WorldWideScience

Sample records for chloroplast genomephylogenies sampling

  1. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    Energy Technology Data Exchange (ETDEWEB)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl,Jennifer V.; Fourcade, Matthew H.; Chumley, Timothy W.; Boore, JeffreyL.; Jansen, Robert K.; dePamphilis, Claude W.

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in

  2. Another look at the phylogenetic position of the grape order Vitales: Chloroplast phylogenomics with an expanded sampling of key lineages.

    Science.gov (United States)

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2016-08-01

    Vitales is well-known for including the economically important fruit crop, the wine grape (Vitis vinifera). However, the position of the Vitales in the higher eudicots has been a subject of much debate. It has been variously reported to be sister to the Saxifragales and together as sister to the rest of rosids, or sister to the fabids-malvids clade, or sister to the Santalales, or sister to the fabids-malvids-Saxifragales clade. However, in all of these scenarios, the support values for the relationship of Vitales on the phylogenies were only low to moderate. Additionally, all previous studies sampled only Vitis vinifera as the representative of the Vitales. We herein expanded the sampling of the Vitales to include representatives of all major clades of the order, as well as representatives of other key lineages including Saxifragales, Dilleniales, and Santalales. Extensive likelihood and Bayesian analyses were conducted to test the position of Vitales, using different numbers of genes, a variety of partitioning strategies, and both nucleotide and amino acid sequences. With the expanded sampling strategy, almost all analyses supported the relationship of Vitales as sister to Saxifragales. This relationship was supported in a 72-gene data set with a bootstrap value of 91%, the highest support value reported to date. Based on this topology, we discuss possible morphological synapomorphies shared between Vitales and Saxifragales. Furthermore, a hypothesis of reticulate evolution was postulated as an explanation for the incongruence of Vitales' position when comparing plastid and nuclear gene phylogenies. PMID:27138293

  3. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  4. Genetic Analysis of Chloroplast Translation

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  5. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  6. Chloroplast ribosomes and protein synthesis.

    OpenAIRE

    Harris, E. H.; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles i...

  7. Global Chloroplast Phylogeny and Biogeography of Bracken (Pteridium: Dennstaedtiaceae)

    OpenAIRE

    J.P.;; Thomson, J. A.; Stratford, J. K.; Paul G Wolf

    2009-01-01

    Bracken ferns (genus Pteridium) represent an ancient species complex with a natural worldwide distribution. Pteridium has historically been treated as comprising a single species, but recent treatments have recognized several related species. Phenotypic plasticity, geographically structured morphological variation, and geographically biased sampling have all contributed to taxonomic confusion in the genus. We sampled bracken specimens worldwide and used variable regions of the chloroplast gen...

  8. Chloroplast in Plant-Virus Interaction

    Science.gov (United States)

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  9. Biosynthesis of starch in chloroplasts.

    Science.gov (United States)

    Nomura, T; Nakayama, N; Murata, T; Akazawa, T

    1967-03-01

    The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed. PMID:4292567

  10. Nitrogen control of chloroplast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  11. Evolution of chloroplast vesicle transport.

    Science.gov (United States)

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  12. Mutational dynamics of aroid chloroplast genomes.

    Science.gov (United States)

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  13. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  14. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  15. Mechanisms of Protein Synthesis in Chloroplasts: How to Design Translatable mRNAs in Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    M. Sugiura

    2007-01-01

    @@ Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal Maliga group developed the high-frequency chloroplast transformation system in tobacco (Svab and Maliga, 1993).

  16. Isolation of Chloroplasts from Plant Protoplasts.

    Science.gov (United States)

    Lung, Shiu-Cheung; Smith, Matthew D; Chuong, Simon D X

    2015-10-01

    Chloroplasts can be isolated from higher plants directly following homogenization; however, the resulting yield, purity, and intactness are often low, necessitating a large amount of starting material. This protocol is optimized to produce a high yield of pure chloroplasts from isolated Arabidopsis protoplasts. The two-part method is a simple, scaled-down, and low-cost procedure that readily provides healthy mesophyll protoplasts, which are then ruptured to release intact chloroplasts. Chloroplasts isolated using this method are competent for use in biochemical, cellular, and molecular analyses.

  17. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  18. On the structure of the spinach chloroplast

    NARCIS (Netherlands)

    Thomas, J.B.; Bustraan, M.; Paris, C.H.

    1952-01-01

    The structure of spinach chloroplasts was investigated with the aid of the electron microscope. It has been established that: 1. 1. the outer membrane of the chloroplasts is composed of both proteins and lipoids. 2. 2. the stroma is also built up by these components. 3. 3. within the stroma memb

  19. Chloroplasts as functional organelles in animal tissues.

    Science.gov (United States)

    Trench, R K; Greene, R W; Bystrom, B G

    1969-08-01

    The marine gastropod molluscs Tridachia crispata, Tridachiella diomedea, and Placobranchus ianthobapsus (Sacoglossa, Opisthobranchia) possess free functional chloroplasts within the cells of the digestive diverticula, as determined by observations on ultrastructure, pigment analyses, and experiments on photosynthetic capacity. In the light, the chloroplasts incorporate H(14)CO(3) (-)in situ. Reduced radiocarbon is translocated to various chloroplast-free tissues in the animals. The slugs feed on siphonaceous algae from which the chloroplasts are derived. Pigments from the slugs and from known siphonaceous algae, when separated chromatographically and compared, showed similar components. Absorption spectra of extracts of slugs and algae were very similar. The larvae of the slugs are pigment-free up to the post-veliger stage, suggesting that chloroplasts are acquired de novo. with each new generation. PMID:5792329

  20. Chloroplast protein targeting involves localized translation in Chlamydomonas

    OpenAIRE

    Uniacke, James; Zerges, William

    2009-01-01

    The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted ...

  1. Inheritance of chloroplast DNA in Chlamydomonas reinhardtii

    OpenAIRE

    Grant, David M; Nicholas W. Gillham; Boynton, John E.

    1980-01-01

    Two symmetrically located deletions of approximately 100 base pairs each have been identified in chloroplast DNA of Chlamydomonas reinhardtii. Although present in a mutant strain that requires acetate for growth, both deletions have been shown to be distinct from the nonphotosynthetic phenotype of this strain. These physical markers in the chloroplast genome and maternally inherited genetic markers showed strict cotransmission in reciprocal crosses. Thus, our results are consistent with the l...

  2. Structure of the ATP synthase from chloroplasts studied by electron microscopy and image processing

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van; Gräber, Peter

    1988-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been investigated by electron microscopy of negatively stained samples. The staining conditions, which are generally critical for such small objects as CF1, could be improved by mixing CF1 samples with a much large

  3. Evolution of the chloroplast division machinery

    Institute of Scientific and Technical Information of China (English)

    Hongbo GAO; Fuli GAO

    2011-01-01

    Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.

  4. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  5. Nitrogen control of chloroplast development: Progress report

    International Nuclear Information System (INIS)

    A manifestation of nitrogen deficiency in vascular plants and algae is chlorosis, indicating that chloroplast biogenesis can be strongly restricted by direct or indirect effects of nitrogen assimilation products. To define the molecular basis of nitrogen responses we are using Chlamydomonas reinhardtii. Depending on the levels of ammonium, steady-state deficiency conditions are established such that the cellular levels of chlorophylls and xanthophylls are depressed. Chloroplasts in nitrogen-deficient cells contain appreciable levels of carbon assimilation enzyme and thylakoids with high electron transport activities. However, the light harvesting complexes are nearly absent and Photosystem I exhibits unusual characteristics. Studies of rates of protein synthesis by in vivo pulse-chase labeling and levels of RNAs encoded by the chloroplast and nuclear genomes have been initiated: the accumulation of transcripts for the nuclear light-harvesting apoproteins is dramatically altered qualitatively and quantitatively; there is no major effect on chloroplast RNAs but, in general, these are inefficiently utilized for protein synthesis until nitrogen is provided to the cultures. Supplying nitrogen results in an almost immediate release of chloroplast mRNAs from a translational arrest but the stimulation of the accumulation of nuclear transcripts for light-harvesting apoproteins does not occur until after a 1-2 hour lag

  6. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  7. Chloroplasts in seeds and dark-grown seedlings of lotus.

    Science.gov (United States)

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  8. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang;

    2004-01-01

    Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica......), which are both parental varieties of the super-hybrid rice, LYP9. Based on the patterns of high sequence coverage, we partitioned chloroplast sequence variations into two classes, intravarietal and intersubspecific polymorphisms. Intravarietal polymorphisms refer to variations within 93-11 or PA64S...... to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0...

  9. Genomics and chloroplast evolution: what did cyanobacteria do for plants?

    OpenAIRE

    Raven, J.A.; Allen, John

    2003-01-01

    The complete genome sequences of cyanobacteria and of the higher plant Arabidopsis thaliana leave no doubt that the plant chloroplast originated, through endosymbiosis, from a cyanobacterium. But the genomic legacy of cyanobacterial ancestry extends far beyond the chloroplast itself, and persists in organisms that have lost chloroplasts completely.

  10. Chloroplast signaling within, between and beyond cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof eBobik

    2015-10-01

    Full Text Available The most conspicuous function of the plastid is oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that the plastid possesses its own genome whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nucleus, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet neglected aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order

  11. Structure of the ATP synthase from chloroplasts studied by electron microscopy. Localization of the small subunits

    NARCIS (Netherlands)

    Boekema, Egbert J.; Xiao, Jianping; McCarty, Richard E.

    1990-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been further investigated by electron microscopy and image analysis of negatively stained samples. The projections of three different types of CF1 were analyzed: the holoenzyme with five different subunits and two

  12. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  13. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    OpenAIRE

    Marta Brozynska; Agnelo Furtado; Robert James Henry

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genom...

  14. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized the albino mutant emb1303-1 in Arabidopsis. The mutant displayed a severe dwarf phenotype with small albino rosette leaves and short roots on a synthetic medium containing sucrose. It is pigment-deficient and seedling lethal when grown in soil. Embryo development was delayed in the mutant, although seed germination was not significantly im-paired. The plastids of emb1303-1 were arrested in early developmental stages without the classical stack of thylakoid membrane. Genetic and molecular analyses uncovered that the EMB1303 gene encodes a novel chloroplast-localized protein. Mieroarray and RT-PCR analyses revealed that a number of nuclear-and plastid-encoded genes involved in photosynthesis and chloroplast biogenesis were substantially downregulated in the mutant. Moreover, the accu-mulation of several major chloroplast proteins was severely compromised in emb1303-1. These results suggest that EMBI303 is essential for chloroplast development.

  15. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  16. Origin of a chloroplast protein importer

    OpenAIRE

    Bölter, Bettina; Soll, Jürgen; Schulz, Alexander; Hinnah, Silke; Wagner, Richard

    1998-01-01

    During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import s...

  17. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa

    Directory of Open Access Journals (Sweden)

    de Ruiter Marjo

    2011-06-01

    Full Text Available Abstract Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small

  18. Expressing PHB synthetic genes through chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.

  19. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    Science.gov (United States)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  20. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  1. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    Science.gov (United States)

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP. PMID:26601486

  2. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    Science.gov (United States)

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  3. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  4. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available BACKGROUND: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. METHODOLOGY/PRINCIPAL FINDINGS: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. CONCLUSION: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  5. Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.

    Science.gov (United States)

    Bazzaz, M B; Govindjee

    1973-09-01

    Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C(4) plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at

  6. Orientation of the pigment molecules in the chloroplast

    NARCIS (Netherlands)

    Goedheer, J.C.

    1955-01-01

    Dichroism, absorption anisotropy, and anomal dispersion of birefringence were measured in the big lamellate chloroplasts of Mougeotia. The results of these measurements indicate a certain orientation of the chlorophyll molecules, and to a smaller extent, of the carotenoids in the chloroplast. In sp

  7. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    Science.gov (United States)

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  8. Origin and evolution of the chloroplast division machinery.

    Science.gov (United States)

    Miyagishima, Shin-Ya

    2005-10-01

    Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. PMID:16143878

  9. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  10. Chloroplast division during leaf development of Xanthium pensylvanicum Wallr. (Compositae

    Directory of Open Access Journals (Sweden)

    Roman Maksymowych

    2014-02-01

    Full Text Available Division and growth of chloroplasts was studied during leaf development of Xanthium pensylvanicum at various stages of development represented by the leaf plastochron index.Between leaf plastochron indices -1.00 and 2.56 chloroplast division was observed with little enlargement. Between 2.50 and 5.00 chloroplasts enlarged in diameter with an average rate of 0.21 µm per day. At leaf plastochron index 5.00 chloroplasts attained their mature size of 6.12 µm. No chloroplast division was found after leaf plastochron index 2.50. A change in shape of plastids from spherical proplastids to discoidal accompanied their growth during stages 2.50 and 5.00.

  11. Identification of Orchidaceae species from Northern West of Syria based on chloroplast DNA.

    Science.gov (United States)

    Haider, N; Nabulsi, I; Kamary, Y

    2010-08-01

    The plant family Orchidaceae has a great economic value (ornamental and medical uses, beside the aromatic features). Traditionally, identification of orchid species has relied heavily on morphological features. These features, however, are either not variable enough between species or too plastic to be used for identification at the species level. DNA-based markers could be the alternative strategy towards an accurate and robust identification of those species. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among orchid species distributed in North-West region of Syria using Cleaved Amplified Polymorphic Sequence (CAPS) technique for developing markers for the diagnosis of targeted species. CAPS analysis was carried out on 34 orchid samples that represent all species observed in the region. Universal primers were used to amplify targeted chloroplast regions. Generated PCR products were digested with various restriction enzymes. CAPS results revealed high polymorphism among species examined. This polymorphism was suffiecient for the diagnosis of all of those species apart from five species (Ophrys fuciflora (one sample), Oph. bornmuelleri, Ophrys sp., Oph. scolopax and Oph. argolica). Availability of such species-specific markers would ensure more authentic identification of orchid species compared to morphological characters and can be regarded as a valuable tool to guide in conservation programs of orchid species in Syria. CAPS data generated were converted to an identification key for orchid species studied.

  12. Reactive Nitrogen Species-Dependent Effects on Soybean Chloroplasts

    OpenAIRE

    Puntarulo, Susana; Jasid, Sebastián; Simontacchi, Marcela

    2007-01-01

    Nitric oxide (NO) generation by soybean (Glycine max, var ADM 4800) chloroplasts was studied by electron paramagnetic resonance (EPR) spin-trapping technique.1 Both nitrite and L-arginine (arg) are the required substrates for enzymatic activities considered as possible sources of NO in plants. Soybean chloroplasts showed a NO production of 3.2 ± 0.2 nmol min−1 mg−1 protein in the presence of 1 mM NaNO2. Chloroplasts incubated with 1 mM arg showed a NO production of 0.76 ± 0.04 nmol min−1 mg−1...

  13. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  14. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  15. Chloroplast genome variation in upland and lowland switchgrass

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individu...

  16. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  17. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    Science.gov (United States)

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  18. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    Science.gov (United States)

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  20. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    Science.gov (United States)

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  1. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    Science.gov (United States)

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-09-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.

  2. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome.

    Directory of Open Access Journals (Sweden)

    Alison Gonçalves Nazareno

    Full Text Available Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq. L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp and a small single copy region (SSC, 17,586 bp separated by inverted repeat regions (IRs, 25,789 bp. In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering

  3. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    Science.gov (United States)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  4. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast

    Institute of Scientific and Technical Information of China (English)

    YANG Zongqi; LI yinü; CHEN Feng; LI Dong; ZHANG Zhifang; LIU Yanxin; ZHENG Dexian; WANG Yong; SHEN Guifang

    2006-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selectively apoptosis in various tumor cells and virus-infected cells, but rarely in normal cells. A chloroplast expression vector, p64TRAIL, containing the cDNA coding for the soluble TRAIL (sTRAIL), was constructed with clpP-trnL-petB-chlL-rpl23-rpl2 as Chlamydomonas reinhardtii plastid homologous recombinant fragments and spectinomycin-resistant aadA gene as a select marker. The plasmid p64TRAIL was transferred into the chloroplast genome of C. reinhardtii by the biolistic method. Three independently transformed lines were obtained by 100 mg/L spectinomycin selection. PCR amplification, Southern blot analysis of the sTRAIL coding region DNA and cultivation cells in the dark all showed that the exogenous DNA had been integrated into chloroplast genome of C. reinhardtii. Western blot analysis showed that human soluble TRAIL was expressed in C. reinhardtii chloroplast. The densitometric analysis of Western blot indicated that the expressed human sTRAIL protein in the chloroplasts of C. reinhardtii accounted for about 0.43%-0.67% of the total soluble proteins.These experimental results demonstrated the possibility of using transgenic chloroplasts of green alga as bioreactors for production of biopharmaceuticals.

  5. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads.

    Science.gov (United States)

    Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi

    2013-01-01

    Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo-cycad sister-group hypothesis.

  6. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  7. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  8. Chloroplast genome structure in Ilex (Aquifoliaceae).

    Science.gov (United States)

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  9. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  10. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    Science.gov (United States)

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  11. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  12. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Chloroplastic respiration was monitored by measuring 14CO2 from 14C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The Km for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of 14CO2 was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO2 evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO2 evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH4Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co2 and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism

  13. Chloroplast DNA Diversity of Oak Species in Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioan Calin MOLDOVAN

    2010-12-01

    Full Text Available The chloroplast DNA of 34 sessile oak (Quercus petraea and 27 pedunculate oak (Q. robur populations covering the entire natural distribution of the two oak species in Eastern Romania was investigated using four large regions of the chloroplast genome by PCR and RFLP technique. A total of seven chloroplast DNA haplotypes sensu lato have been observed by analysing 305 mature trees. However, due to the high resolution of the electrophoresis method a total of 22 chloroplast variants could have been detected, with new mutations and fragment combinations in two of the amplified regions: psbC/trnD and trnT/trnF. All of the haplotypes belong to the phylogenetic lineages A and E, which originate from the Balkan Peninsula. Most of genetic diversity is distributed among populations (GST=0.779. The chloroplast DNA haplotypes are shared by the two oak species. Different dispersal abilities may explain the higher value of genetic differentiation among populations in sessile oak than in pedunculate oak.

  14. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    Science.gov (United States)

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  15. Molecular biology and physiology of isolated chloroplasts from the algae Vaucheria

    OpenAIRE

    Didriksen, Alena

    2010-01-01

    Sea slugs of the genus Elysia (e.g. E. chlorotica) are known for their ability to incorporate chloroplasts from the yellow-green alga Vaucheria litorea. These “kleptoplasts” stay active in the digestive tract of the sea slug for several months. Chloroplasts from Vaucheria litorea are also reported to be significantly more stable after in vitro isolation than chloroplasts of other algae or of higher plants. In organello assays with isolated chloroplasts are used in studies on photosynthetical ...

  16. Chloroplast degeneration and its inhibition by kinetin in detached leaves of Cichorium intybus L.

    OpenAIRE

    F. Młodzianowski; L. Młodzanowska

    2015-01-01

    In the chicory (Cichorium intybus L. var. sativum cv. Polanowicka) leaves two types of chloroplasts are present differing by their degree of osmiophility of the thylakoid inside. This type of differentiation of chloroplasts has so far been found only in several plant species. The process of chloroplast degeneration in darkness is described. In osmiophilic chloroplasts at certain stage of degeneration minutely layered giant grana were found. Kinetin markedly inhibited the process of chloroplas...

  17. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43 Is Required for Chloroplast Development and Photosynthesis.

    Directory of Open Access Journals (Sweden)

    Xiang-guang Lv

    Full Text Available A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS-induced IR64 (Oryza sativa L. ssp. indica mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43 with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43 was required for the normal development of chloroplasts and photosynthesis in rice.

  18. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    Science.gov (United States)

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  19. Factors affecting the stability of chloroplast membranes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Takaoki, T.; Torres-Pereira, J.; Packer, L.

    1974-01-01

    Factors which affect the stability of light-induced atebrin fluorescence quenching activity in chloroplast membranes, a measure of the electron transport dependent formation of energy-linked H/sup +/ gradients, were investigated in vitro. Class II spinach chloroplast membranes were isolated and stored at 0 to 4/sup 0/C and aliquots were subsequently tested for their retention of energizing capacity. The main factors which increase the stability of this activity were found to be (a) isolation in a potassium-containing medium but storage in a sucrose medium containing a low concentration of electrolytes; (b) the presence of butylated hydroxytoluene (an antioxidant), and a protein such as bovine serum albumin to remove free fatty acids in the medium during storage. Under these conditions, the energization capacity of chloroplasts is retained for more than 40 days.

  20. Fractionation and Analysis of Polypeptides of Euglena gracilis Chloroplasts.

    Science.gov (United States)

    Vasconcelos, A C; Mendiola-Morgenthaler, L R; Floyd, G L; Salisbury, J L

    1976-07-01

    Intact Euglena gracilis chloroplasts, purified on gradients of silica sol, were lysed osmotically and fractionated by centrifugation on discontinuous gradients of sucrose into their soluble, envelope membrane, and thylakoid membrane components. The proteins of the different subchloroplast fractions, as well as those of whole chloroplasts, were analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. The polypeptide profile of each fraction was distinctive and was in general similar to the profile obtained for analogous fractions of the chloroplasts of higher plants.The envelope membranes were separated into two fractions in the gradients according to their banding densities. Electron micrographs showed that the light envelope fraction consisted mostly of single-membrane vesicles, whereas the heavy envelope fraction consisted of multiple layers of folded membranes. Both envelope fractions were ultrastructurally distinct from the thylakoid membranes. PMID:16659627

  1. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  2. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    Science.gov (United States)

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  3. Nitrogen control of chloroplast differentiation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  4. Nucleotide sequence of a spinach chloroplast valine tRNA.

    OpenAIRE

    Sprouse, H M; Kashdan, M; Otis, L; Dudock, B

    1981-01-01

    The nucleotide sequence of a spinach chloroplast valine tRNA (sp. chl. tRNA Val) has been determined. This tRNA shows essentially equal homology to prokaryotic valine tRNAs (58-65% homology) and to the mitochondrial valine tRNAs of lower eukaryotes (yeast and N. crassa, 61-62% homology). Sp. chl. tRNA Val shows distinctly lower homology to mouse mitochondrial valine tRNA (53% homology) and to eukaryotic cytoplasmic valine tRNAs (47-53% homology). Sp. chl. tRNA Val, like all other chloroplast ...

  5. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-05-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  6. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  7. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  8. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  9. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  10. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  11. Chloroplast degeneration and its inhibition by kinetin in detached leaves of Cichorium intybus L.

    Directory of Open Access Journals (Sweden)

    F. Młodzianowski

    2015-05-01

    Full Text Available In the chicory (Cichorium intybus L. var. sativum cv. Polanowicka leaves two types of chloroplasts are present differing by their degree of osmiophility of the thylakoid inside. This type of differentiation of chloroplasts has so far been found only in several plant species. The process of chloroplast degeneration in darkness is described. In osmiophilic chloroplasts at certain stage of degeneration minutely layered giant grana were found. Kinetin markedly inhibited the process of chloroplast degeneration, and after prolonged treatment even stimulated the stacking. process of grana thylakoids.

  12. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts.

