Science.gov (United States)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  4. Molecular basis of chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2016-03-01

    Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.

  5. Shape recognition of microbial cells by colloidal cell imprints

    NARCIS (Netherlands)

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  6. Velocity of chloroplast avoidance movement is fluence rate dependent.

    Science.gov (United States)

    Kagawa, Takatoshi; Wada, Masamitsu

    2004-06-01

    In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.

  7. Transfer of a eubacteria-type cell division site-determining factor CrMinD gene to the nucleus from the chloroplast genome in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    LIU WeiZhong; HU Yong; ZHANG RunJie; ZHOU WeiWei; ZHU JiaYing; LIU XiangLin; HE YiKun

    2007-01-01

    MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloroplast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demonstrated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred before the evolution of land plants.

  8. Expression of photosynthetic genes is distinctly different between chloroplasts and amyloplasts in the liquid-cultured cells of sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Ngernprasirtsiri, J; Kobayashi, H; Akazawa, T

    1990-10-01

    A nonphotosynthetic, white-wild cell line of sycamore (Acer pseudoplatanus L.) contains amyloplasts as the only kind of plastid, whereas a photosynthetically competent green variant cell line contains only chloroplasts. Transcripts of both nuclear and plastid genes for photosynthetic components in the white cells were not detectable in contrast to those in the green cells. To investigate the limiting step (s) behind these diminished levels of transcripts, we have performed in vivo pulse-chase labeling of RNA in both cell types. These studies indicated that the rates of incorporation of [3H]uridine and nucleotide pool sizes were indistinguishable between the two cell lines. Transcripts of certain nuclear (rbcS, cab, psbO) and plastid (rbcL) genes in the white cell were not detectable. We infer from these data that transcriptional regulation entails an important role in controlling photosynthetic RNA levels. Related analyses exploiting plastid run-on transcription have provided supporting evidence that the transcription of the amyloplast genome in the white cell is greatly suppressed in contrast to that of the chloroplast genome in the green cell. The results support a model of selective suppression of photosynthesis genes in nonphotosynthetic higher plant cells, and indicate that gene expression in such a system is primarily controlled at the transcriptional level.

  9. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  10. HEp-2 Cell Classification Using Shape Index Histograms With Donut-Shaped Spatial Pooling

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Vestergaard, Jacob Schack; Larsen, Rasmus

    2014-01-01

    We present a new method for automatic classification of indirect immunoflourescence images of HEp-2 cells into different staining pattern classes. Our method is based on a new texture measure called shape index histograms that captures second-order image structure at multiple scales. Moreover, we...... datasets. Our results show that shape index histograms are superior to other popular texture descriptors for HEp-2 cell classification. Moreover, when comparing to other automated systems for HEp-2 cell classification we show that shape index histograms are very competitive; especially considering...

  11. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution.

    Science.gov (United States)

    Takagi, Shingo; Takamatsu, Hideyasu; Sakurai-Ozato, Nami

    2009-01-01

    The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.

  12. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, A.; Jenkins, T.

    2004-01-01

    protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...

  13. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.

    Science.gov (United States)

    Yang, Desirée C; Blair, Kris M; Salama, Nina R

    2016-03-01

    Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.

  14. Protein trafficking to the complex chloroplasts of Euglena.

    Science.gov (United States)

    Vacula, Rostislav; Sláviková, Silvia; Schwartzbach, Steven D

    2007-01-01

    Proteins are delivered to Euglena chloroplasts using the secretory pathway. We describe analytical methods to study the intracellular trafficking of Euglena chloroplast proteins and a method to isolate preparative amounts of intact import competent chloroplasts for biochemical studies. Cells are pulse labeled with 35S-sulfate and chased with unlabeled sulfate allowing the trafficking and posttranslational processing of the labeled protein to be followed. Sucrose gradients are used to separate a 35S-labeled cell lysate into cytoplasmic, endoplasmic reticuum (ER), Golgi apparatus, chloroplast and mitochondrial fractions. Immunoprecipitation of each gradient fraction allows identification of the intracellular compartment containing a specific 35S-labeled protein at different times after synthesis delineating the trafficking pathway. Because sucrose gradients cannot be used to isolate preparative amounts of highly purified chloroplasts for biochemical characterization, a preparative high-yield procedure using Percoll gradients to isolate highly purified import competent chloroplasts is also presented.

  15. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  16. Unjamming and cell shape in the asthmatic airway epithelium

    Science.gov (United States)

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert, Jr.; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Manning, M. Lisa; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-10-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems--both inert and living--have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.

  17. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    Science.gov (United States)

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2016-11-17

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.

  18. GEOMETRIC ANALYSIS OF PLANAR SHAPES WITH APPLICATIONS TO CELL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Ximo Gual-Arnau

    2015-09-01

    Full Text Available Shape analysis is of great importance in many fields such as computer vision, medical imaging, and computational biology. In this paper we focus on a shape space in which shapes are represented by means of planar closed curves. In this shape space a new metric was recently introduced with the result that this shape space has the property of being isometric to an infinite-dimensional Grassmann manifold of 2-dimensional subspaces. Using this isometry it is possible, from Younes et al. (2008, to explicitly describe geodesics, a task that previously was not at all easy. Our aim is twofold, namely: to use this general theory in order to show some applications to the study of erythrocytes, using digital images of peripheral blood smears, in the treatment of sickle cell disease; and, since normal erythrocytes are almost circular and many Sickle cells have elliptical shape, to particularize the computation of geodesics and distances between shapes using this metric to planar objects considered as deformations of a template (circle or ellipse. The applications considered include: shape interpolation, shape classification, and shape clustering.

  19. Auxin and chloroplast movements.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  20. Evolution of the chloroplast division machinery

    Institute of Scientific and Technical Information of China (English)

    Hongbo GAO; Fuli GAO

    2011-01-01

    Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.

  1. Metabolism and cell shape in cancer: a fractal analysis.

    Science.gov (United States)

    D'Anselmi, Fabrizio; Valerio, Mariacristina; Cucina, Alessandra; Galli, Luca; Proietti, Sara; Dinicola, Simona; Pasqualato, Alessia; Manetti, Cesare; Ricci, Giulia; Giuliani, Alessandro; Bizzarri, Mariano

    2011-07-01

    Fractal analysis in cancer cell investigation provided meaningful insights into the relationship between morphology and phenotype. Some reports demonstrated that changes in cell shape precede and trigger dramatic modifications in both gene expression and enzymatic function. Nonetheless, metabolomic pattern in cells undergoing shape changes have been not still reported. Our study was aimed to investigate if modifications in cancer cell morphology are associated to relevant transition in tumour metabolome, analyzed by nuclear magnetic resonance spectroscopy and principal component analysis. MCF-7 and MDA-MB-231 breast cancer cells, exposed to an experimental morphogenetic field, undergo a dramatic change in their membrane profiles. Both cell lines recover a more rounded shape, loosing spindle and invasive protrusions, acquiring a quite "normal" morphology. This result, quantified by fractal analysis, shows that normalized bending energy (a global shape characterization expressing the amount of energy needed to transform a specific shape into its lowest energy state) decreases after 48 h. Later on, a significant shift from a high to a low glycolytic phenotype was observed on both cell lines: glucose flux begins to drop off at 48 h, leading to reduced lactate accumulation, and fatty acids and citrate synthesis slow-down after 72 h. Moreover, de novo lipidogenesis is inhibited and nucleotide synthesis is reduced, as indicated by the positive correlation between glucose and formate. In conclusion, these data indicate that the reorganization of cell membrane architecture, induced by environmental cues, is followed by a relevant transition of the tumour metabolome, suggesting cells undergo a dramatic phenotypic reversion.

  2. New insights into dynamic actin-based chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  3. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L.

    Directory of Open Access Journals (Sweden)

    Shun Kimura

    2016-09-01

    Full Text Available The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C, chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented.

  4. Chloroplast division during leaf development of Xanthium pensylvanicum Wallr. (Compositae

    Directory of Open Access Journals (Sweden)

    Roman Maksymowych

    2014-02-01

    Full Text Available Division and growth of chloroplasts was studied during leaf development of Xanthium pensylvanicum at various stages of development represented by the leaf plastochron index.Between leaf plastochron indices -1.00 and 2.56 chloroplast division was observed with little enlargement. Between 2.50 and 5.00 chloroplasts enlarged in diameter with an average rate of 0.21 µm per day. At leaf plastochron index 5.00 chloroplasts attained their mature size of 6.12 µm. No chloroplast division was found after leaf plastochron index 2.50. A change in shape of plastids from spherical proplastids to discoidal accompanied their growth during stages 2.50 and 5.00.

  5. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis.

    Science.gov (United States)

    Oikawa, Kazusato; Matsunaga, Shigeru; Mano, Shoji; Kondo, Maki; Yamada, Kenji; Hayashi, Makoto; Kagawa, Takatoshi; Kadota, Akeo; Sakamoto, Wataru; Higashi, Shoichi; Watanabe, Masakatsu; Mitsui, Toshiaki; Shigemasa, Akinori; Iino, Takanori; Hosokawa, Yoichiroh; Nishimura, Mikio

    2015-03-30

    Life on earth relies upon photosynthesis, which consumes carbon dioxide and generates oxygen and carbohydrates. Photosynthesis is sustained by a dynamic environment within the plant cell involving numerous organelles with cytoplasmic streaming. Physiological studies of chloroplasts, mitochondria and peroxisomes show that these organelles actively communicate during photorespiration, a process by which by-products produced by photosynthesis are salvaged. Nevertheless, the mechanisms enabling efficient exchange of metabolites have not been clearly defined. We found that peroxisomes along chloroplasts changed shape from spherical to elliptical and their interaction area increased during photorespiration. We applied a recent femtosecond laser technology to analyse adhesion between the organelles inside palisade mesophyll cells of Arabidopsis leaves and succeeded in estimating their physical interactions under different environmental conditions. This is the first application of this estimation method within living cells. Our findings suggest that photosynthetic-dependent interactions play a critical role in ensuring efficient metabolite flow during photorespiration.

  6. Cortical Flow-Driven Shapes of Nonadherent Cells

    Science.gov (United States)

    Callan-Jones, A. C.; Ruprecht, V.; Wieser, S.; Heisenberg, C. P.; Voituriez, R.

    2016-01-01

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  7. Membrane tension feedback on shape and motility of eukaryotic cells

    Science.gov (United States)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  8. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    Science.gov (United States)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  9. Cell sorting using efficient light shaping approaches

    DEFF Research Database (Denmark)

    2016-01-01

    and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam......Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach...... is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers...

  10. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light.

    Science.gov (United States)

    Königer, Martina; Delamaide, Joy A; Marlow, Elizabeth D; Harris, Gary C

    2008-01-01

    The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.

  11. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells.

    Science.gov (United States)

    Abdollahi, Hamid; Ghahremani, Zahra; Erfaninia, Kobra; Mehrabi, Rahim

    2015-05-01

    Erwinia amylovora is a necrogenic bacterium, causing the fire blight disease on many rosaceous plants. Triggering oxidative burst by E. amylovora is a key response by which host plants try to restrain pathogen spread. Electron transport chain (ETC) of chloroplasts is known as an inducible source of reactive oxygen species generation in various stresses. This research was performed to assess the role of this ETC in E. amylovora-host interaction using several inhibitors of this chain in susceptible and resistant apple and pear genotypes. All ETC inhibitors delayed appearance of disease necrosis, but the effects of methyl viologen, glutaraldehyde, and DCMU were more significant. In the absence of inhibitors, resistant genotypes showed an earlier and severe H2O2 generation and early suppression of redox dependent, psbA gene. The effects of inhibitors were corresponding to the redox potential of ETC inhibitory sites. In addition, delayed necrosis appearance was associated with the decreased disease severity and delayed H2O2 generation. These results provide evidences for the involvement of this ETC in host oxidative burst and suggest that chloroplast ETC has significant role in E. amylovora-host interaction.

  12. Conformon-driven biopolymer shape changes in cell modeling.

    Science.gov (United States)

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  13. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    Science.gov (United States)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  14. Chloroplasts move towards the nearest anticlinal walls under dark condition.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-03-01

    Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1-5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24-36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.

  15. Microarray analysis of Etrog citron (Citrus medica L.) reveals changes in chloroplast, cell wall, peroxidase and symporter activities in response to viroid infection.

    Science.gov (United States)

    Rizza, Serena; Conesa, Ana; Juarez, José; Catara, Antonino; Navarro, Luis; Duran-Vila, Nuria; Ancillo, Gema

    2012-10-01

    Viroids are small (246-401 nucleotides), single-stranded, circular RNA molecules that infect several crop plants and can cause diseases of economic importance. Citrus are the hosts in which the largest number of viroids have been identified. Citrus exocortis viroid (CEVd), the causal agent of citrus exocortis disease, induces considerable losses in citrus crops. Changes in the gene expression profile during the early (pre-symptomatic) and late (post-symptomatic) stages of Etrog citron infected with CEVd were investigated using a citrus cDNA microarray. MaSigPro analysis was performed and, on the basis of gene expression profiles as a function of the time after infection, the differentially expressed genes were classified into five clusters. FatiScan analysis revealed significant enrichment of functional categories for each cluster, indicating that viroid infection triggers important changes in chloroplast, cell wall, peroxidase and symporter activities.

  16. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    Science.gov (United States)

    Oey, Melanie; Ross, Ian L; Hankamer, Ben

    2014-01-01

    With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.

  17. Optimal shapes and stresses of adherent cells on patterned substrates

    CERN Document Server

    Banerjee, Shiladitya; Marchetti, M Cristina

    2013-01-01

    We investigate a continuum mechanical model for an adherent cell on two dimensional adhesive micropatterned substrates. The cell is modeled as an isotropic and homogeneous elastic material subject to uniform internal contractile stresses. The build-up of tension from cortical actin bundles at the cell periphery is incorporated by introducing an energy cost for bending of the cell boundary, resulting to a resistance to changes in local curvature. Integrin-based adhesions are modeled as harmonic springs, that pin the cell to adhesive patches of a predefined geometry. Using Monte Carlo simulations and analytical techniques we investigate the competing effects of bulk contractility and cortical bending rigidity in regulating cell shapes on non-adherent regions. We show that the crossover from convex to concave cell edges is controlled by the interplay between contractile stresses and boundary bending rigidity. In particular, the cell boundary becomes concave beyond a critical value of the contractile stress that ...

  18. Non-contact intracellular binding of chloroplasts in vivo

    Science.gov (United States)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  19. Testing for nonrandom shape similarity between sister cells using automated shape comparison

    Science.gov (United States)

    Guo, Monica; Marshall, Wallace F.

    2009-02-01

    Several reports in the biological literature have indicated that when a living cell divides, the two daughter cells have a tendency to be mirror images of each other in terms of their overall cell shape. This phenomenon would be consistent with inheritance of spatial organization from mother cell to daughters. However the published data rely on a small number of examples that were visually chosen, raising potential concerns about inadvertent selection bias. We propose to revisit this issue using automated quantitative shape comparison methods which would have no contribution from the observer and which would allow statistical testing of similarity in large numbers of cells. In this report we describe a first order approach to the problem using rigid curve matching. Using test images, we compare a pointwise correspondence based distance metric with a chamfer matching strategy and find that the latter provides better correspondence and smaller distances between aligned curves, especially when we allow nonrigid deformation of the outlines in addition to rotation.

  20. Distribution pattern changes of actin filaments during chloroplast movement in Adiantum capillus-veneris.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-05-01

    Chloroplasts change their positions in a cell in response to light intensities. The photoreceptors involved in chloroplast photo-relocation movements and the behavior of chloroplasts during their migration were identified in our previous studies, but the mechanism of movement has yet to be clarified. In this study, the behavior of actin filaments under various light conditions was observed in Adiantum capillus-veneris gametophytes. In chloroplasts staying in one place under a weak light condition and not moving, circular structures composed of actin filaments were observed around the chloroplast periphery. In contrast, short actin filaments were observed at the leading edge of moving chloroplasts induced by partial cell irradiation. In the dark, the circular structures found under the weak light condition disappeared and then reappeared around the moving chloroplasts. Mutant analyses revealed that the disappearance of the circular actin structure was mediated by the blue light photoreceptor, phototropin2.

  1. Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    Science.gov (United States)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  2. Defect driven shapes in nematic droplets: analogies with cell division

    CERN Document Server

    Leoni, Marco; Bowick, Mark J; Marchetti, M Cristina

    2016-01-01

    Building on the striking similarity between the structure of the spindle during mitosis in living cells and nematic textures in confined liquid crystals, we use a continuum model of two-dimensional nematic liquid crystal droplets, to examine the physical aspects of cell division. The model investigates the interplay between bulk elasticity of the microtubule assembly, described as a nematic liquid crystal, and surface elasticity of the cell cortex, modelled as a bounding flexible membrane, in controlling cell shape and division. The centrosomes at the spindle poles correspond to the cores of the topological defects required to accommodate nematic order in a closed geometry. We map out the progression of both healthy bipolar and faulty multi-polar division as a function of an effective parameter that incorporates active processes and controls centrosome separation. A robust prediction, independent of energetic considerations, is that the transition from a single cell to daughters cells occurs at critical value...

  3. Topological defects in confined populations of spindle-shaped cells

    Science.gov (United States)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  4. Microtubules contribute to maintain nucleus shape in epithelial cell monolayer

    Science.gov (United States)

    Tremblay, Dominique; Andrzejewski, Lukasz; Pelling, Andrew

    2013-03-01

    INTRODUCTION: Tissue strains can result in significant nuclear deformations and may regulate gene expression. However, the precise role of the cytoskeleton in regulating nuclear mechanics remains poorly understood. Here, we investigate the nuclear deformability of Madin-Darky canine kidney cells (MDCK) under various stretching conditions to clarify the role of the microtubules and actin network on the mechanical behavior of the nucleus. METHODS: A custom-built cell-stretching device allowing for real time imaging of MDCK nuclei was used. Cells were seeded on a silicone membrane coated with rat-tail collagen I. A nuclear stain, Hoechst-33342, was used to image nuclei during stretching. We exposed cells to a compressive and non-compressive stretching strain field of 25%. Nocodazole and cytochalasin-D were used to depolymerize the microtubules and actin network. RESULTS: Nuclei in control cells stretched more along their minor axis than major axis with a deformation of 5% and 2% respectively. This anisotropy vanished completely in microtubule-deprived cells and these cells showed a very high nuclear deformability along the minor axis when exposed to a compressive stretching strain field. CONCLUSIONS: The microtubules drive the anisotropic deformability of MDCK nuclei in a monolayer and maintain nuclear shape when exposed to compressive strain. Such intrinsic mechanical behavior indicates that microtubules are essential to maintain nuclear shape and may prevent down regulation of gene expression.

  5. Chloroplast: The Trojan Horse in Plant-Virus Interaction.

    Science.gov (United States)

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2017-01-05

    Chloroplast is one of the most dynamic organelle of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, takes active part in defence response, and is crucial for inter-organelle signaling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. Chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. In fact, large proportions of affected gene products in a virus infected plant are closely associated to chloroplast and photosynthesis process. Although chloroplast is deficient in gene-silencing machinery, it elicits effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce extensive network of stromules which are involved in both viral propagation and anti-viral defence. From last few decades' study, involvement of chloroplast in regulating plant-virus interaction has become increasingly evident. Current review presents an exhaustive account of these facts, with their implication in pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interaction and explained the existing gaps in current knowledge, which will promote the virologists to utilize the chloroplast genome-based antiviral resistance in economically important crops. This article is protected by copyright. All rights reserved.

  6. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  7. Cell Migration According to Shape of Graphene Oxide Micropatterns

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2016-10-01

    Full Text Available Photolithography is a unique process that can effectively manufacture micro/nano-sized patterns on various substrates. On the other hand, the meniscus-dragging deposition (MDD process can produce a uniform surface of the substrate. Graphene oxide (GO is the oxidized form of graphene that has high hydrophilicity and protein absorption. It is widely used in biomedical fields such as drug delivery, regenerative medicine, and tissue engineering. Herein, we fabricated uniform GO micropatterns via MDD and photolithography. The physicochemical properties of the GO micropatterns were characterized by atomic force microscopy (AFM, scanning electron microscopy (SEM, and Raman spectroscopy. Furthermore, cell migration on the GO micropatterns was investigated, and the difference in cell migration on triangle and square GO micropatterns was examined for their effects on cell migration. Our results demonstrated that the GO micropatterns with a desired shape can be finely fabricated via MDD and photolithography. Moreover, it was revealed that the shape of GO micropatterns plays a crucial role in cell migration distance, speed, and directionality. Therefore, our findings suggest that the GO micropatterns can serve as a promising biofunctional platform and cell-guiding substrate for applications to bioelectric devices, cell-on-a-chip, and tissue engineering scaffolds.

  8. Chloroplast movement: dissection of events downstream of photo- and mechano-perception.

    Science.gov (United States)

    Sato, Yoshikatsu; Kadota, Akeo; Wada, Masamitsu

    2003-02-01

    The study of chloroplast photorelocation movement is progressing rapidly now that mutants for chloroplast movement have become available in Arabidopsis thaliana. However, mechanistic approaches in cell biology still stand to elucidate the mechanisms and regulations of such movement. The fern Adiantum capillus-veneris and the moss Physcomitrella patens are particularly suitable materials for analyzing the kinetics of intracellular chloroplast movement. In these plants, chloroplast movement is induced by red light as well as blue light, mediated by phytochrome and blue light receptor, respectively. In this paper, we review the unique force-generating system for chloroplast motility in P. patens. In addition to light-induced chloroplast movement, we also summarize mechanically induced chloroplast movement in these plants and the motility systems involved. Finally, the different dependency of mechano- and photo-relocation movement on external Ca(2+) is discussed.

  9. Speed of signal transfer in the chloroplast accumulation response.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2010-05-01

    Chloroplast photorelocation movement is important for plants to perform efficient photosynthesis. Phototropins were identified as blue-light receptors for chloroplast movement in Arabidopsis thaliana and in the fern Adiantum capillus-veneris, whereas neochrome functions as a dual red/blue light receptor in the latter. However, the signal transduction pathways involved in chloroplast movement remain to be clarified. To investigate the kinetic properties of signalling from these photoreceptors to the chloroplasts, we deduced the speed of signal transfer using Adiantum capillus-veneris gametophytes. When a region of dark-adapted gametophyte cells was subjected to microbeam irradiation, chloroplasts moved towards the irradiated area even in subsequent darkness. We therefore recorded the movement and calculated the speeds of signal transfer by time-lapse imaging. Movement speeds under red or blue light were similar, e.g., about 1.0 microm min(-1) in prothallial cells. However, speeds varied according to cell polarity in protonemal cells. The speed of signal transfer from the protonemal apex to the base was approximately 0.7 microm min(-1), but roughly 2.3 microm min(-1) in the opposite direction. The speed of signal transfer in Arabidopsis thaliana mesophyll cells was approximately 0.8 microm min(-1) by comparison. Surprisingly, chloroplasts located farthest away from the microbeam were found to move faster than those in close proximity to the site of irradiation both in Adiantum capillus-veneris and A. thaliana.

  10. A minimal physical model captures the shapes of crawling cells

    Science.gov (United States)

    Tjhung, E.; Tiribocchi, A.; Marenduzzo, D.; Cates, M. E.

    2015-01-01

    Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. Here we present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work strongly supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  11. Chloroplasts continuously monitor photoreceptor signals during accumulation movement.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2013-07-01

    Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

  12. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    YANG Zongqi; LI yinü; CHEN Feng; LI Dong; ZHANG Zhifang; LIU Yanxin; ZHENG Dexian; WANG Yong; SHEN Guifang

    2006-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selectively apoptosis in various tumor cells and virus-infected cells, but rarely in normal cells. A chloroplast expression vector, p64TRAIL, containing the cDNA coding for the soluble TRAIL (sTRAIL), was constructed with clpP-trnL-petB-chlL-rpl23-rpl2 as Chlamydomonas reinhardtii plastid homologous recombinant fragments and spectinomycin-resistant aadA gene as a select marker. The plasmid p64TRAIL was transferred into the chloroplast genome of C. reinhardtii by the biolistic method. Three independently transformed lines were obtained by 100 mg/L spectinomycin selection. PCR amplification, Southern blot analysis of the sTRAIL coding region DNA and cultivation cells in the dark all showed that the exogenous DNA had been integrated into chloroplast genome of C. reinhardtii. Western blot analysis showed that human soluble TRAIL was expressed in C. reinhardtii chloroplast. The densitometric analysis of Western blot indicated that the expressed human sTRAIL protein in the chloroplasts of C. reinhardtii accounted for about 0.43%-0.67% of the total soluble proteins.These experimental results demonstrated the possibility of using transgenic chloroplasts of green alga as bioreactors for production of biopharmaceuticals.

  13. Lowering extracellular chloride concentration alters outer hair cell shape.

    Science.gov (United States)

    Cecola, R P; Bobbin, R P

    1992-08-01

    In general, increasing external K+ concentration, as well as exposure to hypotonic medium, induces a shortening of outer hair cells (OHCs) accompanied by an increase in width and volume. One possible mechanism suggested for these changes is a movement of Cl- and/or water across the cell membrane. We therefore examined the role of Cl- in OHC volume maintenance by testing the effect of decreasing extracellular Cl- concentration on OHC length and shape. In addition, the effect of hypotonic medium was examined. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a modified Hanks balanced salt solution (HBS). Exposing the cells to a Cl(-)-free HBS produced an initial shortening, which was rapidly followed by an increase in length. After about 9 min of exposure to Cl(-)-free HBS, the cells appeared to lose all water and collapsed. Upon return to normal HBS, the OHCs returned to their normal shape. We speculate that the collapse of the OHCs may be due to the loss of intracellular Cl-, which, in turn, resulted in the loss of intracellular K+ and water. The results indicate that Cl- contributes greatly to the maintenance of OHC volume. In addition, we confirmed that isolated OHCs swell in hypotonic medium and maintain their swollen state until returned to normal medium. The mechanism for maintenance of the swollen state is unknown.

  14. Shavenbaby couples patterning to epidermal cell shape control.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    2006-09-01

    Full Text Available It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes. It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms.

  15. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    Directory of Open Access Journals (Sweden)

    Sławomir Samardakiewicz

    Full Text Available Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed. An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2. In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the

  16. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    Science.gov (United States)

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  17. Common Cell Shape Evolution of Two Nasopharyngeal Pathogens.