    Science.gov (United States)

    Nielsen, Agnieszka Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos; Wlodarczyk, Artur Jacek; Gnanasekaran, Thiyagarajan; Perestrello Ramos H de Jesus, Maria; King, Brian Christopher; Bakowski, Kamil; Jensen, Poul Erik

    2016-07-01

    Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts. PMID:27005523

  13. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts

    DEFF Research Database (Denmark)

    Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos;

    2016-01-01

    on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals, as well as complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression...

  14. Role of the chloroplast in the predatory dinoflagellate Karlodinium armiger

    DEFF Research Database (Denmark)

    Berge, Terje; Hansen, Per Juel

    2016-01-01

    ABSTRACT: Karlodinium armiger is a phagotrophic dinoflagellate that synthesizes several small chloroplasts of haptophyte origin. It depends on light, but it grows very poorly in standard nutrient growth media (f/2) without food. When fed prey in the light, growth rates increase dramatically (µ=0...

  15. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  16. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India

    Science.gov (United States)

    Parameswaran, Sriram; Sundar, Durai

    2016-01-01

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

  17. The complete chloroplast genome sequence of medicinal plant Pinellia ternata.

    Science.gov (United States)

    Han, Limin; Chen, Chen; Wang, Bin; Wang, Zhe-Zhi

    2016-07-01

    Pinellia ternata is an important medicinal plant used in the treatment of cough, to dispel phlegm, to calm vomiting and to terminate early pregnancy, as an anti-ulcer and anti-tumor medicine. In this study, we found that the complete chloroplast genome of Pinellia ternata was 164 013 bp in length, containing a pair of inverted repeats of 25 625 bp separated by a large single-copy region and a small single-copy region of 89 783 bp and 22 980 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The chloroplast DNA is GC-rich (36.7%). The phylogenetic analysis showed a strong sister relationship with Colocasia esculenta, which also strongly supports the position of Pinellia ternata. The complete chloroplast genome sequence of Pinellia ternata reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:26153849

  18. Mitochondrial and chloroplast DNA based phylogeny of Pelargonium (Geraniaceae)

    NARCIS (Netherlands)

    Bakker, F.T.; Culham, A.; Pankhurst, C.E.; Gibby, M.

    2000-01-01

    Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as ou

  19. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae

    OpenAIRE

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D.; Mayfield, Stephen P

    2015-01-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly,...

  20. Structure of "Arabidopsis" chloroplastic monothiol glutaredoxin AtGRXcp

    Science.gov (United States)

    Monothiol glutaredoxins (Grxs) play important roles in maintaining redox homeostasis in living cells and are conserved across species. "Arabidopsis thaliana" monothiol glutaredoxin AtGRXcp, is critical for protection from oxidative stress in chloroplasts. The crystal structure of AtGRXcp has been de...

  1. Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

    Directory of Open Access Journals (Sweden)

    Cristian A. Carrión

    2014-11-01

    Full Text Available Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, “senescence-associated vacuoles” (SAVs, characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.

  2. Photosynthetic activity of spinach chloroplasts after isopycnic centrifugation in gradients of silica.

    Science.gov (United States)

    Morgenthaler, J J; Price, C A

    1974-10-01

    Chloroplast suspensions from spinach (Spinacia oleracea L.) were clearly resolved into intact and stripped chloroplasts by isopycnic centrifugation in density gradients of silica sol ("Ludox") and polyethlene glycol. The intact chloroplasts fixed CO(2) and evolved O(2) more rapidly than the crude suspensions; the stripped chloroplasts were inactive. During the photosynthetic fixation of (14)CO(2) in the intact chloroplasts recovered from the gradient, the (14)C label was observed to spread through the photosynthetic intermediate pools, as well as into starch, which indicates that the purified chloroplasts are metabolically competent. This appears to be the first report of the retention of photosynthetic activity following the purification of chloroplasts in density gradients. PMID:16658922

  3. Chloroplast Genome Sequence of the Moss Tortula ruralis: Gene Content and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes

    Science.gov (United States)

    Tortula ruralis, a widely distributed moss species in the family Pottiaceae, is increasingly being used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of Tortula ruralis, only the second publishe...

  4. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests.

    Science.gov (United States)

    Kiani, Sarfraz; Mohamed, Bahaeldeen Babiker; Shehzad, Kamran; Jamal, Adil; Shahid, Muhammad Naveed; Shahid, Ahmad Ali; Husnain, Tayyab

    2013-07-10

    Plants transformed with single Bt gene are liable to develop insect resistance and this has already been reported in a number of studies carried out around the world where Bt cotton was cultivated on commercial scale. Later, it was envisaged to transform plants with more than one Bt genes in order to combat with resistant larvae. This approach seems valid as various Bt genes possess different binding domains which could delay the likely hazards of insect resistance against a particular Bt toxin. But it is difficult under field conditions to develop homozygous plants expressing all Bt genes equally after many generations without undergoing recombination effects. A number of researches claiming to transform plants from three to seven transgenes in a single plant were reported during the last decade but none has yet applied for patent of homozygous transgenic lines. A better strategy might be to use hybrid-Bt gene(s) modified for improved lectin-binding domains to boost Bt receptor sites in insect midgut. These recombinant-Bt gene(s) would express different lectin domains in a single polypeptide and it is relatively easy to develop homozygous transgenic lines under field conditions. Enhanced chloroplast-localized expression of hybrid-Bt gene would leave no room for insects to develop resistance. We devised and successfully applied this strategy in cotton (Gossypium hirsutum) and data up to T3 generation showed that our transgenic cotton plants were displaying enhanced chloroplast-targeted Cry1Ac-RB expression. Laboratory and field bioassays gave promising results against American bollworm (Heliothis armigera), pink bollworm (Pictinophora scutigera) and fall armyworm (Spodoptera frugiperda) that otherwise, were reported to have evolved resistance against Cry1Ac toxin. Elevated levels of hybrid-Bt toxin were confirmed by ELISA of chloroplast-enriched protein samples extracted from leaves of transgenic cotton lines. While, localization of recombinant Cry1Ac-RB protein in

  5. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  6. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    Directory of Open Access Journals (Sweden)

    Sławomir Samardakiewicz

    Full Text Available Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed. An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2. In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the

  7. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond.

    Science.gov (United States)

    Chan, Kai Xun; Phua, Su Yin; Crisp, Peter; McQuinn, Ryan; Pogson, Barry J

    2016-04-29

    The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses. PMID:26735063

  8. The complete chloroplast genome of North American ginseng, Panax quinquefolius.

    Science.gov (United States)

    Han, Zeng-Jie; Li, Wei; Liu, Yuan; Gao, Li-Zhi

    2016-09-01

    We report complete nucleotide sequence of the Panax quinquefolius chloroplast genome using next-generation sequencing technology. The genome size is 156 359 bp, including two inverted repeats (IRs) of 52 153 bp, separated by the large single-copy (LSC 86 184 bp) and small single-copy (SSC 18 081 bp) regions. This cp genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Overall GC content of the genome is 38.08%. A phylogenomic analysis of the 10 complete chloroplast genomes from Araliaceae using Daucus carota from Apiaceae as outgroup showed that P. quinquefolius is closely related to the other two members of the genus Panax, P. ginseng and P. notoginseng. PMID:27158867

  9. The complete chloroplast genome of Torreya fargesii (Taxaceae).

    Science.gov (United States)

    Tao, Ke; Gao, Lei; Li, Jia; Chen, Shanshan; Su, Yingjuan; Wang, Ting

    2016-09-01

    The complete chloroplast genome sequence of Torreya fargesii (Taxaceae), a relic plant endemic to China, is presented in this study. The genome is 137 075 bp in length, with 35.47% average GC content. One copy of the large inverted repeats is lost from this genome. The T. fargesii chloroplast genome encodes 118 unique genes, in which trnI-CAU, trnQ-UUG, trnN-GUU are duplicated. Protein-coding, tRNA and rRNA genes represent 54.7%, 1.9% and 3.4% of the genome, respectively. There are 17 intron-containing genes, of which 6 are tRNA genes. A maximum likelihood phylogenetic analysis revealed a strong sister relationship between Torreya and Amentotaxus. PMID:27158868

  10. The complete chloroplast genome sequence of Fagopyrum cymosum.

    Science.gov (United States)

    Yang, Jun; Lu, Chaolong; Shen, Qi; Yan, Yuying; Xu, Changjiang; Song, Chi

    2016-07-01

    Fagopyrum cymosum is a traditional medicinal plant. In this study, the complete chloroplast genome of Fagopyrum cymosum is presented. The total genome size is 160,546 bp in length, containing a pair of inverted repeats (IRs) of 32,598 bp, separated by large single copy (LSC) and small single copy (SSC) of 84,237 bp and 11,014 bp, respectively. Overall GC contents of the genome were 36.9%. The chloroplast genome harbors 126 annotated genes, including 91 protein coding genes, 29 tRNA genes, and six rRNA genes. Eighteen genes contain one or two introns. Phylogenetic analyses indicated a clear evolutionary relationship among species of Caryophyllales. PMID:26119127

  11. Signal integration by chloroplast phosphorylation networks: An update

    Directory of Open Access Journals (Sweden)

    Anna eSchoenberg

    2012-11-01

    Full Text Available Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.

  12. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    Science.gov (United States)

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.

  13. Localized hypermutation and associated gene losses in legume chloroplast genomes

    OpenAIRE

    KAVANAGH, THOMAS; WOLFE, KENNETH; POWELL, ANTOINETTE

    2010-01-01

    PUBLISHED Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual p...

  14. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  15. Study on Chloroplast Ultrastructure in Different Color Period of Euphorbia pulcherrima

    Institute of Scientific and Technical Information of China (English)

    FU Jia; NIU De; WANG Lijuan

    2008-01-01

    By the observation of chloroplast ultrastructure in different period of bract colors of Euphorbia pulcherrima,the paper studied the change of chloroplast ultrastructrural in the transition process of bract colors, identified the rehtionship between E.pulcherrima color change and the chloroplast ultrastructure to provide theorical bases for the cultivation management and further study of E.pulcherrima.Ultrastructural study showed that in the process of change from green to red,the chloroplast of bracts disintegrated gradually,lamellar structure was destroyed gradually,and the content of chloroplasts in mesophyll cells was also reduced gradually. When bracts color resumed to turn green gradually,the content of chloroplasts in mesophyll cells was also increased gradually.

  16. Chloroplast quality control - balancing energy production and stress.

    Science.gov (United States)

    Woodson, Jesse D

    2016-10-01

    Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery. PMID:27533783

  17. Chloroplast ultrastructure in leaves of Cucumis sativus chlorophyll mutant

    Directory of Open Access Journals (Sweden)

    Irena Palczewska

    2014-02-01

    Full Text Available The developing and young leaves of Cucumis sativus chlorophyll mutants are yellow, when mature they become green and do not differ in their colour from those of control plants. The mesophyll of yellow leaves contains a diversiform plastid population with a varying degree of defectiveness, which is mainly manifested in the reduction or disorganization of the typical thylakoid system. DNA areas, ribosome-like particles and aggregates of electron-dense material are preserved in the stroma of mutated plastids. Starch grains are deficient. Apart from mutated plastids, chloroplasts with a normal structure, as in control plants, were also observed.The leaf greening process is accompanied by a reconstruction and rearrangement of the inner chloroplast lamellar system and an ability to accumulate starch. However, in the mutant chloroplasts as compared with control-plant ones, an irregular arrangement of grana and reduced number of inter-grana thylakoids can be seen. An osmiophilic substance stored in the stroma of mutated plastids and the vesicles formed from an internal plastid membrane take part in restoration of the membrane system.

  18. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  19. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  20. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    Science.gov (United States)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  1. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    Science.gov (United States)

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  2. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Yong Hu; Jingjing Jia; Dapeng Li; Runjie Zhang; Hongbo Gao; Yikun He

    2009-01-01

    Chloroplasts are plant-specific organelles that evolved from endosymbiotic cyanobacteria. They divide through binary fission. Selection of the chloroplast division site is pivotal for the symmetric chloroplast division. In E. coli, positioning of the division site at the midpoint of the cell is regulated by dynamic oscillation of the Min system, which includes MinC, MinD and MinE. Homologs of Mind and MinE in plants are involved in chloroplast division. The homolog of MinC still has not been identified in higher plants. However, an FtsZ-like protein, ARC3, was found to be involved in chloroplast division site positioning. Here, we report that chloroplast division site positioning 1 (AtCDP1) is a novel chloroplast division protein involved in chloroplast division site placement in Arabidopsis. AtCDP1 was dis-covered by screening an Arabidopsis cDNA expression library in bacteria for colonies with a cell division phenotype. AtCDP1 is exclusively expressed in young green tissues in Arabidopsis. Elongated chloroplasts with multiple division sites were observed in the loss-of-function cdpl mutant. Overexpression of AtCDPI caused a chloroplast division phe-notype too. Protein interaction assays suggested that AtCDP1 may mediate the chloroplast division site positioning through the interaction with ARC3. Overall, our results indicate that AtCDP1 is a novel component of the chloroplast division site positioning system, and the working mechanism of this system is different from that of the traditional MinCDE system in prokaryotic cells.

  3. Combined effects of light and water stress on chloroplast volume regulation.

    OpenAIRE

    McCain, D.C.

    1995-01-01

    A nuclear magnetic resonance technique was used to measure changes in the water content of Acer platanoides chloroplasts in leaf discs that had reached osmotic equilibrium with external solutions either in the dark or under exposure to light. Results showed that chloroplast volume regulation (CVR) maintained constant water content in the chloroplasts over a range of water potentials in the dark, but CVR failed when the water potential fell below a critical value. The critical potential was lo...

  4. Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

    OpenAIRE

    Stettler, Michaela; Eicke, Simona; Mettler, Tabea; Messerli, Gaëlle; Hörtensteiner, Stefan; Zeeman, Samuel C.

    2009-01-01

    In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels...

  5. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  6. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  7. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1997-06-17

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focused on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The research focused on the isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  8. Use of Silica Sol Step Gradients to Prepare Bundle Sheath and Mesophyll Chloroplasts from Panicum maximum.

    Science.gov (United States)

    Walbot, V

    1977-07-01

    The first method for the direct separation of mesophyll and bundle sheath chloroplasts from whole tissue homogenates of a C(4) plant is described. Centrifugation of mixed chloroplast preparations from Panicum maximum through low viscosity silica sol gradients effectively separates large, starch-containing chloroplasts from smaller plastids. The large chloroplasts are judged to be bundle sheath chloroplasts on the basis of microscopic appearance, the presence of starch grains, the protein complement displayed on sodium dodecyl sulfate acrylamide gels, and the exclusive localization of ribulose bisphosphate carboxylase activity in these plastids. As a measure of intactness both the large (bundle sheath) and small (mesophyll) chloroplasts contain glyceralde-hyde-3-phosphate NADP-dependent dehydrogenase activity that is greatly enhanced by plastid lysis and both chloroplast preparations are impermeable to deoxyribonuclease. Chloroplast enzyme activities are inhibited by silica sol due to the Mg(2+) chelating activity of this reagent. However, well washed chloroplasts separated on silica gradients had enzyme activities similar to reported values in which silica sol gradients were not used. PMID:16660019

  9. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro.

    Science.gov (United States)

    Nomura, Yuhta; Takabayashi, Taito; Kuroda, Hiroshi; Yukawa, Yasushi; Sattasuk, Kwanchanok; Akita, Mitsuru; Nozawa, Akira; Tozawa, Yuzuru

    2012-01-01

    Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.

  10. Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida.

    Science.gov (United States)

    Williams, Dean A; Overholt, William A; Cuda, James P; Hughes, Colin R

    2005-10-01

    Brazilian peppertree (Schinus terebinthifolius) is a woody perennial that has invaded much of Florida. This native of northeastern Argentina, Paraguay, and Brazil was brought as an ornamental to both the west and east coasts of Florida at the end of the 19th century. It was recorded as an invader of natural areas in the 1950s, and has since extended its range to cover over 280 000 ha. Our goals were to understand the history of this invasion, as one step toward understanding why this exotic was so successful, and ultimately to improve development of biological control agents. We sampled plants from the native and exotic ranges, particularly Florida, and genotyped these individuals at nuclear and chloroplast loci. Nuclear microsatellite and cpDNA loci reveal strong genetic population structure consistent with limited dispersal in the introduced and native ranges. Bayesian clustering of microsatellite data separates the east and west coast plants in Florida into distinct populations. The two chloroplast haplotypes found in Florida are also concordant with this separation: one predominates on the east coast, the other on the west coast. Analysis of samples collected in South America shows that haplotypes as distinct as the two in Florida are unlikely to have come from a single source population. We conclude that the genetic evidence supports two introductions of Brazilian peppertree into Florida and extensive hybridization between them. The west coast genotype likely came from coastal Brazil at about 27 degrees south, whereas the east coast genotype probably originated from another, as yet unidentified site. As a result of hybridization, the Florida population does not exhibit low genetic variation compared to populations in the native range, possibly increasing its ability to adapt to novel environments. Hybridization also has important consequences for the selection of biocontrol agents since it will not be possible to identify closely co-adapted natural enemies in

  11. Chloroplast microsatellites as a tool for phylogeographic studies: the case of white oaks in Poland

    Directory of Open Access Journals (Sweden)

    Chmielewski M

    2015-12-01

    Full Text Available Assessing the distribution of chloroplast DNA (cpDNA haplotype variation is useful for studying the phylogeography of angiosperms. In the last two decades the cpDNA phylogeography of white oaks in Europe has been extensively studied, mostly based on the PCR-RFLP technique. However, PCR-RFLPs have low mutation rates and are primarily useful for reconstructing patterns at large geographical scales and lack resolution at fine spatial scales. Here we evaluate the usefulness of chloroplast microsatellites (cpSSR as an alternative to PCR-RFLPs in Polish oak populations which have been underrepresented in previous studies. Eighty-five cpSSR haplotypes were detected using 14 cpSSR loci and a broad collection of 6680 trees sampled throughout Poland. Haplotype diversity was significantly lower in Q. petraea (He = 0.798 than in Q. robur (He = 0.820. Only 17 haplotypes (H01-H17 were found in 13 or more individuals, comprising together 97.9% of the sample. Most frequent cpSSR haplotypes were related to PCR-RFLP haplotypes, establishing the cross-references between the two marker systems. There was significant concordance between the matrices of genetic distances obtained by PCR-RFLP haplotypes and cpSSR haplotypes. Phylogenetic relationships among cpSSR haplotypes supported the existence of the three predominant maternal lineages of oaks in Poland: Iberian (7.8%, Apennine (20.6% and Balkan (65.5%. The results are discussed with regards to the usefulness of cpSSR markers for phylogeographic studies.

  12. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis

    OpenAIRE

    Kodama, Yutaka; Suetsugu, Noriyuki; Kong, Sam-Geun; Wada, Masamitsu

    2010-01-01

    Chloroplasts move toward weak light (accumulation response) and away from strong light (avoidance response). The fast and accurate movement of chloroplasts in response to ambient light conditions is essential for efficient photosynthesis and photodamage prevention in chloroplasts. Here, we report that two Arabidopsis mutants, weak chloroplast movement under blue light 1 (web1) and web2, are defective in both the avoidance and the accumulation responses. Map-based cloning revealed that both ge...

  13. A comparative approach to elucidate chloroplast genome replication

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2009-05-01

    Full Text Available Abstract Background Electron microscopy analyses of replicating chloroplast molecules earlier predicted bidirectional Cairns replication as the prevalent mechanism, perhaps followed by rounds of a rolling circle mechanism. This standard model is being challenged by the recent proposition of homologous recombination-mediated replication in chloroplasts. Results We address this issue in our current study by analyzing nucleotide composition in genome regions between known replication origins, with an aim to reveal any adenine to guanine deamination gradients. These gradual linear gradients typically result from the accumulation of deaminations over the time spent single-stranded by one of the strands of the circular molecule during replication and can, therefore, be used to model the course of replication. Our linear regression analyses on the nucleotide compositions of the non-coding regions and the synonymous third codon position of coding regions, between pairs of replication origins, reveal the existence of significant adenine to guanine deamination gradients in portions overlapping the Small Single Copy (SSC and the Large Single Copy (LSC regions between inverted repeats. These gradients increase bi-directionally from the center of each region towards the respective ends, suggesting that both the strands were left single-stranded during replication. Conclusion Single-stranded regions of the genome and gradients in time that these regions are left single-stranded, as revealed by our nucleotide composition analyses, appear to converge with the original bi-directional dual displacement loop model and restore evidence for its existence as the primary mechanism. Other proposed faster modes such as homologous recombination and rolling circle initiation could exist in addition to this primary mechanism to facilitate homoplasmy among the intra-cellular chloroplast population

  14. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole Nørregaard

    2013-01-01

    tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics...... strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research....

  15. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    Science.gov (United States)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  16. Treatment with antibiotics that interfere with peptidoglycan biosynthesis inhibits chloroplast division in the desmid Closterium.

    Directory of Open Access Journals (Sweden)

    Hiroko Matsumoto

    Full Text Available Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.

  17. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle

    DEFF Research Database (Denmark)

    Träger, Chantal; Rosenblad, Magnus Alm; Ziehe, Dominik;

    2012-01-01

    The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of ...

  18. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions. PMID:26367332

  19. Genetic variation and species identification of Thai Boesenbergia (Zingiberaceae) analyzed by chloroplast DNA polymorphism.

    Science.gov (United States)

    Techaprasan, Jiranan; Ngamriabsakul, Chatchai; Klinbunga, Sirawut; Chusacultanachai, Sudsanguan; Jenjittikul, Thaya

    2006-07-31

    Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B.pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B.curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species. PMID:16889678

  20. Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species

    Institute of Scientific and Technical Information of China (English)

    Yi-Hong ZHENG; Andrew J.ALVERSON; Qing-Feng WANG; Jeffrey D.PALMER

    2013-01-01

    The genus Cucurbita (Cucurbitaceae) includes five species that were domesticated independently in the Americas,giving rise to an immense diversity of squashes,pumpkins,and gourds.To gain an improved understanding of the evolution of Cucurbita and its domesticated taxa,we used four chloroplast loci to estimate the phylogeny of 23 taxa that represent the broad-level diversity within Cucurbita.Our results provide a strongly supported framework hypothesis for the phylogeny of the genus,robustly confirming the basal position of the C.digitata group of xerophytic perennials and the monophyly of a large group of mesophytic annuals that represent most of the known diversity in the genus,both wild and domesticated.The chloroplast evidence provides strong support for a novel grouping of the mesophytic annual C ficifolia (known only from cultivation) with the xerophytic perennials C.foetidissima and C.pedatifolia.This study also provides the first DNA-based evidence in support of the isozymebased hypothesis that C.pepo subsp.ovifera var.ovifera (represented by most ornamental gourds and several squashes) was domesticated from the wild taxon C.pepo subsp.ovifera var.ozarkana.This lends support to the hypothesis that var.ovifera was domesticated in the eastern United States and that this region served as one of about 10 independent centers of origin of human agriculture.Although the level of bootstrap support for this and certain other peripheral relationships in Cucurbita is low,definitive resolution of these issues is within reach,as nextgeneration sequencing should soon deliver entire organelle genome sequences from a comprehensive sampling of the genus.

  1. Chloroplast transformation of Platymonas (Tetraselmis subcordiformis with the bar gene as selectable marker.

    Directory of Open Access Journals (Sweden)

    Yulin Cui

    Full Text Available The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left and trnA-rrn23S (right as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga.

  2. Update on Chloroplast Research: New Tools, New Topics, and New Trends

    Institute of Scientific and Technical Information of China (English)

    Ute Armbruster; Paolo Pesaresi; Mathias Pribil; Alexander Hertle; Dario Leister

    2011-01-01

    Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.

  3. YGL9, encoding the putative chloroplast signal recognition particle 43 kDa protein in rice, is involved in chloroplast development

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-wei; LI Yun-feng; LING Ying-hua; SANG Xian-chun; HE Guang-hua; ZHANG Tian-quan; XING Ya-di; ZENG Xiao-qin; WANG Ling; LIU Zhong-xian; SHI Jun-qiong; ZHU Xiao-yan; MA Ling

    2016-01-01

    The nuclear-encoded light-harvesting chlorophyla/b-binding proteins (LHCPs) are speciifcaly translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle (cpSRP) pathway. The cpSRP is composed of a cpSRP43 protein and a cpSRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identiifed theYGL9gene that is predicted to encode the probable rice cpSRP43 protein from a rice yelow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cpSRP43, is present in almost al green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcelular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated thatYGL9is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in theygl9mutant. These results indicated thatYGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.

  4. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  5. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.

  6. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Yongbing eZhao

    2015-01-01

    Full Text Available Panax ginseng C.A. Meyer (P. ginseng is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY, Ermaya (EMY, Gaolishen (GLS and Yeshanshen (YSS. The total chloroplast genome sequence length for DMY, EMY and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR is lower than that of its counterparts, large single copy region (LSC and small single copy region (SSC. A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF of ≥ 0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng

  7. The complete chloroplast genome of banana (Musa acuminata, Zingiberales: insight into plastid monocotyledon evolution.

    Directory of Open Access Journals (Sweden)

    Guillaume Martin

    Full Text Available BACKGROUND: Banana (genus Musa is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp and a Small Single Copy region (SSC, 10,768 bp separated by Inverted Repeat regions (IRs, 35,433 bp. Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1 and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  8. The molecular architecture of the chloroplast thylakoid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Stefansson, H.

    1996-08-01

    Non-detergent procedure for isolation of sub-thylakoid vesicle populations derived from different structural domains of the chloroplast thylakoid membrane has been developed. Sub-thylakoid vesicles representing the grana, grana core, stroma lamellae, and the grana margins have been isolated and their protein composition has been investigated. Furthermore a novel non-detergent procedure for investigating the pigment composition of photosynthetic complexes located in the different structural domains has been developed. This procedure circumvents selective extractions, an perturbing effect often combined with detergent isolations of membrane bound protein complexes. The fractionation experiments show that the NADPH dehydrogenase, suggested to operate as NADPH or ferredoxin-plastoquinone oxidoreductase in cyclic electron transport around photosystem I, is stoichiometrically depleted on photosystem I basis in the grana domain. The fractionation studies are consistent with the model of the thylakoid membrane where the photosystems in the grana are operating in a linear electron transport whereas the site of cyclic electron transport is in the stroma lamellae. It is suggested that partial destacking of grana, as a result of light-induced protein phosphorylation, may promote the exposure of the granal photosystem I centers to the chloroplast stroma and thereby enhance their participation in cyclic electron transport activity. 146 refs, 18 figs

  9. The complete chloroplast genome of Cinnamomum kanehirae Hayata (Lauraceae).

    Science.gov (United States)

    Wu, Chia-Chen; Ho, Cheng-Kuen; Chang, Shu-Hwa

    2016-07-01

    The complete chloroplast genome of Cinnamomum kanehirae (Hayata), the first to be completely sequenced of Lauraceae family, is presented in this study. The total genome size is 152,700 bp, with a typical circular structure including a pair of inverted repeats (IRa/b) of 20,107 bp of length separated by a large single-copy region (LSC) and a small single-copy region (SSC) of 93,642 bp and 18,844 bp of length, respectively. The overall GC content of the genome is 39.1%. The nucleotide sequence shows 91% identities with Liriodendron tulipifera in the Magnoliaceae. In total, 123 annotated genes consisted of 79 coding genes, eight rRNA genes, and 36 tRNA genes. Among all 79 coding genes, seven genes (rpoC1, atpF, rpl2, ndhB, ndhA, rps16, and rpl2) contain one intron, while two genes (ycf3 and clpP) contain two introns. The maximum likelihood phylogenetic analysis revealed that C. kanehirae chloroplast genome is closely related to Calycanthus fertilis within Laurales order. PMID:26053940

  10. Phylogeography of Cyananthus delavayi (Campanulaceae) in Hengduan Mountains inferred from variation in nuclear and chloroplast DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Guo-Dong LI; Liang-Liang YUE; Hang SUN; Zi-Gang QIAN

    2012-01-01

    Phylogeographic studies on alpine plants endemic to the Hengduan Mountains of the southeastern Qinghai-Tibet Plateau are still limited in number.In this study,we used sequence variation of one nuclear gene (ncpGS,which encodes the chloroplastic glutamine synthetase) and in two chloroplast DNA segments to investigate the phylogeographic structure and population demographic history of Cyananthus delavayi,a narrow-range species endemic to this region.We identified eight chlorotypes and 16 nuclear genotypes in a survey of 10 populations sampled throughout the range of the species.The results of both phylogenetic and network analyses suggested that the genealogical relationships of both chlorotypes and nuclear genotypes showed a clear geographical correlation.High total genetic diversity,low levels of within-population diversity,and strong population differentiation (chloroplast DNA:hT =0.827,hS =0.087,NST =0.899,GST =0.895; nuclear DNA:hT =0.910,hS =0.348,NST =0719,GST =0.618) were identified.Based on the mismatch distribution analyses,no evidence of recent demographic population expansion was found for this species.Nested clade analyses of both chlorotypes and nuclear genotypes indicated that restricted gene flow resulting from isolation by distance and allopatrc fragmentation were likely to have been the major processes that shaped their present-day spatial distribution.Our dating of the genetic divergences between three major geographic lineages suggested that the largest glaciation of the early Quaternary developed in the Qinghai-Tibet Plateau and mountainous isolation may have together led to deep intraspecific vicariance within this species.

  11. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  12. [Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress].

    Science.gov (United States)

    Qian, Qiong-Qiu; Zai, Wen-San; Zhu, Zhu-Jun; Yu, Jing-Quan

    2006-02-01

    With K(2)SiO(4) (1.0 mmol/L) treatment, the effects of Si on the distribution of Na(+), K(+) to chloroplasts and antioxidant system of cucumber leaves under 50 mmol/L NaCl stress were studied. The results showed that there was a selective transport of K(+) into the chloroplasts so that Na(+) content of chloroplasts was lower under Si treatment (Table 1); H(2)O(2) and MDA contents in chloroplasts were significantly decreased (Fig.1), and the activities of SOD, APX, GR and DHAR were increased simultaneity (Fig.2), and AsA, GSH contents were also increased in chloroplasts of salt-stressed cucumber by additional Si treatment (Fig.3). It may be concluded that Si could decrease absorption of Na(+) and increase ability of active oxygen scavenging in chloroplasts, therefore the injury of chloroplast membrane under salinity stress in cucumber was alleviated. PMID:16477139

  13. Is Chloroplast Movement in Tobacco Plants Influenced Systemically after Local Illumination or Burning Stress?

    Institute of Scientific and Technical Information of China (English)

    Jan Naus; Monika Rolencova; Vladimira Hlavackova

    2008-01-01

    Chloroplast movement has been studied In many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive pedodic movement of chloroplasts was used in high or low (2 000 or 50 μmol/m2 per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough tovoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.

  14. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  15. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, C.A.; Hanson, M.R. [Cornell Univ., Ithaca, NY (United States); Zoubenko, O.V.; Maliga, P. [State Univ. of New Jersey, Piscataway, NJ (United States)

    1995-03-01

    RNA editing occurs in two higher-plant organelles, chloroplasts, and mitochondria. Because chloroplasts and mitochondria exhibit some similarity in editing site selection, we investigated whether mitochondrial RNA sequences could be edited in chloroplasts. We produced transgenic tobacco plants that contained chimeric genes in which the second exon of a Petunia hybrida mitochondrial coxII gene was under the control of chloroplast gene regulatory sequences. coxII transcripts accumulated to low or high levels in transgenic chloroplasts containing chimeric genes with the plastid ribosomal protein gene rps16 or the rRNA operon promoter, respectively. Exon 2 of coxII was chosen because it carries seven editing sites and is edited in petunia mitochondria even when located in an abnormal context in an aberrant recombined gene. When editing of the coxII transcripts in transgenic chloroplasts was examined, no RNA editing at any of the usual sites was detected, nor was there any novel editing at any other sites. These results indicate that the RNA editing mechanisms of chloroplasts and mitochondria are not identical but must have at least some organelle-specific components. 33 refs., 5 figs.

  16. The Chloroplast Outer Envelope Membrane: The Edge of Light and Excitement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites Including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.

  17. The chloroplast genome of a symbiodinium sp. clade C3 isolate

    KAUST Repository

    Barbrook, Adrian C.

    2014-01-01

    Dinoflagellate algae of the genus Symbiodinium form important symbioses within corals and other benthic marine animals. Dinoflagellates possess an extremely reduced plastid genome relative to those examined in plants and other algae. In dinoflagellates the plastid genes are located on small plasmids, commonly referred to as \\'minicircles\\'. However, the chloroplast genomes of dinoflagellates have only been extensively characterised from a handful of species. There is also evidence of considerable variation in the chloroplast genome organisation across those species that have been examined. We therefore characterised the chloroplast genome from an environmental coral isolate, in this case containing a symbiont belonging to the Symbiodinium sp. clade C3. The gene content of the genome is well conserved with respect to previously characterised genomes. However, unlike previously characterised dinoflagellate chloroplast genomes we did not identify any \\'empty\\' minicircles. The sequences of this chloroplast genome show a high rate of evolution relative to other algal species. Particularly notable was a surprisingly high level of sequence divergence within the core polypeptides of photosystem I, the reasons for which are currently unknown. This chloroplast genome also possesses distinctive codon usage and GC content. These features suggest that chloroplast genomes in Symbiodinium are highly plastic. © 2013 Adrian C. Barbrook.

  18. Free radical generation and antioxidant content in chloroplasts from soybean leaves expsoed to ultraviolet-B

    Energy Technology Data Exchange (ETDEWEB)

    Galatro, A.; Simontacchi, M.; Puntarulo, S. [Univ. of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry, Buenos Aires (Argentina)

    2001-07-01

    The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean (Glycine max cv. Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m{sup -2} day{sup -1} of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m{sup -2} day{sup -1} UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of {beta}-carotene or {alpha}-tocopherol was affected by the irradiation. The results: presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content. (au)

  19. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  20. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  1. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

    Science.gov (United States)

    Cocaliadis, Maria Florencia; Fernández-Muñoz, Rafael; Pons, Clara; Orzaez, Diego; Granell, Antonio

    2014-08-01

    Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.

  2. The complete chloroplast genome sequence of Anoectochilus emeiensis.

    Science.gov (United States)

    Zhu, Shuying; Niu, Zhitao; Yan, Wenjin; Xue, Qingyun; Ding, Xiaoyu

    2016-09-01

    The complete chloroplast (cp) genome sequence of Anoectochilus emeiensis, an extremely endangered medical plant with important economic value, was determined and characterized. The genome size was 152 650 bp, containing a pair of inverted repeats (IRs) (26 319 bp) which were separated by a large single copy (LSC) (82 670 bp) and a small single copy (SSC) (17 342 bp). The cpDNA of A. emeiensis contained 113 unique genes, including 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. Among them, 18 genes contained one or two introns. The overall AT content of the genome was 63.1%. PMID:26403535

  3. Development of novel chloroplast microsatellite markers for Ginkgo biloba.

    Science.gov (United States)

    Xu, M; Xu, L A; Cao, F L; Zhang, H J; Yu, F X

    2015-07-13

    Ginkgo biloba is considered to be a living fossil that can be used to understand the ancient evolutionary history of gymnosperms, but little attention has been given to the study of its population genetics, molecular phylogeography, and genetic resources assessment. Chloroplast simple sequence repeat (cpSSR) markers are powerful tools for genetic studies of plants. In this study, a total of 30 perfect cpSSRs of Ginkgo were identified and characterized, including di-, tri, tetra-, penta-, and hexanucleotide repeats. Fifteen of 21 designed primer pairs were successfully amplified to yield specific polymerase chain reaction products from 16 Ginkgo cultivars. Polymorphic cpSSRs were further applied to determine the genetic variation of 116 individuals in 5 populations of G. biloba. The results showed that 24 and 76% genetic variation existed within and among populations of this species, respectively. These polymorphic and monomorphic cpSSR markers can be used to trace the origin and evolutionary history of Ginkgo.

  4. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  5. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    Science.gov (United States)

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars. PMID:26329384

  6. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    Science.gov (United States)

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  7. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets.

    Science.gov (United States)

    Baginsky, Sacha

    2016-06-01

    The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation. PMID:26969742

  8. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  9. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    Science.gov (United States)

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  10. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus. PMID:26407184

  11. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    Science.gov (United States)

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  12. Systematic positions of Lamiophiomis and Paraphlomis (Lamiaceae) based on nuclear and chloroplast sequences

    Institute of Scientific and Technical Information of China (English)

    Yue-Zhi PAN; Li-Qin FANG; Gang HAO; Jie CAI; Xun GONG

    2009-01-01

    Genera Lamiophlomis and Paraphlomis were originally separated from genus Phlomis s.l. on the basis of particular morphological characteristics. However, their relationship was highly contentious, as evidenced by the literature. In the present paper, the systematic positions of Lamiophlomis, Paraphlomis, and their related genera were assessed based on nuclear internal transcribed spacer (ITS) and chloroplast rpl16 and trnL-F sequence data using maximum parsimony (MP) and Bayesian methods. In total, 24 species representing six genera of the ingroup and outgroup were sampled. Analyses of both separate and combined sequence data were conducted to resolve the systematic relationships of these genera. The results reveal that Lamiophlomis is nested within Phlomis sect. Phlomoides and its genetic status is not supported. With the inclusion of Lamiophlomis rotata in sect. Phlomoides, sections Phlomis and Phlomoides of Phlomis were resolved as monophyletic. Paraphlomis was supported as an inde-pendent genus. However, the resolution of its monophyly conflicted between MP and Bayesian analyses, suggesting the need for expended sampling and further evidence.

  13. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa.

    Science.gov (United States)

    Ahmed, Ibrar; Matthews, Peter J; Biggs, Patrick J; Naeem, Muhammad; McLenachan, Patricia A; Lockhart, Peter J

    2013-09-01

    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.

  14. The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies.

    Science.gov (United States)

    Desplanque, B; Viard, F; Bernard, J; Forcioli, D; Saumitou-Laprade, P; Cuguen, J; Van Dijk, H

    2000-02-01

    The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.

  15. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa.

    Science.gov (United States)

    Ahmed, Ibrar; Matthews, Peter J; Biggs, Patrick J; Naeem, Muhammad; McLenachan, Patricia A; Lockhart, Peter J

    2013-09-01

    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups. PMID:23718317

  16. Establishment of a Gene Expression System in Rice Chloroplast and Obtainment of PPT-Resistant Rice Plants

    Institute of Scientific and Technical Information of China (English)

    LI Yi-nü; SUN Bing-yao; SU Ning; MENG Xiang-xun; ZHANG Zhi-fang; SHEN Gui-fang

    2009-01-01

    In contrast to the situation of random integration of foreign genes in nuclear transformation,the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination.To establish an expression system for alien genes in rice chloroplast,the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study.Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique,and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator of psbA gene 3'sequence.Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct.Subsequently,the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained.Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome.Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome.Thus,the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome,but PPT-resistant trait for rice plants as well.It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.

  17. Development of the First Chloroplast Microsatellite Loci in Ginkgo biloba (Ginkgoaceae

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Xie

    2013-07-01

    Full Text Available Premise of the study: To investigate population genetics, phylogeography, and cultivar origin of Ginkgo biloba, chloroplast microsatellite primers were developed. Methods and Results: Twenty-one chloroplast microsatellite markers were identified referring to the two published chloroplast genomes of G. biloba. Polymorphisms were assessed on four natural populations from the two refugia in China. Eight loci were detected to be polymorphic in these populations. The number of alleles per locus ranged from three to seven, and the unbiased haploid diversity per locus varied from 0.441 to 0.807. Conclusions: For the first time, we developed 21 chloroplast microsatellite markers for G. biloba, including 13 monomorphic and eight polymorphic ones within the assessed natural populations. These markers should provide a powerful tool for the study of genetic variation of both natural and cultivated populations of G. biloba, as well as cultivars.

  18. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  19. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  20. Running a little late: chloroplast Fe status and the circadian clock

    OpenAIRE

    Wilson, Grandon T; Erin L Connolly

    2013-01-01

    Iron homeostasis is essential for plant growth and survival. Two papers now report that chloroplast Iron levels also regulate the period of the circadian clock, which might confer fitness advantage by linking iron status to daily changes in environmental conditions.

  1. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomomad prigin, not kleptochloroplasts

    DEFF Research Database (Denmark)

    Garcia, Lydia; Moestrup, Øjvind; Hansen, Per Juel;

    2010-01-01

    Most species belonging to the toxigenic genus Dinophysis have chloroplasts of cryptophyte origin. Whether these chloroplasts are temporarily sequestered from the prey, or permanently established under the control of the dinoflagellate is currently disputed. To investigate this, a culture...... of Dinophysis acuminata was established by feeding it the phototrophic ciliate Mesodinium rubrum (= Myrionecta rubra), which again was fed the cryptophyte Teleaulax amphioxeia. Molecular analysis comprising the nucleomorph LSU and two chloroplast markers (tufA gene and a fragment from the end of 16S r......DNA to the beginning of 23S rDNA) resulted in identical sequences for the three organisms. Yet, transmission electron microscopy of the three organisms revealed that several chloroplast features separated D. acuminata from both T. amphioxeia and M. rubrum. The thylakoid arrangement, the number of membranes around...

  2. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta).

    Science.gov (United States)

    Fučíková, Karolina; Lewis, Louise A; Lewis, Paul O

    2016-06-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in "Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution" (Fučíková et al., In review) [1]. PMID:27054159

  3. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    Science.gov (United States)

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.

  4. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Valeria R Turowski

    Full Text Available Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR and ferredoxin (Fd, two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  5. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology

    OpenAIRE

    Daniell, Henry; Khan, Muhammad S.; Allison, Lori

    2002-01-01

    Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene e...

  6. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  7. The conserved endoribonuclease YbeY is required for chloroplast ribosomal RNA processing in Arabidopsis.

    Science.gov (United States)

    Liu, Jinwen; Zhou, Wenbin; Liu, Guifeng; Yang, Chuanping; Sun, Yi; Wu, Wenjuan; Cao, Shenquan; Wang, Chong; Hai, Guanghui; Wang, Zhifeng; Bock, Ralph; Huang, Jirong; Cheng, Yuxiang

    2015-05-01

    Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5' and 3' ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development.

  8. Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts

    Directory of Open Access Journals (Sweden)

    Naoki eSato

    2016-02-01

    Full Text Available Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  9. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    OpenAIRE

    Chebolu, S.; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antib...

  10. THE OCCURRENCE AND SIGNIFICANCE OF ENDOSYMBIOTIC CHLOROPLASTS IN THE DIGESTIVE GLANDS OF HERBIVOROUS OPISTHOBRANCHS(1).

    Science.gov (United States)

    Taylor, D L

    1967-12-01

    Intact algal chloroplasts have been found in the digestive glands of 5 species of Opisthobranchia belonging to the order Saccoglossa. Preliminary studies on 3 of these confirm their endosymbiotic nature. It is suggested that the occurrence of these endosymbiotic organelles may be widespread among related species of Saccoglossa. Their independent functional existence supports the view that chloroplasts possess a system of nonchromosomal inheritance. PMID:27065036

  11. Complete Chloroplast Genome Sequence of Omani Lime (Citrus aurantiifolia) and Comparative Analysis within the Rosids

    OpenAIRE

    Huei-Jiun Su; Hogenhout, Saskia A.; Al-Sadi, Abdullah M.; Chih-Horng Kuo

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C....

  12. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome

    OpenAIRE

    Tanaka, Katsunori; Akashi, Yukari; FUKUNAGA, Kenji; Yamamoto, Tatsuya; Aierken, Yasheng; Nishida, Hidetaka; Long, Chun Lin; Yoshino, Hiromichi; Sato, Yo-Ichiro; KATO, Kenji

    2013-01-01

    Molecular analysis encouraged discovery of genetic diversity and relationships of cultivated melon (Cucumis melo L.). We sequenced nine inter- and intra-genic regions of the chloroplast genome, about 5500 bp, using 60 melon accessions and six reference accessions of wild species of Cucumis to show intra-specific variation of the chloroplast genome. Sequence polymorphisms were detected among melon accessions and other Cucumis species, indicating intra-specific diversification of the chloroplas...

  13. Time Gating of Chloroplast Autofluorescence Allows Clearer Fluorescence Imaging In Planta.

    Directory of Open Access Journals (Sweden)

    Yutaka Kodama

    Full Text Available Chloroplast, an organelle facilitating photosynthesis, exhibits strong autofluorescence, which is an undesired background signal that restricts imaging experiments with exogenous fluorophore in plants. In this study, the autofluorescence was characterized in planta under confocal laser microscopy, and it was found that the time-gated imaging technique completely eliminates the autofluorescence. As a demonstration of the technique, a clearer signal of fluorescent protein-tagged phototropin, a blue-light photoreceptor localized at the chloroplast periphery, was visualized in planta.

  14. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii

    OpenAIRE

    Uniacke, James; Zerges, William

    2008-01-01

    Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the lar...

  15. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.

    Directory of Open Access Journals (Sweden)

    Boris Zybailov

    Full Text Available Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP. The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence

  16. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta)

    OpenAIRE

    Fučíková, Karolina; Lewis, Louise A.; Lewis, Paul O.

    2016-01-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophy...

  17. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development

    OpenAIRE

    Juan de Dios Barajas-López; Dmitry Kremnev; Jehad Shaikhali; Aurora Piñas-Fernández; Asa Strand

    2013-01-01

    The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the...

  18. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    Directory of Open Access Journals (Sweden)

    Claude Alban

    Full Text Available Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division. Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.

  19. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    OpenAIRE

    Guillaume Martin; Franc-Christophe Baurens; Céline Cardi; Jean-Marc Aury; Angélique D'Hont

    2013-01-01

    BACKGROUND: Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads e...

  20. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  1. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.

    Science.gov (United States)

    Myouga, Fumiyoshi; Akiyama, Kenji; Tomonaga, Yumi; Kato, Aya; Sato, Yuka; Kobayashi, Megumi; Nagata, Noriko; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-02-01

    The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.

  2. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.

    Science.gov (United States)

    Rozier, C; Mache, R

    1984-10-11

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.

  4. Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga, Halimeda macroloba.