    Science.gov (United States)

    Veyrier, Frédéric J; Biais, Nicolas; Morales, Pablo; Belkacem, Nouria; Guilhen, Cyril; Ranjeva, Sylvia; Sismeiro, Odile; Péhau-Arnaudet, Gérard; Rocha, Eduardo P; Werts, Catherine; Taha, Muhamed-Kheir; Boneca, Ivo G

    2015-07-01

    Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.

  18. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  19. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis.

    Science.gov (United States)

    Iwabuchi, Kosei; Takagi, Shingo

    2010-08-01

    The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.

  20. Study on Chloroplast Ultrastructure in Different Color Period of Euphorbia pulcherrima

    Institute of Scientific and Technical Information of China (English)

    FU Jia; NIU De; WANG Lijuan

    2008-01-01

    By the observation of chloroplast ultrastructure in different period of bract colors of Euphorbia pulcherrima,the paper studied the change of chloroplast ultrastructrural in the transition process of bract colors, identified the rehtionship between E.pulcherrima color change and the chloroplast ultrastructure to provide theorical bases for the cultivation management and further study of E.pulcherrima.Ultrastructural study showed that in the process of change from green to red,the chloroplast of bracts disintegrated gradually,lamellar structure was destroyed gradually,and the content of chloroplasts in mesophyll cells was also reduced gradually. When bracts color resumed to turn green gradually,the content of chloroplasts in mesophyll cells was also increased gradually.

  1. Electrokinetic shape changes of cochlear outer hair cells

    Science.gov (United States)

    Kachar, Bechara; Brownell, William E.; Altschuler, Richard; Fex, Jörgen

    1986-07-01

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells1-5. Recently, mechanical changes have been reported in cochlear hair cells6-8. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms6-10. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organdies. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm-laminated cisternae11-may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis12,13.

  2. Anatomically shaped tooth and periodontal regeneration by cell homing.

    Science.gov (United States)

    Kim, K; Lee, C H; Kim, B K; Mao, J J

    2010-08-01

    Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-epsilon-caprolactone and hydroxyapatite with 200-microm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications.

  3. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis

    OpenAIRE

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-01-01

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chl...

  4. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  5. Glutaraldehyde induces cell shape changes in isolated outer hair cells from the inner ear.

    Science.gov (United States)

    Slepecky, N; Ulfendahl, M

    1988-01-01

    Individual isolated outer hair cells (OHCs) from the cochlea were maintained in a collagen gel and viewed in the light microscope. They were observed during fixation and processing for transmission electron microscopy and individual cells were selected for observation in the electron microscope. Application of glutaraldehyde at several concentrations caused OHCs to become shorter. Shrinkage occurred during dehydration but there was no further change during infiltration with the epoxy resin. Ultrastructural analysis of isolated cells fixed with glutaraldehyde and postfixed with osmium tetroxide showed that these cells were similar to cells fixed in the intact cochlea. The glutaraldehyde-induced cell shape change is similar to the shortening seen in intact OHCs in response to the application of solutions containing high potassium or caffeine. Application of glutaraldehyde to cells pretreated with potassium or caffeine caused further shortening. Glutaraldehyde-induced cell shape change was not blocked by the application of tetracaine, which did prevent potassium-induced and caffeine-induced shortening. Glutaraldehyde-induced cell shape change was not stopped by short treatment with N-ethylmaleimide, which did inhibit potassium-induced shortening. Results from these experiments suggest that the glutaraldehyde-induced OHC shape change is not caused by an effect on the membrane or by calcium activation of a contractile response. Shortening may be caused by shrinkage due to cross-linking of proteins.

  6. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Yong Hu; Jingjing Jia; Dapeng Li; Runjie Zhang; Hongbo Gao; Yikun He

    2009-01-01

    Chloroplasts are plant-specific organelles that evolved from endosymbiotic cyanobacteria. They divide through binary fission. Selection of the chloroplast division site is pivotal for the symmetric chloroplast division. In E. coli, positioning of the division site at the midpoint of the cell is regulated by dynamic oscillation of the Min system, which includes MinC, MinD and MinE. Homologs of Mind and MinE in plants are involved in chloroplast division. The homolog of MinC still has not been identified in higher plants. However, an FtsZ-like protein, ARC3, was found to be involved in chloroplast division site positioning. Here, we report that chloroplast division site positioning 1 (AtCDP1) is a novel chloroplast division protein involved in chloroplast division site placement in Arabidopsis. AtCDP1 was dis-covered by screening an Arabidopsis cDNA expression library in bacteria for colonies with a cell division phenotype. AtCDP1 is exclusively expressed in young green tissues in Arabidopsis. Elongated chloroplasts with multiple division sites were observed in the loss-of-function cdpl mutant. Overexpression of AtCDPI caused a chloroplast division phe-notype too. Protein interaction assays suggested that AtCDP1 may mediate the chloroplast division site positioning through the interaction with ARC3. Overall, our results indicate that AtCDP1 is a novel component of the chloroplast division site positioning system, and the working mechanism of this system is different from that of the traditional MinCDE system in prokaryotic cells.

  7. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature.

    Science.gov (United States)

    Zbierzak, Anna Maria; Porfirova, Svetlana; Griebel, Thomas; Melzer, Michael; Parker, Jane E; Dörmann, Peter

    2013-08-01

    Survival of plants at low temperature depends on mechanisms for limiting physiological damage and maintaining growth. We mapped the chs1-1 (chilling sensitive1-1) mutation in Arabidopsis accession Columbia to the TIR-NBS gene At1g17610. In chs1-1, a single amino acid exchange at the CHS1 N-terminus close to the conserved TIR domain creates a stable mutant protein that fails to protect leaves against chilling stress. The sequence of another TIR-NBS gene (At5g40090) named CHL1 (CHS1-like 1) is related to that of CHS1. Over-expression of CHS1 or CHL1 alleviates chilling damage and enhances plant growth at moderate (24°C) and chilling (13°C) temperatures, suggesting a role for both proteins in growth homeostasis. chs1-1 mutants show induced salicylic acid production and defense gene expression at 13°C, indicative of autoimmunity. Genetic analysis of chs1-1 in combination with defense pathway mutants shows that chs1-1 chilling sensitivity requires the TIR-NBS-LRR and basal resistance regulators encoded by EDS1 and PAD4 but not salicylic acid. By following the timing of metabolic, physiological and chloroplast ultrastructural changes in chs1-1 leaves during chilling, we have established that alterations in photosynthetic complexes and thylakoid membrane integrity precede leaf cell death measured by ion leakage. At 24°C, the chs1-1 mutant appears normal but produces a massive necrotic response to virulent Pseudomonas syringae pv. tomato infection, although this does not affect bacterial proliferation. Our results suggest that CHS1 acts at an intersection between temperature sensing and biotic stress pathway activation to maintain plant performance over a range of conditions.

  8. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors.

    Science.gov (United States)

    Andriankaja, Megan E; Danisman, Selahattin; Mignolet-Spruyt, Lorin F; Claeys, Hannes; Kochanke, Irina; Vermeersch, Mattias; De Milde, Liesbeth; De Bodt, Stefanie; Storme, Veronique; Skirycz, Aleksandra; Maurer, Felix; Bauer, Petra; Mühlenbock, Per; Van Breusegem, Frank; Angenent, Gerco C; Immink, Richard G H; Inzé, Dirk

    2014-06-01

    The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.

  9. Genetic Analysis of Chloroplast Translation

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  10. Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits.

    Science.gov (United States)

    Vothknecht, Ute C; Soll, Jürgen

    2005-07-18

    Chloroplasts are specific plant organelles of prokaryotic origin. They are separated from the surrounding cell by a double membrane, which represents an effective barrier for the transport of metabolites and proteins. Specific transporters in the inner envelope membrane have been described, which facilitate the exchange of metabolites. In contrast, the outer envelope has been viewed for a long time as a molecular sieve that offers a mere size constriction to the passage of molecules. This view has been challenged lately, and a number of specific and regulated pore proteins of the outer envelope (OEPs) have been identified. These pores seem to have originated by adaptation of outer membrane proteins of the cyanobacterial ancestor of the chloroplast. In a similar fashion, the transport of proteins across the two envelope membranes is achieved by two hetero-oligomeric protein complexes called Toc (translocon in the outer envelope of chloroplasts) and Tic (translocon in the inner envelope of chloroplasts). The phylogenetic provenance of the translocon components is less clear, but at least the channel protein of the Toc translocon is of cyanobacterial origin. Characteristic of cyanobacteria and chloroplasts is furthermore a specialized internal membrane system, the thylakoids, on which the components of the photosynthetic machinery are located. Despite the importance of this membrane, very little is known about its phylogenetic origin or the manner of its synthesis. Vipp1 appears to be a ubiquitous component of thylakoid formation, while in chloroplasts of land plants, additionally a vesicle transport system of eukaryotic origin might be involved in this process.

  11. Interaction of actin and the chloroplast protein import apparatus.

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-07-10

    Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.

  12. Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses.

    Science.gov (United States)

    Yamada, Masahiro; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2009-10-01

    In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, while bundle sheath (BS) chloroplasts are typically located in either a centripetal or centrifugal position. We investigated whether these intracellular positions are affected by environmental stresses. When mature leaves of finger millet (Eleusine coracana) were exposed to extremely high intensity light, most M chloroplasts aggregatively re-distributed to the BS side, whereas the intracellular arrangement of BS chloroplasts was unaffected. Compared with the homologous light-avoidance movement of M chloroplasts in C(3) plants, it requires extremely high light (3,000-4,000 micromol m(-2) s(-1)) and responds more slowly (distinctive movement observed in 1 h). The high light-induced movement of M chloroplasts was also observed in maize (Zea mays), another C(4) species, but with a distinct pattern of redistribution along the sides of anticlinal walls, analogous to C(3) plants. The aggregative movement of M chloroplasts occurred at normal light intensities (250-500 micromol m(-2) s(-1)) in response to environmental stresses, such as drought, salinity and hyperosmosis. Moreover, the re-arrangement of M chloroplasts was observed in field-grown C(4) plants when exposed to mid-day sunlight, but also under midsummer drought conditions. The migration of M chloroplasts was controlled by actin filaments and also induced in a light-dependent fashion upon incubation with ABA, which may be the physiological signal transducer. Together these results suggest that M and BS cells of C(4) plants have different mechanisms controlling intracellular chloroplast positioning, and that the aggregative movement of C(4) M chloroplasts is thought to be a protective response under environmental stress conditions.

  13. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. How B cells shape the immune response against Mycobacterium tuberculosis.

    Science.gov (United States)

    Maglione, Paul J; Chan, John

    2009-03-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B-cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against non-viral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against non-viral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought.

  15. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  16. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  17. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  18. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.

  19. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  20. A plant-specific protein essential for blue-light-induced chloroplast movements.

    Science.gov (United States)

    DeBlasio, Stacy L; Luesse, Darron L; Hangarter, Roger P

    2005-09-01

    In Arabidopsis (Arabidopsis thaliana), light-dependent chloroplast movements are induced by blue light. When exposed to low fluence rates of light, chloroplasts accumulate in periclinal layers perpendicular to the direction of light, presumably to optimize light absorption by exposing more chloroplast area to the light. Under high light conditions, chloroplasts become positioned parallel to the incoming light in a response that can reduce exposure to light intensities that may damage the photosynthetic machinery. To identify components of the pathway downstream of the photoreceptors that mediate chloroplast movements (i.e. phototropins), we conducted a mutant screen that has led to the isolation of several Arabidopsis mutants displaying altered chloroplast movements. The plastid movement impaired1 (pmi1) mutant exhibits severely attenuated chloroplast movements under all tested fluence rates of light, suggesting that it is a necessary component for both the low- and high-light-dependant chloroplast movement responses. Analysis of pmi1 leaf cross sections revealed that regardless of the light condition, chloroplasts are more evenly distributed in leaf mesophyll cells than in the wild type. The pmi1-1 mutant was found to contain a single nonsense mutation within the open reading frame of At1g42550. This gene encodes a plant-specific protein of unknown function that appears to be conserved among angiosperms. Sequence analysis of the protein suggests that it may be involved in calcium-mediated signal transduction, possibly through protein-protein interactions.

  1. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, A [Institute of Dental Sciences, Faculty of Dental Medicine, and the Fritz Haber Center for Molecular Dynamics, Hebrew University-Hadassah Medical Center, Jerusalem, 91120 (Israel); Rehfeldt, F [III. Physikalisches Institut, Georg-August-Universitaet, 37077 Goettingen (Germany); Brown, A E X [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Discher, D E [Graduate Group of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  2. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Science.gov (United States)

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-05-01

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  3. Heterologous expression of a chloroplast outer envelope protein from Suaeda salsa confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants.

    Science.gov (United States)

    Wang, Fang; Yang, Chun-Lin; Wang, Li-Li; Zhong, Nai-Qin; Wu, Xiao-Min; Han, Li-Bo; Xia, Gui-Xian

    2012-03-01

    Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.

  4. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  5. Nitrogen control of chloroplast differentiation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  6. Changes in leaf optical properties associated with light-dependent chloroplast movements.

    Science.gov (United States)

    Davis, Phillip A; Caylor, Steven; Whippo, Craig W; Hangarter, Roger P

    2011-12-01

    We surveyed 24 plant species to examine how leaf anatomy influenced chloroplast movement and how the optical properties of leaves change with chloroplast position. All species examined exhibited light-dependent chloroplast movements but the associated changes in leaf absorptance varied considerably in magnitude. Chloroplast movement-dependent changes in leaf absorptance were greatest in shade species, in which absorptance changes of >10% were observed between high- and low-light treatments. Using the Kubelka-Munk theory, we found that changes in the absorption (k) and chlorophyll a absorption efficiency (k*) associated with chloroplast movement correlated with cell diameter, such that the narrower, more columnar cells found in sun leaves restricted the ability of chloroplasts to move. The broader, more spherical cells of shade leaves allowed greater chloroplast rearrangements and in low-light conditions allowed efficient light capture. Across the species tested, light-dependent chloroplast movements modulated leaf optical properties and light absorption efficiency by manipulating the package (sieve or flattening) effect but not the detour (path lengthening) effect.

  7. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  8. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  9. Chloroplast in Plant-Virus Interaction

    Science.gov (United States)

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  10. Red light, Phot1 and JAC1 modulate Phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement.

    Science.gov (United States)

    Ichikawa, Satoshi; Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-08-01

    The phototropin (phot)-dependent intracellular relocation of chloroplasts is a ubiquitous phenomenon in plants. We have previously revealed the involvement of a short cp-actin (chloroplast actin) filament-based mechanism in this movement. Here, the reorganization of cp-actin filaments during the avoidance movement of chloroplasts was analyzed in higher time resolution under blue GFP (green fluorescent protein) excitation light in an actin filament-visualized line of Arabidopsis thaliana. Under standard background red light of 89 μmol m(-2) s(-1), cp-actin filaments transiently disappeared at approximately 30 s and reappeared in a biased configuration on chloroplasts approximately 70 s after blue excitation light irradiation. The timing of biased cp-actin reappearance was delayed under the background of strong red light or in the absence of red light. Consistently, chloroplast movement was delayed under these conditions. In phot1 mutants, acceleration of both the disappearance and reappearance of cp-actin filaments occurred, indicating an inhibitory action of phot1 on reorganization of cp-actin filaments. Avoidance movements began sooner in phot1 than in wild-type plants. No reorganization of cp-actin filaments was seen in phot2 or phot1phot2 mutants lacking phot2, which is responsible for avoidance movements. Surprisingly, jac1 (j-domain protein required for chloroplast accumulation response 1) mutants, lacking the accumulation response, showed no avoidance movements under the whole-cell irradiation condition for GFP observation. Cp-actin filaments in jac1 did not show a biased distribution, with a small or almost no transient decrease in the number. These results indicate a close association between the biased distribution of cp-actin filaments and chloroplast movement. Further, JAC1 is suggested to function in the biased cp-actin filament distribution by regulating their appearance and disappearance.

  11. Membrane heredity and early chloroplast evolution.

    Science.gov (United States)

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  12. The Cubooctahedron Shape—A Suboptimal Cell Shape for 3—Dimensional Cellular System

    Institute of Scientific and Technical Information of China (English)

    ChaGuangming; LiZhengmao; 等

    1995-01-01

    This paper shows a celluler concept for three-dimensional(3-D)case.A new concept of base station lattice(BSL)and co-channel reuse lattice(CCRL)is proposed.A new method of se-lecting the cell shape for 3-D,sphere covering,is explored.From the comparision between the cu-bic cell and the body-centered-cubic(BCC)cell,the cubooctahedron shape -BCC cell is the most e-conomic one.

  13. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    Science.gov (United States)

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.

  14. Computer modeling of electron and proton transport in chloroplasts.

    Science.gov (United States)

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  15. Evolution of chloroplast vesicle transport.

    Science.gov (United States)

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  16. The avoidance and aggregative movements of mesophyll chloroplasts in C(4) monocots in response to blue light and abscisic acid.

    Science.gov (United States)

    Maai, Eri; Shimada, Shouu; Yamada, Masahiro; Sugiyama, Tatsuo; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2011-05-01

    In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, whereas bundle sheath chloroplasts are located in either a centripetal or centrifugal position. It was reported previously that only M chloroplasts aggregatively redistribute to the bundle sheath side in response to extremely strong light or environmental stresses. The aggregative movement of M chloroplasts is also induced in a light-dependent fashion upon incubation with abscisic acid (ABA). The involvement of reactive oxygen species (ROS) and red/blue light in the aggregative movement of M chloroplasts are examined here in two distinct subtypes of C(4) plants, finger millet and maize. Exogenously applied hydrogen peroxide or ROS scavengers could not change the response patterns of M chloroplast movement to light and ABA. Blue light irradiation essentially induced the rearrangement of M chloroplasts along the sides of anticlinal walls, parallel to the direction of the incident light, which is analogous to the avoidance movement of C(3) chloroplasts. In the presence of ABA, most of the M chloroplasts showed the aggregative movement in response to blue light but not red light. Together these results suggest that ROS are not involved in signal transduction for the aggregative movement, and ABA can shift the blue light-induced avoidance movement of C(4)-M chloroplasts to the aggregative movement.

  17. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    Science.gov (United States)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  18. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis.

    Science.gov (United States)

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-08-04

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.

  19. Chloroplasts do not have a polarity for light-induced accumulation movement.

    Science.gov (United States)

    Tsuboi, Hidenori; Yamashita, Hiroko; Wada, Masamitsu

    2009-01-01

    Chloroplast photorelocation movement in green plants is generally mediated by blue light. However, in cryptogam plants, including ferns, mosses, and algae, both red light and blue light are effective. Although the photoreceptors required for this phenomenon have been identified, the mechanisms underlying this movement response are not yet known. In order to analyze this response in more detail, chloroplast movement was induced in dark-adapted Adiantum capillus-veneris gametophyte cells by partial cell irradiation with a microbeam of red and/or blue light. In each case, chloroplasts were found to move toward the microbeam-irradiated area. A second microbeam was also applied to the cell at a separate location before the chloroplasts had reached the destination of the first microbeam. Under these conditions, chloroplasts were found to change their direction of movement without turning and move toward the second microbeam-irradiated area after a lag time of a few minutes. These findings indicate that chloroplasts can move in any direction and do not exhibit a polarity for chloroplast accumulation movement. This phenomenon was analyzed in detail in Adiantum and subsequently confirmed in Arabidopsis thaliana palisade cells. Interestingly, the lag time for direction change toward the second microbeam in Adiantum was longer in the red light than in the blue light. However, the reason for this discrepancy is not yet understood.

  20. Use of chiral cell shape to ensure highly directional swimming in trypanosomes.

    Science.gov (United States)

    Wheeler, Richard John

    2017-01-01

    Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion.

  1. 利用气孔保卫细胞周长及叶绿体数目鉴定油菜种间杂种研究%Interspecific Hybrid Identification of Rapeseed Using Stomatal Guard Cell Perimeter and Chloroplast Number

    Institute of Scientific and Technical Information of China (English)

    何丽; 孙万仓; 曾秀存; 武军艳; 方彦; 刘自刚; 赵彩霞; 史鹏辉

    2013-01-01

    By using Brassica campestris ‘ Longyou 7 ',‘ Longyou 9',‘winter juncea' and Brassica napus ‘vision' as materials,statistical analysis on stoma guard cell perimeter and chloroplast number were performed,SSR marker was used to test accuracy of counting chloroplast number and measure perimeter in stomatal guard cells further.(1)The variation of stoma guard cell perimeter between parents and interspecific hybrid was very similar among the different leaf positions on the same plant.However,the variation was relatively similar at the down location in the same leaf.(2)Parents and interspecific hybrid had a clear dividing line for perimeter of stomatal guard cell at 58.90 μm,75.83 μm.The chloroplast number of ‘Longyou 7' and ‘Longyou 9' should be at the range of 10 to 12;the chloroplast number of ‘Longyou 9' × ‘vision',‘Longyou 7' × ‘winter juncea' should be at the range of 14 to 16;the chloroplast number of ‘vision' and ‘winter juncea' should be at the range of 18 to 19.(3)The accuracy of this method for identification interspecific hybrid was 97.5% after SSR marker test.Obviously,there is a specific boundry between stomatal guard cells perimeter and chloroplast number of B.campestris,Brassica napus,‘winter juncea 'and their interspecific hybrid which can be used to identify interspecific hybrid.If guard cell perimeter is at the range of 58.90 to 75.83 μm,and at the same time chloroplast number is at the range of 14 to 16,the plant will be true hybrid.%以白菜型冬油菜‘陇油7号’、‘陇油9号’(AA,2n=20),芥菜型油菜‘冬芥’(AABB,2n=36),甘蓝型油菜‘vision'(AACC,2n=38),种间杂种‘陇油7号’ב冬芥’、‘陇油9号’בvision'为试材,对其叶片气孔保卫细胞周长及叶绿体数目进行统计分析,探讨一种快速鉴定油菜种间杂种的简易方法,并用SSR标记法对气孔保卫细胞周长及叶绿体分界法可靠性进行进一步验证.结果显示:(1)

  2. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Sato, Yoshikatsu; Tsuboi, Hidenori; Kasahara, Masahiro; Imaizumi, Takato; Kagawa, Takatoshi; Hiwatashi, Yuji; Hasebe, Mitsuyasu; Wada, Masamitsu

    2012-11-01

    Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.

  3. Triggering cell adhesion, migration or shape change with a dynamic surface coating.

    Science.gov (United States)

    van Dongen, Stijn F M; Maiuri, Paolo; Marie, Emmanuelle; Tribet, Christophe; Piel, Matthieu

    2013-03-25

    There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.

  4. Collective motion of cells crawling on a substrate: roles of cell shape and contact inhibition

    CERN Document Server

    Schnyder, Simon Kaspar; Molina, John Jairo; Yamamoto, Ryoichi

    2016-01-01

    Contact inhibition plays a crucial role in the motility of cells, the process of wound healing, and the formation of tumors. By mimicking the mechanical motion of calls crawling on a substrate using a pseudopod, we constructed a minimal model for migrating cells which gives rise to contact inhibition of locomotion (CIL) naturally. The model cell consists of two disks, one in the front (a pseudopod) and the other one in the back (cell body), connected by a finitely extensible spring. Despite the simplicity of the model, the cells' collective behavior is highly nontrivial, depending on the shape of cells and whether CIL is enabled or not. Cells with a small front circle (i.e. a narrow pseudopod) form immobile colonies. In contrast, cells with a large front circle (i.e. such as a lamellipodium) exhibit coherent migration without any explicit alignment mechanism being present in the model. This suggests that crawling cells often exhibit broad fronts because it helps them avoid clustering. Upon increasing the dens...

  5. Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana.

    Science.gov (United States)

    Fujiwara, Makoto T; Sekine, Kohsuke; Yamamoto, Yoshiharu Y; Abe, Tomoko; Sato, Naoki; Itoh, Ryuuichi D

    2009-06-01

    Chloroplast division involves the tubulin-related GTPase FtsZ that assembles into a ring structure (Z-ring) at the mid-chloroplast division site, which is where invagination and constriction of the envelope membranes occur. Z-ring assembly is usually confined to the mid-chloroplast site by a well balanced counteraction of the stromal proteins MinD and MinE. The in vivo mechanisms by which FtsZ nucleates at specific sites, polymerises into a protofilament and organizes a closed ring of filament bundles remain largely unknown. To clarify the dynamic aspects of FtsZ, we developed a living cell system for simultaneous visualisation of various FtsZ configurations, utilising the Arabidopsis thaliana overexpressor and mutant of the MinE (AtMinE1) gene, which were modified to weakly express green fluorescent protein (GFP) fused to AtFtsZ1-1. Time-lapse observation in the chloroplasts of both plants revealed disorderly movement of the dots and short filaments of FtsZ. The short filaments often appeared to emanate from the dots and to converge with a long filament, producing a thick cable. In the AtMinE1 overexpressor, we also observed spirals along the longitudinal axis of the organelle that often rolled the closed rings together. In the atminE1 mutant, we visualised the 'isolated' rings with a maximum diameter of approximately 2 mum that did not encircle the organelle periphery, but appeared to be suspended in the stroma. Our observations further demonstrated heterogeneity in chloroplast shapes and concurrently altered configurations of FtsZ in the mutant.

  6. Local positive feedback regulation determines cell shape in root hair cells.

    Science.gov (United States)

    Takeda, Seiji; Gapper, Catherine; Kaya, Hidetaka; Bell, Elizabeth; Kuchitsu, Kazuyuki; Dolan, Liam

    2008-02-29

    The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.

  7. Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure.

    Science.gov (United States)

    Blanchard, Guy B; Murugesu, Sughashini; Adams, Richard J; Martinez-Arias, Alfonso; Gorfinkiel, Nicole

    2010-08-01

    Fluctuations in the shape of amnioserosa (AS) cells during Drosophila dorsal closure (DC) provide an ideal system with which to understand contractile epithelia, both in terms of the cellular mechanisms and how tissue behaviour emerges from the activity of individual cells. Using quantitative image analysis we show that apical shape fluctuations are driven by the medial cytoskeleton, with periodic foci of contractile myosin and actin travelling across cell apices. Shape changes were mostly anisotropic and neighbouring cells were often, but transiently, organised into strings with parallel deformations. During the early stages of DC, shape fluctuations with long cycle lengths produced no net tissue contraction. Cycle lengths shortened with the onset of net tissue contraction, followed by a damping of fluctuation amplitude. Eventually, fluctuations became undetectable as AS cells contracted rapidly. These transitions were accompanied by an increase in apical myosin, both at cell-cell junctions and medially, the latter ultimately forming a coherent, but still dynamic, sheet across cells. Mutants with increased myosin activity or actin polymerisation exhibited precocious cell contraction through changes in the subcellular localisation of myosin. thick veins mutant embryos, which exhibited defects in the actin cable at the leading edge, showed similar timings of fluctuation damping to the wild type, suggesting that damping is an autonomous property of the AS. Our results suggest that cell shape fluctuations are a property of cells with low and increasing levels of apical myosin, and that medial and junctional myosin populations combine to contract AS cell apices and drive DC.