    Directory of Open Access Journals (Sweden)

    Anthony W D Larkum

    Full Text Available BACKGROUND: The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time. METHODOLOGY/PRINCIPAL FINDINGS: Growth of new segments was visualised by epifluorescence and confocal microscopy and by pulse amplitude modulation (PAM fluorimetry. Apical colourless proto-segments were initiated on day 1, and formed a loose network of non-calcified, non-septate filaments, containing no chloroplasts. Rapid greening was initiated at dusk by i the mass movement of chloroplasts into these filaments from the parent segment and ii the growth of new filaments containing chloroplasts. Greening was usually complete in 3-5 h and certainly before dawn on day 2 when the first signs of calcification were apparent. Mass chloroplast movement took place at a rate of ∼0.65 µm/s. Photosynthetic yield and rate remained low for a period of 1 to several hours, indicating that the chloroplasts were made de novo. Use of the inhibitors colchicine and cytochalasin d indicated that the movement process is dependent on both microtubules and microfilaments. SIGNIFICANCE: This unusual process involves the mass movement of chloroplasts at a high rate into new segments during the night and rapid calcification on the following day and may be an adaptation to minimise the impact of herbivorous activity.

  5. Effects of Ce3+ on Chloroplast Senescence of Spinach under Light

    Institute of Scientific and Technical Information of China (English)

    Yang Fan; Ma Zhenni; Liu Chao; Wu Cheng; Zhou Juan; Gao Fengqing; Hong Fashui

    2005-01-01

    The effects of Ce3+ on the chloroplast senescence of spinach under light were studied. The results show that when the chloroplasts are illuminated for 1, 5 and 10 min with 500 μmol·cm-2·min-1 light intensity, the oxygen evolution rate is rapidly increased. When the chloroplasts are treated for 20, 30 and 40 min with 500 μmol·cm-2·min-1 light intensity, the oxygen evolution rate is gradually decreased. While spinach is treated with 16 μmol·L-1 Ce3+, the rate of oxygen evolution of chloroplasts in different illumination time (1,5, 10, 20, 30, 40 min) is higher than that of control, and when illumination time is over 10 min, the reduction of the oxygen evolution rate is lower than that of control. It suggests that Ce3+ treatment can protect chloroplasts from aging for long time illumination. The mechanism research results indicate that Ce3+ treatment can significantly decrease accumulation of active oxygen free radicals such as O2·- and H2O2, and reduce the level of malondialdehyde (MDA), and maintain stability of membrane structure of chloroplast under light. It is shown that the redox took place between cerium and free radicals, which are eliminated in a large number, leading to protect the membrane from peroxidating.

  6. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells

    Institute of Scientific and Technical Information of China (English)

    Yuuki Sakai; Shin-Ichiro Inoue; Akiko Harada; Ken-Ichiro Shimazaki; Shingo Takagi

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces “chloroplast de‐anchoring”, a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast deanchoring is known induced within 1 min of irradiation with high‐fluence‐rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross‐reactive polypeptides of 120‐kDa exist in the plasma‐membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120‐kDa polypeptides were phosphorylated by exposure to blue light in a fluence‐dependent manner. The blue‐light‐induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calciumregulated chloroplast de‐anchoring, possibly mediated by phototropins, is an initial process of the blue‐light‐induced avoidance response of chloroplasts in Vallisneria.

  7. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum,Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants.The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon us-age. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.

  8. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    Science.gov (United States)

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria. PMID:25231366

  9. Gustav Senn (1875-1945):The pioneer of chloroplast movement research

    Institute of Scientific and Technical Information of China (English)

    Hironao Kataoka

    2015-01-01

    Gustav Senn analyzed for the first time light-induced movement and arrangement of chloroplasts. Using many plant species he performed physiological analyses of chloroplast migration in response to external stimuli, with emphasis on light. He determined light paths within a cel by measuring refractive indices and optical thickness of cel ular compartments and confirmed that chloroplasts migrate towards the region where the light intensity is optimum. After 6 to 7 years’ concentrated study, Senn published the famous monograph “Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren”(The Changes in Shape and Position of Plant Chloroplasts) in 1908. This book has stimulated many plant physiologists and photobiologists, because Senn not only thoroughly classified and defined various types of light-induced chloroplast migration but also already described possible interaction of different photoreceptor systems in Mougeotia more than 50 years before the discovery of phytochrome. This book also contains stil useful experimental hints and over-looked findings on the interaction between light and other factors, such as temperature, water content, and nourishment. After publishing this book, Senn retreated from the study of chloroplasts and became a researcher of the Greek philoso-pher, Theophrastus. In this review, I introduce his biographical background and then summarize some of his key research accomplishment.

  10. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  11. Molecular polymorphism in Pistacia vera L. using non-coding regions of chloroplast DNA

    Directory of Open Access Journals (Sweden)

    Majid Talebi

    2016-06-01

    Full Text Available The present study describes plastid DNA polymorphism and reports a comparative analysis of two non-coding cpDNA regions (trnC–trnD and atpB–rbcL in pistachio. Seventeen different genotypes of domestic and wild pistachio from Iran, Syria, Turkey and America were sampled. Total genomic DNA was extracted and amplified with trnC–trnD and atpB–rbcL specific primers and then were sequenced. Phylogenetic relationships and depiction of phylogenetic trees were conducted. Cultivated genotypes of Pistacia vera were classified in a group regardless of their geographic location. P. vera was isolated from Sarakhs but they placed in the two close groups. Among cultivated genotypes, Jalab was separated from other cultivated genotypes. Pistacia Khinjuk was classified with Pistacia atlantica subsp. mutica. The findings confirm the common splitting hypothesis for commercial pistachio genotypes of the P. vera wild-type and also indicated the direct impact of Iranian genotypes in the evolutionary process of cultivated pistachios in other parts of the world. In conclusion it can be inferred that cultivated varieties of pistachio and P. vera var. sarakhs have the same origin, moreover genomic chloroplast could appropriately identify the interspecies relationships of pistachios.

  12. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae.

    OpenAIRE

    Baldauf, S L; Manhart, J R; J.D. Palmer

    1990-01-01

    Previous work suggested that the tufA gene, encoding protein synthesis elongation factor Tu, was transferred from the chloroplast to the nucleus within the green algal lineage giving rise to land plants. In this report we investigate the timing and mode of transfer by examining chloroplast and nuclear DNA from the three major classes of green algae, with emphasis on the class Charophyceae, the proposed sister group to land plants. Filter hybridizations reveal a chloroplast tufA gene in all Ul...

  13. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    Science.gov (United States)

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  14. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.

  15. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation

    Institute of Scientific and Technical Information of China (English)

    Xiayan Liu; Mengdi Zheng; Rui Wang; Ruijuan Wang; Lijun An; Steve R. Rodermel; Fei Yu

    2013-01-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.

  16. An optimized chloroplast DNA extraction protocol for grasses (Poaceae proves suitable for whole plastid genome sequencing and SNP detection.

    Directory of Open Access Journals (Sweden)

    Kerstin Diekmann

    Full Text Available BACKGROUND: Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. CONCLUSIONS/SIGNIFICANCE: The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus x giganteus, Panicoideae. The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.

  17. Genetic interactions reveal that specific defects of chloroplast translation are associated with the suppression of var2-mediated leaf variegation.

    Science.gov (United States)

    Liu, Xiayan; Zheng, Mengdi; Wang, Rui; Wang, Ruijuan; An, Lijun; Rodermel, Steve R; Yu, Fei

    2013-10-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development. PMID:23721655

  18. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  19. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available BACKGROUND: Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC region of 82,740 bp, a small single copy (SSC region of 18,394 bp and a pair of inverted repeats (IRs of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae based on ndhF and trnL-F sequence comparisons. CONCLUSION: The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome

  20. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  1. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  2. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  3. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    Science.gov (United States)

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  4. Preferential translation of chloroplast ribosomal proteins in Chlamydomonas reinhardtti

    International Nuclear Information System (INIS)

    The nuclear cr-1 mutant of C. reinhardtii is deficient in the 30S subunit of the chloroplast (cp) ribosome and in cp protein synthesis. The cp spectinomycin resistant mutant, spr-u-1-27-3, has a normal level of 70S ribosomes but only a low rate of cp protein synthesis with spectinomycin present. In both mutants there is little accumulation of the large subunit of ribulose 1,5-bisphosphate carboxylase (Rubisco LSU), but near wild-type levels of cp synthesized r-proteins. In cells pulse-labelled with 35SO4 and immunoprecipitated with specific antisera, the ratio of the rate of synthesis of cp r-proteins to that of Rubisco LSU is 7 times greater in both mutants than in wild-type. No difference in the rate of turnover between r-proteins and Rubisco LSU in mutant and wild-type cells was observed during a one hour chase. The mRNA levels for r-protein L1 and Rubisco LSU actually increase slightly in the mutants. These data suggest that C. reinhardtii has a translation mechanism for preferential synthesis of cp r-proteins that operates under conditions of reduced total cp protein synthesis

  5. Two complete chloroplast genome sequences of Cannabis sativa varieties.

    Science.gov (United States)

    Oh, Hyehyun; Seo, Boyoung; Lee, Seunghwan; Ahn, Dong-Ha; Jo, Euna; Park, Jin-Kyoung; Min, Gi-Sik

    2016-07-01

    In this study, we determined the complete chloroplast (cp) genomes from two varieties of Cannabis sativa. The genome sizes were 153,848 bp (the Korean non-drug variety, Cheungsam) and 153,854 bp (the African variety, Yoruba Nigeria). The genome structures were identical with 131 individual genes [86 protein-coding genes (PCGs), eight rRNA, and 37 tRNA genes]. Further, except for the presence of an intron in the rps3 genes of two C. sativa varieties, the cp genomes of C. sativa had conservative features similar to that of all known species in the order Rosales. To verify the position of C. sativa within the order Rosales, we conducted phylogenetic analysis by using concatenated sequences of all PCGs from 17 complete cp genomes. The resulting tree strongly supported monophyly of Rosales. Further, the family Cannabaceae, represented by C. sativa, showed close relationship with the family Moraceae. The phylogenetic relationship outlined in our study is well congruent with those previously shown for the order Rosales.

  6. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts

    Science.gov (United States)

    Burgess, Steven J.; Taha, Hussein; Yeoman, Justin A.; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G.; Bialek, Wojciech; Murray, James W.; Nixon, Peter J.

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD+-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a ‘lactate valve’ for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  7. Phylogeography of Camellia taliensis (Theaceae inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2012-06-01

    Full Text Available Abstract Background As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. Results Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h = 0.841; π = 0.00314 were almost as high as at PAL (h = 0.836; π = 0.00417. Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989, suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a moderate nrDNA population subdivision (GST = 0.222; NST = 0.301 provided the evidence of efficient pollen-mediated gene flow among populations and significant phylogeographical structure (NST > GST; P PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by restricted gene flow with isolation by distance, which was also supported by Mantel’s test of nrDNA haplotypes (r = 0.234, P  Conclusions We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and habitat fragmentation. This phylogeographical study gives us deep insights into population structure of the species and conservation strategies for germplasm sampling and developing in situ conservation of natural populations.

  8. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiaomei; SHI Xiaobing; SHEN Yungang

    2004-01-01

    The ε subunit of the chloroplast ATP synthase and the truncated ε mutants which lack some amino acid residues from the N-terminus or C-terminus were overexpressed in E. coli. When the ε subunit or the truncated ε proteins was added to the spinach chloroplast suspension, both the intensity of the fast phase of millisecond delayed light emission (ms-DLE) and the cyclic and noncyclic photophosphorylation activity of chloroplast were enhanced. With an increase in the number of residues deleted from the N-terminus, the enhancement effect of the N-terminal truncated proteins decreased gradually. For the C-terminal truncated proteins, the enhancement effect increased gradually with an increase in the number of residues deleted from the C-terminus. Besides, the ATP synthesis activity of ε-deficient membrane reconstituted with the ε subunit or the truncated ε proteins was compared. The ATP synthesis activity of reconstituted membrane with the N-terminal truncated proteins decreased gradually as the number of residues deleted from the N-terminus increased. For the C-terminal truncated proteins, the ATP synthesis activity of reconstituted membrane increased gradually with an increase in the number of residues deleted from the C-terminus, but was still lower than that of the wild type ε protein. These results suggested that: (a) the N-terminal domain of the ε subunit of the chloroplast ATP synthase could affect the ATP synthesis activity of ATP synthase by regulating the efficiency of blocking proton leakage of ε subunit; and (b) the C-terminal domain of the ε subunit of the chloroplast ATP synthase had a subtle function in modulating the ATP synthesis ability of ATP synthase.

  9. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division.

    Science.gov (United States)

    Gao, Yuefang; Liu, Han; An, Chuanjing; Shi, Yuhong; Liu, Xia; Yuan, Wanqiong; Zhang, Bing; Yang, Jin; Yu, Caixia; Gao, Hongbo

    2013-09-01

    ARC5 is a dynamin-related GTPase essential for the division of chloroplasts in plants. The arc5 mutant frequently exhibits enlarged, dumbbell-shaped chloroplasts, indicating a role for ARC5 in the constriction of the chloroplast division site. In a screen for chloroplast division mutants with a phenotype similar to arc5, two mutants, cpd25 and cpd45, were obtained. CPD45 was identified as being the same gene as FHY3, a key regulator of far-red light signaling recently shown to be involved in the regulation of ARC5. CPD25 was previously named FRS4 and is homologous to FHY3. We found that CPD25 is also required for the expression of ARC5, suggesting that its function is not redundant to that of FHY3. Moreover, cpd25 does not have the far-red light-sensing defect present in fhy3 and far1. Both FRS4/CPD25 and FHY3/CPD45 could bind to the FBS-like 'ACGCGC' motifs in the promoter region of ARC5, and the binding efficiency of FRS4/CPD25 was much higher than that of FHY3/CPD45. Unlike FHY3/CPD45, FRS4/CPD25 has no ARC5 activation activity. Our data suggest that FRS4/CPD25 and FHY3/CPD45 function as a heterodimer that cooperatively activates ARC5, that FRS4/CPD25 plays the major role in promoter binding, and that FHY3/CPD45 is largely responsible for the gene activation. This study not only provides insight into the mechanisms underlying the regulation of chloroplast division in higher plants, but also suggests a model that shows how members of a transcription factor family can evolve to have different DNA-binding and gene activation features.

  10. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Jungeun Lee

    Full Text Available BACKGROUND: Antarctic hairgrass (Deschampsia antarctica Desv. is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. RESULTS: The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp and small (SSC: 12,519 bp single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp. It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. CONCLUSIONS: We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers

  11. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice.

    Science.gov (United States)

    Kusumi, Kensuke; Hirotsuka, Shoko; Shimada, Hiroshi; Chono, Yoko; Matsuda, Osamu; Iba, Koh

    2010-07-01

    Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.

  12. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae)1

    Science.gov (United States)

    Chaney, Lindsay; Mangelson, Ryan; Ramaraj, Thiruvarangan; Jellen, Eric N.; Maughan, Peter J.

    2016-01-01

    Premise of the study: The amaranth genus contains many important grain and weedy species. We further our understanding of the genus through the development of a complete reference chloroplast genome. Methods and Results: A high-quality Amaranthus hypochondriacus (Amaranthaceae) chloroplast genome assembly was developed using long-read technology. This reference genome was used to reconstruct the chloroplast genomes for two closely related grain species (A. cruentus and A. caudatus) and their putative progenitor (A. hybridus). The reference genome was 150,518 bp and possesses a circular structure of two inverted repeats (24,352 bp) separated by small (17,941 bp) and large (83,873 bp) single-copy regions; it encodes 111 genes, 72 for proteins. Relative to the reference chloroplast genome, an average of 210 single-nucleotide polymorphisms (SNPs) and 122 insertion/deletion polymorphisms (indels) were identified across the analyzed genomes. Conclusions: This reference chloroplast genome, along with the reported simple sequence repeats, SNPs, and indels, is an invaluable genetic resource for studying the phylogeny and genetic diversity within the amaranth genus. PMID:27672525

  13. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    Science.gov (United States)

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P plants possesses relatively more genomic diversity compared to higher plants.

  14. CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    Science.gov (United States)

    Gutiérrez, Carla L; Gimpel, Javier; Escobar, Carolina; Marshall, Sergio H; Henríquez, Vitalia

    2012-08-01

    At present, there is strong commercial demand for recombinant proteins, such as antigens, antibodies, biopharmaceuticals, and industrial enzymes, which cannot be fulfilled by existing procedures. Thus, an intensive search for alternative models that may provide efficiency, safety, and quality control is being undertaken by a number of laboratories around the world. The chloroplast of the eukaryotic microalgae Haematococcus pluvialis Flotow has arisen as a candidate for a novel expression platform for recombinant protein production. However, there are important drawbacks that need to be resolved before it can become such a system. The most significant of these are chloroplast genome characterizations, and the development of chloroplast transformation vectors based upon specific endogenous promoters and on homologous targeting regions. In this study, we report the identification and characterization of endogenous chloroplast sequences for use as genetic tools for the construction of H. pluvialis specific expression vectors to efficiently transform the chloroplast of this microalga via microprojectile bombardment. As a consequence, H. pluvialis shows promise as a platform for expressing recombinant proteins for biotechnological applications, for instance, the development of oral vaccines for aquaculture. PMID:27009007

  15. Synthesis of medium-chain- length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    WANG Yuhua; WU Zhongyi; ZHANG Xiuhai; CHEN Guoqiang; WU Qiong; HUANG Conglin; YANG Qing

    2005-01-01

    Medium-chain-length-polyhydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters containing monomers ranging from 6 to 14 carbons in length. The key enzymes of their biosynthesis are PHA-polymerase (product of phaC gene) and 3-hydroxyacyl-acyl carrier protein-CoA transferase (product of phaG gene). With aadA (aminoglycoside 3′-adenylyltransferase) gene as screening marker, two chloroplast transformation vectors of pTC2 harboring phaC2 gene only and pTGC harboring both phaC and phaG genes were constructed and introduced into tobacco chloroplast genome through particle bombardment. PCR and Southern blot analysis confirmed the insertion of the introduced genes into chloroplast genome. The content of mcl-PHAs accumulated in transgenic plants was analyzed by gas chromatography, mcl-PHAs accumulated up to 4.8 mg/g dry weight (dw) in transgenic line S4-3; their monomers were 3-hydroxyoctanoate and 3-hydroxydecanoate. Accumulation of mcl-PHAs polymers in the tobacco chloroplast was also observed by transmission electron microscopy. To our knowledge, this is the first report on the synthesis of mcl- PHAs in tobacco via chloroplast genetic engineering.

  16. Delayed fluorescence spectroscopy and mechanism of the 730 nm component of chloroplast

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-long; XING Da; FAN Duo-wang; QIAN Long; LU Mai

    2006-01-01

    Charge recombination in reaction center (RC) of photosystem Ⅱ(PS Ⅱ)is regarded as the location of 685 nm delayed fluorescence (DF). The mechanism of 730 nm component appearing in the DF spectrum for chloroplast was studied by various spectral analysis methods. Experimental results of the DF spectrum at different chloroplast concentration show that the intensity of peaks at 685nm and 730 nm ascends with the chloroplast concentration increasing when the concentration is relatively low. When the concentration increases to the level of 7.8 μg/ml, a maximum intensity of the peak at 685 nm appears but the intensity of 730 nm peak still increases. The peak at 730 nm finally reaches a maximum intensity at the chloroplast concentration of 31.2 μg/ml while the intensity of the 685 nm peak has apparently fallen down. The results of absorption spectrum show that the ratios of A685 to A730 keep almost constant with the increasing of chloroplast concentration. Furthermore, the excitation spectrum for 730 nm fluorescence shows that the 685nm light has high excitation efficiency.These results indicate that the 730nm component of DF spectrum is the fluorescence of chlorophyll in PS Ⅰ RC excited by 685 nm DF. Meanwhile, this can be further verified by the invariability of DF spectrum at different delay time (1 second~9 seconds).

  17. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  18. Comparative Analysis of Codon Usage Patterns Among Mitochondrion, Chloroplast and Nuclear Genes in Triticum aestivum L.

    Institute of Scientific and Technical Information of China (English)

    Wen-Juan Zhang; Jie Zhou; Zuo-Feng Li; Li Wang; Xun Gu; Yang Zhong

    2007-01-01

    In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion,chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of rnitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level.The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.

  19. Homologous Comparisons of Photosynthetic System 1 Genes among Cyanobacteria and Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    Jie Yu; Pei-Jun Ma; Ding-Ji Shi; Shi-Ming Li; Chang-Lu Wang

    2008-01-01

    It has now believed that chloroplasts arose from cyanobacteria,however,during endosymbiosis,the photosynthetic genes in chloroplasts have been reduced.How these changes occurred during plant evolution was the focus of the present study.Beginning with photosystem Ⅰ (PSI) genes,a homologous comparison of amino acid sequences of 18 subunits of PSI from 10 species of cyanobacteria,chloroplasts in 12 species of eucaryotic algae,and 28 species of plants (including bryophytes,pteridophytes,gymnospermae,dicotyledon and monocotyledon) was undertaken.The data showed that 18 genes of PSIcan be divided into two groups: Part Ⅰ including seven genes (psaA,psaB,psaC,psaI,psaJ,yct3 and ycf4) shared both by cyanobacteria and plant chloroplasts;Part Ⅱ containing another 11 genes (psaD,psaE,psaF,psaK,psaL,psaM,btpA,ycf37,psaG,psaH and psaN) appeared to have diversified in different plant groups.Among Part I genes,psaC,psaA and psaB had higher homology in all species of cyanobacteria and chloroplasts.Among Part II genes,only psaG,psaH and psaN emerged in seed plants.

  20. Recombination and Heterologous Expression of Allophycocyanin Gene in the Chloroplast of Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang SU; Kai-Xian QIAN; Cong-Ping TAN; Chun-Xiao MENG; Song QIN

    2005-01-01

    Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.

  1. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  2. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  3. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  4. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.

    Science.gov (United States)

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A; González, Maricruz; Lindahl, Anna M; Cejudo, Francisco J

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  5. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    Cuiju Cui; Guangxiao Yang; Guangyuan He; Fei Song; Yi Tan; Xuan Zhou; Wen Zhao; Fengyun Ma; Yunyi Liu; Javeed Hussain; Yuesheng Wang

    2011-01-01

    Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences. respectively. A wheat chloroplast sitespecific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase Ⅱ (nptⅡ) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.

  6. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    Science.gov (United States)

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  7. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha.

    Science.gov (United States)

    Boehm, Christian R; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-02-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  8. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin.

    Science.gov (United States)

    He, Yang; Xiao, Hongtao; Deng, Cao; Xiong, Liang; Yang, Jian; Peng, Cheng

    2016-01-01

    Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species. PMID:27275817

  9. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  10. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia and comparative analysis within the rosids.

    Directory of Open Access Journals (Sweden)

    Huei-Jiun Su

    Full Text Available The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia. The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  11. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids.

    Science.gov (United States)

    Su, Huei-Jiun; Hogenhout, Saskia A; Al-Sadi, Abdullah M; Kuo, Chih-Horng

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  12. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha

    Science.gov (United States)

    Boehm, Christian R.; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-01-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  13. Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress

    Institute of Scientific and Technical Information of China (English)

    PENG Qian; ZHOU Qing

    2009-01-01

    In order to investigate the effects of lanthanum(Ⅲ) on cell ultrastructure of soybean leaves under elevated ultraviolet-B irradiation (UV-B, 280-320 rim), the chloroplast ultrastructure of soybean seedlings was studied by hydroponics under laboratory conditions. The re-sults showed that the thylakoid in chloroplast was orderly and clearly as soybean leaves were pretreated by La(Ⅲ). The thylakoid was indis-tinctly disordered, expanded and even indiscoverable in the chloroplast under UV-B stress. The impact on the thylakoid by the high in-tensity UV-B irradiation (T2) was bigger than that by the low intensity UV-B irradiation (T1). However, the destruction of the chloroplast structure caused by UV-B stress was alleviated by La(Ⅲ), and the arrangement of the thylakoid in the chloroplast became orderly and clearly. The effect of the alleviation by La(Ⅲ) under the low intensity UV-B irradiation (T1) was better than that under the high intensity UV-B irradiation (T2).