  8. Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity.

    Science.gov (United States)

    Luxenburg, Chen; Heller, Evan; Pasolli, H Amalia; Chai, Sophia; Nikolova, Maria; Stokes, Nicole; Fuchs, Elaine

    2015-05-01

    During mouse development, core planar cell polarity (PCP) proteins become polarized in the epidermal plane to guide angling/morphogenesis of hair follicles. How PCP is established is poorly understood. Here, we identify a key role for Wdr1 (also known as Aip1), an F-actin-binding protein that enhances cofilin/destrin-mediated F-actin disassembly. We show that cofilin and destrin function redundantly in developing epidermis, but their combined depletion perturbs cell adhesion, cytokinesis, apicobasal polarity and PCP. Although Wdr1 depletion accentuates single-loss-of-cofilin/destrin phenotypes, alone it resembles core PCP mutations. Seeking a mechanism, we find that Wdr1 and cofilin/destrin-mediated actomyosin remodelling are essential for generating or maintaining cortical tension within the developing epidermal sheet and driving the cell shape and planar orientation changes that accompany establishment of PCP in mammalian epidermis. Our findings suggest intriguing evolutionary parallels but mechanistic modifications to the distal wing hinge-mediated mechanical forces that drive cell shape change and orient PCP in the Drosophila wing disc.

  9. Shaping the T-cell repertoire in the periphery.

    Science.gov (United States)

    Allen, Stacey; Turner, Stephen J; Bourges, Dorothée; Gleeson, Paul A; van Driel, Ian R

    2011-01-01

    Selection of T cells does not end with events in the thymus, but continues in extrathymic tissues and for the life of the organism. In this review, we examine how self-reactive T cells are rendered harmless and the processes that select for T cells that are most efficient at combating pathogens. The implications of peripheral T-cell selection for the immune response as animals age are discussed as is the critical role of dendritic cells in directing T-cell differentiation.

  10. The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.

    Science.gov (United States)

    Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-12-22

    Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function.

  11. HEp-2 Cell Classification via Fusing Texture and Shape Information

    OpenAIRE

    Qi, Xianbiao; Zhao, Guoying; Li, Chun-Guang; Guo, Jun; Pietikäinen, Matti

    2015-01-01

    Indirect Immunofluorescence (IIF) HEp-2 cell image is an effective evidence for diagnosis of autoimmune diseases. Recently computer-aided diagnosis of autoimmune diseases by IIF HEp-2 cell classification has attracted great attention. However the HEp-2 cell classification task is quite challenging due to large intra-class variation and small between-class variation. In this paper we propose an effective and efficient approach for the automatic classification of IIF HEp-2 cell image by fusing ...

  12. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2013-01-01

    Full Text Available Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions.

  13. Analysis of cancer cell morphology in fluorescence microscopy image exploiting shape descriptor

    Science.gov (United States)

    Kang, Mi-Sun; Kim, Hye-Ryun; Kim, Sudong; Ryu, Gyu Ha; Kim, Myoung-Hee

    2016-04-01

    Cancer cell morphology is closely related to their phenotype and activity. These characteristics are important in drug-response prediction for personalized cancer therapeutics. We used multi-channel fluorescence microscopy images to analyze the morphology of highly cohesive cancer cells. First, we detected individual nuclei regions in single-channel images using advanced simple linear iterative clustering. The center points of the nuclei regions were used as seeds for the Voronoi diagram method to extract spatial arrangement features from cell images. Human cancer cell populations form irregularly shaped aggregates, making their detection more difficult. We overcame this problem by identifying individual cells using an image-based shape descriptor. Finally, we analyzed the correlation between cell agglutination and cell shape.

  14. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis.

    Science.gov (United States)

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K; Minc, Nicolas; Bellaïche, Yohanns

    2016-02-25

    The orientation of cell division along the long axis of the interphase cell--the century-old Hertwig's rule--has profound roles in tissue proliferation, morphogenesis, architecture and mechanics. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways. At mitosis, epithelial cells usually adopt a rounded shape to ensure faithful chromosome segregation and to promote morphogenesis. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. Here we show that in Drosophila epithelia, tricellular junctions (TCJs) localize force generators, pulling on astral microtubules and orienting cell division via the Dynein-associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJs emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.

  15. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis.

    Science.gov (United States)

    Zigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B

    2014-02-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.

  16. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  17. Needle-shaped polymeric particles induce transient disruption of cell membranes.

    Science.gov (United States)

    Doshi, Nishit; Mitragotri, Samir

    2010-08-06

    Nano- and microparticles of various shapes have recently been introduced for various drug-delivery applications. Shape of particles has been shown to have an impact on various processes including circulation, vascular adhesion and phagocytosis. Here, we assess the role of particle geometry and surface chemistry in their interactions with cell membranes. Using representative particles of different shape (spheres, elongated and flat particles), size (500 nm-1 microm) and surface chemistry (positively and negatively charged), we evaluated the response of endothelial cells to particles. While spherical and elliptical disc-shaped particles did not have an impact on cell spreading and motility, needle-shaped particles induced significant changes in the same. Further studies revealed that needle-shaped particles induced disruption of cell membranes as indicated by the release of lactate dehydrogenase and uptake of extracellular calcein. The effect of needle-shaped particles on cells was transient and was reversed over a time period of 1-48 h depending on particle parameters.

  18. Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration.

    Science.gov (United States)

    Niculescu, Ioana; Textor, Johannes; de Boer, Rob J

    2015-10-01

    Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties.

  19. Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration.

    Directory of Open Access Journals (Sweden)

    Ioana Niculescu

    2015-10-01

    Full Text Available Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties.

  20. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  1. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.

    Science.gov (United States)

    Martínez, Laura E; Hardcastle, Joseph M; Wang, Jeffrey; Pincus, Zachary; Tsang, Jennifer; Hoover, Timothy R; Bansil, Rama; Salama, Nina R

    2016-01-01

    The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.

  2. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas

    Directory of Open Access Journals (Sweden)

    Samanthe M. Lyons

    2016-03-01

    Full Text Available Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells.

  3. Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis.

    Science.gov (United States)

    Luesse, Darron R; DeBlasio, Stacy L; Hangarter, Roger P

    2006-08-01

    Chloroplasts move in a light-dependent manner that can modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement is beginning to define the molecular machinery that controls these movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensities while maintaining a normal movement response under low light intensities. In wild-type plants, fluence rates below 20 micromol m(-2) s(-1) of blue light lead to chloroplast accumulation on the periclinal cell walls, whereas light intensities over 20 micromol m(-2) s(-1) caused chloroplasts to move toward the anticlinal cell walls (avoidance response). However, at light intensities below 75 micromol m(-2) s(-1), chloroplasts in pmi2 leaves move to the periclinal walls; 100 micromol m(-2) s(-1) of blue light is required for chloroplasts in pmi2 to move to the anticlinal cell walls, indicating a shift in the light threshold for the avoidance response in the mutant. The pmi2 mutation has been mapped to a gene that encodes a protein of unknown function with a large coiled-coil domain in the N terminus and a putative P loop. PMI2 shares sequence and structural similarity with PMI15, another unknown protein in Arabidopsis that, when mutated, causes a defect in chloroplast avoidance under high-light intensities.

  4. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Maureen [Cornell Univ., Ithaca, NY (United States)

    2016-11-03

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts in relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line

  5. In vivo monitoring of intracellular chloroplast movements in intact leaves of C4 plants using two-photon microscopy.

    Science.gov (United States)

    Ryu, Jeongeun; Nam, Hyoseok; Kim, Hae Koo; Joo, Yongjoon; Lee, Sang Joon; Kim, Ki Hean

    2014-10-01

    Dynamic changes in the spatial distribution of chloroplasts are essential for optimizing photosynthetic capacity under changing light conditions. Light-induced movement of chloroplasts has been widely investigated, but most studies were conducted on isolated tissues or protoplasts. In this study, a two-photon microscopy (TPM) system was adapted to monitor the intracellular 3-dimensional (3D) movements of chloroplasts in intact leaves of plants during dark to light transitions. The TPM imaging was based on autofluorescence of chlorophyll generated by a femto-second Ti:Sapphire laser. All chloroplasts did not exhibit the same motion in response to irradiation variation. In the sub-epidermal mesophyll cells, chloroplasts generally moved away from the surface following blue light treatment, however many chloroplasts did not show any movement. Such spatial heterogeneity in chloroplast motility underlines the importance of monitoring intracellular orientation and movement of individual chloroplasts across intact leaves. Our investigation shows that the 3D imaging of chloroplasts using TPM can help to understand the changes in local photosynthetic capacity in intact leaves under changing environmental conditions.

  6. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  7. Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Ramachandran, S.; Christensen, Hans Erik Mølager; Ishimaru, Y.

    2000-01-01

    carrying a 35S-PFN-1 or 35S-antisense PFN-1 transgene. Etiolated seedlings underexpressing PFN (PFN-U) displayed an overall dwarf phenotype with short hypocotyls whose lengths were 20% to 25% that of wild type (WT) at low temperatures. Light-grown PFN-U plants were smaller in stature and flowered early......Profilin (PFN) is an ubiquitous, low-M-r, actin-binding protein involved in the organization of the cytoskeleton of eukaryotes including higher plants. PFNs are encoded by a multigene family in Arabidopsis. We have analyzed in vivo functions of Arabidopsis PFN by generating transgenic plants...... expressed in the vascular bundles of cotyledons and leaves. Our results show that Arabidopsis PFNs play a role in cell elongation, cell shape maintenance, polarized growth of root hair, and unexpectedly, in determination of flowering time....

  8. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    Full Text Available BACKGROUND: Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D. METHODOLOGY/PRINCIPAL FINDINGS: Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant. CONCLUSION/SIGNIFICANCE: These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell

  9. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  10. Mechanisms of Protein Synthesis in Chloroplasts: How to Design Translatable mRNAs in Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    M. Sugiura

    2007-01-01

    @@ Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal Maliga group developed the high-frequency chloroplast transformation system in tobacco (Svab and Maliga, 1993).

  11. Shape optimization of axisymmetric solids with the finite cell method using a fixed grid

    Institute of Scientific and Technical Information of China (English)

    Liang Meng; Wei-Hong Zhang; Ji-Hong Zhu; Zhao Xu; Shou-Hu Cai

    2016-01-01

    In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion. Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.

  12. Shape optimization of axisymmetric solids with the finite cell method using a fixed grid

    Science.gov (United States)

    Meng, Liang; Zhang, Wei-Hong; Zhu, Ji-Hong; Xu, Zhao; Cai, Shou-Hu

    2016-06-01

    In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion. Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.

  13. CELL TRACKING USING PARTICLE FILTERS WITH IMPLICIT CONVEX SHAPE MODEL IN 4D CONFOCAL MICROSCOPY IMAGES

    Science.gov (United States)

    Ramesh, Nisha; Tasdizen, Tolga

    2016-01-01

    Bayesian frameworks are commonly used in tracking algorithms. An important example is the particle filter, where a stochastic motion model describes the evolution of the state, and the observation model relates the noisy measurements to the state. Particle filters have been used to track the lineage of cells. Propagating the shape model of the cell through the particle filter is beneficial for tracking. We approximate arbitrary shapes of cells with a novel implicit convex function. The importance sampling step of the particle filter is defined using the cost associated with fitting our implicit convex shape model to the observations. Our technique is capable of tracking the lineage of cells for nonmitotic stages. We validate our algorithm by tracking the lineage of retinal and lens cells in zebrafish embryos. PMID:27403085

  14. A vertex-based model relating cell shape and mechanical stress in an epithelium

    CERN Document Server

    Nestor-Bergmann, Alexander; Woolner, Sarah; Jensen, Oliver

    2016-01-01

    Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia.

  15. Active self-polarization of contractile cells in asymmetrically shaped domains

    Science.gov (United States)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  16. Isolation of Chloroplasts from Plant Protoplasts.

    Science.gov (United States)

    Lung, Shiu-Cheung; Smith, Matthew D; Chuong, Simon D X

    2015-10-01

    Chloroplasts can be isolated from higher plants directly following homogenization; however, the resulting yield, purity, and intactness are often low, necessitating a large amount of starting material. This protocol is optimized to produce a high yield of pure chloroplasts from isolated Arabidopsis protoplasts. The two-part method is a simple, scaled-down, and low-cost procedure that readily provides healthy mesophyll protoplasts, which are then ruptured to release intact chloroplasts. Chloroplasts isolated using this method are competent for use in biochemical, cellular, and molecular analyses.

  17. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  18. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  19. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  20. A cytoskeletal spring for the control of cell shape in outer hair cells isolated from the guinea pig cochlea.

    Science.gov (United States)

    Holley, M C; Ashmore, J F

    1990-01-01

    A two-dimensional cortical cytoskeletal lattice associated with the lateral plasma membranes of mammalian outer hair cells maintains cell shape and provides a restoring force to oppose active changes in cell length. The lattice is composed of two morphologically distinct filaments which are arranged to reinforce the cell circumferentially whilst allowing limited changes in cell length and diameter. This function can only be fulfilled if intracellular pressure is high enough to put the lattice under tension.

  1. A complex choreography of cell movements shapes the vertebrate eye.

    Science.gov (United States)

    Kwan, Kristen M; Otsuna, Hideo; Kidokoro, Hinako; Carney, Keith R; Saijoh, Yukio; Chien, Chi-Bin

    2012-01-01

    Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.

  2. Gustav Senn (1875-1945):The pioneer of chloroplast movement research

    Institute of Scientific and Technical Information of China (English)

    Hironao Kataoka

    2015-01-01

    Gustav Senn analyzed for the first time light-induced movement and arrangement of chloroplasts. Using many plant species he performed physiological analyses of chloroplast migration in response to external stimuli, with emphasis on light. He determined light paths within a cel by measuring refractive indices and optical thickness of cel ular compartments and confirmed that chloroplasts migrate towards the region where the light intensity is optimum. After 6 to 7 years’ concentrated study, Senn published the famous monograph “Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren”(The Changes in Shape and Position of Plant Chloroplasts) in 1908. This book has stimulated many plant physiologists and photobiologists, because Senn not only thoroughly classified and defined various types of light-induced chloroplast migration but also already described possible interaction of different photoreceptor systems in Mougeotia more than 50 years before the discovery of phytochrome. This book also contains stil useful experimental hints and over-looked findings on the interaction between light and other factors, such as temperature, water content, and nourishment. After publishing this book, Senn retreated from the study of chloroplasts and became a researcher of the Greek philoso-pher, Theophrastus. In this review, I introduce his biographical background and then summarize some of his key research accomplishment.

  3. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  4. Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

    Science.gov (United States)

    Bulychev, Alexander A; Komarova, Anna V

    2015-01-01

    Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo.

  5. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Wei, Zung-Hang, E-mail: wei@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan (China); Lai, Mei-Feng; Ger, Tzong-Rong [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu City 300, Taiwan (China)

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  6. Quantitative shape analysis of chemoresistant colon cancer cells: correlation between morphotype and phenotype.

    Science.gov (United States)

    Pasqualato, A; Palombo, A; Cucina, A; Mariggiò, M A; Galli, L; Passaro, D; Dinicola, S; Proietti, S; D'Anselmi, F; Coluccia, P; Bizzarri, M

    2012-04-15

    Morphological, qualitative observations allow pathologists to correlate the shape the cells acquire with the progressive, underlying neoplastic transformation they are experienced. Cell morphology, indeed, roughly scales with malignancy. A quantitative parameter for characterizing complex irregular structures is the Normalized Bending Energy (NBE). NBE provides a global feature for shape characterization correspondent to the amount of energy needed to transform the specific shape under analysis into its lowest energy state. We hypothesized that a chemotherapy resistant cancer cell line would experience a significant change in its shape, and that such a modification might be quantified by means of NBE parameterization. We checked out the usefulness of a mathematical algorithm to distinguish wild and 5-fluorouracil (5-FU)-resistant colon cancer HCT-8 cells (HCT-8FUres). NBE values, as well as cellular and molecular parameters, were recorded in both cell populations. Results demonstrated that acquisition of drug resistance is accompanied by statistically significant morphological changes in cell membrane, as well as in biological parameters. Namely, NBE increased progressively meanwhile cells become more resistant to increasing 5-FU concentrations. These data indicate how tight the relationships between morphology and phenotype is, and they support the idea to follow a cell transition toward a drug-resistant phenotype by means of morphological monitoring.

  7. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential.

    OpenAIRE

    Belletti, B; Nicoloso, M S; Schiappacassi, M; Berton, S; Lovat, F.; Wolf, K.; Canzonieri, V; D'Andrea, S.; Zucchetto, A; Friedl, P.H.A.; Colombatti, A; Baldassarre, G.

    2008-01-01

    The balanced activity of microtubule-stabilizing and -destabilizing proteins determines the extent of microtubule dynamics, which is implicated in many cellular processes, including adhesion, migration, and morphology. Among the destabilizing proteins, stathmin is overexpressed in different human malignancies and has been recently linked to the regulation of cell motility. The observation that stathmin was overexpressed in human recurrent and metastatic sarcomas prompted us to investigate sta...

  8. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    Science.gov (United States)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  9. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  10. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry

    Science.gov (United States)

    Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan

    2017-01-01

    We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.

  11. Crawling and turning in a minimal reaction-diffusion cell motility model: coupling cell shape and biochemistry

    CERN Document Server

    Camley, Brian A; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan

    2016-01-01

    We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability, and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.

  12. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens.

    Science.gov (United States)

    Usami, Hiroka; Maeda, Takuma; Fujii, Yusuke; Oikawa, Kazusato; Takahashi, Fumio; Kagawa, Takatoshi; Wada, Masamitsu; Kasahara, Masahiro

    2012-12-01

    Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.

  13. Shape and shear guide sperm cells spiraling upstream

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  14. A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts

    NARCIS (Netherlands)

    Vermolen, F.J.; Gefen, A.

    2012-01-01

    A phenomenological model for the evolution of shape transition of cells is considered. These transitions are determined by the emission of growth-factors, as well as mechanical interaction if cells are subjected to hard impingement. The originality of this model necessitates a formal treatment of th

  15. Automated characterization of cell shape changes during amoeboid motility by skeletonization

    Directory of Open Access Journals (Sweden)

    Robinson Douglas N

    2010-03-01

    Full Text Available Abstract Background The ability of a cell to change shape is crucial for the proper function of many cellular processes, including cell migration. One type of cell migration, referred to as amoeboid motility, involves alternating cycles of morphological expansion and retraction. Traditionally, this process has been characterized by a number of parameters providing global information about shape changes, which are insufficient to distinguish phenotypes based on local pseudopodial activities that typify amoeboid motility. Results We developed a method that automatically detects and characterizes pseudopodial behavior of cells. The method uses skeletonization, a technique from morphological image processing to reduce a shape into a series of connected lines. It involves a series of automatic algorithms including image segmentation, boundary smoothing, skeletonization and branch pruning, and takes into account the cell shape changes between successive frames to detect protrusion and retraction activities. In addition, the activities are clustered into different groups, each representing the protruding and retracting history of an individual pseudopod. Conclusions We illustrate the algorithms on movies of chemotaxing Dictyostelium cells and show that our method makes it possible to capture the spatial and temporal dynamics as well as the stochastic features of the pseudopodial behavior. Thus, the method provides a powerful tool for investigating amoeboid motility.

  16. Shaping the mammalian auditory sensory organ by the planar cell polarity pathway.

    Science.gov (United States)

    Kelly, Michael; Chen, Ping

    2007-01-01

    The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.

  17. On the problem of slipper shapes of red blood cells in the microvasculature.

    Science.gov (United States)

    Tahiri, N; Biben, T; Ez-Zahraouy, H; Benyoussef, A; Misbah, C

    2013-01-01

    Red blood cells (RBC) are known to exhibit non symmetric (slipper) shapes in the microvasculature. Vesicles have been recently used as a model for RBC and numerical simulations proved the existence of slipper shapes under Poiseuille flow (both in unconfined and confined geometry). However, in our recent numerical simulations the transition from symmetric (parachute) shape to the slipper one was found to take place upon decreasing the flow strength, while experiments on RBCs showed the contrary. In this work we show that if the viscosity contrast (ratio between the internal over external fluid viscosities) is different from unity, as is the case with RBCs, the transition from parachute to slipper shape occurs upon increasing the flow strength, in agreement with experiments. We provide the phase diagram of shapes in the microcirculation. The slipper is found to have a higher speed than the parachute (for the same parameters), that we believe to be the basic reason for its prevailing in the microvasculature. We provide a simple geometrical picture that explains the slipper flow efficiency over the parachute one. Finally, we show that there exists in parameter space regions of co-existence of slipper/parachute shapes and suggest simple experimental protocols to test these findings. The coexistence of shapes seems to be supported by experiments, though a systematic experimental study is lacking. A potential application of this work is to guide designing flow-based experiments in order to link the shape of RBCs to pathologies affecting cell deformability, such as sickle cell diseases, malaria, and those affecting blood hematocrit, as in polycythemia vera disease.

  18. Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited.

    Science.gov (United States)

    Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-11-01

    In a recent publication using an actin-visualized line of Arabidopsis (Ichikawa et al. 2011, ref. 11), we reported a detailed analysis with higher time resolution on the dynamics of chloroplast actin filaments (cp-actin filaments) during chloroplast avoidance movement and demonstrated a good correlation between the biased configuration of cp-actin filaments and chloroplast movement. However, we could not conclusively determine whether the reorganization of cp-actin filaments into a biased configuration preceded actual chloroplast movement (and, thus, whether it could be a cause of the movement). In this report, we present clear evidence that the reorganization of cp-actin filaments into a biased distribution is induced even in the absence of the actual movement of chloroplasts. When the cells were treated with 2,3-butanedione monoxime (BDM), a potent inhibitor of myosin ATPase, chloroplast motility was completely suppressed. Nevertheless, the disappearance and biased relocalization of cp-actin filaments toward the side of the prospective movement direction were induced by irradiation with a strong blue light microbeam. The results definitively indicate that the reorganization of cp-actin filaments is not an effect of chloroplast movement; however, it is feasible that the biased localization of cp-actin filaments is an event leading to chloroplast movement.

  19. Role of chloroplasts and other plastids in ageing and death of plants and animals: a tale of Vishnu and Shiva.

    Science.gov (United States)

    van Doorn, Wouter G; Yoshimoto, Kohki

    2010-04-01

    Chloroplasts (chlorophyll-containing plastids) and other plastids are found in all plants and many animals. They are crucial to the survival of plants and most of the animals that harbour them. An example of a non-photosynthesizing plastid in animals is the apicoplast in the malaria-causing Plasmodium species, which is required for survival of the parasite. Many animals (such as sea slugs, sponges, reef corals, and clams) consume prey containing chloroplasts, or feed on algae. Some of these incorporate the chloroplasts from their food, or whole algal cells, into their own cells. Other species from these groups place algal cells between their own cells. Reef-building corals often lose their intracellular algae as a result of environmental changes, resulting in coral bleaching and death. The sensitivity of the chloroplast internal membranes to temperature stress is one of the reasons for coral death. Chloroplasts can also be a causal factor in the processes leading to whole-plant death, as the knockout of a gene encoding a chloroplast protein delayed the yellowing that proceeds death in tobacco plants. It is concluded that chloroplasts and other plastids are essential to individual survival in many species, including animals, and that they also play a role in triggering death in some plant and animal species.

  20. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation

    Science.gov (United States)

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  1. Analysis of chloroplast movement and relocation in Arabidopsis.

    Science.gov (United States)

    Wada, Masamitsu; Kong, Sam-Geun

    2011-01-01

    Chloroplast photorelocation movement is essential for the sessile plant survival and plays a role for efficient photosynthesis and avoiding photodamage of chloroplasts. There are several ways to observe or detect chloroplast movement directly or indirectly. Here, techniques for the induction of chloroplast movement and how to detect the responses, as well as various points of attention and advice for the experiments, are described.

  2. Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds.

    Science.gov (United States)

    Tseng, Ling-Fang; Wang, Jing; Baker, Richard M; Wang, Guirong; Mather, Patrick T; Henderson, James H

    2016-08-01

    Recent advances in shape memory polymers have enabled the study of programmable, shape-changing, cytocompatible tissue engineering scaffolds. For treatment of bone defects, scaffolds with shape memory functionality have been studied for their potential for minimally invasive delivery, conformal fitting to defect margins, and defect stabilization. However, the extent to which the osteogenic differentiation capacity of stem cells resident in shape memory scaffolds is preserved following programmed shape change has not yet been determined. As a result, the feasibility of shape memory polymer scaffolds being employed in stem cell-based treatment strategies remains unclear. To test the hypothesis that stem cell osteogenic differentiation can be preserved during and following triggering of programmed architectural changes in shape memory polymer scaffolds, human adipose-derived stem cells were seeded in shape memory polymer foam scaffolds or in shape memory polymer fibrous scaffolds programmed to expand or contract, respectively, when warmed to body temperature. Osteogenic differentiation in shape-changing and control scaffolds was compared using mineral deposition, protein production, and gene expression assays. For both shape-changing and control scaffolds, qualitatively and quantitatively comparable amounts of mineral deposition were observed; comparable levels of alkaline phosphatase activity were measured; and no significant differences in the expression of genetic markers of osteogenesis were detected. These findings support the feasibility of employing shape memory in scaffolds for stem cell-based therapies for bone repair.

  3. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells

    Science.gov (United States)

    Sangabathuni, Sivakoti; Vasudeva Murthy, Raghavendra; Chaudhary, Preeti Madhukar; Surve, Manalee; Banerjee, Anirban; Kikkeri, Raghavendra

    2016-06-01

    Advances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines. Specifically, we have compared the behaviour of spherical, rod and star AuNPs with mannose and galactose conjugations. In vitro experiments showed that the rod-AuNPs exhibited the highest uptake over that of the star and spherical counterparts. Further, an investigation of the mechanism of the uptake clearly demonstrated clathrin mediated endocytosis of the specific G-AuNPs. These results reveal the benefits of different G-AuNP shapes in carbohydrate-mediated interactions.Advances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines. Specifically, we have compared the behaviour of spherical, rod and star AuNPs with mannose and galactose conjugations. In vitro experiments showed that the rod-AuNPs exhibited the highest uptake over that of the star and spherical counterparts. Further, an investigation of the mechanism of the uptake clearly demonstrated clathrin mediated endocytosis of the specific G-AuNPs. These results reveal the benefits of different G-AuNP shapes in carbohydrate-mediated interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03008d

  4. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell.

  5. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  6. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  7. Nitrogen control of chloroplast differentiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  8. Change in Shape and Crystal Structure of HAP Nanoparticles during Absorption into Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The change of hydroxyapatite (HAP) nanoparticles in shape and crystal structure after endocytosis into cancer cells was studied. BEL7402 cells were incubated with HAP nanoparticles for 2 hour,8 hours, 20 hours, respectively. Then, the cells were collected and viewed under a transmission electronic microscope (TEM). Electronic diffraction (ED) attached to TEM was used to detect the properties of the particles. The results show that HAP particles in the cytoplasm can be degraded in cytoplasm. The degradation process is prolonged by more than 20 hours. Thus, it is concluded that HAP nanoparticles would be degraded after kill cells or delivery gene.

  9. The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions

    OpenAIRE

    Rape, Andrew; Guo, Wei-hui; Wang, Yu-Li

    2010-01-01

    Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new s...

  10. Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration.

    Directory of Open Access Journals (Sweden)

    Zaozao Chen

    Full Text Available The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib, an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM and interference reflection microscopy (IRM revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.

  11. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila.

    Science.gov (United States)

    Köppen, Mathias; Fernández, Beatriz García; Carvalho, Lara; Jacinto, Antonio; Heisenberg, Carl-Philipp

    2006-07-01

    Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.

  12. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential.

    Directory of Open Access Journals (Sweden)

    Laura K Sycuro

    Full Text Available Helical cell shape of the gastric pathogen Helicobacter pylori has been suggested to promote virulence through viscosity-dependent enhancement of swimming velocity. However, H. pylori csd1 mutants, which are curved but lack helical twist, show normal velocity in viscous polymer solutions and the reason for their deficiency in stomach colonization has remained unclear. Characterization of new rod shaped mutants identified Csd4, a DL-carboxypeptidase of peptidoglycan (PG tripeptide monomers and Csd5, a putative scaffolding protein. Morphological and biochemical studies indicated Csd4 tripeptide cleavage and Csd1 crosslinking relaxation modify the PG sacculus through independent networks that coordinately generate helical shape. csd4 mutants show attenuation of stomach colonization, but no change in proinflammatory cytokine induction, despite four-fold higher levels of Nod1-agonist tripeptides in the PG sacculus. Motility analysis of similarly shaped mutants bearing distinct alterations in PG modifications revealed deficits associated with shape, but only in gel-like media and not viscous solutions. As gastric mucus displays viscoelastic gel-like properties, our results suggest enhanced penetration of the mucus barrier underlies the fitness advantage conferred by H. pylori's characteristic shape.

  13. Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape.

    Science.gov (United States)

    Etournay, Raphaël; Lepelletier, Léa; Boutet de Monvel, Jacques; Michel, Vincent; Cayet, Nadège; Leibovici, Michel; Weil, Dominique; Foucher, Isabelle; Hardelin, Jean-Pierre; Petit, Christine

    2010-04-01

    Epithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs.

  14. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells.

    Science.gov (United States)

    Dallos, P; Evans, B N; Hallworth, R

    1991-03-14

    It is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors. Electrically induced changes in the shape of mammalian outer hair cells, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved. Although it is known that the motile response is under voltage control, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape.

  15. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer.

    Science.gov (United States)

    Labovsky, Vivian; Martinez, Leandro Marcelo; Calcagno, María de Luján; Davies, Kevin Mauro; García-Rivello, Hernán; Wernicke, Alejandra; Feldman, Leonardo; Giorello, María Belén; Matas, Ayelén; Borzone, Francisco Raúl; Howard, Scott C; Chasseing, Norma Alejandra

    2016-10-01

    Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.

  16. Comparative Analysis of Codon Usage Patterns Among Mitochondrion, Chloroplast and Nuclear Genes in Triticum aestivum L.

    Institute of Scientific and Technical Information of China (English)

    Wen-Juan Zhang; Jie Zhou; Zuo-Feng Li; Li Wang; Xun Gu; Yang Zhong

    2007-01-01

    In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion,chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of rnitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level.The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.

  17. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell.

    Science.gov (United States)

    Furutani, Shunsuke; Nagai, Hidenori; Takamura, Yuzuru; Kubo, Izumi

    2010-12-01

    For immediate discrimination among isolated cells we propose a novel device and technique for isolation of cells and sequential detection of specific gene(s) within them by polymerase chain reaction (PCR). In this study, we isolated Salmonella enterica cells and detected the Salmonella-specific invA gene from isolated cells by PCR on a compact disk (CD)-shaped device. This device enabled liquid flow by centrifugal force without a micro pump, and was fabricated from silicon wafer and glass to avoid evaporation of a small amount of reagent. One device has 24 microchannels, and 313 microchambers integrated on each microchannel. One microliter of PCR mixture containing cells was separated into microchambers on the device at 5000 rpm for 30 s. Each microchamber contained approximately 1.5 nL PCR mixture. A Poisson distribution of S. enterica cells was observed for different densities of cell suspension. At 200 cells μL(-1) of S. enterica or less, isolated single cells could be determined on the device by amplification of DNA of the invA gene; at 400 cells μL(-1), chambers containing no, one, two, or three cells could be determined on the device. Selective detection of S. enterica was achieved by PCR from a mixture of S. enterica and Escherichia coli on the CD-shaped device.

  18. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    Science.gov (United States)

    Lee, Gi-Hun; Kim, Sung-Hwan; Kang, AhRan; Takayama, Shuichi; Lee, Sang-Hoon; Park, Joong Yull

    2015-03-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis.

  19. Miniature wire-shaped solar cells, electrochemical capacitors and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Shaowu Pan

    2014-07-01

    Full Text Available It is critically important to develop miniature energy harvesting and storage devices in modern electronics, for example, for portable and foldable electronic facilities. In this review article, novel miniature solar cells, electrochemical capacitors and lithium-ion batteries as well as their integrated devices are carefully summarized. Particular emphasis has been paid to wire-shape energy devices that exhibit unique and promising advantages such as being lightweight and weaveable compared with the conventional planar architecture. Recent new materials and attractive designs are highlighted for these wire-shaped energy devices.

  20. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang

    2004-01-01

    ), which are both parental varieties of the super-hybrid rice, LYP9. Based on the patterns of high sequence coverage, we partitioned chloroplast sequence variations into two classes, intravarietal and intersubspecific polymorphisms. Intravarietal polymorphisms refer to variations within 93-11 or PA64S...... to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0.......05% for single nucleotide polymorphisms and 0.02% for insertions or deletions, nearly 8 and 10 times lower than their respective nuclear genomes. Based on the total number of nucleotide substitutions between the two chloroplast genomes, we dated the divergence of indica and japonica chloroplast genomes...

  1. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian;

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...... the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration....... In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin...

  2. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    Science.gov (United States)

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  3. Shape changes in isolated outer hair cells: measurements with attached microspheres.

    Science.gov (United States)

    Zajic, G; Schacht, J

    1991-04-01

    Shape changes can be induced in isolated outer hair cells by various stimuli and quantified from digitized video-images. While overall changes in length between base and apex are easily measured, changes in defined segments of the cell require fixed landmarks on the cell body. The problem of locating such landmarks makes it difficult to assess if a change in length is uniform or largely confined to a particular segment of the cell. This information is important in identifying the location of a contractile apparatus and the elucidation of mechanisms of motility. We demonstrate here that microspheres can serve as reference points for such measurements. By attaching microspheres to cells we determined that, when outer hair cells increased their volume upon K(+)-depolarization, their middle segment shortened more significantly (14 +/- 6%) than either the basal (10 +/- 5%) or apical section (7 +/- 6%; P less than 0.01). In contrast, when cortical contractions were induced by elevating intracellular Ca2+, the elongation of the cells was more pronounced in their basal (8 +/- 2%) than their apical (6 +/- 2%; P = 0.06) or middle region (6 +/- 3%). This study provides further insight into the mechanisms of shape changes in isolated outer hair cells and illustrates a method to analyze localized changes in the absence of internal landmarks.

  4. The regulation of traction force in relation to cell shape and focal adhesions.

    Science.gov (United States)

    Rape, Andrew D; Guo, Wei-Hui; Wang, Yu-Li

    2011-03-01

    Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new simple method for precise micropatterning of hydrogels, and then apply the technique to systematically investigate the relationship between cell geometry, focal adhesions, and traction forces in cells with a series of spread areas and aspect ratios. Contrary to previous findings, we find that traction force is not determined primarily by the cell spreading area but by the distance from cell center to the perimeter. This distance in turn controls traction forces by regulating the size of focal adhesions, such that constraining the size of focal adhesions by micropatterning can override the effect of geometry. We propose that the responses of traction forces to center-periphery distance, possibly through a positive feedback mechanism that regulates focal adhesions, provide the cell with the information on its own shape and size. A similar positive feedback control may allow cells to respond to a variety of physical or topographical signals via a unified mechanism.

  5. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    Directory of Open Access Journals (Sweden)

    Halsey Leah E

    2011-02-01

    Full Text Available Abstract Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  6. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement.

    Science.gov (United States)

    Nauš, Jan; Prokopová, Jitka; Rebíček, Jiří; Spundová, Martina

    2010-09-01

    Non-destructive assessment of chlorophyll content has recently been widely done by chlorophyll meters based on measurement of leaf transmittance (e.g. the SPAD-502 chlorophyll meter measures the leaf transmittance at 650 and 940 nm). However, the leaf transmittance depends not only on the content of chlorophylls but also on their distribution in leaves. The chlorophyll distribution within leaves is co-determined by chloroplast arrangement in cells that depends on light conditions. When tobacco leaves were exposed to a strong blue light (about 340 μmol of photons m⁻² s⁻¹), a very pronounced increase in the leaf transmittance was observed as chloroplasts migrated from face position (along cell walls perpendicular to the incident light) to side position (along cell walls parallel to the incoming light) and the SPAD reading decreased markedly. This effect was more pronounced in the leaves of young tobacco plants compared with old ones; the difference between SPAD values in face and side position reached even about 35%. It is shown how the chloroplast movement changes a relationship between the SPAD readings and real chlorophyll content. For an elimination of the chloroplast movement effect, it can be recommended to measure the SPAD values in leaves with a defined chloroplasts arrangement.

  7. Dating the cyanobacterial ancestor of the chloroplast.

    Science.gov (United States)

    Falcón, Luisa I; Magallón, Susana; Castillo, Amanda

    2010-06-01

    Cyanobacteria have had a pivotal role in the history of life on Earth being the first organisms to perform oxygenic photosynthesis, which changed the atmospheric chemistry and allowed the evolution of aerobic Eukarya. Chloroplasts are the cellular organelles of photoautotrophic eukaryotes in which most portions of photosynthesis occur. Although the initial suggestion that cyanobacteria are the ancestors of chloroplasts was greeted with skepticism, the idea is now widely accepted. Here we attempt to resolve and date the cyanobacterial ancestry of the chloroplast using phylogenetic analysis and molecular clocks. We found that chloroplasts form a monophyletic lineage, are most closely related to subsection-I, N(2)-fixing unicellular cyanobacteria (Order Chroococcales), and heterocyst-forming Order Nostocales cyanobacteria are their sister group. Nostocales and Chroococcales appeared during the Paleoproterozoic and chloroplasts appeared in the mid-Proterozoic. The capability of N(2) fixation in cyanobacteria may have appeared only once during the late Archaean and early Proterozoic eons. Furthermore, we found that oxygen-evolving cyanobacteria could have appeared in the Archaean. Our results suggest that a free-living cyanobacterium with the capacity to store starch through oxygenic CO(2) fixation, and to fix atmospheric N(2), would be a very important intracellular acquisition, which, as can be recounted today from several lines of evidence, would have become the chloroplast by endosymbiosis.

  8. An innovative shape equation to quantify the morphological characteristics of parasitized red blood cells by Plasmodium falciparum and Plasmodium vivax.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Motevalli Haghi, Afsaneh; Faghihi, Shahab

    2013-04-01

    The morphology of red blood cells is affected significantly during maturation of malaria parasites, Plasmodium falciparum and Plasmodium vivax. A novel shape equation is presented that defines shape of parasitized red blood cells by P. falciparum (Pf-red blood cells) and P. vivax (Pv-red blood cells) at four stages of infection. The Giemsa-stained thin blood films are prepared using blood samples collected from healthy donors, patients having P. falciparum and P. vivax malaria. The diameter and thickness of healthy red blood cells plus Pf-red blood cells and Pv-red blood cells at each stage of infection are measured from their optical images using Olysia and Scanning Probe Image Processor softwares, respectively. Using diameters and thicknesses of parasitized red blood cells, a shape equation is fitted and relative two-dimensional shapes are plotted using MATHEMATICA. The shape of Pf-red blood cell drastically changes at ring stage as its thickness increases by 82%, while Pv-red blood cell remains biconcave (30% increase in thickness). By trophozoite and subsequent schizont stage, the Pf-red blood cell entirely loses its biconcave shape and becomes near spherical (diameter and thickness of ~8 µm). The Pv-red blood cell remains biconcave throughout the parasite development even though its volume increases. These results could have practical use for faster diagnosis, prediction, and treatment of human malaria and sickle-cell diseases.

  9. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  10. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    Science.gov (United States)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    Science.gov (United States)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  12. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  13. Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    An, Doo Ri [Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-742 (Korea, Republic of); Seoul National University, Seoul 151 742 (Korea, Republic of); Kim, Jieun; Im, Ha Na; Yoon, Hye Jin; Yoon, Ji Young; Jang, Jun Young [Seoul National University, Seoul 151-742 (Korea, Republic of); Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar [University of Notre Dame, Notre Dame, IN 46556 (United States); Kim, Soon-Jong [Mokpo National University, Chonnam 534-729 (Korea, Republic of); Lee, Byung Il [National Cancer Center, Gyeonggi 410-769 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    H. pylori Csd3 (HP0506), together with other peptidoglycan hydrolases, plays an important role in determining cell shape. Its crystal structure in the latent state is reported. Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its d, d-endopeptidase activity cleaves the d-Ala{sup 4}-mDAP{sup 3} peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a d, d-carboxypeptidase that cleaves off the terminal d-Ala{sup 5} from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn{sup 2+} ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.

  14. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis.

    Science.gov (United States)

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-09-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement.

  15. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.

    Science.gov (United States)

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A

    2013-04-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss.

  16. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration

    Science.gov (United States)

    Schreiber, Christoph; Segerer, Felix J.; Wagner, Ernst; Roidl, Andreas; Rädler, Joachim O.

    2016-01-01

    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening. PMID:27242099

  17. PLASTID MOVEMENT IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei.

    Science.gov (United States)

    Suetsugu, Noriyuki; Higa, Takeshi; Kong, Sam-Geun; Wada, Masamitsu

    2015-10-01

    Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.

  18. A study of shape optimization on the metallic nanoparticles for thin-film solar cells.

    Science.gov (United States)

    Zhou, Shiwei; Huang, Xiaodong; Li, Qing; Xie, Yi Min

    2013-10-29

    The shape of metallic nanoparticles used to enhance the performance of thin-film solar cells is described by Gielis' superformula and optimized by an evolutionary algorithm. As a result, we have found a lens-like nanoparticle capable of improving the short circuit current density to 19.93 mA/cm2. Compared with a two-scale nanospherical configuration recently reported to synthesize the merits of large and small spheres into a single structure, the optimized nanoparticle enables the solar cell to achieve a further 7.75% improvement in the current density and is much more fabrication friendly due to its simple shape and tolerance to geometrical distortions.

  19. Particle-based modeling effect of shape transform of single sickle red blood cells

    Science.gov (United States)

    Yang, Jun; Karniadakis, George; Dao, Ming

    2016-11-01

    Sickle red blood cells often exhibit various sickled shapes as well as higher shear and bending stiffness. To study the membrane biomechanical properties related to cell morphology, we employed multiscale coarse grain models based on dissipative particle dynamics (DPD). Through the proper orthogonal decomposition (POD) we analyst the membrane fluctuation of a single cell which probe the membrane mechanical properties. In this work, the membrane mechanics alteration caused by cell volume and surface area variation are tested. We verified that with same ratio of surface area and volume, volume differences will not affect the membrane fluctuation. We also found that by expanding the whole cell the membrane fluctuation performance does not change. To further quantify the pure shape effects, we generate cells with different aspect ratio of major axis and minor axis at which membrane exhibit different fluctuation indicating the mechanical properties divergence. Through the spatial-temporal autocorrelation of membrane fluctuations characteristics, the membrane bending stiffness and shear modulus are carefully calibrated against QPI experimental data.

  20. A Miniaturized Prototype of Resonant Banana-Shaped Photoacoustic Cell for Gas Sensing

    CERN Document Server

    Ulasevich, A L; Kouzmouk, A A; Starovoitov, V S

    2013-01-01

    A resonant photoacoustic cell intended for laser-spectroscopy gas sensing is represented. This cell is a miniature imitation of a macro-scale banana-shaped cell developed previously. The parameters, which specify the cavity shape, are chosen so as not only to provide optimal cell operation at a selected acoustic resonance but also to reduce substantially the cell sizes. A miniaturized prototype cell (the volume of acoustic cavity of ~ 5 mm^3) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and the useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia in nitrogen flow with the help of a pigtailed DFB laser diode oscillated near a wavelength of 1.53 um. The performance of prototype operation at the second longitudinal acoustic resonance (the resonance frequency of ~...

  1. Relationship between stiffness, internal cell pressure and shape of outer hair cells isolated from the guinea-pig hearing organ.

    Science.gov (United States)

    Chan, E; Ulfendahl, M

    1997-12-01

    The mechanical properties of outer hair cells are of importance for normal hearing, and it has been shown that damage of the cells can lead to a reduction in the hearing sensitivity. In this study, we measured the stiffness of isolated outer hair cells in hyper- and hypotonic conditions, and examined the change in stiffness in relation to the corresponding changes in internal cell pressure and cell shape. The results showed that the axial stiffness of isolated outer hair cells (30-90 microns in length, 8-12 microns in diameter), ranging from 0.13-5.39 mN m-1, was inversely related to cell length. Exposure to hyper- and hypotonic external media with a small percentage change in osmolality caused a similar magnitude of change in cell length and cell diameter, but an average 60% change in cell stiffness. Therefore, a moderate osmotic change in the external medium can lead to a significant alteration in cell stiffness. The findings thus indicate an important contribution of internal cell pressure to cell stiffness.

  2. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice.

    Science.gov (United States)

    Kusumi, Kensuke; Hirotsuka, Shoko; Shimada, Hiroshi; Chono, Yoko; Matsuda, Osamu; Iba, Koh

    2010-07-01

    Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.

  3. A parametric study of the natural vibration and mode shapes of PEM fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Full Text Available A PEM fuel cell stack is laminated with a number of plate-type cells, and the latest model is assembled by compression from both ends of plates.PEM fuel cells are exposed to high magnitude vibrations, shocks, and cyclic loads in many applications. Vibrations during operation show significant impact in the longer run of the fuel cells. Frequencies which are not close to the resonant frequencies or natural frequencies show very little effect on the overall performance. However, if the frequency ranges of operation approaches the resonant frequency range, the probability of component failure increases. It is possible that there will be lateral transition of cells or leakage of fuel gas and coolant water. Therefore, it is necessary to evaluate the effects vibration has on the fuel cell. This work aims to understand the vibration characteristics of a PEM fuel cell stack and to evaluate their seismic resistance under a vibration environment. Natural frequencies and mode shapes of the PEM fuel cell stack are modelling using finite element methods (FEM.A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young’s modulus, and density for each component layer. In addition, this work provides insight into how the natural frequencies of the PEM fuel cell stack should be tuned to avoid high amplitude vibrations by modifying the material and geometric properties of individual components. The mode shapes of the PEM fuel cell stack provide insight into the maximum displacement exhibited under vibration conditions that should be considered for transportation and stationary applications.

  4. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  5. Basket and basal-duct cells in domestic animals: different cytokeratin expression and shape.

    Science.gov (United States)

    Zedda, M; Farina, V

    1996-12-01

    Cytokeratins (CKs) are a multigenic family of proteins constituting intermediate filaments in epithelia, indicated in humans by the numbers 1-20. Different cell-types can be immunocytochemically identified on the grounds of their CK expression. This investigation was designed to study CK expression of basket cells (BCs) and basal-duct cells (BDCs) in some domestic animals. Frozen sections of mammary and major salivary glands from cows, sheep, pigs and rabbits were treated using the immunofluorescent method, using as monoclonal antibodies clones CK-E3, CKB1, KS-1A3, and LDS-68, respectively, revealing the human CKs 17, 14, 13, 7. BCs surrounding acini and BDCs were stained by CK 17 antibody only in the rabbit. CK 14 was detectable in both cell types in cows, sheep and pigs, except in the case of bovine salivary BCs. CK 13 was revealed in BCs and BDCs of all mammary glands and also rabbit salivary glands. In the salivary glands of the other species, only BDCs were stained. CK 7 gave unreliable results in all the species and cell types examined. Interestingly, in the rabbit, also BDCs are basket-like in shape. The antibodies employed showed different staining depending on species and gland. On the grounds of immunoreactivity and shape, BCs and BDCs can be considered the same cell type in the rabbit. In the other species, they appear to be different, since BDCs may express additional CKs and are triangular-shaped, whereas BCs are truly basket-like. It is worth noting that clone KS-1A3 in the rabbit and CKB1 in the sheep and pig can be considered markers of the basket/ basal system.

  6. Influence of pore and strut shape on open cell metal foam bulk properties

    Science.gov (United States)

    Kumar, Prashant; Hugo, Jean-Michel; Topin, Frederic; Vicente, Jerome

    2012-05-01

    The thermo-physical behavior of open-celled metal foams depends on their microscopic structure. An ideal periodic isotropic structure of tetrakaidecahedron shape i.e. Kelvin cell is studied. We have proposed an analytical model in order to obtain geometrical parameters correctly as they have substantial influence on thermal and hydraulic phenomena, where strut geometry is of prime importance. Various relationships between different geometrical parameters and porosities are presented. Consequently, empirical correlations are proposed to determine permeability and inertia coefficient using Ergun like model for computing pressure drop.

  7. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates.

    Directory of Open Access Journals (Sweden)

    Dheeraj Verma

    Full Text Available In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG, in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.

  8. Controlled Heterogeneous Stem Cell Differentiation on a Shape Memory Hydrogel Surface

    Science.gov (United States)

    Han, Yanjiao; Bai, Tao; Liu, Wenguang

    2014-01-01

    The success of stem cell therapies is highly dependent on the ability to control their programmed differentiation. So far, it is commonly believed that the differentiation behavior of stem cells is supposed to be identical when they are cultured on the same homogeneous platform. However, in this report, we show that this is not always true. By utilizing a double-ion-triggered shape memory effect, the pre-seeded hMSCs were controllably located in different growth positions. Here, we demonstrate for the first time that the differentiation behavior of hMSCs is highly sensitive to their growth position on a hydrogel scaffold. This work will not only enrich the mechanisms for controlling the differentiation of stem cells, but also offer a one-of-a-kind platform to achieve a heterogeneously differentiated stem cell-seeded hydrogel scaffold for complex biological applications. PMID:25068211

  9. The forces that shape embryos: physical aspects of convergent extension by cell intercalation

    Science.gov (United States)

    Keller, Ray; Shook, David; Skoglund, Paul

    2008-03-01

    We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.

  10. Isolation and Suborganellar Fractionation of Arabidopsis Chloroplasts.

    Science.gov (United States)

    Flores-Pérez, Úrsula; Jarvis, Paul

    2017-01-01

    Chloroplasts are structurally complex organelles containing ~2000-3000 proteins. They are delimited by a double membrane system or envelope, have an inner aqueous compartment called the stroma, and possess a second internal membrane system called the thylakoids. Thus, determining the suborganellar location of a chloroplast protein is vital to understanding or verifying its function. One way in which protein localization can be addressed is through fractionation. Here we present two rapid and simple methods that may be applied sequentially on the same day: (a) The isolation of intact chloroplasts from Arabidopsis thaliana plants that may be used directly (e.g., for functional studies such as protein import analysis), or for further processing as follows; (b) separation of isolated chloroplasts into three suborganellar fractions (envelope membranes, a soluble fraction containing stromal proteins, and the thylakoids). These methods are routinely used in our laboratory, and they provide a good yield of isolated chloroplasts and suborganellar fractions that can be used for various downstream applications.

  11. Cell interactions and patterned intercalations shape and link epithelial tubes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Jeffrey P Rasmussen

    Full Text Available Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes-the pharynx, valve, and intestine-and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes.

  12. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.

    Science.gov (United States)

    Dutta, Siddhartha; Cruz, Jeffrey A; Jiao, Yuhua; Chen, Jin; Kramer, David M; Osteryoung, Katherine W

    2015-10-01

    Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the

  13. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division.

    Science.gov (United States)

    Gao, Yuefang; Liu, Han; An, Chuanjing; Shi, Yuhong; Liu, Xia; Yuan, Wanqiong; Zhang, Bing; Yang, Jin; Yu, Caixia; Gao, Hongbo

    2013-09-01

    ARC5 is a dynamin-related GTPase essential for the division of chloroplasts in plants. The arc5 mutant frequently exhibits enlarged, dumbbell-shaped chloroplasts, indicating a role for ARC5 in the constriction of the chloroplast division site. In a screen for chloroplast division mutants with a phenotype similar to arc5, two mutants, cpd25 and cpd45, were obtained. CPD45 was identified as being the same gene as FHY3, a key regulator of far-red light signaling recently shown to be involved in the regulation of ARC5. CPD25 was previously named FRS4 and is homologous to FHY3. We found that CPD25 is also required for the expression of ARC5, suggesting that its function is not redundant to that of FHY3. Moreover, cpd25 does not have the far-red light-sensing defect present in fhy3 and far1. Both FRS4/CPD25 and FHY3/CPD45 could bind to the FBS-like 'ACGCGC' motifs in the promoter region of ARC5, and the binding efficiency of FRS4/CPD25 was much higher than that of FHY3/CPD45. Unlike FHY3/CPD45, FRS4/CPD25 has no ARC5 activation activity. Our data suggest that FRS4/CPD25 and FHY3/CPD45 function as a heterodimer that cooperatively activates ARC5, that FRS4/CPD25 plays the major role in promoter binding, and that FHY3/CPD45 is largely responsible for the gene activation. This study not only provides insight into the mechanisms underlying the regulation of chloroplast division in higher plants, but also suggests a model that shows how members of a transcription factor family can evolve to have different DNA-binding and gene activation features.