  14. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  15. Synthesis of poly(A)-containing RNA by isolated spinach chloroplasts.

    Science.gov (United States)

    Bartolf, M; Price, C A

    1979-05-01

    Chloroplasts were isolated from spinach leaves and the intact chloroplasts separated by centrifugation on gradients of silica sol. Chloroplasts prepared in this way were almost completely free of cytoplasmic rRNA. The purified chloroplasts were incubated with 32PO4 in the light. The nucleic acids were then extracted and the RNA was fractionated into poly(A)-lacking RNA and poly(A)-containing RNA (poly(A)-RNA) via oligo(dT)-cellulose chromatography. The poly(A)-RNA had a mean size of approximately 18--20 S as determined by polyacrylamide gel electrophoresis. The poly(A)-RNA was digested with RNase A and RNase T1, and the resulting poly(A) segments were subjected to electrophoresis on a 10% w/v polyacrylamide gel 98% v/v formamide). Radioactivity was incorporated into both poly(A)-RNA and poly(A)-lacking RNA and into the poly(A) segments themselves. The poly(A) segments were between 10 and 45 residues long and alkaline hydrolysis of poly(A) segments followed by descending paper chromatography showed that they were composed primarily of adenine residues. There was no 32PO4 incorporation into acid-insoluble material in the dark. We conclude that isolated chloroplasts are capable of synthesizing poly(A)-RNA. PMID:435477

  16. High-throughput discovery of chloroplast and mitochondrial DNA polymorphisms in Brassicaceae species by ORG-EcoTILLING.

    Directory of Open Access Journals (Sweden)

    Chang-Li Zeng

    Full Text Available BACKGROUND: Information on polymorphic DNA in organelle genomes is essential for evolutionary and ecological studies. However, it is challenging to perform high-throughput investigations of chloroplast and mitochondrial DNA polymorphisms. In recent years, EcoTILLING stands out as one of the most universal, low-cost, and high-throughput reverse genetic methods, and the identification of natural genetic variants can provide much information about gene function, association mapping and linkage disequilibrium analysis and species evolution. Until now, no report exists on whether this method is applicable to organelle genomes and to what extent it can be used. METHODOLOGY/PRINCIPAL FINDINGS: To address this problem, we adapted the CEL I-based heteroduplex cleavage strategy used in Targeting Induced Local Lesions in Genomes (TILLING for the discovery of nucleotide polymorphisms in organelle genomes. To assess the applicability and accuracy of this technology, designated ORG-EcoTILLING, at different taxonomic levels, we sampled two sets of taxa representing accessions from the Brassicaceae with three chloroplast genes (accD, matK and rbcL and one mitochondrial gene (atp6. The method successfully detected nine, six and one mutation sites in the accD, matK and rbcL genes, respectively, in 96 Brassica accessions. These mutations were confirmed by DNA sequencing, with 100% accuracy at both inter- and intraspecific levels. We also detected 44 putative mutations in accD in 91 accessions from 45 species and 29 genera of seven tribes. Compared with DNA sequencing results, the false negative rate was 36%. However, 17 SNPs detected in atp6 were completely identical to the sequencing results. CONCLUSIONS/SIGNIFICANCE: These results suggest that ORG-EcoTILLING is a powerful and cost-effective alternative method for high-throughput genome-wide assessment of inter- and intraspecific chloroplast and mitochondrial DNA polymorphisms. It will play an important role in

  17. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    Science.gov (United States)

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  18. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers

    Directory of Open Access Journals (Sweden)

    MEMEN SURAHMAN

    2010-07-01

    Full Text Available Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H (2010 Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers. Biodiversitas 11: 112-117. Sago palm (Metroxylon sagu Rottb. was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF analyses were performed by using ABI Prism GeneScanR 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574, among populations (P=0.04772, and among populations within the island (P=0.03366, but among islands no significant differentiations were observed (P= 0.63069.

  19. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  20. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Directory of Open Access Journals (Sweden)

    Heubl Günther

    2010-11-01

    Full Text Available Abstract Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a

  1. Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae)

    Institute of Scientific and Technical Information of China (English)

    Shi-Chao CHEN; Li ZHANG; Jie ZENG; Fei SHI; Hong YANG; Yun-Rui MAO; Cheng-Xin FU

    2012-01-01

    The monotypic genus Platycarya (Juglandaceae) is one of the most widespread temperate tree species in East Asia.In this research,we implemented a phylogeographical study using chloroplast DNA (cpDNA) (psbA-trnH and atpB-rbcL intergenic spacer) sequences on Platycarya strobilacea,in order to identify the locations of the species' main refugia and migration routes.A total of 180 individuals of P.stobilacea from 27 populations from China and Jeju Island (Korea) were collected.The results revealed that P.strobilacea had 35 haplotypes for the two intergenic spacers and high genetic diversity (hT =0.926).This surprisingly high diversity ofhaplotypes indicates its long evolutionary history,which is in agreement with previous phylogenetic analyses and fossil records.Significant cpDNA population subdivision was detected (GST =0.720; NST =0.862),suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (NST > GST,P < 0.05).The construction of phylogenetic relationships of the 35 chlorotypes detected four major cpDNA clades.Divergence dating analyses using BEAST suggest that the divergence of the major cpDNA clades occurred before the Miocene.Demographic analysis indicated that the Eastern clade underwent localized demographic expansions.The molecular phylogenetic data,together with the geographic distribution of the haplotypes,suggest the existence of multiple glacial refugia in most of its current range in China through Quaternary climatic oscillations.

  2. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data

    Science.gov (United States)

    Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta. The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  3. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  4. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data.

    Science.gov (United States)

    Stadermann, Kai Bernd; Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  5. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species

    Indian Academy of Sciences (India)

    Qingpo Liu; Qingzhong Xue

    2005-04-01

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes in O. sativa, Z. mays, and T. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.

  6. The complete chloroplast genome sequence of Lilium hansonii Leichtlin ex D.D.T.Moore.

    Science.gov (United States)

    Kim, Kyunghee; Hwang, Yoon-Jung; Lee, Sang-Choon; Yang, Tae-Jin; Lim, Ki-Byung

    2016-09-01

    Lilium hansonii is a lily species native to Korea and an important wild species for lily breeding. The chloroplast genome of L. hansonii was completed by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. hansonii was 152 655 bp long and consisted of large single copy region (82 051 bp), small single copy region (17 620 bp) and a pair of inverted repeat regions (26 492 bp). A total of 115 genes were annotated, which included 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. hansonii is most closely related to L. superbum (Turk's-cap lily) and L. longiflorum (Easter lily). PMID:26404645

  7. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.

    Science.gov (United States)

    Aslan, Selcuk; Sun, Chuanxin; Leonova, Svetlana; Dutta, Paresh; Dörmann, Peter; Domergue, Frédéric; Stymne, Sten; Hofvander, Per

    2014-09-01

    In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts.

  8. Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Zedler, Julie A Z; Gangl, Doris; Hamberger, Björn Robert;

    2015-01-01

    Chlamydomonas reinhardtii has been shown to hold significant promise as a production platform for recombinant proteins, but transformation of the nuclear genome is still a non-trivial process due to random gene insertion and frequent silencing. Insertion of transgenes into the chloroplasts...... is an alternative strategy, and we report here the stable expression of a large (91 kDa) protein in the chloroplast using a recently developed low-cost transformation protocol. Moreover, selection of transformants is based on restoration of prototrophy using an endogenous gene (psbH) as the marker, thereby allowing...... the generation of transgenic lines without the use of antibiotic-resistance genes. Here, we have expressed a bifunctional diterpene synthase in C. reinhardtii chloroplasts. Homoplasmic transformants were obtained with the expressed enzyme accounting for 3.7 % of total soluble protein. The enzyme was purified...

  9. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    Science.gov (United States)

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera. PMID:27672522

  10. The complete chloroplast genome sequence of the medicinal plant Rheum palmatum L. (Polygonaceae).

    Science.gov (United States)

    Fan, Kai; Sun, Xiao-Jie; Huang, Min; Wang, Xu-Mei

    2016-07-01

    The complete chloroplast genome of the medicinal plant Rheum palmatum L. (Polygonaceae) has been reconstructed from the whole-genome Illumina sequencing data. The genome is 161 541 bp in length, and exhibits a typical quadripartite structure of the large (LSC, 86 518 bp) and small (SSC, 13 111 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 30 956 bp each). The chloroplast genome contains 131 genes, including 84 protein-coding genes (78 PCG species), eight ribosomal RNA genes (four rRNA species) and 37 transfer RNA genes (28 tRNA species). Phylogenetic tree based on the maximum parsimony (MP) analysis of 65 chloroplast protein-coding genes for 13 taxa demonstrated a close relationship between R. palmatum and Fagopyrum esculentum subsp. ancestrale in Polygonaceae. PMID:26153751

  11. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  12. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    Science.gov (United States)

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera.

  13. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; LI Tianyong; QIAN Hao; SUN Jing; WANG Liang; YU Jun; REN Lufeng; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events.

  14. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Directory of Open Access Journals (Sweden)

    Dong-Ho Shin

    2016-05-01

    Full Text Available Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC region, a small single-copy (SSC region, and a pair of inverted repeat (IR regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.

  15. The Complete Chloroplast Genome of the Hare's Ear Root, Bupleurum falcatum: Its Molecular Features.

    Science.gov (United States)

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  16. Slugs' last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda).

    Science.gov (United States)

    Händeler, Katharina; Wägele, Heike; Wahrmund, Ute; Rüdinger, Mareike; Knoop, Volker

    2010-11-01

    Some sacoglossan sea slugs have become famous for their unique capability to extract and incorporate functional chloroplasts from algal food organisms (mainly Ulvophyceae) into their gut cells. The functional incorporation of the so-called kleptoplasts allows the slugs to rely on photosynthetic products for weeks to months, enabling them to survive long periods of food shortage over most of their life-span. The algal food spectrum providing kleptoplasts as temporary, non-inherited endosymbionts appears to vary among sacoglossan slugs, but detailed knowledge is sketchy or unavailable. Accurate identification of algal donor species, which provide the chloroplasts for long-term retention is of primary importance to elucidate the biochemical mechanisms allowing long-term functionality of the captured chloroplast in the foreign animal cell environment. Whereas some sacoglossans forage on a variety of algal species, (e.g. Elysia crispata and E. viridis) others are more selective. Hence, characterizing the range of functional sacoglossan-chloroplast associations in nature is a prerequisite to understand the basis of this enigmatic endosymbiosis. Here, we present a suitable chloroplast gene (tufA) as a marker, which allows identification of the respective algal kleptoplast donor taxa by analysing DNA from whole animals. This novel approach allows identification of donor algae on genus or even species level, thus providing evidence for the taxonomic range of food organisms. We report molecular evidence that chloroplasts from different algal sources are simultaneously incorporated in some species of Elysia. NeigborNet analyses for species assignments are preferred over tree reconstruction methods because the former allow more reliable statements on species identification via barcoding, or rather visualize alternative allocations not to be seen in the latter. PMID:21565106

  17. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.

    Science.gov (United States)

    Tozawa, Y; Nomura, Y

    2011-09-01

    The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.

  18. Alleviation effects of Ce3+on inhibition of photochemical activity caused by linolenic acid in spinach chloroplast

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; HUANG Hao; LIU Chao; MA Linglan; LIU Jie; YIN Sitao; HONG Fashui

    2008-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. The function of Ce3+ on the improvement of chloro-plast photoreduction activity and oxygen evolution damaged by linolenic acid in spinach by in vitro investigation was studied. Results showed that adding Ce3+ to the linolenic acid treated chloroplast could greatly decrease the reduction linolenic acid exerted on the whole chain electron transport rate and the photoreduction activity of photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ) as well as the oxygen evolution rate of chloroplast. It indicated that Ce3+ had the ability to relieve the inhibition of the photochemical reaction of chloroplast caused by lino-lenic acid to some extent.

  19. Long-day photoperiod induced unhealthy development of chloroplasts in the photoperiod-sensitive genie male-sterile rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By measurement of photochemical activities of chloroplasts and observation on supramolecular archi tecture of thylakoids in chloroplasts, it was found that compared with the effects of short-day photoperiod, long-day pho toperiod could induce normal development of chloroplasts in seedlings of NK58S (photoperiod-sensitive genie male-sterile rice) and NK58 (original line) which do not enter the photoperiod sensitive phase and in seedlings of NK58 just enter the photoperiod-sensitive phase. However, it could induce unhealthy development of chloroplasts in seedlings of NK58S which also just enter the photoperiod sensitive phase. This special effect of long-day photoperiod on the development of chloroplasts in NK58S is probably one of main reasons why long-day photoperiod induces rale-sterility in NK58S and normal fertility in NK58.

  20. Cloning and functional analysis of chloroplast division gene NtFtsZ2-1 in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    FtsZ protein plays an important role in the division of chloroplasts. With the finding and functional analysis of higher plant FtsZ proteins, people have deepened the understanding in the molecular mechanism of chloroplast division. Multiple ftsZ genes are diversified into two families in higher plants, ftsZ1 and ftsZ2. On the basis of the research on ftsZ1 family, we analyzed the function of NtFtsZ2-1 gene in Nicotiana tabacum. Microscopic analysis of the sense and antisense NtFtsZ2-1 transgenic tobacco plants revealed that the chloroplasts were abnormal in size and also in number when compared with wild-type tobacco chloroplasts. Our investigations confirmed that the NtFtsZ2-1 gene is involved in plant chloroplast division.

  1. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    International Nuclear Information System (INIS)

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of 14CO2 from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [14C]glucose and [14C]fructose, respectively. CO2 release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m-2. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO2 release was relatively rapid compared to the restoration of CO2 release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO2 from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs

  2. Spectral characteristics and orientation of native forms of pigment in chloroplasts of barley seedlings under intermittent and continuous irradiation

    International Nuclear Information System (INIS)

    Chorophyll (Chl) form at 710-712 nm localized on the small protein simultaneously connected with the reaction centre of photosystem 1 (RC PS1) and the light-harvesting complex I (LHC-I) polypeptides is supposed to be the source of long-wavelength band of low-temperature fluorescence of chloroplasts at 735-740 nm. Chloroplasts of intermittently irradiated seedlings (or chloroplasts of the Chl b-less barley mutant) did not differ from chloroplasts of continuously irradiated seedlings (or chloroplasts of wild type barley) in the set of Chl a and beta-carotene forms and their orientation in the membrane. A competition for the newly synthesized Chl a molecules occurred between the RC PS 2 and LHC-II polypeptides

  3. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins

    DEFF Research Database (Denmark)

    Peltier, J B; Friso, G; Kalume, D E;

    2000-01-01

    the twin arginine motif that is characteristic for substrates of the TAT pathway. Logoplots were used to provide a detailed analysis of the lumenal targeting signals, and all nuclear-encoded proteins identified on the two-dimensional gels were used to test predictions for chloroplast localization...... and transit peptides made by the software programs ChloroP, PSORT, and SignalP. A combination of these three programs was found to provide a useful tool for evaluating chloroplast localization and transit peptides and also could reveal possible alternative processing sites and dual targeting. The potential...

  4. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.;

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...... developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted...

  5. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Tyystjärvi, Esa

    2015-09-01

    A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell. PMID:25986411

  6. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  7. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.

    Science.gov (United States)

    Sakai, Yuuki; Takagi, Shingo

    2005-08-01

    In epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light (BL) induces the avoidance response of chloroplasts. We examined simultaneous BL-induced changes in the configuration of actin filaments in the cytoplasmic layers that face the outer periclinal wall (P side) and the anticlinal wall (A side). The results clearly showed that dynamic reorganization of the actin cytoskeleton occurs on both sides. Upon BL irradiation, thick, long bundles of actin filaments appeared, concomitant with the directed migration of chloroplasts from the P side to the A side. After 15-20 min of BL irradiation, fine actin bundles on only the A side appeared to associate with chloroplasts that had migrated from the P side. To examine the role of the fine actin bundles, we evaluated the anchorage of chloroplasts by centrifuging living cells. Upon BL irradiation, the resistance of chloroplasts on both the P and A sides to the centrifugal force decreased remarkably. After 20 min of BL irradiation, the resistance of chloroplasts on the A side increased again, but chloroplasts on the P side could still be displaced. The BL-induced recovery of resistance of chloroplasts on the A side was sensitive to photosynthesis inhibitors but insensitive to an inhibitor of flavoproteins. The photosynthesis inhibitors also prevented the fine actin bundles from appearing on the A side under BL irradiation. These results strongly suggest that the BL-induced avoidance response of chloroplasts includes photosynthesis-dependent and actin-dependent anchorage of chloroplasts on the A side of epidermal cells. PMID:15809866

  8. Use of the chloroplast gene ycf1 for the genetic differentiation of pine nuts obtained from consumers experiencing dysgeusia.

    Science.gov (United States)

    Handy, Sara M; Parks, Matthew B; Deeds, Jonathan R; Liston, Aaron; de Jager, Lowri S; Luccioli, Stefano; Kwegyir-Afful, Ernest; Fardin-Kia, Ali R; Begley, Timothy H; Rader, Jeanne I; Diachenko, Gregory W

    2011-10-26

    Pine nuts are a part of traditional cooking in many parts of the world and have seen a significant increase in availability/use in the United States over the past 10 years. The U.S. Food and Drug Administration (US FDA) field offices received 411 complaints from U.S. consumers over the past three years regarding taste disturbances following the consumption of pine nuts. Using analysis of fatty acids by gas chromatography with flame ionization detection, previous reports have implicated nuts from Pinus armandii (Armand Pine) as the causative species for similar taste disturbances. This method was found to provide insufficient species resolution to link FDA consumer complaint samples to a single species of pine, particularly when samples contained species mixtures of pine nuts. Here we describe a DNA based method for differentiating pine nut samples using the ycf1 chloroplast gene. Although the exact cause of pine nut associated dysgeusia is still not known, we found that 15 of 15 samples from consumer complaints contained at least some Pinus armandii, confirming the apparent association of this species with taste disturbances.

  9. The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts?

    Science.gov (United States)

    Molik, S; Karnauchov, I; Weidlich, C; Herrmann, R G; Klösgen, R B

    2001-11-16

    The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways. PMID:11526115

  10. Identifying the North American plum species phylogenetic signal using nuclear, mitochondrial, and chloroplast DNA markers

    Science.gov (United States)

    Premise of the study: Prunus L. phylogeny has extensively studied using cpDNA sequences. CpDNA has a slow rate of evolution which is beneficial to determine species relationships at a deeper level. However, a limitation of the chloroplast based phylogenies is its transfer by interspecific hybridizat...

  11. Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences

    NARCIS (Netherlands)

    König, A.O.; Ziegenhagen, B.; Dam, van B.C.; Csaikl, U.M.; Coart, E.; Degen, B.; Burg, K.; Vries, de S.M.G.; Petit, R.J.

    2002-01-01

    Oak chloroplast DNA (cpDNA) variation was studied in a grid-based inventory in western Central Europe, including Belgium, The Netherlands, Luxembourg, Germany, the Czech Republic, and the northern parts of Upper and Lower Austria. A total of 2155 trees representing 426 populations of Quercus robur L

  12. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory

    Science.gov (United States)

    Plant responses to damage vary dependant upon the nature of the biotic and abiotic stresses. We recently described an elicitor, from Fall armyworm (Spodoptera frugiperda) oral secretions (OS) termed inceptin, derived from chloroplastic ATP synthase '-subunit (cATPC) proteins that activate phytohormo...

  13. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    Science.gov (United States)

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico. PMID:11005290

  14. Cladistic biogeography of Juglans (Juglandaceae) based on chloroplast DNA intergenic spacer sequences

    Science.gov (United States)

    The phylogenetic utility of sequence variation from five chloroplast DNA intergenic spacer (IGS) regions: trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM was examined in the genus Juglans. A total of seventeen taxa representing the four sections within Juglans and an outgroup taxon, ...

  15. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.

    Science.gov (United States)

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-09-16

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. PMID:27493208

  16. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    Science.gov (United States)

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.

  17. The Research of Bt and OC Gene Cotransformation in Tobacco Chloroplast

    Institute of Scientific and Technical Information of China (English)

    SU Ning; YANG Bo; MENG Kun; LI Yi-nü; SUN Meng; SUN Bing-yao; SHEN Gui-fang

    2002-01-01

    The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry IA (C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza sativa. L) chloroplast, the gene:trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm ( helicoverpa zea ).

  18. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Hansen, P.J.; Larsen, J.

    2000-01-01

    associated with surfaces. Both organisms are able to retain functional chloroplasts from their prey. They are both able to grow heterotrophically in the dark, but growth rates increase in the light. The maximum growth and ingestion rates of G, gracilentum are much higher than those of A. poecilochroum...

  19. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  20. Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Suetsugu

    Full Text Available Blue light (BL induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we investigated the effects of RL on BL-dependent stomatal opening in isolated epidermis, guard cell protoplasts, and intact leaves of Arabidopsis thaliana. In isolated epidermal tissues and intact leaves, weak BL superimposed on RL enhanced stomatal opening while BL alone was less effective. In guard cell protoplasts, RL enhanced BL-dependent H+-pumping and DCMU, a photosynthetic electron transport inhibitor, eliminated this effect. RL enhanced phosphorylation levels of the H+-ATPase in response to BL, but this RL effect was not suppressed by DCMU. Furthermore, DCMU inhibited both RL-induced and BL-dependent stomatal opening in intact leaves. The photosynthetic rate in leaves correlated positively with BL-dependent stomatal opening in the presence of DCMU. We conclude that guard cell chloroplasts provide ATP and/or reducing equivalents that fuel BL-dependent stomatal opening, and that they indirectly monitor photosynthetic CO2 fixation in mesophyll chloroplasts by absorbing PAR in the epidermis.

  1. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Martin, Sophie; Robinson, Colin; Unwin, Patrick R

    2013-07-01

    Scanning electrochemical microscopy (SECM) offers a fast and quantitative method to measure local fluxes within photosynthesis. In particular, we have measured the flux of oxygen and ferrocyanide (Fe(CN)6(4-)), from the artificial electron acceptor ferricyanide (Fe(CN)6(3-)), using a stationary ultramicroelectrode at chloroplasts and thylakoid membranes (sourced from chloroplasts). Oxygen generation at films of chloroplasts and thylakoid membranes was detected directly during photosynthesis, but in the case of thylakoid membranes, this switched to sustained oxygen consumption at longer illumination times. An initial oxygen concentration spike was detected over both chloroplast and thylakoid membrane films, and the kinetics of the oxygen generation were extracted by fitting the experimental data to a finite element method (FEM) simulation. In contrast to previous work, the oxygen generation spike was attributed to the limited size of the plastoquinone pool, a key component in the linear electron transport pathway and a contributing factor in photoinhibition. Finally, the mobile nature of the SECM probe, and its high spatial resolution, also allowed us to detect ferrocyanide produced from a single thylakoid membrane. These results further demonstrate the power of SECM for localized flux measurements in biological processes, in this case photosynthesis, and that the high time resolution, combined with FEM simulations, allows the elucidation of quantitative kinetic information.