  14. Intelligent structures based on the improved activation of shape memory polymers using Peltier cells

    Science.gov (United States)

    Díaz Lantada, Andrés; Lafont Morgado, Pilar; Muñoz Sanz, José Luis; Muñoz García, Julio; Munoz-Guijosa, Juan Manuel; Echávarri Otero, Javier

    2010-05-01

    This study is focused on obtaining intelligent structures manufactured from shape memory polymers possessing the ability to change their geometry in successive or 'step-by-step' actions. This objective has been reached by changing the conventionally used shape memory activation systems (heating resistance, laser or induction heating). The solution set out consists in using Peltier cells as a heating system capable of heating (and activating) a specific zone of the device in the first activation, while the opposite zone keeps its original geometry. By carefully reversing the polarity of the electrical supply to the Peltier cell, in the second activation, the as yet unchanged zone is activated while the already changed zone in the first activation remains unaltered. We have described the criteria for the selection, calibration and design of this alternative heating (activation) system based on the thermoelectric effect, together with the development of different 'proof of concept' prototypes that have enabled us to validate the concepts put forward, as well as suggest future improvements for 'intelligent' shape memory polymer-based devices.

  15. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility.

    Science.gov (United States)

    Whippo, Craig W; Khurana, Parul; Davis, Phillip A; DeBlasio, Stacy L; DeSloover, Daniel; Staiger, Christopher J; Hangarter, Roger P

    2011-01-11

    Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.

  16. Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress

    Institute of Scientific and Technical Information of China (English)

    PENG Qian; ZHOU Qing

    2009-01-01

    In order to investigate the effects of lanthanum(Ⅲ) on cell ultrastructure of soybean leaves under elevated ultraviolet-B irradiation (UV-B, 280-320 rim), the chloroplast ultrastructure of soybean seedlings was studied by hydroponics under laboratory conditions. The re-sults showed that the thylakoid in chloroplast was orderly and clearly as soybean leaves were pretreated by La(Ⅲ). The thylakoid was indis-tinctly disordered, expanded and even indiscoverable in the chloroplast under UV-B stress. The impact on the thylakoid by the high in-tensity UV-B irradiation (T2) was bigger than that by the low intensity UV-B irradiation (T1). However, the destruction of the chloroplast structure caused by UV-B stress was alleviated by La(Ⅲ), and the arrangement of the thylakoid in the chloroplast became orderly and clearly. The effect of the alleviation by La(Ⅲ) under the low intensity UV-B irradiation (T1) was better than that under the high intensity UV-B irradiation (T2).

  17. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells.

    Directory of Open Access Journals (Sweden)

    Falko Ziebert

    Full Text Available Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate's elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes.

  18. The Drosophila actin regulator ENABLED regulates cell shape and orientation during gonad morphogenesis.

    Directory of Open Access Journals (Sweden)

    Hiroko Sano

    Full Text Available Organs develop distinctive morphologies to fulfill their unique functions. We used Drosophila embryonic gonads as a model to study how two different cell lineages, primordial germ cells (PGCs and somatic gonadal precursors (SGPs, combine to form one organ. We developed a membrane GFP marker to image SGP behaviors live. These studies show that a combination of SGP cell shape changes and inward movement of anterior and posterior SGPs leads to the compaction of the spherical gonad. This process is disrupted in mutants of the actin regulator, enabled (ena. We show that Ena coordinates these cell shape changes and the inward movement of the SGPs, and Ena affects the intracellular localization of DE-cadherin (DE-cad. Mathematical simulation based on these observations suggests that changes in DE-cad localization can generate the forces needed to compact an elongated structure into a sphere. We propose that Ena regulates force balance in the SGPs by sequestering DE-cad, leading to the morphogenetic movement required for gonad compaction.

  19. Chloroplasts in seeds and dark-grown seedlings of lotus.

    Science.gov (United States)

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  20. Chup1 - a chloroplast movement protein and its interactions

    OpenAIRE

    Schmidt von Braun, Serena

    2008-01-01

    The molecular mechanisms of light dependent chloroplast movement could for a long time not be unravelled. But the recent discovery of a mutant deficient in chloroplast movement sparked new impulses in the field. This study investigates the molecular mechanisms of chloroplast movement based on the protein Chup1 and the interactions of Chup1 and cytoskeletal effectors. It is demonstrated that Chup1 is exclusively and directly targeted to the chloroplast surface in an N-terminus dependent manner...

  1. The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katharina Peters

    2016-06-01

    Full Text Available Peptidoglycan (PG is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of the PG layer must be sufficiently robust to allow cell growth and division under different conditions. We have analyzed the PG composition of 28 mutants lacking multiple PG enzymes (penicillin-binding proteins [PBPs] after growth in acidic or near-neutral-pH media. Statistical analysis of the muropeptide profiles identified dd-carboxypeptidases (DD-CPases that were more active in cells grown at acidic pH. In particular, the absence of the DD-CPase PBP6b caused a significant increase in the pentapeptide content of PG as well as morphological defects when the cells were grown at acidic pH. Other DD-CPases (PBP4, PBP4b, PBP5, PBP6a, PBP7, and AmpH and the PG synthase PBP1B made a smaller or null contribution to the pentapeptide-trimming activity at acidic pH. We solved the crystal structure of PBP6b and also demonstrated that the enzyme is more stable and has a lower Km at acidic pH, explaining why PBP6b is more active at low pH. Hence, PBP6b is a specialized DD-CPase that contributes to cell shape maintenance at low pH, and E. coli appears to utilize redundant DD-CPases for normal growth under different conditions.

  2. Effects of Ag Nanocubes with Different Corner Shape on the Absorption Enhancement in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Feng Shan

    2014-01-01

    Full Text Available The effects of corner shape of silver (Ag nanocubes (NCs on optical absorptions of organic solar cells (OSCs are theoretically investigated by finite element method (FEM calculations. The absorption of sun light in the active layer is calculated. Significant absorption enhancements have been demonstrated in metallic region with different shapes of Ag NCs, among them corner radius (R is zero result in the best light absorption performance of up to 55% enhancement with respect to bare OSCs. The origins of increased absorption are believed to be the effects of the huge electric field enhancement and increased scattering upon the excitation of localized surface plasmon resonance (LSPR. Apart from using R=0, we show that R=3, 6, and 11.29 of Ag NCs in metallic region of active layer may also result in the maximum comparable absorption enhancement of 49%, 41%, and 28%, respectively. In addition, a significant effect of the period of NCs is observed.

  3. Utilization of complete chloroplast genomes for phylogenetic studies

    NARCIS (Netherlands)

    Ramlee, Shairul Izan Binti

    2016-01-01

    Chloroplast DNA sequence polymorphisms are a primary source of data in many plant phylogenetic studies. The chloroplast genome is relatively conserved in its evolution making it an ideal molecule to retain phylogenetic signals. The chloroplast genome is also largely, but not completely, free from ot

  4. Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2014-04-01

    Plants are photosynthetic organisms that have evolved unique systems to adapt fluctuating environmental light conditions. In addition to well-known movement responses such as phototropism, stomatal opening, and nastic leaf movements, chloroplast photorelocation movement is one of the essential cellular responses to optimize photosynthetic ability and avoid photodamage. For these adaptations, chloroplasts accumulate at the areas of cells illuminated with low light (called accumulation response), while they scatter from the area illuminated with strong light (called avoidance response). Plant-specific photoreceptors (phototropin, phytochrome, and/or neochrome) mediate these dynamic directional movements in response to incident light position and intensity. Several factors involved in the mechanisms underlying the processes from light perception to actin-based movements have also been identified through molecular genetic approach. This review aims to discuss recent findings in the field relating to how chloroplasts move at molecular levels. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.

  5. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Directory of Open Access Journals (Sweden)

    Birgit Kersten

    Full Text Available Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca and for chloroplasts (seven species, but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus. The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4 from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52 and 783,513 bp (717-1B4 in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  6. A reagent-based dynamic trigger for cell adhesion, shape change, or cocultures.

    Science.gov (United States)

    van Dongen, Stijn F M; Maiuri, Paolo; Piel, Matthieu

    2014-01-01

    The described protocol is a simple and easily implemented method for making dynamic micropatterns for cell culture. It is based on the use of a surface coating material (azido-PLL-g-PEG (APP)) that initially repels cells, but which can be made strongly adherent by addition of a small functional peptide (BCN-RGD) to the cell culture medium. The method can be applied to trigger the adhesion, migration, or shape change of single cells or of populations of cells, and it can be used to create patterned cocultures. The entire process can be subdivided into three main parts. The first part describes the creation of patterned APP substrates. The second part describes cell seeding and "click" triggering of cell adhesion; the final part describes variations that allow the overlay of multiple patterns or the creation of patterned cocultures. The APP coating of substrates and the triggering of adhesion only involves treating the surface with aqueous stock solutions, allowing any biology lab to adopt this technique.

  7. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  8. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon.

    Science.gov (United States)

    Pattanaik, Bagmi; Whitaker, Melissa J; Montgomery, Beronda L

    2012-01-01

    In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL), F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL-absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs), and the shape of cells are short and rounded. Conversely, under green light (GL), F. diplosiphon cells are red in color due to accumulation of GL-absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensities at increasing depths in the water column, which are generally also enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity

  9. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Janina Zygadlo;

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product....... For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble...... glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed...

  10. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine.

    Science.gov (United States)

    Gisby, Martin F; Mudd, Elisabeth A; Day, Anil

    2012-12-01

    Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. High-yield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding D-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of D-amino acids into plastids, which contain a target that is inhibited by D-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available D-amino acids, which are relatively nontoxic to animals and microbes, to either select against (D-valine) or for (D-alanine) cells containing transgenic plastids. Positive/negative selection with d-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential D-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop D-valine-based methods to manage the spread of transgenic plastids tagged with dao.

  11. What shapes the stimulus to the inner hair cell?: A moderated discussion

    Science.gov (United States)

    Fridberger, Anders; Guinan, John J.

    2015-12-01

    The following is an edited transcript of a recorded discussion session on the topic of "What Shapes the Stimulus to the Inner Hair Cell?". The discussion, moderated by the authors, took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. All participants knew that the session was being recorded. In view of both the spontaneous nature of the discussion and the editing, however, this transcript may not represent the considered or final views of the participants, and may not represent a consensus of experts in the field. The reader is advised to consult additional independent publications.

  12. A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells

    Directory of Open Access Journals (Sweden)

    QIN Yang

    2014-04-01

    Full Text Available We report the synthesis of a novel three-dimensional tetrahedral-shaped small molecule,SO,containing a tetraphenylsilane core and cyanoester functionalized terthiophene arms.A deep lying HOMO energy level of -5.3 eV and a narrow bandgap of 1.9 eV were obtained from cyclic voltammetry measurements.Absorption,X-ray scattering and differential scanning calorimetry experiments all indicate high crystallinity of this compound.Solar cells employing SO were fabricated and evaluated.The relatively low performance was mainly ascribed to lack of appreciable phase separation,which is confirmed by optical microscopy.

  13. Plasmolysis and Cell Shape Depend on Solute Outer-Membrane Permeability during Hyperosmotic Shock in E. coli

    OpenAIRE

    Pilizota, Teuta; Shaevitz, Joshua W.

    2013-01-01

    The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on t...

  14. Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes.

    Science.gov (United States)

    Farahbakhsh, Nasser A; Narins, Peter M

    2006-02-01

    We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation.

  15. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.

    Science.gov (United States)

    Spencer, Allison K; Siddiqui, Bilal A; Thomas, Jeffrey H

    2015-06-15

    Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.

  16. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    Science.gov (United States)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  17. Analysis of a minimal Rho-GTPase circuit regulating cell shape.

    Science.gov (United States)

    Holmes, William R; Edelstein-Keshet, Leah

    2016-07-19

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  18. Theory of electrically driven shape changes of cochlear outer hair cells.

    Science.gov (United States)

    Dallos, P; Hallworth, R; Evans, B N

    1993-07-01

    1. A theory of cochlear outer hair cell electromotility is developed and specifically applied to somatic shape changes elicited in a microchamber. The microchamber permits the arbitrary electrical and mechanical partitioning of the outer hair cell along its length. This means that the two partitioned segments are stimulated with different input voltages and undergo different shape changes. Consequently, by imposing more constraints than other methods, experiments in the microchamber are particularly suitable for testing different theories of outer hair cell motility. 2. The present model is based on simple hypotheses. They include a distributed motor associated with the cell membrane or cortex and the assumption that the displacement generated by the motor is related to the transmembrane voltage across the associated membrane element. It is expected that the force generated by the motor is counterbalanced by an elastic restoring force indigenous to the cell membrane and cortex, and a tensile force due to intracellular pressure. It is assumed that all changes take place while total cell volume is conserved. The above elements of the theory taken together permit the development of qualitative and quantitative predictions about the expected motile responses of both partitioned segments of the cell. Only a DC treatment is offered here. 3. Both a linear motor and an expanded treatment that incorporates a stochastic molecular motor model are considered. The latter is represented by a two-state Boltzmann process. We show that the linear motor treatment is an appropriate extrapolation of the stochastic motor theory for the case of small voltage driving signals. Comparison of experimental results with model responses permits the estimation of model parameters. Good match of data is obtained if it is assumed that the molecular motors undergo conformational length changes of 0.7-1.0 nm, that they have an effective displacement vector at approximately -20 degrees with the long

  19. Chloroplast replication and growth in tobacco

    NARCIS (Netherlands)

    Verbeek-Boasson, Rosalinda

    1969-01-01

    SUMMARY AND CONCLUSIONS 1. The greening and the growth of chloroplasts as induced by light has been investigated in leaf discs from etiolated tobacco leaves in sterile culture. 2.On a medium containing salts after Murashige and Skoog plus sucrose, chlorophyll synthesis proceeds very slowly during th

  20. Shape engineering for electronic and optoelectronic properties of Si nanostructure solar cells

    Science.gov (United States)

    He, Yan; Zhao, Yipeng; Quan, Jun; Ouyang, Gang

    2016-10-01

    An analytical model is developed to explore the shape-dependent electronic and optoelectronic properties of silicon nanostructure solar cells, including nanocones (NCs), nanowires (NWs), and truncated-nanocones (TNCs), on the basis of atomic-bond-relaxation consideration and detailed balance principle. It is found that the inhomogeneous NCs can not only make the band gap shrink gradually from the top to the bottom, but also suppress the surface recombination and enhance light absorption. Moreover, the optimal performance of silicon nanostructures can be achieved through modulating the geometrical parameters. Strikingly, the SiNCs show the highest solar conversion efficiency compared with that of NWs and TNCs under identical conditions, which suggest that this kind of nanostructures could be expected to be applicable for the new-typed and friendly alternative solar cell unit.

  1. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  2. Wire-shaped perovskite solar cell based on TiO2 nanotubes.

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-20

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  3. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells.

    Science.gov (United States)

    Li, Zhe; Wang, Weiyuan; Greenham, Neil C; McNeill, Christopher R

    2014-12-21

    A key consideration for the efficient operation of hybrid solar cells based upon conjugated polymers and inorganic semiconductor nanocrystals is charge transport in the nanocrystal phase. Here we report the results of a study into the charge transport kinetics of polymer/nanocrystal solar cells based on blends poly(3-hexylthiophene) (P3HT) with either CdSe nano-dots or CdSe nano-tetrapods. Transient photocurrent measurements reveal significant differences in the charge transport kinetics of nano-dot and nano-tetrapod hybrid cells, with the charge collection of the P3HT/CdSe nano-dot device severely limited by charge trapping. In comparison the nano-tetrapod cell exhibits significantly reduced charge trapping compared to the nano-dot cell accounting for the improved fill-factor and overall device efficiency. Transient photovoltage measurements have also been employed that demonstrate slower recombination rates in the P3HT/CdSe tetrapod device compared to the P3HT/CdSe dot device. These observations directly identify nanoparticle shape as a critical factor influencing the charge transport and hence recombination in this benchmark hybrid system, confirming the hypothesis that the use of tetrapods improves device performance through an improvement in electron transport in the nanocrystal phase.

  4. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation.

    Science.gov (United States)

    Appenroth, K-J; Krech, K; Keresztes, A; Fischer, W; Koloczek, H

    2010-01-01

    Toxic effects of Ni(2+) on the chloroplasts of the two duckweed species Spirodela polyrhiza, clone SJ and Lemna minor, clone St were investigated according to the ISO 20079 protocol. Ni(2+) induced a transition from chloroplasts to chloro-amyloplasts and amylo-chloroplasts, but not to gerontoplasts, as shown by electron microscopy. The contents of the chlorophylls a and b decreased strongly, whereas that of carotenoids remained approximately constant. Most striking was, however, the accumulation of transitory starch. Bell-shaped dose-response curves showed that Spirodela and Lemna amassed maximum starch contents of approximately 10% and 7%, respectively, on a fresh weight basis. Because Ni(2+) in the concentrations applied does not stimulate photosynthesis, the Ni(2+)-induced starch accumulation indicates that the export of carbohydrates out of the plastids decreased, most probably due to the lower demand of the rest of the cells as a result of the Ni(2+)-dependent inhibition of growth. The half-maximal concentrations for inhibition of the fresh weight increase over the 7-day test period were 3.7 microM and 6.6 microM for Spirodela and Lemna, respectively: Spirodela was thus somewhat more sensitive to the heavy metal. Both species accumulated approximately 3g of Ni(2+) per kg of dry weight after application of 100 microM NiCl(2). Because of their high sensitivity to phytotoxic effects, however, Spirodela and Lemna do not appear to be particularly suitable for phytoremediation of Ni(2+)-contaminated waste water. The high sensitivity to Ni(2+) makes them instead a suitable system for ecotoxicological testing in accordance with the ISO 20079 protocol.

  5. Photosynthesis-dependent but neochrome1-independent light positioning of chloroplasts and nuclei in the fern Adiantum capillus-veneris.

    Science.gov (United States)

    Sugiyama, Yuka; Kadota, Akeo

    2011-03-01

    Chloroplasts change their positions in the cell depending on the light conditions. In the dark, chloroplasts in fern prothallia locate along the anticlinal wall (dark position). However, chloroplasts become relocated to the periclinal wall (light position) when the light shines perpendicularly to the prothallia. Red light is effective in inducing this relocation in Adiantum capillus-veneris, and neochrome1 (neo1) has been identified as the red light receptor regulating this movement. Nevertheless, we found here that chloroplasts in neo1 mutants still become relocated from the dark position to the light position under red light. We tested four neo1 mutant alleles (neo1-1, neo1-2, neo1-3, and neo1-4), and all of them showed the red-light-induced chloroplast relocation. Furthermore, chloroplast light positioning under red light occurred also in Pteris vittata, another fern species naturally lacking the neo1-dependent phenomenon. The light positioning of chloroplasts occurred independently of the direction of red light, a response different to that of the neo1-dependent movement. Photosynthesis inhibitors 3-(3,4 dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-isopropyl-6-methyl-p-benzoquinone blocked this movement. Addition of sucrose (Suc) or glucose to the culture medium induced migration of the chloroplasts to the periclinal wall in darkness. Furthermore, Suc could override the effects of 3-(3,4 dichlorophenyl)-1,1-dimethylurea. Interestingly, the same light positioning was evident for nuclei under red light in the neo1 mutant. The nuclear light positioning was also induced in darkness with the addition of Suc or glucose. These results indicate that photosynthesis-dependent nondirectional movement contributes to the light positioning of these organelles in addition to the neo1-dependent directional movement toward light.

  6. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    Science.gov (United States)

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell

  7. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation.

    Science.gov (United States)

    Wang, Wen-Hua; He, En-Ming; Chen, Juan; Guo, Ying; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2016-04-01

    Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.

  8. Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements.

    Science.gov (United States)

    Luesse, Darron R; DeBlasio, Stacy L; Hangarter, Roger P

    2010-10-01

    In Arabidopsis thaliana, chloroplasts move towards the periclinal cell walls upon exposure to low blue light intensities and to anticlinal walls under high light. The regulation of these chloroplast movements involves members of both the phototropin and phytochrome families of photoreceptors. Examination of fluence-rate response dependencies in phot1 and phot2 mutants revealed that although both photoreceptors are capable of inducing chloroplast accumulation under low-light conditions, the signals from these photoreceptors appear to be antagonistic. Chloroplast movements in wild-type plants were intermediate between those of the single phot mutants, consistent with each operating through separate signalling cascades. Mutants in phot2 showed transient chloroplast avoidance responses upon exposure to intense blue light, and slow but sustained chloroplast avoidance under intense white light, indicating that in the absence of phot2, phot1 is capable of generating both a low and a high-light response signal. Mutations in phytochrome B (phyB) caused an enhanced avoidance response at intermediate and high light intensities. Examination of phyB, phot1phyB, and phot2phyB mutants indicated that this enhancement is caused by PhyB inhibition of the high-light avoidance response in wild-type plants. In addition, our results suggest that the inhibition by PhyB is not exclusive to either of the phot1 or phot2 signalling pathways.

  9. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Liangliang Chen

    2016-10-01

    Full Text Available How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1 mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

  10. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    Science.gov (United States)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the

  11. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    Science.gov (United States)

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  12. Convergent extension: using collective cell migration and cell intercalation to shape embryos.

    Science.gov (United States)

    Tada, Masazumi; Heisenberg, Carl-Philipp

    2012-11-01

    Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.

  13. In vivo study of developmental programmed cell death using the lace plant (Aponogeton madagascariensis; Aponogetonaceae) leaf model system.

    Science.gov (United States)

    Wright, Harrison; van Doorn, Wouter G; Gunawardena, Arunika H L A N

    2009-05-01

    Programmed cell death (PCD) is required for many morphological changes, but in plants it has been studied in much less detail than in animals. The unique structure and physiology of the lace plant (Aponogeton madagascariensis) is well suited for the in vivo study of developmental PCD. Live streaming video and quantitative analysis, coupled with transmission electron microscopy, were used to better understand the PCD sequence, with an emphasis on the chloroplasts. Dividing, dumbbell-shaped chloroplasts persisted until the late stages of PCD. However, the average size and number of chloroplasts, and the starch granules associated with them, declined steadily in a manner reminiscent of leaf senescence, but distinct from PCD described in the Zinnia tracheary element system. Remaining chloroplasts often formed a ring around the nucleus. Transvacuolar strands, which appeared to be associated with chloroplast transport, first increased and then decreased. Mitochondrial streaming ceased abruptly during the late stages of PCD, apparently due to tonoplast rupture. This rupture occurred shortly before the rapid degradation of the nucleus and plasma membrane collapse, in a manner also reminiscent of the Zinnia model. The presence of numerous objects in the vacuoles suggests increased macro-autophagy before cell death. These objects were rarely observed in cells not undergoing PCD.

  14. The Changes of Photosynthetic Properties and Cell Microstructure in Peanut Leaves during Leaf Senescence

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-dong; WANG Xiao-yun; YU Song-lie; ZHANG Gao-ying; WAN Yong-shan; LI Jun

    2002-01-01

    The changes of photosynthetic properties and cell microstructure in peanut leaves during leaf senescence were studied with two high-yielding peanut cultivars (cv. Luhua11 and Fu8707). The main results showed that during the whole process of leaf growth and senescence, changes in the photosynthesis rate (Pn)and contents of chlorophyll in leaves, could be described with a parabolic function, y = A + Bx + Cx2 (where y refers to the values of the above parameters and x to the days after leaf unfolding). During peanut leaf senescence, the shape of chloroplast changed gradually from long ellipses to circles. The starch globule in chloroplast altered gradually from more and larger sizes to fewer and smaller, but the oil globule from fewer and smaller to more and larger. The grana lamellae varied progressively: from thinness and length to thickness and shortness; from ranking along the long axle direction of chloroplast to disorderly arrangment and finally blurring.At last, the membrane envelope of chloroplast broke, so the inclusion seeped out to the cell and the chloroplast broke up.

  15. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis.

    Science.gov (United States)

    Gorton, Holly L; Herbert, Stephen K; Vogelmann, Thomas C

    2003-07-01

    Light-mediated chloroplast movements are common in plants. When leaves of Alocasia brisbanensis (F.M. Bailey) Domin are exposed to dim light, mesophyll chloroplasts spread along the periclinal walls normal to the light, maximizing absorbance. Under high light, the chloroplasts move to anticlinal walls. It has been proposed that movement to the high-light position shortens the diffusion path for CO(2) from the intercellular air spaces to the chloroplasts, thus reducing CO(2) limitation of photosynthesis. To test this hypothesis, we used pulsed photoacoustics to measure oxygen diffusion times as a proxy for CO(2) diffusion in leaf cells. We found no evidence that chloroplast movement to the high-light position enhanced gas diffusion. Times for oxygen diffusion were not shorter in leaves pretreated with white light, which induced chloroplast movement to the high-light position, compared with leaves pretreated with 500 to 700 nm light, which did not induce movement. From the oxygen diffusion time and the diffusion distance from chloroplasts to the intercellular gas space, we calculated an oxygen permeability of 2.25 x 10(-)(6) cm(2) s(-)(1) for leaf cells at 20 degrees C. When leaf temperature was varied from 5 degrees C to 40 degrees C, the permeability for oxygen increased between 5 degrees C and 20 degrees C but changed little between 20 degrees C and 40 degrees C, indicating changes in viscosity or other physical parameters of leaf cells above 20 degrees C. Resistance for CO(2) estimated from oxygen permeability was in good agreement with published values, validating photoacoustics as another way of assessing internal resistances to CO(2) diffusion.

  16. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    Science.gov (United States)

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles.

  17. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Galateanu Bianca

    2012-06-01

    Full Text Available Abstract Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs. Results Culture-expanded cells isolated from the stromal vascular fraction (SVF, corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix, and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix. Both hydrogels showed a porous structure under scanning electron microscopy (SEM and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for

  18. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata

    Directory of Open Access Journals (Sweden)

    Bettina Prüm

    2012-01-01

    Full Text Available Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring.

  19. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    Science.gov (United States)

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.

  20. Magnetic engineering of stable rod-shaped stem cell aggregates: circumventing the pitfall of self-bending.

    Science.gov (United States)

    Du, V; Fayol, D; Reffay, M; Luciani, N; Bacri, J-C; Gay, C; Wilhelm, C

    2015-02-01

    A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates.

  1. Major evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplasts.

    Science.gov (United States)

    Okie, Jordan G; Smith, Val H; Martin-Cereceda, Mercedes

    2016-05-25

    We investigate the effects of trophic lifestyle and two types of major evolutionary transitions in individuality-the endosymbiotic acquisition of organelles and development of multicellularity-on organellar and cellular metabolism and allometry. We develop a quantitative framework linking the size and metabolic scaling of eukaryotic cells to the abundance, size and metabolic scaling of mitochondria and chloroplasts and analyse a newly compiled, unprecedented database representing unicellular and multicellular cells covering diverse phyla and tissues. Irrespective of cellularity, numbers and total volumes of mitochondria scale linearly with cell volume, whereas chloroplasts scale sublinearly and sizes of both organelles remain largely invariant with cell size. Our framework allows us to estimate the metabolic scaling exponents of organelles and cells. Photoautotrophic cells and organelles exhibit photosynthetic scaling exponents always less than one, whereas chemoheterotrophic cells and organelles have steeper respiratory scaling exponents close to one. Multicellularity has no discernible effect on the metabolic scaling of organelles and cells. In contrast, trophic lifestyle has a profound and uniform effect, and our results suggest that endosymbiosis fundamentally altered the metabolic scaling of free-living bacterial ancestors of mitochondria and chloroplasts, from steep ancestral scaling to a shallower scaling in their endosymbiotic descendants.

  2. Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants.

    Science.gov (United States)

    Ling, Qihua; Jarvis, Paul

    2016-11-01

    Chloroplasts are organelles with many vital roles in plants, which include not only photosynthesis but numerous other metabolic and signaling functions. Furthermore, chloroplasts are critical for plant responses to various abiotic stresses, such as salinity and osmotic stresses. A chloroplast may contain up to ~3,000 different proteins, some of which are encoded by its own genome. However, the majority of chloroplast proteins are encoded in the nucleus and synthesized in the cytosol, and these proteins need to be imported into the chloroplast through translocons at the chloroplast envelope membranes. Recent studies have shown that the chloroplast protein import can be actively regulated by stress. To biochemically investigate such regulation of protein import under stress conditions, we developed the method described here as a quick and straightforward procedure that can easily be achieved in any laboratory. In this method, plants are grown under normal conditions and then exposed to stress conditions in liquid culture. Plant material is collected, and chloroplasts are then released by homogenization. The crude homogenate is separated by density gradient centrifugation, enabling isolation of the intact chloroplasts. Chloroplast yield is assessed by counting, and chloroplast intactness is checked under a microscope. For the protein import assays, purified chloroplasts are incubated with (35)S radiolabeled in vitro translated precursor proteins, and time-course experiments are conducted to enable comparisons of import rates between genotypes under stress conditions. We present data generated using this method which show that the rate of protein import into chloroplasts from a regulatory mutant is specifically altered under osmotic stress conditions.

  3. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions

    Science.gov (United States)

    Lira, Sergio; Miranda, Jose

    2016-11-01

    We investigate a quasi-two-dimensional system composed by an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable. We thank CNPq (Brazilian Research Council) for financial support.

  4. RESECTION OF THE S-SHAPED CROSSED DYSTOPIC KIDNEY IN A PATIENT WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2014-07-01

    Full Text Available Renal cell carcinoma (RCC is one of the most urgent topics in modern oncourology. This is attributable to the high morbidity and mortality rates associated with this pathology. Renal dystopia is a rather rare developmental anomaly. The literature data describing cases of the diagnosis and treatment in patients with dystopic kidney malignancies are scarce. Moreover, if a tumor is present in the solitary dystopic kidney, it is often extremely difficult to perform an organ-saving operation for a number of features of the anatomic structure of the dystopic kidney and its vascular architectonics. The paper describes a clinical case of S-shaped crossed dystopic kidney resection in a patient with RCC.

  5. RESECTION OF THE S-SHAPED CROSSED DYSTOPIC KIDNEY IN A PATIENT WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC is one of the most urgent topics in modern oncourology. This is attributable to the high morbidity and mortality rates associated with this pathology. Renal dystopia is a rather rare developmental anomaly. The literature data describing cases of the diagnosis and treatment in patients with dystopic kidney malignancies are scarce. Moreover, if a tumor is present in the solitary dystopic kidney, it is often extremely difficult to perform an organ-saving operation for a number of features of the anatomic structure of the dystopic kidney and its vascular architectonics. The paper describes a clinical case of S-shaped crossed dystopic kidney resection in a patient with RCC.

  6. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  7. Effects of pattern shape on adaptation of dLGN cell

    Institute of Scientific and Technical Information of China (English)

    JIN Jianzhong; XU Pengjing; LI Xiangrui; ZHOU Yifeng

    2003-01-01

    Pattern adaptation is one of the fundamental sensory processes in the visual system. In this study, we compared pattern adaptation induced by two types of sinusoidal drifting grating in dLGN cells of cat. The two types ofgrating have the same parameters (e.g. spatial frequency, temporal frequency and contrast) except their pattern shapes, one of which is normal grating and the other annular grating. The results suggested that the annular grating elicited stronger response and stronger pattern adaptation than the normal grating. This is consistent with the adaptation and aftereffect to the two types of drifting gratings seen in psychology and may reflect the subcortical neural mechanism underlying these psychological phenomena.

  8. Water behavior in a u-shaped flow channel of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Liu, Z.S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    A study was conducted to find a practical approach for predicting liquid water distribution in the U-shaped flow channels of a proton exchange membrane (PEM) fuel cell. Computational fluid dynamics modeling with the FLUENT software package was used to demonstrate the two-phase flow of the air-water transport process inside the channel. It was noted that no chemical reaction occurs inside the flow channels and the liquid water is formed either on the surfaces of the flow channels or inside the flow channels. The problem can therefore be simplified as a fluid mechanics problem with water sources inside its physical domain or on its boundaries. The volume-of-fluid (VOF) model was used to track dynamic air-water interactions. Three cases with a range of initial water phase distributions corresponding to different fuel cell operating conditions were simulated numerically to gain a better understanding of water behaviour inside the serpentine channel. It was concluded that the bend area in the serpentine flow field affects the fuel cell performance. This is because it influences the flow field which in turn influences the air-water flow and water liquid distribution inside the channel or along the inside channel surfaces. 15 refs., 1 tab., 11 figs.

  9. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    Science.gov (United States)

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  10. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  11. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    Science.gov (United States)

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells.

  12. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging.

    Science.gov (United States)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-02

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml(-1). The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color-green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml(-1), the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.

  13. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  14. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized the albino mutant emb1303-1 in Arabidopsis. The mutant displayed a severe dwarf phenotype with small albino rosette leaves and short roots on a synthetic medium containing sucrose. It is pigment-deficient and seedling lethal when grown in soil. Embryo development was delayed in the mutant, although seed germination was not significantly im-paired. The plastids of emb1303-1 were arrested in early developmental stages without the classical stack of thylakoid membrane. Genetic and molecular analyses uncovered that the EMB1303 gene encodes a novel chloroplast-localized protein. Mieroarray and RT-PCR analyses revealed that a number of nuclear-and plastid-encoded genes involved in photosynthesis and chloroplast biogenesis were substantially downregulated in the mutant. Moreover, the accu-mulation of several major chloroplast proteins was severely compromised in emb1303-1. These results suggest that EMBI303 is essential for chloroplast development.

  15. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation.

  16. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    Science.gov (United States)

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis.

  17. Phototropins and chloroplast activity in plant blue light signaling

    OpenAIRE

    Goh, Chang-Hyo

    2009-01-01

    In plants, phototropins 1 (phot1) and 2 (phot2) mediate chloroplast movement to blue light (BL). A recent report showed that phototropins (phot) are required for the expression of chloroplast genes in rice. The light-induced responses of phot1a rice mutants result in H2O2-mediated damage to chloroplast photosystems, indicating that phot-regulated responses might be associated with the other photoreceptor, such as cryptochrome (cry) BL receptor. This suggests diversification and specialization...

  18. Expressing PHB synthetic genes through chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.

  19. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    Directory of Open Access Journals (Sweden)

    Graham H Cowan

    2012-12-01

    Full Text Available The potato mop-top virus (PMTV triple gene block 2 (TGB2 movement protein fused to monomeric red fluorescent protein (mRFP-TGB2 was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localisations and interactions of mRFP-TGB2 were investigated using confocal imaging (CLSM and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum, mobile granules, small round structures (1-2 µm in diameter and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labelled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein, genomic RNA and fluorescently-labelled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localised to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.

  20. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis.

    Science.gov (United States)

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-05-22

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis.

  1. New solar cells of various shapes%新形态太阳能电池

    Institute of Scientific and Technical Information of China (English)

    王丹; 初增泽; 张超; 邹德春

    2011-01-01

    保护环境、发展可再生资源是关系到国计民生的重大问题,特别是怎样利用取之不尽、用之不竭的太阳能这一问题,逐渐受到世界各国的重视.太阳能电池作为能有效地将太阳能转化为电能的器件,近年来受到了学术界及产业界的广泛关注.目前国际上广泛应用的平板硅太阳能电池存在造价昂贵、质量重、无形变能力等缺点,因此,怎样从降低成本、提高柔性等方面改进太阳能电池的设计与制备就成为了研究的热点.文章结合近年来国内外期刊杂志上发表的相关研究工作,从电池形态上,分类综述了硬性平板、柔性平板、丝网状、纤维态太阳能电池的结构特点、研究历史及发展现状,提出了目前柔性太阳能电池存在的技术难题和部分解决方案.特别是近年来最新研究报道的纤维态柔性太阳能电池,由于完全突破了平面基底的限制,具有质量轻、可弯折、用途广泛等特点,作为新形态太阳能电池的代表在文中进行了较全面的介绍.%Protection of the environment and the development of renewable resources are major problems related to the national economy and peoples livelihood. In particular, more and more attention is being paid to the use of inexhaustible solar energy. Solar cells, devices that could effectively transform solar energy into electrieal energy, have attracted much interest in recent years both in academic and industrial circles. The fiat silicon solar cells in wide use today are heed with high cost, heavy weight, rigidity and environment problems, and their deformation flexibility is poor. Much research effort has therefore been devoted to improving the fabrication process, including reducing the cost and increasing the flexibility. This article reviews the works published in recent years on the structure characteristics, history, and status of various types of solar cells according to their shapes: rigid flat

  2. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  3. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    Science.gov (United States)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  4. Measuring the performance of the coaxial HOM coupler on a 2-cell TESLA-shape copper cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WANG Er-Dong; ZHANG Bao-Cheng; ZHAO Kui

    2009-01-01

    Coaxial High Order Mode (HOM) couplers have been fabricated at Peking University and their RF performance has been measured on a test device consisting of a coaxial transmission line and a 2-cellTESLA-shape copper cavity. The test results on the 2-cell TESLA-shape copper cavity with HOM couplers indicate that the coupler can cut off the fundamental mode TM010 and absorb HOMs effectively after a careful adjustment. The optimal angle of the HOM coupler with the beam tube is found. The initial test results of HOM couplers are presented in this paper.

  5. Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli.

    Science.gov (United States)

    Pilizota, Teuta; Shaevitz, Joshua W

    2013-06-18

    The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on the order of seconds to examine the response of cells to a range of different conditions. We show that shock using an outer-membrane impermeable solute results in total cell volume reduction with no plasmolysis, whereas a shock caused by outer-membrane permeable ions causes plasmolysis immediately upon shock. Slowly permeable solutes, such as sucrose, which cross the membrane in minutes, cause plasmolysis to occur gradually as the chemical potential equilibrates. In addition, we quantify the detailed morphological changes to cell shape during osmotic shock. Nonplasmolyzed cells shrink in length with an additional lateral size reduction as the magnitude of the shock increases. Quickly plasmolyzing cells shrink largely at the poles, whereas gradually plasmolyzing cells invaginate along the cell cylinder. Our results give a comprehensive picture of the initial response of E. coli to hyperosmotic shock and offer explanations for seemingly opposing results that have been reported previously.

  6. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer

    Science.gov (United States)

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-01-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population. PMID:28248929

  7. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer.

    Science.gov (United States)

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-03-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population.

  8. Electrochemical Properties of Electrodes with Different Shapes and Diffusion Kinetic Analysis of Microbial Fuel Cells on Ocean Floor

    Institute of Scientific and Technical Information of China (English)

    FU Yubin; LIU Jia; SU Jia; ZHAO Zhongkai; LIU Yang; XU Qian

    2012-01-01

    Microbial fuel cell (MFC) on the ocean floor is a kind of novel energy- harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh (cell-1) vs.flat plate (cell-2),branch (cell-3) vs.cylinder (cell-4),and forest (cell-5) vs.disk (cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-l,2,3,4,5 and 6 respectively.And the corresponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusionlimited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the electrode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applications.

  9. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    Science.gov (United States)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  10. The effect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high frequencies.

    Science.gov (United States)

    Shatz, L F

    2000-03-01

    The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.

  11. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  12. Influence of the pattern shape on the photonic efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells

    CERN Document Server

    Herman, Aline; Depauw, Valerie; Daif, Ounsi El; Deparis, Olivier

    2012-01-01

    Patterning the front side of an ultra-thin crystalline silicon (c Si) solar cell helps keeping the energy conversion efficiency high by compensating for the light absorption losses. A super-Gaussian mathematical expression was used in order to encompass a large variety of nanopattern shapes and to study their influence on the photonic performance. We prove that the enhancement in the maximum achievable photo-current is due to both impedance matching condition at short wavelengths and to the wave nature of light at longer wavelengths. We show that the optimal mathematical shape and parameters of the pattern depend on the c Si thickness. An optimal shape comes with a broad optimal parameter zone where fabricating errors would have much less influence on the efficiency. We prove that cylinders are not the best suited shape. To compare our model with a real slab, we fabricated a nanopatterned c Si slab via Nano Imprint Lithography.

  13. Recherche de nouveaux systèmes de transport à travers l'enveloppe du chloroplaste. Caractérisation de nouvelles protéines hydrophobes.

    OpenAIRE

    Seigneurin-Berny, Daphné

    2000-01-01

    The chloroplast is an organelle totally integrated in the metabolism of the plant cell. It contains its own metabolic pathways like photosynthesis, aminoacid synthesis. The chloroplast is limited by the envelope composed of two membranes and an intermembrane space. Envelope membranes are the site of transport of metabolites, ions, proteins and information between the plastid and the cytosol. Then, they contain many transport systems, but only some of them have been characterised. Hydrophobici...

  14. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides.

    Science.gov (United States)

    Fukunaga, Kazuto; Tsutsumi, Hiroshi; Mihara, Hisakazu

    2016-11-04

    We recently developed a self-assembling peptide, E1Y9, that self-assembles into nanofibers and forms a hydrogel in the presence of Ca(2+) . E1Y9 derivatives conjugated with functional peptide sequences derived from extracellular matrices (ECMs) reportedly self-assemble into peptide nanofibers that enhance cell adhesion and differentiation. In this study, E1Y9/E1Y9-IKVAV-mixed hydrogels were constructed to serve as artificial ECMs that promote cell differentiation. E1Y9 and E1Y9-IKVAV co-assembled into networked nanofibers, and hydrogels with disk and string shapes were formed in response to Ca(2+) treatment. The neuronal differentiation of PC12 cells was facilitated on hydrogels of both shapes that contained the IKVAV motifs. Moreover, long neurites extended along the long axis of the string-shaped gel, suggesting that the structure of hydrogels of this shape can affect cellular orientation. Thus, E1Y9 hydrogels can potentially be used as artificial ECMs with desirable bioactivities and shapes that could be useful in tissue engineering applications. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 476-483, 2016.

  15. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.

    Science.gov (United States)

    Yakhnina, Anastasiya A; Gitai, Zemer

    2012-09-01

    In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors.

  16. act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc.

    Science.gov (United States)

    Benlali, A; Draskovic, I; Hazelett, D J; Treisman, J E

    2000-04-28

    Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.

  17. Wire-shaped quantum dots-sensitized solar cells based on nanosheets and nanowires.

    Science.gov (United States)

    Chen, Haining; Zhu, Liqun; Wang, Meng; Liu, Huicong; Li, Weiping

    2011-11-25

    Wire-shaped quantum dots-sensitized solar cells (WS-QDSCs) based on nanosheets and nanowires were fabricated and investigated for this paper. The nanosheets grown on stainless steel (SS) wire by electrodeposition were mainly composed of Zn₅(OH)₈Cl₂·H₂O and most of the Zn₅(OH)₈Cl₂·H₂O was converted to ZnO by post-treatment, and ZnO nanowires were directly grown on SS wire by the hydrothermal method. CdS QDs were deposited on nanosheets and nanowires by successive ionic layer adsorption and reaction method. The results of photoelectrochemical performance indicated that WS-QDSCs showed a similar conversion efficiency in polysulfide and Na₂SO₄ electrolytes, while the WS-QDSCs based on the Cu2S counter electrode achieved much higher performance than those based on SS and Cu counter electrodes. By optimizing electrodeposition duration, the WS-QDSCs based on nanosheets presented the highest conversion efficiency of 0.60% for the duration of 20 min. Performance comparison indicated that the WS-QDSC based on nanosheets showed very superior performance to that based on the nanowires with similar film thickness.

  18. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell

    Science.gov (United States)

    Michaleviciute, Asta; Degbia, Martial; Tomkeviciene, Ausra; Schmaltz, Bruno; Gurskyte, Egle; Grazulevicius, Juozas Vidas; Bouclé, Johan; Tran-Van, François

    2014-05-01

    Two new star-shaped carbazole molecules, including tri(9-(methoxyphenyl)carbazol-3-yl)amine named TMPCA having molecular glasses properties and hole transport properties were synthesized. Their thermal, optical, photophysical and electrochemical properties were studied. The carbazole based molecules exhibit high thermal stability with 5% weight loss temperatures over 480 °C with higher glass temperature transitions 164-175 °C than the classical spiro-OMeTAD reference molecule. Their optical band gaps (2.76 eV) are low enough not to hinder neither the absorption of the indoline sensitizer (D102) nor its photoexcitation and charge transfer. Solid state ionization potential (IPs) of TMPCA is well adapted to that of D102 and ensure a driving force ΔrG >0.2 eV for an efficient transfer and regeneration of the photo-oxidized dye. Solid-state dye sensitized solar cells ITO/TiO2/D102/T4MPCA/Au showed a power conversion efficiency of 2.23% with Jsc of 8.85 mA cm-2 under standard AM 1.5 simulated solar irradiation.

  19. The Mechanism Behind Beauty: Golden Ratio Appears in Red Blood Cell Shape

    CERN Document Server

    Zhang, Xue-Jun

    2016-01-01

    In the past two decades, under the conditions that both the osmotic pressure $\\Delta p$ and tensile stress $\\lambda$ equal zero, a rigorous solution (RS) of human red blood cell (RBC) with a minus spontaneous curvature $c_{0}$ has been derived with Helfrich model. And, by fitting with observed shapes of RBC, $c_{0}R_{0}$ has been predicted to be -1.62 as minus golden ratio, where $R_{0}$ is the radius of a sphere with the same area of RBC. In this Lett., it is also found $\\rho_{max}$ /$\\rho_{B}\\approx$ 1.6 shows a approximately beautiful golden cross section of RBC, where $\\rho_{max}$ is the radius of RBC and $\\rho_{B}$ is the radius at maximal thickness of RBC. With a complete numerical calculation, we find the mechanism behind the beauty that minus golden ratio of $c_{0}R_{0}$ is the balance between economical surface area and enough deformability to pass spleen, the so called "physical fitness test".

  20. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  1. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    Science.gov (United States)

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  2. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Sinem Beyhan

    2013-07-01

    Full Text Available Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between

  3. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    Science.gov (United States)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  4. Analysis of synonymous codon usage in chloroplast genome of Populus alba

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; LONG Wei; LI Xia

    2008-01-01

    The pattern of codon usage in the chloroplast genome of Populus alba was investigated.Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plot were conducted to analyze synonymous codon usage.The results of correspondence analysis showed that the distribution of genes on the major axis was significantly correlated with the frequency of use of G+C in synonymously variable third position of sense codon (GC3S),(r=0.349),and the positions of genes on the axis 2 and axis 3 were significantly correlated with CAI (r=-0.348,p<0.01 and r=0.602,p<0.01).The ENc for most genes was similar to that for the expected ENc based on the GC3S,but several genes with low ENC values were lying below the expected curve.All of these data indicated that codon usage was dominated by a mutational bias in chloroplast genome of P.alba.The selection in nature for translational efficiency only played a minor role in shaping codon usage in the chloroplast genome of P.alba.

  5. Why have chloroplasts developed a unique motility system?

    Science.gov (United States)

    Suetsugu, Noriyuki; Dolja, Valerian V; Wada, Masamitsu

    2010-10-01

    Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.

  6. Orientation of the pigment molecules in the chloroplast

    NARCIS (Netherlands)

    Goedheer, J.C.

    1955-01-01

    Dichroism, absorption anisotropy, and anomal dispersion of birefringence were measured in the big lamellate chloroplasts of Mougeotia. The results of these measurements indicate a certain orientation of the chlorophyll molecules, and to a smaller extent, of the carotenoids in the chloroplast. In sp

  7. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    Science.gov (United States)

    Yan, Zheng; Liang, Hongxing; Deng, Li; Long, Hui; Chen, Hong; Chai, Weiran; Suo, Lun; Xu, Chen; Kuang, Yanping; Wu, Lingqian; Lu, Shengsheng; Lyu, Qifeng

    2015-01-01

    Increased risk of monozygotic twinning (MZT) has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM) splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i) in vivo developed blastocysts and (ii-iii) in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.

  8. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    Directory of Open Access Journals (Sweden)

    Zheng Yan

    Full Text Available Increased risk of monozygotic twinning (MZT has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i in vivo developed blastocysts and (ii-iii in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P < 0.01. Moreover, Oct4 immunofluorescence staining was performed to identify the ICM in the hatching and hatched blastocysts. Scattered and split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P < 0.01. Therefore, our results demonstrate that extended in vitro culture can cause high frequencies of '8'-shaped hatching, and '8'-shaped hatching that may disturb ICM herniation leading to increased risk of ICM splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.

  9. Changes in size and shape of auditory hair cells in vivo during noise-induced temporary threshold shift.

    Science.gov (United States)

    Dew, L A; Owen, R G; Mulroy, M J

    1993-03-01

    In this study we describe changes in the size and shape of auditory hair cells of the alligator lizard in vivo during noise-induced temporary threshold shift. These changes consist of a decrease in cell volume, a decrease in cell length and an increase in cell width. We speculate that these changes are due to relaxation of cytoskeletal contractile elements and osmotic loss of intracellular water. We also describe a decrease in the surface area of the hair cell plasmalemma, and speculate that it is related to the endocytosis and intracellular accumulation of cell membrane during synaptic vesicle recycling. Finally we describe an increase in the endolymphatic surface area of the hair cell, and speculate that this could alter the micromechanics of the stereociliary tuft to attenuate the effective stimulus.

  10. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    OpenAIRE

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our und...

  11. Rapid changes in shape and cell architecture of isolated fragments of amphibian embryonic tissues as an experimental model of morphogenesis.

    Science.gov (United States)

    Belousov, L V; Dorfman, Y G; Cherdantsev, V G

    1975-07-01

    Changes in the shape and cell architecture of pieces of epithelial and neural ectoderm, mesoderm, neural tube, and combined ectomesodermal fragments from embryos of Rana temporaria 0-60 min after isolation were studied. The fragments were capable of changing their shape quickly (actually during separation) or after a latent period of several minutes. Rapid deformations were not prevented by cooling or by moderate doses of cyanide; as a rule they were connected with contraction of the surface area of the cells of the fragment and they can be regarded as relaxation to forms with lower mechanical energy. The direction of the deformation usually coincides with the subsequent normal morphogenesis of the particular anlage. Deformations with a latent period are suppressed by cooling and by the addition of cyanide, which lead to an increase in the surface area of individual cells, but they reduce the total surface area of the fragment. The shape of the fragments becomes more complex: they become irregularly twisted, they form folds, and they separate into spherical regions with stretched surfaces ("drops"). These processes are connected with the performance of positive mechanical work by the intracellular contractile systems. The reasons why the fragments become more complex in shape are discussed.

  12. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  13. The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli.

    Science.gov (United States)

    Ranjit, Dev K; Young, Kevin D

    2013-06-01

    Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.

  14. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    Energy Technology Data Exchange (ETDEWEB)

    Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hagen, E. C. [National Security Technologies, Las Vegas, NV 89030 (United States); Rose, D. V.; Welch, D. R. [Voss Scientific LLC, Albuquerque NM 87108 (United States)

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  15. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  16. A new mechanism shapes the naïve CD8(+) T cell repertoire: the selection for full diversity.

    Science.gov (United States)

    Gonçalves, Pedro; Ferrarini, Marco; Molina-Paris, Carmen; Lythe, Grant; Vasseur, Florence; Lim, Annik; Rocha, Benedita; Azogui, Orly

    2017-05-01

    During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8(+) T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8(+) T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.

  17. Transposon-induced nuclear mutations that alter chloroplast gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  18. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes.

    Science.gov (United States)

    Fridberger, A; Ulfendahl, M

    1996-01-01

    Impaired auditory function following acoustic overstimulation, or noise, is mainly reported to be accompanied by cellular changes such as damage to the sensory hair bundles, but changes in the cell bodies of the outer hair cells have also been described. To investigate more closely the immediate cellular responses to overstimulation, isolated guinea pig outer hair cells were subjected to a 200 Hz oscillating water jet producing intense mechanical stimulation. The water jet was aimed at the cell body of the isolated outer hair cell. Cell shape changes were studied using video microscopy, and intracellular calcium concentration changes were monitored by means of the fluorescent calcium indicator Fluo-3. Cells exposed to a high-intensity stimulus showed surprisingly small light-microscopical alterations. The cytoplasmic calcium concentration increased in most cells, although some cells appeared very resistant to the mechanical stress. No correlation could be found be tween the calcium concentration changes and the cell length. The changes in calcium concentration reported here are suggested to be involved in the long-term pathogenesis of noise-induced hair cell damage.

  19. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.