  2. The ultrastructure of chloroplasts in variegata irregulare mutants of garden petunias (Petunia hybrida hort. superbissima

    Directory of Open Access Journals (Sweden)

    Stanisław Muszyński

    2015-05-01

    Full Text Available The ultrastructure of mutated chloroplasts in tetraploid garden petunias (Petunia hybrida hort. superbissima was analyzed by electron microscopy. The formation of grana structure is inhibited after secondary thylacoids start forming. Rapid dezintegration of the structure is observed. It is suggested that a substance responsible for photostabilization of grana structure is lacking.

  3. Characterization of chloroplast phosphoproteins controlling manganese use efficiency using quantitative proteomics

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Sprenger, Richard Remko; Rogowska-Wrzesinska, Adelina;

    Manganese is important for molecular functions in plants, i.e. as a co-factor in enzymes and in the oxygen evolving complex of photosystem II, located like most of the photosynthetic machinery, in the thylakoid membranes of chloroplasts. Soils that lack plant available micronutrients...

  4. Energetic cost of protein import across the envelope membranes of chloroplasts.

    Science.gov (United States)

    Shi, Lan-Xin; Theg, Steven M

    2013-01-15

    Chloroplasts are the organelles of green plants in which light energy is transduced into chemical energy, forming ATP and reduced carbon compounds upon which all life depends. The expenditure of this energy is one of the central issues of cellular metabolism. Chloroplasts contain ~3,000 proteins, among which less than 100 are typically encoded in the plastid genome. The rest are encoded in the nuclear genome, synthesized in the cytosol, and posttranslationally imported into the organelle in an energy-dependent process. We report here a measurement of the amount of ATP hydrolyzed to import a protein across the chloroplast envelope membranes--only the second complete accounting of the cost in Gibbs free energy of protein transport to be undertaken. Using two different precursors prepared by three distinct techniques, we show that the import of a precursor protein into chloroplasts is accompanied by the hydrolysis of ~650 ATP molecules. This translates to a ΔG(protein) (transport) of some 27,300 kJ/mol protein imported. We estimate that protein import across the plastid envelope membranes consumes ~0.6% of the total light-saturated energy output of the organelle. PMID:23277572

  5. Expression patterns of cotton chloroplast genes during development: implications for development of plastid transformation vectors

    Science.gov (United States)

    In order to express genes of interest in plastids, transformation vectors must be developed that include appropriate promoters to drive expression at effective levels in both green and non-green tissues. Typically, chloroplasts are transformed with vectors that contain ribosomal RNA promoters for h...

  6. Electrochromic effects in relation to energy transduction and energy coupling in chloroplast membranes.

    NARCIS (Netherlands)

    Peters, R.L.A.

    1986-01-01

    A study was made on the kinetics of the flash-induced P515 electrochromic bandshift signal in spinach leaves and isolated chloroplasts. It was found that part of the signal (i.e. the slow component, also called reaction 2), normally present in dark-adapted membranes is absent from the signal under c

  7. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    Science.gov (United States)

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis. PMID:27114097

  8. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  9. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  10. Intra-individual polymorphism in chloroplasts from NGS data: where does it come from and how to handle it?

    Science.gov (United States)

    Scarcelli, N; Mariac, C; Couvreur, T L P; Faye, A; Richard, D; Sabot, F; Berthouly-Salazar, C; Vigouroux, Y

    2016-03-01

    Next-generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra-individual polymorphic SNPs. Such observations could have several causes such as sequencing errors, the presence of heteroplasmy or transfer of chloroplast sequences in the nuclear and mitochondrial genomes. The occurrence of allelic diversity has practical important impacts on the identification of diversity, the analysis of the chloroplast data and beyond that, significant evolutionary questions. In this study, we show that the observed intra-individual polymorphism of chloroplast sequence data is probably the result of plastid DNA transferred into the mitochondrial and/or the nuclear genomes. We further assess nine different bioinformatics pipelines' error rates for SNP and genotypes calling using SNPs identified in Sanger sequencing. Specific pipelines are adequate to deal with this issue, optimizing both specificity and sensitivity. Our results will allow a proper use of whole chloroplast NGS sequence and will allow a better handling of NGS chloroplast sequence diversity.

  11. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen; Yen-Chen Liu; Jeffrey P Bibeau; Kyle P Lemoi; Erkan Tzel; Luis Vidali

    2015-01-01

    In plants, light determines chloroplast position;these organelles show avoidance and accumulation re-sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thali-ana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.

  12. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa).

    Science.gov (United States)

    Zhu, Xiaobo; Liang, Sihui; Yin, Junjie; Yuan, Can; Wang, Jing; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Chen, Xuewei

    2015-12-10

    DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.

  13. Unexpected Diversity of Chloroplast Noncoding RNAs as Revealed by Deep Sequencing of the Arabidopsis Transcriptome.

    Science.gov (United States)

    Hotto, Amber M; Schmitz, Robert J; Fei, Zhangjun; Ecker, Joseph R; Stern, David B

    2011-12-01

    Noncoding RNAs (ncRNA) are widely expressed in both prokaryotes and eukaryotes. Eukaryotic ncRNAs are commonly micro- and small-interfering RNAs (18-25 nt) involved in posttranscriptional gene silencing, whereas prokaryotic ncRNAs vary in size and are involved in various aspects of gene regulation. Given the prokaryotic origin of organelles, the presence of ncRNAs might be expected; however, the full spectrum of organellar ncRNAs has not been determined systematically. Here, strand-specific RNA-Seq analysis was used to identify 107 candidate ncRNAs from Arabidopsis thaliana chloroplasts, primarily encoded opposite protein-coding and tRNA genes. Forty-eight ncRNAs were shown to accumulate by RNA gel blot as discrete transcripts in wild-type (WT) plants and/or the pnp1-1 mutant, which lacks the chloroplast ribonuclease polynucleotide phosphorylase (cpPNPase). Ninety-eight percent of the ncRNAs detected by RNA gel blot had different transcript patterns between WT and pnp1-1, suggesting cpPNPase has a significant role in chloroplast ncRNA biogenesis and accumulation. Analysis of materials deficient for other major chloroplast ribonucleases, RNase R, RNase E, and RNase J, showed differential effects on ncRNA accumulation and/or form, suggesting specificity in RNase-ncRNA interactions. 5' end mapping demonstrates that some ncRNAs are transcribed from dedicated promoters, whereas others result from transcriptional read-through. Finally, correlations between accumulation of some ncRNAs and the symmetrically transcribed sense RNA are consistent with a role in RNA stability. Overall, our data suggest that this extensive population of ncRNAs has the potential to underpin a previously underappreciated regulatory mode in the chloroplast.

  14. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae, an Alpine Tibetan Herb.

    Directory of Open Access Journals (Sweden)

    Lianghong Ni

    Full Text Available Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM. However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae. The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs of 25,523 bp that separate a large single copy (LSC region of 84,058 bp and a small single copy (SSC region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs. The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

  15. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an Alpine Tibetan Herb.

    Science.gov (United States)

    Ni, Lianghong; Zhao, Zhili; Dorje, Gaawe; Ma, Mi

    2016-01-01

    Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae). The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales. PMID:27391235

  16. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  17. The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the phacaceae.

    Science.gov (United States)

    Kasiborski, Beth A; Bennett, Matthew S; Linton, Eric W

    2016-06-01

    The Euglenophyceae chloroplast was acquired when a heterotrophic euglenoid engulfed a green alga and subsequently retained the algal chloroplast, in a process known as secondary endosymbiosis. Since this event, Euglenophyceae have diverged widely and their chloroplast genomes (cpGenomes) have as well. Changes to the cpGenome include extensive gene rearrangement and the proliferation of introns, the analyses of which have proven to be useful in examining cpGenome changes throughout the Euglenophyceae. The Euglenales fall into two families, Euglenaceae and Phacaceae. Euglenaceae contains eight genera and at least one cpGenome has been published for each genus. Phacaceae, on the other hand, contains three genera, none of which have had a representative chloroplast genome sequenced. Members of this family have many small disk-shaped chloroplasts that lack pyrenoids. We sequenced and annotated the cpGenome of Phacus orbicularis in order to fill in the large gap in our understanding of Euglenophyceae cpGenome evolution, especially in regard to intron number and gene order. We compared this cpGenome to those of species from both the Euglenaceae and Eutreptiales of the Euglenophyceae phylogenetic tree. The cpGenome showed characteristics that were more derived than that of the basal species Eutreptia viridis, with extensive gene rearrangements and nearly three times as many introns. In contrast, it contained fewer introns than all but one of the previously reported Euglenaceae cpGenomes, had a smaller estimated genome size, and shared greater synteny with two main branches of that family. PMID:27273533

  18. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.

    Science.gov (United States)

    Liebe, S; Menzel, D

    1995-01-01

    Intracellular localization and motile behaviour of the endoplasmic reticulum (ER), plastids and mitochondria were studied in living mesophyll cells of Vallisneria using the vital fluorochrome 3,3'-dihexyloxacarbocyanine iodide (DIOC6(3)). In quiescent cells, the ER was composed of a three-dimensional network of tubular and lamellar elements. Chloroplasts were distributed evenly throughout the cell periphery and appeared embedded within the ER network. The ER network was relatively stationary, with the exception of rare motile episodes occurring as movement of tubular ER strands and adjacent areas of the polygonal network in localized areas of the cell. During experimental induction of streaming, most of the lamellar ER elements transformed into tubules and together with the chloroplasts they began to translocate to the anticlinal walls to establish the circular streaming around the circumference of the cell. Microwave-accelerated fixation followed by immunofluorescence revealed an hitherto unknown phase of actin reorganization occurring within the cells and most interestingly at the surface of the chloroplasts during streaming induction. Myosin was localized in an ER-like pattern in quiescent as well as in streaming cells, with bright fluorescent label localized on mitochondria and proplastids. In addition, myosin label appeared on the surface of the chloroplasts, preferentially in streaming mesophyll cells. Motile activities were impeded by the actin-depolymerizing drug cytochalasin D (CD), the thioreagent N-ethylmaleimide (NEM), and thapsigargin, an inhibitor of the ER-Ca(2+)-ATPase. These inhibitors also interfered with the integrity of actin filaments, the intracellular distribution of myosin and calcium-homeostasis, respectively. These effects suggested an obligate association of at least one type of myosin with the membranes of ER and smaller organelles and are consistent with the appearance of another type of myosin on the chloroplast surface upon streaming

  19. Effects of Ce3+ on improvement of spectral characteristics and function of chloroplasts damaged by linolenic acid in spinach

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; ZE Yuguan; LIU Chao; ZHOU Min; LI Na; DUAN Yanmei; YIN Sitao; HONG Fashui

    2009-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. We studied the effects of Ce3+ on the improvement of chloroplast spectral characteristics and oxygen evolution damaged by linolenic acid in spinach. Results showed that Ce3+ could decrease the light absorption increased by linolenic acid and promote the distribution of excitation energy to PS Ⅱ and alleviate the decrease of PS Ⅱ fluo-rescence yield caused by linolenic acid. The linolenic acid treatments in various concentrations reduced the oxygen-evolving rate of chloro-plasts, but the rate was accelerated since adding Ce3+.

  20. Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers.

    Science.gov (United States)

    Al-Qurainy, F; Khan, S; Tarroum, M; Al-Hemaid, F M; Ali, M A

    2011-11-10

    Dried parts of different plant species often look alike, especially in powdered form, making them very difficult to identify. Ruta graveolens, sold as a dried medicinal herb, can be adulterated with Euphorbia dracunculoides. The genomic DNA was isolated from the leaf powder (100 mg each) using the modified CTAB method. Internal transcribed spacer sequences of nuclear ribosomal DNA (nrDNA-ITS), and chloroplast spacer sequences (rpoB and rpoC1) are regarded as potential genes for plant DNA barcoding. We amplified and sequenced these spacer sequences and confirmed the sequences with a BLAST search. Sequence alignment was performed using ClustalX to look for differences in the sequences. A DNA marker was developed based on rpoB and rpoC1 of the nrDNA-ITS for the identification of the adulterant E. dracunculoides in samples of R. graveolens that are sold in local herbal markets. Sequence-characterized amplified region markers of 289 and 264 bp for R. graveolens and 424 bp for E. dracunculoides were developed from dissimilar sequences of this nrDNA-ITS to speed up the authentication process. This marker successfully distinguished these species in extracted samples with as little as 5 ng DNA/μL extract.

  1. A hybrid swarm population of Pinus densiflora × P. sylvestris inferred from sequence analysis of chloroplast DNA and morphological characters

    Institute of Scientific and Technical Information of China (English)

    Young Hee Joung; Jerry L.Hill; Jung Oh Hyun; Ding Mu; Juchun Luo; Do Hyung Lee; Takayuki Kawahara; Jeung Keun Suh; Mark S.Roh

    2013-01-01

    To confirm a hybrid swarm population ofPinus densiflora × P.sylvestris in Jilin,China,we used needles and seeds from P.densiflora,P.sylvestris,and P.densiflora × P.sylvestris collected from natural stands or experimental stations to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSRs).Total genomic DNA was extracted and subjected to sequence analysis of the pine cpDNA SSR marker Pt15169.Results show that morphological characters from 4-year old seedlings did not correlate with sequence variants of this marker.Marker haplotypes from all P.sylvestris trees had a CTAT element that was absent from all sampled P.densiflora trees.However,both haplotype classes involving this insertion/deletion element were found in a P.densiflora × P.sylvestris population and its seedling progeny.It was concluded that the P.densiflora × P.sylvestris accessions sampled from Jilin,China resulted from bi-directional crosses,as evidenced by both species' cpDNA haplotypes within the hybrid swarm population.

  2. Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea.

    Science.gov (United States)

    Sakurai, Nami; Domoto, Kikuko; Takagi, Shingo

    2005-04-01

    In leaf epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light induces the actin-dependent avoidance response of chloroplasts. By semi-quantitative motion analysis and phalloidin staining, time courses of the blue-light-induced changes in the mode of movement of individual chloroplasts and in the configuration of actin filaments were examined in the presence and absence of a flavoprotein inhibitor, diphenylene iodonium. In dark-adapted cells, short, thick actin bundles seemed to surround each chloroplast, which was kept motionless in the outer periclinal cytoplasm of the cells. After 10 min of irradiation with high-intensity blue light, a rapid, unidirectional movement of chloroplasts was induced, concomitant with the appearance of aggregated, straight actin bundles stretched over the outer periclinal cytoplasm. Diphenylene iodonium inhibited the avoidance response of chloroplasts, apparently by delaying a change in the mode of chloroplast movement from random sway to unidirectional migration, by suppressing the appearance of aggregated, straight actin bundles. In partially irradiated individual cells, redistribution of chloroplasts and reorganization of actin filaments occurred only in the areas exposed to blue light. From the results, we propose that the short, thick actin bundles in the vicinity of chloroplasts function to anchor the chloroplasts in dark-adapted cells, and that the aggregated, straight actin bundles organized under blue-light irradiation provide tracks for unidirectional movement of chloroplasts. PMID:15843965

  3. Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution.

    Science.gov (United States)

    Fučíková, Karolina; Lewis, Paul O; Lewis, Louise A

    2016-05-01

    Chloroplast sequence data are widely used to infer phylogenies of plants and algae. With the increasing availability of complete chloroplast genome sequences, the opportunity arises to resolve ancient divergences that were heretofore problematic. On the flip side, properly analyzing large multi-gene data sets can be a major challenge, as these data may be riddled with systematic biases and conflicting signals. Our study contributes new data from nine complete and four fragmentary chloroplast genome sequences across the green algal order Sphaeropleales. Our phylogenetic analyses of a 56-gene data set show that analyzing these data on a nucleotide level yields a well-supported phylogeny - yet one that is quite different from a corresponding amino acid analysis. We offer some possible explanations for this conflict through a range of analyses of modified data sets. In addition, we characterize the newly sequenced genomes in terms of their structure and content, thereby further contributing to the knowledge of chloroplast genome evolution. PMID:26903036

  4. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  5. Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids.

    Directory of Open Access Journals (Sweden)

    Qin Xu

    Full Text Available BACKGROUND: Cotton (Gossypium spp. is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. METHODOLOGY/PRINCIPAL FINDINGS: The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43-0.68 million years ago (MYA. CONCLUSION: Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1-3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A

  6. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since

  7. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates.

    Directory of Open Access Journals (Sweden)

    Dheeraj Verma

    Full Text Available In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG, in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.

  8. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    Directory of Open Access Journals (Sweden)

    Dhingra Amit

    2008-05-01

    Full Text Available Abstract Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic

  9. Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts

    OpenAIRE

    Balazadeh, Salma; Jaspert, Nils; Arif, Muhammad; Mueller-Roeber, Bernd; Maurino, Veronica G.

    2012-01-01

    Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here,...

  10. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii

    OpenAIRE

    Rasala, Beth A.; Muto, Machiko; Lee, Philip A.; Jager, Michal; Cardoso, Rosa MF; Behnke, Craig A; Kirk, Peter; Hokanson, Craig A.; Crea, Roberto; Mendez, Michael; Mayfield, Stephen P

    2010-01-01

    Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear if this is due ...

  11. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation.

    Science.gov (United States)

    Wang, Wen-Hua; He, En-Ming; Chen, Juan; Guo, Ying; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2016-04-01

    Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.

  12. Digestive system of the sacoglossan Plakobranchus ocellatus (Gastropoda: Opisthobranchia): light- and electron-microscopic observations with remarks on chloroplast retention.

    Science.gov (United States)

    Hirose, Euichi

    2005-08-01

    The sacoglossan Plakobranchus ocellatus feeds by sucking the cytoplasmic contents from algae and retains intact algal chloroplasts within the cells of the digestive gland. Morphology of the entire digestive system of this species was firstly described by means of a combination of histology and electron microscopy (both SEM and TEM). The short alimentary canal is confined to the head, and the anus opens at the anterior right corner of the pericardial swelling, as is the case in many non-shelled sacoglossans. The alimentary canal of the specimens examined rarely contained ingesta, suggesting that the retained chloroplasts provide sufficient nourishment to the sacoglossan hosts and that sea slugs with empty stomachs survive well in the field. The digestive gland, with the retained chloroplasts, branches from the stomach and is sparsely distributed throughout the body, including the head region, but is aggregated mainly in the dorsal lamellae. Chloroplasts were occasionally found in the epithelial cells in the transitional region from the stomach wall to the digestive gland, which may be a site at which chloroplasts are incorporated into the animal cells by endocytosis. Numerous microvilli filling the lumen of the digestive gland suggest that molecules are actively transferred within the gland. The sea slug thus apparently provides a favorable environment to support the long-term retention and function of chloroplasts. PMID:16141704

  13. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    Science.gov (United States)

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  14. The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae.

    Science.gov (United States)

    Du, Qingwei; Bi, Guiqi; Mao, Yunxiang; Sui, Zhenghong

    2016-06-01

    The complete chloroplast genome of Gracilariopsis lemaneiformis was recovered from a Next Generation Sequencing data set. Without quadripartite structure, this chloroplast genome (183,013 bp, 27.40% GC content) contains 202 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. Synteny analysis showed plasmid incorporation regions in chloroplast genomes of three species of family Gracilariaceae and in Grateloupia taiwanensis of family Halymeniaceae. Combined with reported red algal plasmid sequences in nuclear and mitochondrial genomes, we postulated that red algal plasmids may have played an important role in ancient horizontal gene transfer among nuclear, chloroplast, and mitochondrial genomes. Substitution rate analysis showed that purifying selective forces maintaining stability of protein-coding genes of nine red algal chloroplast genomes over long periods must be strong and that the forces acting on gene groups and single genes of nine red algal chloroplast genomes were similar and consistent. The divergence of Gp. lemaneiformis occurred ~447.98 million years ago (Mya), close to the divergence time of genus Pyropia and Porphyra (443.62 Mya). PMID:27273536

  15. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    Science.gov (United States)

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.; Stern, David B.

    2016-01-01

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators. PMID:27402360

  16. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    Directory of Open Access Journals (Sweden)

    Benoît Castandet

    2016-09-01

    Full Text Available Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.

  17. Kinetics of 14C distribution during photosynthesis by chloroplast preparations isolated from the siphonous alga Caulerpa simpliciuscula

    International Nuclear Information System (INIS)

    The kinetics of 14C-labeling of compounds produced during photosynthesis by chloroplast preparations isolated from the green alga Caulerpa simpliciuscula were studied. After 10 minutes photosynthesis sucrose contained more 14C than any other product, and continued to accumulate radioactivity during the whole hour of incubation. Glucose-6-phosphate and alanine also behaved as end products and continued to accumulate label during the period. In these organelles, glucose-6-phosphate replaced triose phosphate as the main compound exported from the chloroplast during shorter periods of photosynthesis. When either glucose-6-phosphate or 3-phosphoglycerate was supplied to the isolated chloroplasts, they were metabolized, but were not converted to either sucrose or alanine. It is proposed that many of the differences in metabolism which distinguish these algal chloroplasts from those isolated from higher plants are due to their isolation in the form of cytoplasts, i.e., chloroplasts surrounded by a thin layer of extrachloroplastic material which is membrane-bound. The restriction of diffusion of intermediates from the chloroplast by this cytoplast membrane appears to be at least as important as the rather small amount of cytoplasm present in determining the properties observed

  18. Distribution of Sediment Chloroplastic Pigments in the Southern Yellow Sea, China

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoshou; ZHANG Zhinan; WU Yiping; HUANG Yong; ZHANG Yan

    2005-01-01

    The distribution of sediment chloroplastic pigments (Chl-a, i.e. chlorophyll a and Pha-a, i.e. phaeophorbide a)in the Southern Yellow Sea of China was studied. Samples were collected from four cruises in January and June 2003, and January and June 2004. The results show that the vertical distribution of Chl-a and Pha-a in the sediment layers 0-2cm, 2-5 cm and 5-8 cm, follows a stable ratio, 5:3:2. The average ratio of Pha-a to Chl-a in sediment is 2.83. Spearman 2-tailed rank correlation analysis shows that Chl-a and Pha-a contents in each sediment layer have a highly significant correlation.The average contents of Chl-a and Pha-a in the sediment of the 0-8cm layer in the investigated area are 0.31-0.47μgg-1 and 1.28-1.40 μgg-1 sediment (dry weight), respectively. The average Chl-a and Pha-a contents in sediment are higher in summer than in winter. ANOVA analysis shows that there is a highly significant variation among the Chl-a contents (P = 0.002< 0.01) of the four cruies, but this is not true for the case of Pha-a content (P = 0.766 >0.05). The average Chl-a and Phaa contents in the 2 sediment layers (0-2cm and 2-5cm) have significant or highly significant correlations with organic matter (OM), median diameter (Mdφ), silt plus clay percentage in the January 2003 cruise. In the June 2003 cruise, the average Chl-a content in the 3 sediment layers (0-2 cm, 2-5 cm, and 5-8 cm) has a significant correlation with meiofauna biomass,and Pha-a content has highly significant correlations with water depth, bottom water temperature, OM and MdC. The contents of Chl-a and Pha-a are lower than those in estuaries and intertidal areas, but close to those in the same area studied previously.

  19. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera.

    Directory of Open Access Journals (Sweden)

    Ya-Yi Huang

    Full Text Available Coconut, a member of the palm family (Arecaceae, is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.. There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  20. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis.