    Science.gov (United States)

    Booth-Gauthier, Elizabeth A; Du, Vicard; Ghibaudo, Marion; Rape, Andrew D; Dahl, Kris Noel; Ladoux, Benoit

    2013-03-01

    Cell migration through tight interstitial spaces in three dimensional (3D) environments impacts development, wound healing and cancer metastasis and is altered by the aging process. The stiffness of the extracellular matrix (ECM) increases with aging and affects the cells and cytoskeletal processes involved in cell migration. However, the nucleus, which is the largest and densest organelle, has not been widely studied during cell migration through the ECM. Additionally, the nucleus is stiffened during the aging process through the accumulation of a mutant nucleoskeleton protein lamin A, progerin. By using microfabricated substrates to mimic the confined environment of surrounding tissues, we characterized nuclear movements and deformation during cell migration into micropillars where interspacing can be tuned to vary nuclear confinement. Cell motility decreased with decreased micropillar (μP) spacing and correlated with increased dysmorphic shapes of nuclei. We examined the effects of increased nuclear stiffness which correlates with cellular aging by studying Hutchinson-Gilford progeria syndrome cells which are known to accumulate progerin. With the expression of progerin, cells showed a threshold response to decreased μP spacing. Cells became trapped in the close spacing, possibly from visible micro-defects in the nucleoskeleton induced by cell crawling through the μP and from reduced force generation, measured independently. We suggest that ECM changes during aging could be compounded by the increasing stiffness of the nucleus and thus changes in cell migration through 3D tissues.

  20. Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea.

    Science.gov (United States)

    Shehata, W E; Brownell, W E; Dieler, R

    1991-01-01

    A reversible tinnitus and hearing loss have long been known to result from large doses of salicylate. Cochlear electrophysiology and otoacoustic emission studies suggest that the drug may interfere with outer hair cell electromotility. Exposure of isolated outer hair cells to sodium salicylate concentrations ranging from 0.05 to 10 mM reveals a dose dependent, reversible loss of turgidity and dimunition of electromotility. There was also a change in membrane conductance with salicylate superfusion that occurred later in time from the onset of shape and electromotility changes. There was no evidence of dose dependence for the change in membrane conductance, nor was the change reversible. The changes in shape and electromotility that we observe in vitro may impair cochlear partition movements in vivo and could account, at least in part, for the salicylate-induced hearing loss and effects on otoacoustic emissions.

  1. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.

    Science.gov (United States)

    Martin, William; Rujan, Tamas; Richly, Erik; Hansen, Andrea; Cornelsen, Sabine; Lins, Thomas; Leister, Dario; Stoebe, Bettina; Hasegawa, Masami; Penny, David

    2002-09-17

    Chloroplasts were once free-living cyanobacteria that became endosymbionts, but the genomes of contemporary plastids encode only approximately 5-10% as many genes as those of their free-living cousins, indicating that many genes were either lost from plastids or transferred to the nucleus during the course of plant evolution. Previous estimates have suggested that between 800 and perhaps as many as 2,000 genes in the Arabidopsis genome might come from cyanobacteria, but genome-wide phylogenetic surveys that could provide direct estimates of this number are lacking. We compared 24,990 proteins encoded in the Arabidopsis genome to the proteins from three cyanobacterial genomes, 16 other prokaryotic reference genomes, and yeast. Of 9,368 Arabidopsis proteins sufficiently conserved for primary sequence comparison, 866 detected homologues only among cyanobacteria and 834 other branched with cyanobacterial homologues in phylogenetic trees. Extrapolating from these conserved proteins to the whole genome, the data suggest that approximately 4,500 of Arabidopsis protein-coding genes ( approximately 18% of the total) were acquired from the cyanobacterial ancestor of plastids. These proteins encompass all functional classes, and the majority of them are targeted to cell compartments other than the chloroplast. Analysis of 15 sequenced chloroplast genomes revealed 117 nuclear-encoded proteins that are also still present in at least one chloroplast genome. A phylogeny of chloroplast genomes inferred from 41 proteins and 8,303 amino acids sites indicates that at least two independent secondary endosymbiotic events have occurred involving red algae and that amino acid composition bias in chloroplast proteins strongly affects plastid genome phylogeny.

  2. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-03-14

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density

  3. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control.

    Science.gov (United States)

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-05-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.

  4. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control[W

    Science.gov (United States)

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-01-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria. PMID:24879428

  5. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    Science.gov (United States)

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis.

  6. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube.

    Science.gov (United States)

    Boyle, Michael J; French, Rachael L; Cosand, K Amber; Dorman, Jennie B; Kiehart, Daniel P; Berg, Celeste A

    2010-10-01

    The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.

  7. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

    OpenAIRE

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q. P.; Kadota, Akeo; Wada, Masamitsu

    2010-01-01

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for c...

  8. Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration

    NARCIS (Netherlands)

    Niculescu, I.; Textor, J.C.; Boer, R.J. de

    2015-01-01

    Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels

  9. Crawling and Gliding : A Computational Model for Shape-Driven Cell Migration

    NARCIS (Netherlands)

    Niculescu, Ioana; Textor, Johannes; de Boer, Rob J

    2015-01-01

    Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels

  10. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    CERN Document Server

    Ashenfelter, J; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bowes, A; Brodsky, J P; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Commeford, K; Davee, D; Dean, D; Deichert, G; Diwan, M V; Dolinski, M J; Dolph, J; Dwyer, D A; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Goddard, B W; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Langford, T J; Littlejohn, B R; Caicedo, D A Martinez; McKeown, R D; Mendenhall, M P; Mueller, P; Mumm, H P; Napolitano, J; Neilson, R; Norcini, D; Pushin, D; Qian, X; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Sheets, S; Stemen, N T; Surukuchi, P T; Varner, R L; Viren, B; Wang, W; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zangakis, G; Zhang, C; Zhang, X

    2015-01-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  11. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape.

    Directory of Open Access Journals (Sweden)

    Shinsaku Tokuda

    Full Text Available ZO-1, ZO-2 and ZO-3 are tight junction-associated scaffold proteins that bind to transmembrane proteins of tight junctions and the underlying cytoskeleton. ZO-1 is involved in the regulation of cytoskeletal organization, but its detailed molecular mechanism is less well understood. Gene knockout is an ideal method to investigate the functions of proteins that might have redundant functions such as ZO proteins, when compared with methods such as RNA interference-mediated suppression of gene expression. In this study we applied transcription activator-like effector nucleases (TALENs, a recently developed genome editing method for gene knockout, and established ZO-1 knockout clones in Madin-Darby canine kidney (MDCK cells. ZO-1 knockout induced striking changes in myosin organization at cell-cell contacts and disrupted the localization of tight junction proteins; these findings were previously unseen in studies of ZO-1 knockdown by RNA interference. Rescue experiments revealed that trace ZO-1 expression reversed these changes while excessive ZO-1 expression induced an intensive zigzag shape of cell-cell junctions. These results suggest a role for ZO-1 in the regulation of cytoskeleton and shape of cell-cell junctions in MDCK cells and indicate the advantage of knockout analysis in cultured cells.

  12. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  13. Regulation of cell shape, wing hair initiation and the actin cytoskeleton by Trc/Fry and Wts/Mats complexes.

    Science.gov (United States)

    Fang, Xiaolan; Adler, Paul N

    2010-05-15

    The two NDR kinase family genes in Drosophila are tricornered (trc) and warts (wts). Previous studies on trc have focused on its role in the morphogenesis of extensions of epidermal cells and in dendrite branching and tiling. Studies on wts have focused on its roles as a tumor suppressor, in controlling photoreceptor type and in the maintenance of dendrites. Here we examine and compare the function of these genes in wing cells prior to their terminal differentiation. Mutations in these genes lead to changes in cell shape, cellular levels of F-actin, the timing of differentiation, and the expression of multiple wing hairs and DE-Cadherin. We showed that the effects of wts on all of these processes appear to be mediated by its regulation of the Yorkie transcription factor. We also provide evidence that trc regulates the expression of DE-cadherin and mwh. In addition, we showed that the effects on cell shape and the timing of differentiation appear to be not linked to changes in relative growth rate of cells compared to their neighbors.

  14. Pob1 ensures cylindrical cell shape by coupling two distinct rho signaling events during secretory vesicle targeting.

    Science.gov (United States)

    Nakano, Kentaro; Toya, Mika; Yoneda, Aki; Asami, Yukiko; Yamashita, Akira; Kamasawa, Naomi; Osumi, Masako; Yamamoto, Masayuki

    2011-06-01

    Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.

  15. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  16. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki

    2014-01-01

    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs - VGCF(®)-X, VGCF(®)-S, and VGCF(®) (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) - and three CSCNTs of different lengths (CS-L, 20-80 μm; CS-S, 0.5-20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1-50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.

  17. Effects of Glycerol on the Fluorescence Spectra and Chloroplast Ultrastructure of Phaeodactylum tricornutum (Bacillariophyta)

    Institute of Scientific and Technical Information of China (English)

    Xiao-Juan Liu; Shun-Shan Duan; Ai-Fen Li; Kai-Feng Sun

    2009-01-01

    Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F6851F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.

  18. 2010 GORDON RESEARCH CONFERENCE ON MITOCHONDRIA & CHLOROPLASTS, LUCCA, ITALY, JULY 11-16, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Alice Barkan

    2010-07-16

    The 2010 GRC on Mitochondria & Chloroplasts will assemble an international group of molecular, structural and cellular biologists, biochemists and geneticists investigating a broad spectrum of fundamental problems related to the biology of these organelles in animal, plant and fungal cells. This field has witnessed an extraordinary expansion in recent years, fueled by the discovery of the role of mitochondria in human disease and ageing, and of the synergy of chloroplasts and mitochondria in energetic output, the identification of novel factors involved in organelle division, movement, signaling and acclimation to changing environmental conditions, and by the powerful tools of organelle proteomics. The 2010 GRC will highlight advances in the elucidation of molecular mechanisms of organelle biogenesis including regulation of genome structure, evolution and expression, organellar protein import, assembly and turnover of respiratory and photosynthetic complexes, bidirectional signaling between organelles and nucleus, organelle morphology and dynamics, and the integration of cellular metabolism. We will also explore progress in mechanisms of disease and ageing/ senescence in animals and plants. The organellar field has forged new fronts toward a global and comprehensive understanding of mitochondrial and chloroplast biology at the molecular level. Many of the molecules under study in model organisms are responsible for human diseases, providing significant impetus for a meeting that encourages interactions between mammalian, fungal and plant organellar biologists.

  19. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids[OPEN

    Science.gov (United States)

    Hirano, Takayuki; Tanidokoro, Koji; Shimizu, Yasuhiro; Kawarabayasi, Yutaka; Ohshima, Toshihisa; Sato, Momo; Tadano, Shinji; Ishikawa, Hayato; Takio, Susumu; Takechi, Katsuaki; Takano, Hiroyoshi

    2016-01-01

    It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P. patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana. PMID:27325639

  20. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  1. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  2. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    Science.gov (United States)

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-01-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit. PMID:27585744

  3. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome.

    Directory of Open Access Journals (Sweden)

    Alison Gonçalves Nazareno

    Full Text Available Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq. L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp and a small single copy region (SSC, 17,586 bp separated by inverted repeat regions (IRs, 25,789 bp. In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering

  4. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings.

    Science.gov (United States)

    Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing

    2011-07-01

    Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to.

  5. Role of interfacial strain in fiber-shaped solar cell based on TiO2 nanotube arrays.

    Science.gov (United States)

    Fan, Xing; Huang, Lu; Liu, Zuohua; Tao, Changyuan

    2014-09-01

    This study reports the first equivalent circuit model for all-solid, fiber-shaped, dye-sensitized solar cell (DSSC), in order to reveal the internal catalytic reaction mechanism in this new type of solar cells. The counter electrode of the winding structure leads to negative impedance under high frequency, which is consistent with the model. The study further investigates the strain of the TiO2 nanotube (TNT) arrays and its influence on interfacial mechanism. As a unique characteristic of fiber-shaped DSSC, the strain of the TNT arrays strengthens the permeation of the electrolyte. The permeation not only improves the efficiency of interfacial photochemical reactions, but also magnifies the probability of the side reactions on the electrolyte/Ti interfaces. Therefore, both the variation of impedance and overall conversion efficiency exhibit similar inflection points. Different from that of traditional plate-type device, the interfacial impedance in the equivalent circuit of fiber-shaped devices should be treated as a variable for changes in TiO2 and CuI layers.

  6. Functional Characterization of Shape Memory CuZnAl Open-Cell Foams by Molten Metal Infiltration

    Science.gov (United States)

    Arnaboldi, S.; Bassani, P.; Passaretti, F.; Redaelli, A.; Tuissi, A.

    2011-07-01

    In the recent years, the research for novel materials with tailored mechanical properties, as well as functional properties, has encouraged the study of porous and cellular materials. Our previous work proposed and reported about the possibility to manufacture open-cell metal foams of CuZnAl shape memory alloy by liquid infiltration in a leachable bed of silica-gel particles. This innovative methodology is based on cheap commercial consumables and a simple technology, focusing on intermediate-density low-cost foams with interesting cost/benefits ratio. Microstructural analyses on foamed specimens showed uniform microstructure of ligaments and a very regular and well reproducible open-cell morphology. Moreover, calorimetric analysis detected a thermo-elastic martensitic transformation in the foamed material. In this study, a CuZnAl shape memory alloy was considered and tested to clarify possible effects of the foaming process on the functional properties of the material. Morphological, calorimetric, and thermo-mechanical analyses were carried out. The results show that it is possible to produce metal foams of CuZnAl shape memory alloy with different functional properties and able to recover mono-axial compressive strains up to 3%.

  7. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    Science.gov (United States)

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  8. Kv3.3b expression defines the shape of the complex spike in the Purkinje cell.

    Science.gov (United States)

    Veys, Ken; Snyders, Dirk; De Schutter, Erik

    2013-01-01

    The complex spike (CS) in cerebellar Purkinje Cells (PC) is not an all-or-nothing phenomena as originally proposed, but shows variability depending on the spiking behavior of the Inferior Olive and intrinsic variability in the number and shape of spikelets. The potassium channel Kv3.3b, which has been proposed to undergo developmental changes during the postnatal PC maturation, has been shown to be crucial for the repolarization of the spikelets in the CS. We address here the regulation of the intrinsic CS variability by the expression of inactivating Kv3.3 channels in PCs by combining patch-clamp recordings and single-cell PCR methods on the same neurons, using a technique that we recently optimized to correlate single cell transcription levels with membrane ion channel electrophysiology. We show that while the inactivating TEA sensitive Kv3.3 current peak intensity increases with postnatal age, the channel density does not, arguing against postnatal developmental changes of Kv3.3b expression. Real time PCR of Kv3.3b showed a high variability from cell to cell, correlated with the Kv3.3 current density, and suggesting that there are no mechanisms regulating these currents beyond the mRNA pool. We show a significant correlation between normalized quantity of Kv3.3b mRNA and both the number of CS spikelets and their rate of voltage fluctuation, linking the intrinsic CS shape directly to the Kv3.3b mRNA pool. Comparing the observed cell-to-cell variance with studies on transcriptional noise suggests that fluctuations of the Kv3.3b mRNA pool are possibly not regulated but represent merely transcriptional noise, resulting in intrinsic variability of the CS.

  9. A switch from canonical to noncanonical autophagy shapes B cell responses.

    Science.gov (United States)

    Martinez-Martin, Nuria; Maldonado, Paula; Gasparrini, Francesca; Frederico, Bruno; Aggarwal, Shweta; Gaya, Mauro; Tsui, Carlson; Burbage, Marianne; Keppler, Selina Jessica; Montaner, Beatriz; Jefferies, Harold B J; Nair, Usha; Zhao, Yan G; Domart, Marie-Charlotte; Collinson, Lucy; Bruckbauer, Andreas; Tooze, Sharon A; Batista, Facundo D

    2017-02-10

    Autophagy is important in a variety of cellular and pathophysiological situations; however, its role in immune responses remains elusive. Here, we show that among B cells, germinal center (GC) cells exhibited the highest rate of autophagy during viral infection. In contrast to mechanistic target of rapamycin complex 1-dependent canonical autophagy, GC B cell autophagy occurred predominantly through a noncanonical pathway. B cell stimulation was sufficient to down-regulate canonical autophagy transiently while triggering noncanonical autophagy. Genetic ablation of WD repeat domain, phosphoinositide-interacting protein 2 in B cells alone enhanced this noncanonical autophagy, resulting in changes of mitochondrial homeostasis and alterations in GC and antibody-secreting cells. Thus, B cell activation prompts a temporal switch from canonical to noncanonical autophagy that is important in controlling B cell differentiation and fate.

  10. Water behavior in a U-shaped flow channel of PEM fuel cells. Paper no. IGEC-1-036

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Univ. of Windsor, Dept. of Mechanical, Automotive and Materials Engineering, Windsor, Ontario (Canada)]. E-mail: bzhou@uwindsor.ca; Liu, Z.-S. [National Research Council Canada, Inst. for Fuel Cell innovation, Vancouver, British Columbia (Canada)

    2005-07-01

    The behavior of liquid water inside a U-shaped channel for a Proton Exchange Membrane (PEM) fuel cell was investigated through CFD modeling with the FLUENT software package. The Volume-Of-Fluid (VOF) model was adopted to track dynamic air-water interfaces. Three cases with varying initial water phase distributions corresponding to different fuel cell operating conditions were numerically simulated to obtain a better understanding of water behavior inside the serpentine channel. The results show that the bend area in the serpentine flow channel has significant effects on the flow field, which in turn affects the air-water flow and water liquid distribution inside the channel or along the interior channel surfaces, thus affecting fuel cell performance. (author)

  11. Spatiotemporal Pattern Formation in BioFluids I: Cell Shape Perturbants As Evidence of Spatially-Organised Membrane Flows

    CERN Document Server

    Lofthouse, J T

    2003-01-01

    I show the assumed Bilayer structure of cell membranes is Topologically falsified by known aminophospholipid dynamics in metabolically-active, Far from Equilibrium cells. The sensitivity of lipid and cytoplasmic flows to temperature, surfactants, viscosity and the gravity vector are used to suggest that rather than being random viscous fluids as currently assumed, both are actually spatially-organised by convective and shear driven mechanisms in vivo. I show how protein-lipid feedback provokes a Gestalt Shift in Cell Mechanics by demonstrating that the primary forces involved in shape changes are generated by bifurcations in fluid flow Topology, which induce affine deformations of the cytoskeletal lattice. The feedback model allows the transduction of Gravitational information into biological form, is universally applicable, and provides a rationale for Homeoviscous Adaptation, and the extensive lipid polymorphism observed in Nature.

  12. Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells

    Energy Technology Data Exchange (ETDEWEB)

    Boca, Sanda; Astilean, Simion [Nanobiophotonics Center, Institute for Interdisciplinary Research in Nanobioscience, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca (Romania); Rugina, Dumitrita; Pintea, Adela [Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372, Cluj-Napoca (Romania); Barbu-Tudoran, Lucian, E-mail: sanda.boca@phys.ubbcluj.ro, E-mail: simion.astilean@phys.ubbcluj.ro [Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006, Cluj-Napoca (Romania)

    2011-02-04

    The detection of Raman signals inside living cells is a topic of great interest in the study of cell biology mechanisms and for diagnostic and therapeutic applications. This work presents the synthesis and characterization of flower-shaped gold nanoparticles and demonstrates their applicability as SERS-active tags for cellular spectral detection. The particles were synthesized by a facile, rapid new route that uses ascorbic acid as a reducing agent of gold salt. Two triarylmethane dyes which are widely used as biological stains, namely malachite green oxalate and basic fuchsin, were used as Raman-active molecules and the polymer mPEG-SH as capping material. The as-prepared SERS-active nanoparticles were tested on a human retinal pigment epithelial cell line and found to present a low level of cytotoxicity and high chemical stability together with SERS sensitivity down to picomolar particle concentrations.

  13. Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology

    Directory of Open Access Journals (Sweden)

    Sung Hsin-Ho

    2009-02-01

    Full Text Available Abstract Background How epithelial cells adopt their particular polarised forms is poorly understood. In a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved gene previously characterised in yeast. Results In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In addition, the mutant cells can also display altered cell polarity, forming multiple layers in follicle cells and leaving the epithelium in imaginal discs. In yeast, sds22 encodes a PP1 phosphatase regulatory subunit. Consistent with this, we show that Drosophila Sds22 binds to all four Drosophila PP1s and shares an overlapping phenotype with PP1beta9c. We also show that two previously postulated PP1 targets, Spaghetti Squash and Moesin are hyper-phosphorylated in sds22 mutants. This function is shared by the human homologue of Sds22, PPP1R7. Conclusion Sds22 is a conserved PP1 phosphatase regulatory subunit that controls cell shape and polarity.

  14. Local 3D matrix confinement determines division axis through cell shape.

    Science.gov (United States)

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  15. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis.

    Science.gov (United States)

    Kong, Sam-Geun; Arai, Yoshiyuki; Suetsugu, Noriyuki; Yanagida, Toshio; Wada, Masamitsu

    2013-02-01

    Phototropins (phot1 and phot2 in Arabidopsis thaliana) relay blue light intensity information to the chloroplasts, which move toward weak light (the accumulation response) and away from strong light (the avoidance response). Chloroplast-actin (cp-actin) filaments are vital for mediating these chloroplast photorelocation movements. In this report, we examine in detail the cp-actin filament dynamics by which the chloroplast avoidance response is regulated. Although stochastic dynamics of cortical actin fragments are observed on the chloroplasts, the basic mechanisms underlying the disappearance (including severing and turnover) of the cp-actin filaments are regulated differently from those of cortical actin filaments. phot2 plays a pivotal role in the strong blue light-induced severing and random motility of cp-actin filaments, processes that are therefore essential for asymmetric cp-actin formation for the avoidance response. In addition, phot2 functions in the bundling of cp-actin filaments that is induced by dark incubation. By contrast, the function of phot1 is dispensable for these responses. Our findings suggest that phot2 is the primary photoreceptor involved in the rapid reorganization of cp-actin filaments that allows chloroplasts to change direction rapidly and control the velocity of the avoidance movement according to the light's intensity and position.

  16. Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome?

    Science.gov (United States)

    Armbruster, Ute; Hertle, Alexander; Makarenko, Elina; Zühlke, Jessica; Pribil, Mathias; Dietzmann, Angela; Schliebner, Ivo; Aseeva, Elena; Fenino, Elena; Scharfenberg, Michael; Voigt, Christian; Leister, Dario

    2009-11-01

    Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into the organelle, where the cTP is removed. Only a few unambiguous instances of cp proteins that do not require cTPs (non-canonical cp proteins) have been reported so far. However, the survey of data from large-scale proteomic studies presented here suggests that the fraction of such proteins in the total cp proteome might be as large as approximately 30%. To explore this discrepancy, we chose a representative set of 28 putative non-canonical cp proteins, and used in vitro import and Red Fluorescent Protein (RFP)-fusion assays to determine their sub-cellular destinations. Four proteins, including embryo defective 1211, glycolate oxidase 2, protein disulfide isomerase-like protein (PDII), and a putative glutathione S-transferase, could be unambiguously assigned to the chloroplast. Several others ('potential cp proteins') were found to be imported into chloroplasts in vitro, but failed to localize to the organelle when RFP was fused to their C-terminal ends. Extrapolations suggest that the fraction of cp proteins that enter the inner compartments of the organelle, although they lack a cTP, might be as large as 11.4% of the total cp proteome. Our data also support the idea that cytosolic proteins that associate with the cp outer membrane might account for false positive cp proteins obtained in earlier studies.

  17. Light-dependent maintenance of hydraulic function in mangrove branches: do xylary chloroplasts play a role in embolism repair?

    Science.gov (United States)

    Schmitz, N; Egerton, J J G; Lovelock, C E; Ball, M C

    2012-07-01

    • To clarify the role of branch photosynthesis in tree functioning, the presence and function of chloroplasts in branch xylem tissue were studied in a diverse range of mangrove species growing in Australia. • The presence of xylary chloroplasts was observed via chlorophyll fluorescence of transverse sections. Paired, attached branches were selected to study the effects of covering branches with aluminium foil on the gas exchange characteristics of leaves and the hydraulic conductivity of branches. • Xylary chloroplasts occurred in all species, but were differently distributed among living cell types in the xylem. Covering stems altered the gas exchange characteristics of leaves, such that water-use efficiency was greater in exposed leaves of covered than of uncovered branches. • Leaf-specific hydraulic conductivity of stems was lower in covered than in uncovered branches, implicating stem photosynthesis in the maintenance of hydraulic function. Given their proximity to xylem vessels, we suggest that xylary chloroplasts may play a role in light-dependent repair of embolized xylem vessels.

  18. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    Science.gov (United States)

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  19. Characterization and physiological role of two types of chloroplastic fructose-1,6-bisphosphatases in Euglena gracilis.

    Science.gov (United States)

    Ogawa, Takahisa; Kimura, Ayako; Sakuyama, Harumi; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-06-01

    The chloroplastic fructose-1,6-bisphosphatase (FBPase) is a late-limiting enzyme in the Calvin cycle. In the present study, we isolated and characterized the cDNAs encoding two types of chloroplastic FBPase isoforms (EgFBPaseI and II) from Euglena gracilis. The Km values of recombinant EgFBPaseI and EgFBPaseII for fructose 1,6-bisphosphate (Fru 1,6-P2) were 165 ± 17 and 2200 ± 200 μM, respectively. The activity of EgFBPaseI was inhibited by 1mM H2O2 and recovered when incubated with DTT. The activity of EgFBPaseII was resistant to concentrations of H2O2 up to 1mM, which was distinct from those of EgFBPaseI and spinach chloroplastic FBPase. The suppression of EgFBPaseI gene expression by gene silencing markedly decreased photosynthetic activity and inhibited cell growth. The results of the present study clearly demonstrated that EgFBPaseI played a critical role in photosynthesis in Euglena chloroplasts.

  20. Exploring ligand recognition, selectivity and dynamics of TPR domains of chloroplast Toc64 and mitochondria Om64 from Arabidopsis thaliana.

    Science.gov (United States)

    Panigrahi, Rashmi; Whelan, James; Vrielink, Alice

    2014-06-01

    The study aims to gain insight into the mode of ligand recognition by tetratricopeptide repeat (TPR) domains of chloroplast translocon at the outer envelope of chloroplast (Toc64) and mitochondrial Om64, two paralogous proteins that mediate import of proteins into chloroplast and mitochondria, respectively. Chaperone proteins associate with precursor proteins in the cytosol to maintain them in a translocation competent conformation and are recognized by Toc64 and Om64 that are located on the outer membrane of the target organelle. Heat shock proteins (Hsp70) and Hsp90 are two chaperones, which are known to play import roles in protein import. The C-termini of these chaperones are known to interact with the TPR domain of chloroplast Toc64 and mitochondrial Om64 in Arabidopsis thaliana (At). Using a molecular dynamics approach and binding energy calculations, we identify important residues involved in the interactions. Our findings suggest that the TPR domain from AtToc64 has higher affinity towards C-terminal residues of Hsp70. The interaction occurs as the terminal helices move towards each other enclosing the cradle on interaction of AtHsp70 with the TPR domain. In contrast, the TPR domain from AtOm64 does not discriminate between the C-termini of Hsp70 and Hsp90. These binding affinities are discussed with respect to our knowledge of protein targeting and specificity of protein import into endosymbiotic organelles in plant cells.