    Science.gov (United States)

    Oikawa, Kazusato; Matsunaga, Shigeru; Mano, Shoji; Kondo, Maki; Yamada, Kenji; Hayashi, Makoto; Kagawa, Takatoshi; Kadota, Akeo; Sakamoto, Wataru; Higashi, Shoichi; Watanabe, Masakatsu; Mitsui, Toshiaki; Shigemasa, Akinori; Iino, Takanori; Hosokawa, Yoichiroh; Nishimura, Mikio

    2015-03-30

    Life on earth relies upon photosynthesis, which consumes carbon dioxide and generates oxygen and carbohydrates. Photosynthesis is sustained by a dynamic environment within the plant cell involving numerous organelles with cytoplasmic streaming. Physiological studies of chloroplasts, mitochondria and peroxisomes show that these organelles actively communicate during photorespiration, a process by which by-products produced by photosynthesis are salvaged. Nevertheless, the mechanisms enabling efficient exchange of metabolites have not been clearly defined. We found that peroxisomes along chloroplasts changed shape from spherical to elliptical and their interaction area increased during photorespiration. We applied a recent femtosecond laser technology to analyse adhesion between the organelles inside palisade mesophyll cells of Arabidopsis leaves and succeeded in estimating their physical interactions under different environmental conditions. This is the first application of this estimation method within living cells. Our findings suggest that photosynthetic-dependent interactions play a critical role in ensuring efficient metabolite flow during photorespiration.

  1. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    Science.gov (United States)

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  2. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  3. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome

    International Nuclear Information System (INIS)

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with 3H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted

  4. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata.

    Science.gov (United States)

    Ding, Ping; Shao, Yanhua; Li, Qian; Gao, Junli; Zhang, Runjing; Lai, Xiaoping; Wang, Deqin; Zhang, Huiye

    2016-07-01

    The complete chloroplast genome of Andrographis paniculata, an important medicinal plant with great economic value, has been studied in this article. The genome size is 150,249 bp in length, with 38.3% GC content. A pair of inverted repeats (IRs, 25,300 bp) are separated by a large single copy region (LSC, 82,459 bp) and a small single-copy region (SSC, 17,190 bp). The chloroplast genome contains 114 unique genes, 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. In these genes, 15 genes contained 1 intron and 3 genes comprised of 2 introns. PMID:25856518

  5. Complete chloroplast genome sequence of Fritillaria unibracteata var. wabuensis based on SMRT Sequencing Technology.

    Science.gov (United States)

    Li, Ying; Li, Qiushi; Li, Xiwen; Song, Jingyuan; Sun, Chao

    2016-09-01

    Fritillaria unibracteata var. wabuensis is an important medicinal plant used for the treatment of cough symptoms related to the respiratory system. The chloroplast genome of F. unibracteata var. wabuensis (GenBank accession no. KF769142) was assembled using the PacBio RS platform (Pacific Biosciences, Beverly, MA) as a circle sequence with 151 009 bp. The assembled genome contains 133 genes, including 88 protein-coding, 37 tRNA, and eight rRNA genes. This genome sequence will provide important resource for further studies on the evolution of Fritillaria genus and molecular identification of Fritillaria herbs and their adulterants. This work suggests that PacBio RS is a powerful tool to sequence and assemble chloroplast genomes. PMID:26370383

  6. DISRUPTION OF ARABIDOPSIS RETICULON GENE RTNLB16 RESULTS IN CHLOROPLAST DYSFUNCTION AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Tarasenko V.I.

    2012-08-01

    Full Text Available Reticulons (RTNs are endoplasmic reticulum (ER-localized proteins that have recently attracted much attention. RTNs are ubiquitous proteins present in all eukaryotic organisms examined so far. In animal and yeast, in which knowledge of this protein family is more advanced, RTNs are involved in numerous cellular processes such as apoptosis, cell division and intracellular trafficking. Up to now, a little attention has been paid to their plant counterparts, RTNLBs. Meanwhile, gene search across sequenced genomes revealed that the RTN gene family is more diverse and numerous in plants than in animals and yeasts, which possibly suggests existence of functions specific for plant RTNs. Recently, the localization in different ER regions was shown for two members of plant reticulon family. The location in close proximity to chloroplast membrane was revealed for one of RTNLBs, which is argument in favor of its role in interorganellar interactions. In spite of growing interest towards to plant RTNs, there are no investigations devoted to insertion mutagenesis of genes encoding these proteins. We have genotyped an Arabidopsis line containing T-DNA insertion in RTNLB16 gene encoding uncharacterized member of RTNLB family. The obtained homozygous plants have marked phenotype expressed in a decreased growth rate and a pale-green leaf color. The leaf total chlorophyll content as well as the chlorophyll a/b ratio was significantly lower in mutant plants. It is interesting to note that the extent of phenotypic expression depended on a light intensity. The growth rate of wild-type and mutant plants was the same in low light conditions. The growth rate was significantly decreased and chlorophyll content was 3-5-fold lower in mutant plants growing under moderate light conditions. The growing of plants under high light conditions led to halted growth and death of mutants on the seedling stage. The demonstrated phenotype probably points out to a chloroplast

  7. The nucleotide sequence of Scenedesmus obliquus chloroplast tRNAfMet.

    OpenAIRE

    McCoy, J M; Jones, D S

    1980-01-01

    The chloroplast initiator tRNAfMet from the green alga Scenedesmus obliquus has been purified and its sequence shown to be p C-G-C-A-G-G-A-U-A-G-A-G-C-A-G-U-C-U-Gm-G-D-A-G-C-U-C-m2(2)G-psi-G-G-G-G-C-U-C-A -U-A-A-psi-C-C-C-A-A-U-m7G-D-C-G-C-A-G-G-T-psi-C-A-A-A-U-C-C-U-G-C-U-C-C-U-G-C-A-A-C-C-A-OH. This structure is prokaryotic in character and displays close homologies with a blue green algal initiator tRNAfMet and bean chloroplast initiator tRNAfMet.

  8. RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species.

    Science.gov (United States)

    Wang, Wenqin; Zhang, Wei; Wu, Yongrui; Maliga, Pal; Messing, Joachim

    2015-01-01

    RNA editing is the post-transcriptional conversion from C to U before translation, providing a unique feature in the regulation of gene expression. Here, we used a robust and efficient method based on RNA-seq from non-ribosomal total RNA to simultaneously measure chloroplast-gene expression and RNA editing efficiency in the Greater Duckweed, Spirodela polyrhiza, a species that provides a new reference for the phylogenetic studies of monocotyledonous plants. We identified 66 editing sites at the genome-wide level, with an average editing efficiency of 76%. We found that the expression levels of chloroplast genes were relatively constant, but 11 RNA editing sites show significant changes in editing efficiency, when fronds turn into turions. Thus, RNA editing efficiency contributes more to the yield of translatable transcripts than steady state mRNA levels. Comparison of RNA editing sites in coconut, Spirodela, maize, and rice suggests that RNA editing originated from a common ancestor. PMID:26517707

  9. Expression of Amyloplast and Chloroplast DNA in Suspension-Cultured Cells of Sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Ngernprasirtsiri, J; Macherel, D; Kobayashi, H; Akazawa, T

    1988-01-01

    Green mutant cells of sycamore (Acer pseudoplatanus L.), which had been selected by mutagenic treatment of the white wild type, grow photoheterotrophically in auxin-depleted culture medium. In contrast to the wild-type cells, mutant cells exhibit photosynthetic O(2)-evolution activity during their growth coincident with increases of (a) chlorophyll, (b) protein, and (c) ribulose-1,5-bisphosphate (RuBP) carboxylase activity. Functionally competent chloroplasts were isolated from the green cells. Mechanism(s) governing gene expression of amyloplast DNA in the heterotrophically grown white cells were compared with those of the chloroplast DNA isolated from the mutant cells. We have demonstrated in both amyloplast and chloroplast DNAs the presence of sequences homologous to the maize chloroplast genes for photosynthesis, including the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO)(rbcL), the 32 kDa Q(B) protein (PG32) (psbA), the apoprotein of P700 (psaA) and subunits of CF(1) (atpA, atpB, and atpE). However, employing either enzyme assays or immunological techniques, RuBisCO and CF(1) cannot be detected in the white wild type cells. Northern blot hybridization of the RNA from the white cells showed high levels of transcripts for the 16S rRNA gene and low level of transcripts for psbA; based on comparison with results obtained using the green mutant cells, we propose that the amyloplast genome is mostly inactive except for the 16S rRNA gene and psbA which is presumably regulated at the transcriptional level.

  10. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences

    OpenAIRE

    Wambugu, Peterson W.; Marta Brozynska; Agnelo Furtado; Daniel L. Waters; Robert J. Henry

    2015-01-01

    Rice is the most important crop in the world, acting as the staple food for over half of the world’s population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly su...

  11. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Young, Rosanna E B; Purton, Saul

    2016-05-01

    There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae. PMID:26471875

  12. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M.; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A.; González, Maricruz; Lindahl, Anna M.; Cejudo, Francisco J.

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlle...

  13. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Leonor ePuerto-Galán; Juan Manuel Pérez-Ruiz; Julia eFerrández; Beatriz eCano; Belén eNaranjo; Victoria Armario Nájera; Maricruz eGonzález; Anna Marika eLindahl; Francisco Javier Cejudo

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS), including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly con...

  14. Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes.

    Science.gov (United States)

    Asakura, Yukari; Hirohashi, Toshiya; Kikuchi, Shingo; Belcher, Susan; Osborne, Erin; Yano, Satoshi; Terashima, Ichiro; Barkan, Alice; Nakai, Masato

    2004-01-01

    A chloroplast signal recognition particle (SRP) that is related to the SRP involved in secretion in bacteria and eukaryotic cells is used for the insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membranes. A conserved component of the SRP mechanism is a membrane-bound SRP receptor, denoted FtsY in bacteria. Plant genomes encode FtsY homologs that are targeted to the chloroplast (cpFtsY). To investigate the in vivo roles of cpFtsY, we characterized maize cpFtsY and maize mutants having a Mu transposon insertion in the corresponding gene (chloroplast SRP receptor1, or csr1). Maize cpFtsY accumulates to much higher levels in leaf tissue than in roots and stems. Interestingly, it is present at similar levels in etiolated and green leaf tissue and was found to bind the prolamellar bodies of etioplasts. A null cpFtsY mutant, csr1-1, showed a substantial loss of leaf chlorophyll, whereas a "leaky" allele, csr1-3, conditioned a more moderate chlorophyll deficiency. Both alleles caused the loss of various LHCPs and the thylakoid-bound photosynthetic enzyme complexes and were seedling lethal. By contrast, levels of the membrane-bound components of the thylakoid protein transport machineries were not altered. The thylakoid membranes in csr1-1 chloroplasts were unstacked and reduced in abundance, but the prolamellar bodies in mutant etioplasts appeared normal. These results demonstrate the essentiality of cpFtsY for the biogenesis not only of the LHCPs but also for the assembly of the other membrane-bound components of the photosynthetic apparatus. PMID:14688289

  15. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    OpenAIRE

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E.; Daniell, Henry

    2010-01-01

    It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without intro...

  16. Genesis of grana and stroma thylakoids in leaf chloroplasts of four orchid species

    OpenAIRE

    Barbara Damasz

    2014-01-01

    In the chloroplasts of orchid leaves (Paphiopedilum mastersianum Pfitz., Stanhopea tigrina Batem., Coelogyne cristata LDL and Cymbidium insigne Rolfe) grana stacks differentiate on the base of primary thylakoids. This process occurs by stratification due to overlapping of thylakoids, by their bending and by invagination of the membrane into the thylakoid. There also may form two membranes ending blindly at both ends, called "central contact zone" ("Kontaktzone") in the interior of the mother ...

  17. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  18. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  19. Translational coupling of the maize chloroplast atpB and atpE genes

    OpenAIRE

    Gatenby, Anthony A.; Rothstein, Steven. J.; Nomura, Masayasu

    1989-01-01

    The genes for the β and ε subunits of maize chloroplast ATP synthase are encoded by the organelle genome, are cotranscribed, and have overlapping translation initiation and termination codons. To determine whether the atpB and atpE genes are translationally coupled, they were transformed into Escherichia coli on a multicopy plasmid. Synthesis of full-length β and ε polypeptides demonstrated correct initiation of translation by the bacterial ribosomes. To assay for translational coupling, the ...

  20. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin

    OpenAIRE

    Daniel J Barrera; Rosenberg, Julian N.; Chiu, Joanna G.; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T.; Shoemaker, Charles B.; George A Oyler; Mayfield, Stephen P

    2014-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VHH) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydom...

  1. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta.

    Directory of Open Access Journals (Sweden)

    James T Melton

    Full Text Available Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides and two mitochondrial genomes (O. viridis and P. akinetum from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes. Additionally, five introns were annotated in four genes: atpA (1, petB (1, psbB (2, and rrl (1. The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4, atp1 (1, nad3 (1, nad5 (1, and rrs (3. Double-cut-and-join (DCJ values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta. A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales and Tetraselmis (Chlorodendrophyceae closely to Ulva (Ulvales and Pseudendoclonium (Ulothrichales.

  2. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    OpenAIRE

    Igamberdiev, Abir U.; Kleczkowski, Leszek A.

    2015-01-01

    The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, ...

  3. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants

    OpenAIRE

    Michelet, Laure; Zaffagnini, Mirko; Marchand, Christophe; Collin, Valérie; Decottignies, Paulette; Tsan, Pascale; Lancelin, Jean-Marc; Trost, Paolo; Miginiac-Maslow, Myroslawa; Noctor, Graham; Lemaire, Stéphane D.

    2005-01-01

    Thioredoxin f (TRXf) is a key factor in the redox regulation of chloroplastic carbon fixation enzymes, whereas glutathione is an important thiol buffer whose status is modulated by stress conditions. Here, we report specific glutathionylation of TRXf. A conserved cysteine is present in the TRXf primary sequence, in addition to its two active-site cysteines. The additional cysteine becomes glutathionylated when TRXf is exposed to oxidized glutathione or to reduced glutathione plus oxidants. No...

  4. Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase.

    OpenAIRE

    Chiadmi, M.; Navaza, A; Miginiac-Maslow, M; Jacquot, J P; Cherfils, J

    1999-01-01

    Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low-activity form of chlorop...

  5. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

    Science.gov (United States)

    Zhong, Linlin; Zhou, Wen; Wang, Haijun; Ding, Shunhua; Lu, Qingtao; Wen, Xiaogang; Peng, Lianwei; Zhang, Lixin; Lu, Congming

    2013-08-01

    Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.

  6. 2010 GORDON RESEARCH CONFERENCE ON MITOCHONDRIA & CHLOROPLASTS, LUCCA, ITALY, JULY 11-16, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Alice Barkan

    2010-07-16

    The 2010 GRC on Mitochondria & Chloroplasts will assemble an international group of molecular, structural and cellular biologists, biochemists and geneticists investigating a broad spectrum of fundamental problems related to the biology of these organelles in animal, plant and fungal cells. This field has witnessed an extraordinary expansion in recent years, fueled by the discovery of the role of mitochondria in human disease and ageing, and of the synergy of chloroplasts and mitochondria in energetic output, the identification of novel factors involved in organelle division, movement, signaling and acclimation to changing environmental conditions, and by the powerful tools of organelle proteomics. The 2010 GRC will highlight advances in the elucidation of molecular mechanisms of organelle biogenesis including regulation of genome structure, evolution and expression, organellar protein import, assembly and turnover of respiratory and photosynthetic complexes, bidirectional signaling between organelles and nucleus, organelle morphology and dynamics, and the integration of cellular metabolism. We will also explore progress in mechanisms of disease and ageing/ senescence in animals and plants. The organellar field has forged new fronts toward a global and comprehensive understanding of mitochondrial and chloroplast biology at the molecular level. Many of the molecules under study in model organisms are responsible for human diseases, providing significant impetus for a meeting that encourages interactions between mammalian, fungal and plant organellar biologists.

  7. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-09

    Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies

  8. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids[OPEN

    Science.gov (United States)

    Hirano, Takayuki; Tanidokoro, Koji; Shimizu, Yasuhiro; Kawarabayasi, Yutaka; Ohshima, Toshihisa; Sato, Momo; Tadano, Shinji; Ishikawa, Hayato; Takio, Susumu; Takechi, Katsuaki; Takano, Hiroyoshi

    2016-01-01

    It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P. patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana. PMID:27325639

  9. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating.

    Science.gov (United States)

    Rousseau-Gueutin, M; Bellot, S; Martin, G E; Boutte, J; Chelaifa, H; Lima, O; Michon-Coudouel, S; Naquin, D; Salmon, A; Ainouche, K; Ainouche, M

    2015-12-01

    The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution. PMID:26182838

  10. Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast

    Science.gov (United States)

    Höhner, Ricarda; Aboukila, Ali; Kunz, Hans-Henning; Venema, Kees

    2016-01-01

    Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced -proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7) and the stroma (pH 8) is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+, or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+)/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function. PMID:26973667

  11. Analysis of synonymous codon usage in chloroplast genome of Populus alba

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; LONG Wei; LI Xia

    2008-01-01

    The pattern of codon usage in the chloroplast genome of Populus alba was investigated.Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plot were conducted to analyze synonymous codon usage.The results of correspondence analysis showed that the distribution of genes on the major axis was significantly correlated with the frequency of use of G+C in synonymously variable third position of sense codon (GC3S),(r=0.349),and the positions of genes on the axis 2 and axis 3 were significantly correlated with CAI (r=-0.348,p<0.01 and r=0.602,p<0.01).The ENc for most genes was similar to that for the expected ENc based on the GC3S,but several genes with low ENC values were lying below the expected curve.All of these data indicated that codon usage was dominated by a mutational bias in chloroplast genome of P.alba.The selection in nature for translational efficiency only played a minor role in shaping codon usage in the chloroplast genome of P.alba.

  12. RNA Editing Sites Exist in Protein-coding Genes in the Chloroplast Genome of Cycas taitungensis

    Institute of Scientific and Technical Information of China (English)

    Haiyan Chen; Likun Deng; Yuan Jiang; Ping Lu; Jianing Yu

    2011-01-01

    RNA editing is a post-transcriptional process that results in modifications of ribonucleotides at specific locations.In land plants editing can occur in both mitochondria and chloroplasts and most commonly involves C-to-U changes,especially in seed plants.Using prediction and experimental determination,we investigated RNA editing in 40 protein-coding genes from the chloroplast genome of Cycas taitungensis.A total of 85 editing sites were identified in 25 transcripts.Comparison analysis of the published editotypes of these 25 transcripts in eight species showed that RNA editing events gradually disappear during plant evolution.The editing in the first and third codon position disappeared quicker than that in the second codon position,ndh genes have the highest editing frequency while serine and proline codons were more frequently edited than the codons of other amino acids.These results imply that retained RNA editing sites have imbalanced distribution in genes and most of them may function by changing protein structure or interaction.Mitochondrion protein-coding genes have three times the editing sites compared with chloroplast genes of Cycas,most likely due to slower evolution speed.

  13. Effects of Glycerol on the Fluorescence Spectra and Chloroplast Ultrastructure of Phaeodactylum tricornutum (Bacillariophyta)

    Institute of Scientific and Technical Information of China (English)

    Xiao-Juan Liu; Shun-Shan Duan; Ai-Fen Li; Kai-Feng Sun

    2009-01-01

    Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F6851F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.

  14. Photosynthetic Characteristics and Ultrastructure of Chloroplast of Cucumber Under Low Light Density in Solar-Greenhouse

    Institute of Scientific and Technical Information of China (English)

    AI Xi-zhen; GUO Yan-kui; CHEN Li-ping; XING Yu-xian

    2004-01-01

    The photosynthetic characteristics and ultrastructure of chloroplast of cucumber in solargreenhouse were studied. The result showed that the photosynthetic rate (Pn), photosynthetic ability (A350), carboxylation efficiency, light saturation point and light compensation point all declined remarkably under lowlight density, indicating that the photosynthetic characteristics of cucumber were closely related to light environment. Under iow light density, the minimal fluorescence (Fo), alterable fluorescence (Fv), photochemical efficiency of PS Ⅱ (Fv/Fm), steady fluorescence in light (Fs), maximal fluorescence (Fm′) and actual efficiency of PS Ⅱ (φPSⅡ)etc increased, indicating that the photochemical activity and efficiency for solar energy transformation enhanced, thus the light proportion used to electron transport also increased. The chlorophyll a, b, a/b and carotenoid of shading leaves decreased. However, the depressed extent of Chl a and Chl a/b were obviously larger than that of Chl b. The number of chloroplast and starch grain in cucumber leaves descended, but that of grana and lamella increased as a shaded result. The size of chloroplast and starch grain of shading leaves minished.

  15. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling

    Science.gov (United States)

    Colombo, Monica; Tadini, Luca; Peracchio, Carlotta; Ferrari, Roberto; Pesaresi, Paolo

    2016-01-01

    The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein–protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication. PMID:27713755

  16. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome.

    Science.gov (United States)

    Parfitt, D E; Badenes, M L

    1997-07-22

    Classification within the genus Pistacia has been based on leaf morphology and geographical distribution. Molecular genetic tools (PCR amplification followed by restriction analysis of a 3.2-kb region of variable chloroplast DNA, and restriction fragment length polymorphism analysis of the Pistacia cpDNA with tobacco chloroplast DNA probes) provided a new set of variables to study the phylogenetic relationships of 10 Pistacia species. Both parsimony and cluster analyses were used to divide the genus into two major groups. P. vera was determined to be the least derived species. P. weinmannifolia, an Asian species, is most closely related to P. texana and P. mexicana, New World species. These three species share a common origin, suggesting that a common ancestor of P. texana and P. mexicana originated in Asia. P. integerrima and P. chinensis were shown to be distinct whereas the pairs of species were monophyletic within each of two tertiary groups, P. vera:P. khinjuk and P. mexicana:P. texana. An evolutionary trend from large to small nuts and leaves with few, large leaflets to many, small leaflets was supported. The genus Pistacia was shown to have a low chloroplast DNA mutation rate: 0.05-0.16 times that expected of annual plants. PMID:9223300

  17. Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Uthaipaisanwong, P; Chanprasert, J; Shearman, J R; Sangsrakru, D; Yoocha, T; Jomchai, N; Jantasuriyarat, C; Tragoonrung, S; Tangphatsornruang, S

    2012-06-01

    Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.

  18. Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast.