  1. CURE-Chloroplast: A chloroplast C-to-U RNA editing predictor for seed plants

    OpenAIRE

    2009-01-01

    Abstract Background RNA editing is a type of post-transcriptional modification of RNA and belongs to the class of mechanisms that contribute to the complexity of transcriptomes. C-to-U RNA editing is commonly observed in plant mitochondria and chloroplasts. The in vivo mechanism of recognizing C-to-U RNA editing sites is still unknown. In recent years, many efforts have been made to computationally predict C-to-U RNA editing sites in the mitochondria of seed plants, but there is still no algo...

  2. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-06-01

    Full Text Available Genetic modification (“transfection” of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino ethyl methacrylate (DMAEMA building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293 and non-adherent (Jurkat, primary human T lymphocytes mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate, provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution, but also the concentrations adjusted during polyplex formation, affected the results.

  3. PHYLOGENY AND SYSTEMATICS OF EUGLENA (EUGLENACEAE) SPECIES WITH AXIAL, STELLATE CHLOROPLASTS BASED ON MORPHOLOGICAL AND MOLECULAR DATA-NEW TAXA, EMENDED DIAGNOSES, AND EPITYPIFICATIONS(1).

    Science.gov (United States)

    Kosmala, Sylwia; Karnkowska-Ishikawa, Anna; Milanowski, Rafał; Kwiatowski, Jan; Zakryś, Bożena

    2009-04-01

    Morphological and molecular studies, as well as original literature reexamination, necessitate establishment of five Euglena species with a single axial, stellate chloroplast [Euglena viridis (O. F. Müller) Ehrenberg 1830, Euglena pseudoviridis Chadefaud 1937, Euglena stellata Mainx 1926, Euglena pseudostellata sp. nov., and Euglena cantabrica Pringsheim 1956], three species with two chloroplasts (Euglena geniculata Dujardin ex Schmitz 1884, Euglena chadefaudii Bourrelly 1951, and Euglena pseudochadefaudii sp. nov.), and one species with three chloroplasts (Euglena tristella Chu 1946). The primary morphological features, allowing distinction of the considered species are the presence and the shape of mucocysts, as well as the number of chloroplasts. Spherical mucocysts occur in E. cantabrica and E. geniculata, while spindle-shaped mucocysts are present in E. stellata, E. pseudostellata, E. chadefaudii, E. pseudochadefaudii, and E. tristella. No mucocysts are observed in E. viridis and E. pseudoviridis. Two new species (E. pseudochadefaudii sp. nov. and E. pseudostellata sp. nov.) differ from the respective species, E. chadefaudii and E. stellata, only at the molecular level. Molecular signatures and characteristic sequences are designated for nine distinguished species. Emended diagnoses for all and delimitation of epitypes for seven species (except E. viridis and E. tristella) are proposed.

  4. Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

    Directory of Open Access Journals (Sweden)

    Eun-Young Seo

    2014-03-01

    Full Text Available The multifunctional triple gene block protein 1 (TGB1 of the Potexvirus Alternanthera mosaic virus (AltMV has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta′ chain subunit (ATP synthase delta′, light harvesting chlorophyll-protein complex I subunit A4 (LHCA4, chlorophyll a/b binding protein 1 (LHB1B2, chloroplast-localized IscA-like protein (ATCPISCA, and chloroplast β-ATPase. However, chloroplast β-ATPase interacts only with TGB1L88, and not with weak silencing suppressor TGB1P88. This selective interaction indicates that chloroplast β-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast β-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV TGB1L88 but not AltMV TGB1P88, suggesting that β-ATPase selectively responded to TGB1L88 to induce defense responses.

  5. Anaesthetics may change the shape of isolated type I hair cells.

    Science.gov (United States)

    Scarfone, E; Ulfendahl, M; Figueroa, L; Flock, A

    1991-08-01

    Type I hair cells isolated from animals anaesthetised with barbiturates or ether were found to be shorter and to lack a prominent 'neck' region when compared to cells isolated from non-anaesthetised animals. Ketamine did not have this effect. The changes observed could have important implications for the physiology of inner ear receptors. These findings infer that care should be taken in the choice of anaesthetics used in studies on cells from the inner ear.

  6. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  7. Antigen experience shapes phenotype and function of memory Th1 cells.

    Directory of Open Access Journals (Sweden)

    Aaruni Khanolkar

    Full Text Available Primary and secondary (boosted memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62L(loCCR7(hi CD27(hi CD127(hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2. Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.

  8. How numbers, nature and immune status of Foxp3+ regulatory T cells shape the early immunological events in tumor development.

    Directory of Open Access Journals (Sweden)

    Guillaume eDarrasse-Jeze

    2013-09-01

    Full Text Available The influence of CD4+CD25+Foxp3+ regulatory T cells (Tregs on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally-derived and status (naïve or activated / memory of the regulatory T cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T cells (Teffs at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of antitumor cells versus tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies.

  9. Changes in the survival curve shape of E. coli cells following irradiation in the presence of uncouplers of oxidative phosphorylation.

    Science.gov (United States)

    Anderson, R F; Patel, K B; Evans, M D

    1985-10-01

    Four uncouplers of oxidative phosphorylation (UOP) (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, 4-hydroxybenzylidenemalonitrile and N-phenylanthranilic acid) have been found to alter the shape of the radiation survival curves of several cell lines of E. coli when present during irradiation in oxia. Incubation of cells with high concentrations of UOP for 30 min before irradiation induced an increase in extrapolation number (n) in cell lines AB 1157 (wild-type), AB 1886(uvrA-) and KMBL(polA-) but not GR 501(lig-)ts, AB 2463(recA-) and AB 2480(uvrA-recA-). In addition the UOP all effect a decrease in mean lethal dose (D0) even when tested at low concentrations or short contact times. Studies with wild-type cells correlate the increase in n with measured increased levels of ATP (above oxic control cells) produced upon incubation with UOP. The increased levels of ATP most likely arise from the UOP overstimulating glycolysis. The decrease in D0 cannot be associated with any of the repair pathways investigated and it is concluded that the highly lipophilic UOP directly or indirectly potentiate other target(s) to radiation damage as well as DNA under oxic conditions. Treatment of the cells with UOP did not result in the deleterious depletion of energy substrates, loss of non-protein thiols or the production of cytotoxins upon irradiation.

  10. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency.

    Science.gov (United States)

    Jacobs, Matthew; Lopez-Garcia, Martin; Phrathep, O-Phart; Lawson, Tracy; Oulton, Ruth; Whitney, Heather M

    2016-10-24

    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture(1,2). Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses(3,4), but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia(5), notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found(5,6). A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts(7-9), suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts(10,11), our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry.

  11. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    Science.gov (United States)

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing.

  12. Leaf-shape remodeling: programmed cell death in fistular leaves of Allium fistulosum.

    Science.gov (United States)

    Ni, Xi-Lu; Su, Hui; Zhou, Ya-fu; Wang, Feng-Hua; Liu, Wen-Zhe

    2015-03-01

    Some species of Allium in Liliaceae have fistular leaves. The fistular lamina of Allium fistulosum undergoes a process from solid to hollow during development. The aims were to reveal the process of fistular leaf formation involved in programmed cell death (PCD) and to compare the cytological events in the execution of cell death to those in the unusual leaf perforations or plant aerenchyma formation. In this study, light and transmission electron microscopy were used to characterize the development of fistular leaves and cytological events. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and gel electrophoresis were used to determine nuclear DNA cleavage during the PCD. The cavity arises in the leaf blade by degradation of specialized cells, the designated pre-cavity cells, in the center of the leaves. Nuclei of cells within the pre-cavity site become TUNEL-positive, indicating that DNA cleavage is an early event. Gel electrophoresis revealed that DNA internucleosomal cleavage occurred resulting in a characteristic DNA ladder. Ultrastructural analysis of cells at the different stages showed disrupted vacuoles, misshapen nuclei with condensed chromatin, degraded cytoplasm and organelles and emergence of secondary vacuoles. The cell walls degraded last, and residue of degraded cell walls aggregated together. These results revealed that PCD plays a critical role in the development of A. fistulosum fistular leaves. The continuous cavity in A. fistulosum leaves resemble the aerenchyma in the pith of some gramineous plants to improve gas exchange.

  13. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development.

    Directory of Open Access Journals (Sweden)

    Juan de Dios Barajas-López

    Full Text Available The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5 was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative

  14. Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus.

    Science.gov (United States)

    Koga, Daisuke; Kusumi, Satoshi; Ushiki, Tatsuo

    2016-04-01

    Although many studies of the Golgi apparatus structure have been performed by light and electron microscopy, the full shape of the Golgi apparatus remained unclear due to the technical limitations of the previously applied microscopy techniques. In this study, we used serial section scanning electron microscopy (SEM) for the morphological study of the Golgi apparatus. This method is useful for three-dimensional (3D) reconstruction of cellular structures without requiring specialized instruments, unlike focused ion beam SEM (FIB-SEM) and serial block face SEM (SBF-SEM). Using the serial section SEM method developed by our laboratory, we investigate the 3D shape of the osmium-impregnated Golgi apparatus in rat epididymal cells, pancreatic acinar cells and gonadotropes. The combination of serial section SEM and a 3D reconstruction technique enabled us to elucidate the entire shape of the Golgi apparatus in these cells. The full shape of the Golgi apparatus in epididymal cells formed a basket-like structure with oval-shaped cisterns, while the Golgi apparatus in an acinar cell from the pancreas was composed of elongated ribbon-like structures that were connected to each other, making a coarse network. The overall image of the Golgi apparatus cisterns from a gonadotrope looked like a spherical cage. This study has clearly shown that entire 3D shape of the Golgi apparatus varies depending on the cell type and that the Golgi cisterns network appears as a single mass located in the large region of the cytoplasm.

  15. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  16. Uterine NK Cells Are Critical in Shaping DC Immunogenic Functions Compatible with Pregnancy Progression

    Science.gov (United States)

    Freitag, Nancy; Otto, Teresa; Thijssen, Victor L. J. L.; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F.; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M.

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression. PMID:23056436

  17. OmpA-like protein influences cell shape and adhesive activity of Tannerella forsythia.

    Science.gov (United States)

    Abe, T; Murakami, Y; Nagano, K; Hasegawa, Y; Moriguchi, K; Ohno, N; Shimozato, K; Yoshimura, F

    2011-12-01

    Tannerella forsythia, a gram-negative fusiform rod, is implicated in several types of oral anaerobic infections. Most gram-negative bacteria have OmpA-like proteins that are homologous to the OmpA protein in Escherichia coli. We identified an OmpA-like protein in T. forsythia encoded by the tf1331 gene as one of the major proteins by mass spectrometric analysis. Two-dimensional, diagonal electrophoresis showed that the OmpA-like protein formed a dimeric or trimeric structure via intermolecular disulfide bonds. A biotin labeling experiment revealed that a portion of the protein was exposed on the cell surface, even though T. forsythia possesses an S-layer at the outermost cell surface. Using a tf1331-deletion mutant, we showed that the OmpA-like protein affected cell morphology. The length of the mutant cell was reduced almost by half. Cell swelling was observed in more than 40% of the mutant cells. Moreover, the mutant exhibited decreased adhesion to fibronectin, retarded autoaggregation, and reduced cell surface hydrophobicity. These results suggest that the OmpA-like protein in T. forsythia plays an important role in cellular integrity and adhesive function.

  18. Atomic force microscopy and cells: Indentation profiles around the AFM tip, cell shape changes, and other examples of experimental factors affecting modeling.

    Science.gov (United States)

    Melzak, Kathryn A; Toca-Herrera, José L

    2015-07-01

    We use atomic force microscopy in conjunction with a fluorescence microscope capable of optical sectioning to acquire images of white blood cells while force is applied with the AFM tip. The indentation profile within the cell is compared to the profile of the AFM tip: examples are shown for indentations at the center of the cell which are reasonable matches to the tip profile, and an additional example is shown for an indentation that is on the tilted side of a highly rounded cell and that differs from the tip shape. We also demonstrate that the AFM tip can interact with internal cell structures, we show that the contact area between the cell and the substrate can increase under applied pressure, that the main body of the cell can fuse with the extended lamellipodium, and that the cell can be displaced laterally by the AFM tip. The features illustrated here are relevant to the interpretation of indentation experiments that measure cell elasticity properties, as is discussed briefly.

  19. Bubbly vertex dynamics: a dynamical and geometrical model for epithelial tissues with curved cell shapes

    CERN Document Server

    Ishimoto, Yukitaka

    2014-01-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them on the vertex model. Thus, a model with the curvatures is constructed and its algorithm is given for simulation. Its possible extensions and applications will also be discussed.

  20. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Directory of Open Access Journals (Sweden)

    Haniu H

    2014-04-01

    Full Text Available Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1 1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs and cup-stacked carbon nanotubes (CSCNTs on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length were tested. Human bronchial epithelial (BEAS-2B and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL, and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT

  1. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    Science.gov (United States)

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  2. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation.

    Directory of Open Access Journals (Sweden)

    John T Connelly

    Full Text Available Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA blocked terminal differentiation on micro-patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1. Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human epidermal stem cells.

  3. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions

    Science.gov (United States)

    Ren, Baizhao; Liu, Wei; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2017-04-01

    Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate responses of photosynthetic performance and chloroplast ultrastructure to planting densities in two summer maize ( Zea mays L.) hybrids Denghai661 (DH661) and Nongda108 (ND108). DH661 was planted at densities of 30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, or 135,000 plants ha-1. ND108 was planted at densities of 30,000, 45,000, 60,000, 75,000, or 90,000 plants ha-1. Research variables included leaf area, grain yield, chlorophyll content, leaf gas exchange parameters, number of chloroplasts, and chloroplast ultrastructure. As plant density increased, chlorophyll a and b content significantly decreased; carotenoids initially decreased and then increased; the net photosynthetic rate during each growth period significantly decreased; the membrane structure of mesophyll cells was gradually damaged; the number of chloroplasts significantly decreased; the external form of chloroplasts shifted from long and oval to elliptical or circular; the number of grana significantly decreased, while the number of grana lamellae increased; grana gradually became hypogenetic and eventually dissolved; plot yield increased; and yield per plant significantly decreased. The yield per plant of DH661 at 135,000 plants ha-1 and that of ND108 at 90,000 plants ha-1 decreased by 65.8 and 42.5%, respectively, compared with those at 30,000 plants ha-1.

  4. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.

  5. Enhanced Cell-Edge Performance with Transmit Power-Shaping and Multipoint, Multiflow Techniques

    Institute of Scientific and Technical Information of China (English)

    Philip Pietrask; Gregg Charltonl; Rui Yang,; Carl Wang

    2011-01-01

    In this paper, we present a technique called "fuzzy cells" that builds on the multicarrier features of Long Term Evolution-Advanced (LTE-A) and high-speed packet access (HSPA). Multiple carriers are aggregated to create a larger system bandwidth, and these carriers are transmitted at different powers by each sector antenna. This creates a set of cell-edge locations that differ from one frequency to the next. System-level simulations are performed to estimate individual user and average throughput for a hexagonal deployment of 3-sector base stations. For moderately high loads, a fuzzy cell deployment can improve tenth percentile (cell-edge) user throughput by 100% and can improve average throughput by about 30% compared with a reuse 1 scheme. Fuzzy ceils reduce inter-cell interference in the same way as higher-order reuse schemes and allow users to access the full system bandwidth.

  6. Shape reconstruction and height fluctuations of red blood cells using defocusing microscopy

    CERN Document Server

    Siman, L; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    In this paper the bright-field defocusing microscopy (DM) technique is presented. DM is able to obtain quantitative information of each plane/surface of pure phase objects, as live unlabeled cells, and its application to red blood cells (RBCs) is demonstrated. Based on contrast, simple methods to obtain thickness profile and three dimensional (3D) total reconstruction of RBCs are proposed and the actual height profiles of upper and lower surface-membranes (lipid bilayer$/$cytoskeleton) of discocyte and stomatocyte red cells are presented as examples. In addition, using the mean square contrast fluctuation and modeling the RBC membranes fluctuations spectra as dependent of a bending modulus $(\\kappa_c)$, a surface tension $(\\sigma)$ and a confining potential $(\\gamma)$ term, slowly varying quantities along the cell radius, a genetic algorithm (GA) is used and the radial height fluctuations of each surface-membrane are accessed, separately. The radial behaviors of $\\kappa_c$, $\\sigma$ and $\\gamma$ are also obta...

  7. Shaping the nervous system: role of the core planar cell polarity genes.

    Science.gov (United States)

    Tissir, Fadel; Goffinet, André M

    2013-08-01

    Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.

  8. Chloroplast DNA Diversity of Oak Species in Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioan Calin MOLDOVAN

    2010-12-01

    Full Text Available The chloroplast DNA of 34 sessile oak (Quercus petraea and 27 pedunculate oak (Q. robur populations covering the entire natural distribution of the two oak species in Eastern Romania was investigated using four large regions of the chloroplast genome by PCR and RFLP technique. A total of seven chloroplast DNA haplotypes sensu lato have been observed by analysing 305 mature trees. However, due to the high resolution of the electrophoresis method a total of 22 chloroplast variants could have been detected, with new mutations and fragment combinations in two of the amplified regions: psbC/trnD and trnT/trnF. All of the haplotypes belong to the phylogenetic lineages A and E, which originate from the Balkan Peninsula. Most of genetic diversity is distributed among populations (GST=0.779. The chloroplast DNA haplotypes are shared by the two oak species. Different dispersal abilities may explain the higher value of genetic differentiation among populations in sessile oak than in pedunculate oak.

  9. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    Science.gov (United States)

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  10. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  11. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Klein, U; De Camp, J D; Bogorad, L

    1992-04-15

    Structures of the promoters of Chlamydomonas reinhardtii plastid atpB and 16S rRNA-encoding genes were analyzed in vivo. Chimeric constructs, containing the Chlamydomonas chloroplast atpB or 16S rRNA-encoding gene promoter coupled to the Escherichia coli uidA (beta-glucuronidase, GUS) reporter gene and bordered by C. reinhardtii chloroplast sequences, were stably introduced into the chloroplast of Chlamydomonas by microprojectile bombardment. Activity of the promoters in the chloroplast of GUS gene-positive transformants was assayed by measuring the abundance of GUS transcripts and determining the relative rates of GUS transcription in vivo. Deletion analyses of the 16S rRNA gene and atpB promoter fragments showed that the two promoters differ structurally. The 16S rRNA gene promoter resembles the bacterial sigma 70 type with typical -10 and -35 elements. The atpB promoter, on the other hand, lacks a conserved motif in the -35 region but contains, in the -10 region, a characteristic octameric palindrome (TATAATAT) that is conserved in the promoter sequences of some other C. reinhardtii chloroplast genes. For maximum activity, the atpB promoter requires sequences of approximately 22 base pairs upstream and approximately 60 base pairs downstream of the transcription start site.

  12. In vitro organotin administration alters guinea pig cochlear outer hair cell shape and viability.

    Science.gov (United States)

    Clerici, W J; Chertoff, M E; Brownell, W E; Fechter, L D

    1993-06-01

    Trimethyltin (TMT) and triethyltin (TET) disrupt auditory function at doses far below those shown to be neurotoxic. In vivo studies suggest that the initial effect of TMT on hearing occurs at the inner hair cell/spiral ganglion cell synapse, while later, the outer hair cell (OHC) undergoes structural and functional damage. TET produces acute effects upon afferent neurotransmission similar to those observed following TMT, but TET's effects on OHC structure and function have not been examined. OHCs are motile elements within the cochlea, believed to modulate the sensitivity and tuning within the inner ear. Changes in OHC length may alter hearing function, and length changes have been reported following exposure to various ototoxic agents in vitro. In the present study, 77 OHCs from 45 pigmented male guinea pigs were isolated in primary culture and exposed for 90 min to concentrations between 30 microM and 1.0 mM of TMT or TET and then to bathing medium for 30 min to remove the toxicant. Significant shortening of the OHC cell body occurred at all doses to both organotins, with a mean reduction in length of 15.1 and 20.2% for 1.0 mM TMT and TET, respectively, at the end of testing; control cells were only 3.4% shorter at the end of 90 min of perfusion with bathing medium. The effect of organotin exposure on OHC volume was not consistently related to either TMT or TET concentration or altered cell length. In addition, disruption of the plasma membrane characterized by bleb formation, the forceful ejection of cytoplasm, or bursting was seen in 80% of cells exposed to 1.0 mM TET, although not TMT; lower concentrations of both organotins disrupted the cell membrane in 10-30% of cells. Membrane rupture was not reliably associated with either increased cell volume or decreased length, implicating a weakening of the plasma membrane or cortical lattice as the basis for this effect. Consistent with the irreversible structural weakening of the lateral wall, resorption of

  13. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro.

    Science.gov (United States)

    Clerici, W J; DiMartino, D L; Prasad, M R

    1995-04-01

    Reactive oxygen species (ROS) have been implicated in the ototoxicity of various agents. This study examines the effects of superoxide anion (O2), hydroxyl radical (OH.) and hydrogen peroxide (H2O2), on isolated cochlear outer hair cell (OHC) morphology. OHCs were superfused with artificial perilymph (AP) or AP containing a specific ROS scavenger, and then with AP, ROS system or scavenger plus ROS system for 90 min. The generation of ROS as well as the scavenging properties of other agents were confirmed by specific biochemical assays. Control cells decreased 4.8% in mean length, and showed no obvious membrane damage. Generation of O2. or OH. resulted in high rates (85.7 and 42.9%, respectively) of bleb formation at the synaptic pole, and decreased (O2., 15.2%; OH., 17.3%) mean cell length. Length change and bleb formation rate were H2O2 concentration-dependent. 20 mM H2O2 led to 33.3% decreased mean cell length, and only 20% bleb formation; 0.1 mM H2O2 led to 83.3% bleb formation, with no length decrease. Superoxide dismutase, deferoxamine and catalase protected against O2., OH. and H2O2 effects, respectively. Bleb formation and diminished cell length likely represent differential lipid peroxidative outcomes at supra- and infranuclear membranes, and are consistent with effects of certain ototoxicants.

  14. The effect of quinine on outer hair cell shape, compliance and force.

    Science.gov (United States)

    Jarboe, J K; Hallworth, R

    1999-06-01

    Quinine intoxication causes a well-described syndrome that includes tinnitus, sensorineural hearing loss and vertigo. The pathophysiology of quinine's effects on hearing is unknown, but may include a peripheral component. The cochlear outer hair cell is known to be motile and to contribute force to amplify the vibration pattern of the organ of Corti. The outer hair cell is also a target of diseases involving tinnitus and sensorineural hearing loss, including salicylate intoxication. These effects may be mediated through changes either in motile force or in mechanical properties. Quinine's effects on outer hair cell motility and mechanical properties have therefore been examined in vitro. Quinine at 5.0 mM substantially decreased active force generation in isolated guinea pig cochlear outer hair cells. Isolated cells also elongated and dilated in diameter when exposed to 5.0 mM quinine. No consistent changes in mechanical properties were observed. 1.0 mM quinine was ineffective in either force reduction or elongation. Trifluoperazine, a calmodulin inhibitor, and ML-9, a blocker of myosin light chain kinases, were ineffective in blocking quinine-induced force reduction or elongation. Deferoxamine, a hydroxyl free radical scavenger, also failed to block either the force decrease or the elongation.

  15. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Directory of Open Access Journals (Sweden)

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  16. Performance improvement of proton exchange membrane fuel cell by using annular shaped geometry

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.

    2011-03-01

    A complete three-dimensional and single phase CFD model for a different geometry of proton exchange membrane (PEM) fuel cell is used to investigate the effect of using different connections between bipolar plate and gas diffusion layer on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the three-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that by increasing the number of connection between GDL and bipolar plate the performance of the fuel cell enhances.

  17. A compact resonant \\Pi-shaped photoacoustic cell with low window background for gas sensing

    CERN Document Server

    Ulasevich, A L; Kouzmouk, A A; Starovoitov, V S

    2013-01-01

    A resonant photoacoustic cell capable of detecting the traces of gases at an amplitude-modulation regime is represented. The cell is designed so as to minimize the window background for the cell operation at a selected acoustic resonance. A compact prototype cell (the volume of acoustic cavity of ~ 0.2 cm^3, total cell weight of 3.5 g) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia traces in nitrogen flow with the help of a pigtailed DFB laser diode operated near a wavelength of 1.53 um. The performance of absorption detection and gas-leak sensing for the prototype operated at the second longitudinal acoustic resonance (the resonance frequency of ~ 4.38 kHz, Q-factor of ~ 13.9) is estimated. The noise-equi...

  18. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

    Science.gov (United States)

    Zhong, Linlin; Zhou, Wen; Wang, Haijun; Ding, Shunhua; Lu, Qingtao; Wen, Xiaogang; Peng, Lianwei; Zhang, Lixin; Lu, Congming

    2013-08-01

    Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.

  19. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Paul, Sinu; Schommer, Nina

    2016-01-01

    or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably...... as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially...

  20. Unit Cell Analysis of the Superelastic Behavior of Open-Cell Tetrakaidecahedral Shape Memory Alloy Foam under Quasi-Static Loading

    Directory of Open Access Journals (Sweden)

    Guillaume Maîtrejean

    2014-01-01

    Full Text Available Cellular solid materials and, more specifically, foams are increasingly common in many industrial applications due to their attractive characteristics. The tetrakaidecahedral foam microstructure, which can be observed in many types of foams, is studied in the present work in association with shape memory alloys (SMA material. SMA foams are of particular interest as they associate both the shape memory effect and the superelasticity with the characteristics of foam. A Unit Cell Finite Element Method approach is used, an approach that allows accurate predicting of the macroscale response of the foam with a highly reduced numerical effort. The tetrakaidecahedral foam’s responses, both in the elastic and in the superelastic stages, are then extracted and compared with results from the literature. The tetrakaidecahedral geometry is found to be of particular interest when associated with SMA as it takes more advantage of the superelastic property of the material than foams with randomly distributed porosity.

  1. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    Science.gov (United States)

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  2. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43 Is Required for Chloroplast Development and Photosynthesis.

    Directory of Open Access Journals (Swe