    Science.gov (United States)

    Nagy, Bettina; Majer, Petra; Mihály, Róbert; Pauk, János; Horváth, Gábor V

    2016-09-01

    Barley represents one of the major crops grown worldwide; its genetic transformation provides an important tool for the improvement of crop quality and tolerance to environmental stress factors. Biotic and abiotic stresses produce reactive oxygen species in the plant cells that can directly oxidize the cellular components including lipid membranes; resulting in lipid peroxidation and subsequently the accumulation of reactive carbonyl compounds. In order to protect barley plants from the effects of stress-produced reactive carbonyls, an Agrobacterium-mediated transformation was carried out using the Medicago sativa aldose reductase (MsALR) gene. In certain transgenic lines the produced MsALR enzyme was targeted to the chloroplasts to evaluate its protective effect in these organelles. The dual fluorescent protein-based method was used for the evaluation of tolerance of young seedlings to diverse stresses; our results demonstrated that this technique could be reliably applied for the detection of cellular stress in a variety of conditions. The chlorophyll and carotenoid content measurements also supported the results of the fluorescent protein-based method and the stress-protective effect of the MsALR enzyme. Targeting of MsALR into the chloroplast has also resulted in increased stress tolerance, similarly to the observed effect of the cytosolic MsALR accumulation. The results of the DsRed/GFP fluorescent protein-based method indicated that both the cytosol and chloroplast accumulation of MsALR can increase the abiotic stress tolerance of transgenic barley lines. PMID:27469099

  19. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae (Rhodophyta) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; QIAN Hao; LI Tianyong; SUN Jing; WANG Liang; YU Jun; LI Xingang; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of red algae (Phylum Rhodophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lin-eages by using red algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Rhodophyta. We have found that red algae were divided into three clades of orders, Florideophyceae, Bangiophyceae and Cyanidiophyceae. Taxonomy resolution for Class Florideophyceae showed that Order Gigartinales was close to Order Halymeniales, while Order Graci-lariales was in a clade of Order Ceramials. We confirmed Prionitis divaricata (Family Halymeniaceae) was closely related to the clade of Order Gracilariales, rather than to genus Grateloupia of Order Halymeniales as reported before. Furthermore, we found both mitochondrial and chloroplastic genes in Rhodophyta under negative selection (Ka/Ks<1), suggesting that red algae, as one primitive group of eukaryotic algae, might share joint evolutionary history with these two organelles for a long time, although we identified some dif-ferences in their phylogenetic trees. Our analysis provided the basic phylogenetic relationships of red algae, and demonstrated their potential ability to study endosymbiotic events.

  20. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids.

    Science.gov (United States)

    Hirano, Takayuki; Tanidokoro, Koji; Shimizu, Yasuhiro; Kawarabayasi, Yutaka; Ohshima, Toshihisa; Sato, Momo; Tadano, Shinji; Ishikawa, Hayato; Takio, Susumu; Takechi, Katsuaki; Takano, Hiroyoshi

    2016-07-01

    It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana. PMID:27325639

  1. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress.

    Science.gov (United States)

    Joaquín-Ramos, Ahuitzolt; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; Baginsky, Sacha; Barba de la Rosa, Ana P

    2014-09-15

    The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant. PMID:25046763

  2. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis: Structure and Evolution.

    Directory of Open Access Journals (Sweden)

    Jia-Yee S Yap

    Full Text Available The Wollemi pine (Wollemia nobilis is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia. This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  3. Congruent Deep Relationships in the Grape Family (Vitaceae Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera. The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study, next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina HiSeq 2500 instrument. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  4. Observing ultrafine structure and biomechanics of mitochondria and chloroplast DNA strands from fresh wheat seed under X/γ-ray radiation with atomic force microscopy

    International Nuclear Information System (INIS)

    Biomechanics and change of ultrafine structure are important parameters which can point out or explain the physical and chemical process in the biology, and the mechanical parameters may provide some critical proofs to life science. In order to explore the causes of the change of physiological condition and genetic results in biochemical process, biophysicists have tried to detect and collect the parameters with novel equipment and methods, such as atomic force microscopy, which may be the most successful equipment and technique to obtain surface topographies of a sample and investigate the physical and mechanic properties. Seed-breeding with ionizing radiations, which act mainly by changing ultrafine structure and physical properties of genetic materials such as DNA molecules, provides an important pathway to get new products in high quality and quantity. X or / 60Co γ-rays were used to irradiate fresh wheat seeds from Guan-zhong Plain of Shaanxi Province to different doses. The mitochondria and chloroplast DNA molecules were isolated and purified with traditional methods from the control and samples. The DNA solutions were deposited onto fresh mica for AFM observations. The AFM was operated in tapping/contact modes in air at 25 degree C to obtain intuitive topographies of DNA molecules and strand-breaking mitochondria and chloroplast DNA induced by the X/60Co γ-rays. From the AFM images of the DNA in different irradiation doses, we can see that the strand-breaking number of DNA increased as the both irradiation strengthening and the compression elasticity of both DNA molecules increased with the intensification of irradiation. And the irradiation sensitivity of DNA from mitochondria was prominent to that from chloroplast in strand-breaking and compression elasticity. The genetic properties are tightly relating to the physical state and mechanic of the materials (DNA), it is a worth domain to discuss the coherence of the elasticity of the single molecules and

  5. Study on the Relationship Between the Ploidy Level of Microspore-Derived Plants and the Number of Chloroplast in Stomatal Guard Cells in Brassica oleracea

    Institute of Scientific and Technical Information of China (English)

    YUAN Su-xia; LIU Yu-mei; FANG Zhi-yuan; YANG Li-mei; ZHUANG Mu; ZHANG Yang-yong; SUN Pei-tian

    2009-01-01

    The relationship between the ploidy level of microspore-derived plants and chloroplast number in stomatal guard cells was studied in cabbage, broccoli, and Chinese kale. In the experiment, distribution statistics analysis and t-test were used to perform statistical analysis on chloroplast number of different ploidy level in those stomatal guard cells mentioned above, and morphology identifying and chromosome counting were used to test accuracy of counting chloroplast number in stomatal guard cells. The chloroplast average number in stomatal guard cells was very similar among the different leaf positions on the same plant and among the different locations in the same leaf, while the chloroplast number varied significantly among the different ploidy stoma in the same variety. All the distributions of the chloroplast number in different ploidy stoma were normal distribution fitted. A correlation has been established between ploidy and chloroplast number in the stomatal guard cells. In every single stoma of microspore-derived plants, the chloroplast number for a haploid should not be more than 10, diploids 11 to 15, and polyploids more than 15. The accuracy of this method for identification of different ploidy plants was 93.93%. Furthermore, the accuracy of this method was reliable and did not vary with the plants growth conditions. Therefore, the chromosome ploidy of plants derived from microspore culture in cabbage, broccoli, and Chinese kale can be identified by simply counting the chloroplast number in stomatal guard cells.

  6. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development.

    Directory of Open Access Journals (Sweden)

    Juan de Dios Barajas-López

    Full Text Available The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5 was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative

  7. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    Science.gov (United States)

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis. PMID:26815371

  8. Research Progress of Sugarcane Chloroplast Genome%甘蔗叶绿体基因组研究进展

    Institute of Scientific and Technical Information of China (English)

    吴杨; 周会

    2013-01-01

    Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.%随着现代分子生物学技术的发展,目前已经完成了多种植物叶绿体基因组的全序列测定,并研究了这些基因的结构、功能与表达。大部分高等植物的叶绿体基因组结构稳定,基因数量、排列顺序及组成上具有保守性。甘蔗叶绿体基因组测序工作的完成为甘蔗叶绿体相关研究奠定了良好基础。文章从甘蔗叶绿体基因组图谱、结构和功能基因、叶绿体RNA编辑以及甘蔗属叶绿体系统进化等方面综合概述了甘蔗叶绿体基因组研究取得的成果,并从甘蔗叶绿体遗传转化、甘蔗及近缘属叶绿体基因组测序和叶绿体基因组 cpSSRs开发利用等方面指出甘蔗叶绿体基因组今后的研究方向。

  9. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2010-04-01

    Full Text Available Abstract Background Oncidium spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution. Results The complete chloroplast genome of the economically important Oncidium variety Onc. Gower Ramsey (Accession no. GQ324949 was determined using a polymerase chain reaction (PCR and Sanger based ABI sequencing. The length of the Oncidium chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to Phalaenopsis, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp genome. The Onc. Gower Ramsey chloroplast-encoded NADH dehydrogenase (ndh genes, except ndhE, lack apparent functions. Deletion and other types of mutations were also found in the ndh genes of 15 other economically important Oncidiinae varieties, except ndhE in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the Onc. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (trnHGUG -psbA and trnFGAA-ndhJ was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of Degarmoara Flying High and Odontoglossum Violetta von Holm. Thus the chloroplast genome provides a useful molecular marker for species identifications. Conclusion In this report, we used Phalaenopsis. aphrodite as a prototype for primer design to complete the Onc. Gower Ramsey genome sequence. Gene annotation showed

  10. Ultrastructural changes in chloroplasts of mesophyll cells of chlorotic and prematurely yellowed leaves of Betula pendula Rothr

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-04-01

    Full Text Available The ultrastructure of chloroplasts was studied in mesophyll cells of the leaves of silver birch (Betula pendula showing interveinal chlorosis or premature yellowing, in comparison with leaves without symptoms or exhibiting symptoms of natural senescence. The leaves were collected between May 26 to June 7 and additionally in the September 10-12 from the upper part of the crown, from increments of the past four years. No major difference in ultrastructure of chloroplasts was found between spongy and palisade mesophyll cells. The following senescencerelated changes were observed in chloroplasts of prematurely yellowed leaves and showing inteveinal chlorosis: reduced chloroplast size, degeneration of the membrane systems of thylakoids and increased electron density of plastoglobuli. The most electron dark globules (lipid droplets were found together with starch grains in cells of spongy mesophyll of leaves showing interveinal chlorosis. Abnormal, spherical and rounded chloroplasts with electron-dark inside of thylakoids or the electron-dark stroma between thylakoids were found only in yellowed and chlorotic leaves in spring.

  11. A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA.

    Science.gov (United States)

    Nishimura, Kenji; Ashida, Hiroki; Ogawa, Taro; Yokota, Akiho

    2010-09-01

    In plant chloroplasts, the ribosomal RNA (rRNA) of the large subunit of the ribosome undergoes post-maturation fragmentation processing. This processing consists of site-specific cleavage that generates gapped, discontinuous rRNA molecules. However, the molecular mechanism underlying introduction of the gap structure (the 'hidden break') is poorly understood. Here, we found that the DEAD box protein RH39 plays a key role in introduction of the hidden break into the 23S rRNA in Arabidopsis chloroplasts. Genetic screening for an Arabidopsis plant with a drastically reduced level of ribulose-1,5-bisphosphate carboxylase/oxygenase identified an RH39 mutant. The levels of other chloroplast-encoded photosynthetic proteins were also severely reduced. The reductions were not due to a failure of transcription, but rather inefficiency in translation. RNA gel blotting revealed incomplete fragmentation of 23S rRNA in chloroplasts during maturation. In vitro analysis with recombinant RH39 suggested that the protein binds to the adjacent sequence upstream of the hidden break site to exert its function. We propose a molecular mechanism for the RH39-mediated fragmentation processing of 23S rRNA in chloroplasts.

  12. Clues to the signals for chloroplast photo-relocation from the lifetimes of accumulation and avoidance responses

    Institute of Scientific and Technical Information of China (English)

    Takeshi Higa; Masamitsu Wada

    2015-01-01

    Chloroplast photo-relocation movement is crucial for plant survival;however, the mechanism of this phenome-non is stil poorly understood. Especial y, the signal that goes from photoreceptor to chloroplast is unknown, although the photoreceptors (phototropin 1 and 2) have been identified and an actin structure (chloroplast actin filaments) has been characterized that is specific for chloroplast movement. Here, in gametophytes of the fern Adiantum capillus-veneris, gametophores of the moss Physcomiterella patens, and leaves of the seed plant Arabidopsis thaliana, we sought to characterize the signaling system by measuring the lifetime of the induced response. Chloroplast movements were induced by microbeam irradiation with high-intensity blue light and recorded. The lifetime of the avoidance state was measured as a lag time between switching off the beam and the loss of avoidance behavior, and that of the accumulation state was measured as the duration of accumulation behavior fol owing the extinction of the beam. The lifetime for the avoidance response state is approximately 3–4 min and that for the accumulation response is 19–28 min. These data suggest that the two responses are based on distinct signals.

  13. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  14. Phylogenetic placement of Cynomorium in Rosales inferred from sequences of the inverted repeat region of the chloroplast genome

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong ZHANG; Chun-Qi LI; Jian-hua LI

    2009-01-01

    Cynomorium is a herbaceous holoparasite that has been placed in Santalales, Saxifragales, Myrtales, or Sapindales. The inverted repeat (IR) region of the chloroplast genome region is slow evolving and, unlike mitochondrial genes, the chloroplast genome experiences few horizontal gene transfers between the host and parasite. Thus, in the present study, we used sequences of the IR region to test the phylogenetic placements of Cynomorium. Phylogenetic analyses of the chloroplast IR sequences generated largely congruent ordinal relationships with those from previous studies of angiosperm phylogeny based on single or multiple genes. Santalales was closely related to Caryophyllales and asterids. Saxifragales formed a clade where Peridiscus was sister to the remainder of the order, whereas Paeonia was sister to the woody clade of Saxifragales. Cynomorium is not closely related to Santalales, Saxifragales, Myrtales, or Sapindales; instead, it is included in Rosales and sister to Rosaceae. The various placements of the holoparasite on the basis of different regions of the mitochondrial genome may indicate the heterogeneous nature of the genome in the parasite. However, it is unlikely that the placement of Cynomorium in Rosales is the result of chloroplast gene transfer because Cynomorium does not parasitize on rosaceous plants and there is no chloroplast gene transfer between Cynomorium and Nitraria, a confirmed host of Cynomorium and a member of Sapindales.

  15. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis.

    Science.gov (United States)

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b 6 f (Cytb 6 f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb 6 f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb 6 f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb 6 f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  16. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes

    Directory of Open Access Journals (Sweden)

    Anderson Olin D

    2008-07-01

    Full Text Available Abstract Background Wheat, barley, and rye, of tribe Triticeae in the Poaceae, are among the most important crops worldwide but they present many challenges to genomics-aided crop improvement. Brachypodium distachyon, a close relative of those cereals has recently emerged as a model for grass functional genomics. Sequencing of the nuclear and organelle genomes of Brachypodium is one of the first steps towards making this species available as a tool for researchers interested in cereals biology. Findings The chloroplast genome of Brachypodium distachyon was sequenced by a combinational approach using BAC end and shotgun sequences derived from a selected BAC containing the entire chloroplast genome. Comparative analysis indicated that the chloroplast genome is conserved in gene number and organization with respect to those of other cereals. However, several Brachypodium genes evolve at a faster rate than those in other grasses. Sequence analysis reveals that rice and wheat have a ~2.1 kb deletion in their plastid genomes and this deletion must have occurred independently in both species. Conclusion We demonstrate that BAC libraries can be used to sequence plastid, and likely other organellar, genomes. As expected, the Brachypodium chloroplast genome is very similar to those of other sequenced grasses. The phylogenetic analyses and the pattern of insertions and deletions in the chloroplast genome confirmed that Brachypodium is a close relative of the tribe Triticeae. Nevertheless, we show that some large indels can arise multiple times and may confound phylogenetic reconstruction.

  17. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO{sub 2}-concentrating mechanisms in algae

    Energy Technology Data Exchange (ETDEWEB)

    Badger, M. R.; Andrews, T. J.; Whitney, S. M.; Ludwig, M.; Price, G. D. [Australian National Univ., Research School of Biological Sciences, Canberra, ACT (Australia); Yellowlees, D. C.; Leggat, W. [James Cook Univ., Dept of Biochemistry and Molecular Biology, Townsville, QLD (Australia)

    1998-06-01

    The potential diversity of Rubisco and chloroplast-based carbon dioxide concentrating mechanisms (CCMs) in green and non-green algae are examined. The review emphasized recent advances in understanding the subject and areas with future research potential. In general, the review found that Rubisco enzymes from algae have evolved a higher affinity for carbon dioxide when the algae have adopted a strategy for carbon dioxide fixation that does not utilize a CCM. This appears to be true for both the Green and Red Form I Rubisco enzymes found in green and non-green algae. In some microalgae there is a strong correlation between the existence of a high-affinity CCM physiology and the presence of pyrenoids, suggestive of the potential importance of these chloroplast Rubisco-containing bodies. In contrast, in macroalgae a greater diversity of the apparent relationships between pyrenoids and chloroplast features and the CCM physiology was found. With regard to future research, the function of the pyrenoid and other chloroplast features, the operation of chloroplast-based CCM, and the assessment of the coevolution of Rubisco, appeared to be the most promising areas. 109 refs., 4 tabs., 5 figs.

  18. Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts.

    Science.gov (United States)

    Tewari, Rajesh Kumar; Watanabe, Daisuke; Watanabe, Masami

    2012-01-01

    Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H(2)O(2) and enzymes involved in H(2)O(2) generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H(2)O(2) and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H(2)O(2) was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H(2)O(2) in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H(2)O(2) generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.

  19. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants.

    Science.gov (United States)

    Chumley, Timothy W; Palmer, Jeffrey D; Mower, Jeffrey P; Fourcade, H Matthew; Calie, Patrick J; Boore, Jeffrey L; Jansen, Robert K

    2006-11-01

    The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.

  20. The complete chloroplast genome sequence of Pelargonium xhortorum: Or ganization and evolution of the largest and most highlyrearranged chloroplast genome of land plants

    Energy Technology Data Exchange (ETDEWEB)

    Chumley, Timothy W.; Palmer, Jeffrey D.; Mower, Jeffrey P.; Fourcade, H. Matthew; Calie, Patrick J.; Boore, Jeffrey L.; Jansen,Robert K.

    2006-01-20

    The chloroplast genome of Pelargonium e hortorum has beencompletely sequenced. It maps as a circular molecule of 217,942 bp, andis both the largest and most rearranged land plant chloroplast genome yetsequenced. It features two copies of a greatly expanded inverted repeat(IR) of 75,741 bp each, and consequently diminished single copy regionsof 59,710 bp and 6,750 bp. It also contains two different associations ofrepeated elements that contribute about 10 percent to the overall sizeand account for the majority of repeats found in the genome. Theyrepresent hotspots for rearrangements and gene duplications and include alarge number of pseudogenes. We propose simple models that account forthe major rearrangements with a minimum of eight IR boundary changes and12 inversions in addition to a several insertions of duplicated sequence.The major processes at work (duplication, IR expansion, and inversion)have disrupted at least one and possibly two or three transcriptionaloperons, and the genes involved in these disruptions form the core of thetwo major repeat associations. Despite the vast increase in size andcomplexity of the genome, the gene content is similar to that of otherangiosperms, with the exceptions of a large number of pseudogenes as partof the repeat associations, the recognition of two open reading frames(ORF56 and ORF42) in the trnA intron with similarities to previouslyidentified mitochondrial products (ACRS and pvs-trnA), the loss of accDand trnT-GGU, and in particular, the lack of a recognizably functionalrpoA. One or all of three similar open reading frames may possibly encodethe latter, however.

  1. Boat sampling

    International Nuclear Information System (INIS)

    This presentation describes essential boat sampling activities: on site boat sampling process optimization and qualification; boat sampling of base material (beltline region); boat sampling of weld material (weld No. 4); problems accompanied with weld crown varieties, RPV shell inner radius tolerance, local corrosion pitting and water clarity. The equipment used for boat sampling is described too. 7 pictures

  2. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  3. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora.

    Directory of Open Access Journals (Sweden)

    Xiaojun Nie

    Full Text Available BACKGROUND: Crofton weed (Ageratina adenophora is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp genome based on Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC region of 18, 358 bp and a large single-copy (LSC region of 84, 815 bp separated by a pair of inverted repeats (IRs of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. CONCLUSION: We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.

  4. Viral and chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium tumefaciens.

    Science.gov (United States)

    Ahmad, Tauqeer; Venkataraman, Srividhya; Hefferon, Kathleen; AbouHaidar, Mounir G

    2014-09-12

    The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest. PMID:25117444

  5. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata.

    Science.gov (United States)

    Ying, Rong-Rong; Qiu, Rong-Liang; Tang, Ye-Tao; Hu, Peng-Jie; Qiu, Hao; Chen, Hong-Ru; Shi, Tai-Hong; Morel, Jean-Louis

    2010-01-15

    To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation. PMID:19683362

  6. Cytosolic HSP90 Cochaperones HOP and FKBP Interact with Freshly Synthesized Chloroplast Preproteins of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Christine Fellerer; Regina Schweiger; Katharina Sch(o)ngruber; Jürgen Soll; Serena Schwenkert

    2011-01-01

    Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally.Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state.Preproteins can associate with HSPT0,HSP90,and 14-3-3 proteins in the cytosol.In this study,we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding.Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70.We were able to identify a diverse and extensive class of preproteins as HSP90 substrates,thus providing a tool for the investigation of HSP90 client protein association.The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins,in HSP90 binding.We identified two partner components of the HSP90 cycle,which were present in the preprotein containing high-molecular-weight complexes,the HSP70/HSP90 organizing protein HOP,as well as the immunophilin FKBP73.The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.

  7. Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis.

    Science.gov (United States)

    He, Yunxia; Meng, Xiangzong; Fan, Qianlan; Sun, Xiaoliang; Xu, Zhengkai; Song, Rentao

    2009-09-01

    Dunaliella, a unicellular green alga, has the unusual ability to survive dramatic osmotic stress by accumulating high concentrations of intracellular glycerol as a compatible solute. The chloroplastic glycerol-3-phosphate dehydrogenase (GPDH) has been considered to be the key enzyme that produces glycerol for osmoregulation in Dunaliella. In this study, we cloned the two most prominent GPDH cDNAs (DvGPDH1 and DvGPDH2) from Dunaliella viridis, which encode two polypeptides of 695 and 701 amino acids, respectively. Unlike higher plant GPDHs, both proteins contained extra phosphoserine phosphatase (SerB) domains at their N-termini in addition to C-terminal GPDH domains. Such bi-domain GPDHs represent a novel type of GPDH and are found exclusively in the chlorophyte lineage. Transient expression of EGFP fusion proteins in tobacco leaf cells demonstrated that both DvGPDH1 and DvGPDH2 are localized in the chloroplast. Overexpression of DvGPDH1 or DvGPDH2 could complement a yeast GPDH mutant (gpd1Delta), but not a yeast SerB mutant (ser2Delta). In vitro assays with purified DvGPDH1 and DvGPDH2 also showed apparent GPDH activity for both, but no SerB activity was detected. Surprisingly, unlike chloroplastic GPDHs from plants, DvGPDH1 and DvGPDH2 could utilize both NADH and NADPH as coenzymes and exhibited significantly higher GPDH activities when NADH was used as the coenzyme. Q-PCR analysis revealed that both genes exhibited transient transcriptional induction of gene expression upon hypersalinity shock, followed by a negative feedback of gene expression. These results shed light on the regulation of glycerol synthesis during salt stress in Dunaliella. PMID:19551475

  8. Three-Dimensional Visualization of the Tubular-Lamellar Transformation of the Internal Plastid Membrane Network during Runner Bean Chloroplast Biogenesis.

    Science.gov (United States)

    Kowalewska, Łucja; Mazur, Radosław; Suski, Szymon; Garstka, Maciej; Mostowska, Agnieszka

    2016-04-01

    Chloroplast biogenesis is a complex process that is integrated with plant development, leading to fully differentiated and functionally mature plastids. In this work, we used electron tomography and confocal microscopy to reconstruct the process of structural membrane transformation during the etioplast-to-chloroplast transition in runner bean (Phaseolus coccineus). During chloroplast development, the regular tubular network of paracrystalline prolamellar bodies (PLBs) and the flattened porous membranes of prothylakoids develop into the chloroplast thylakoids. Three-dimensional reconstruction is required to provide us with a more complete understanding of this transformation. We provide spatial models of the bean chloroplast biogenesis that allow such reconstruction of the internal membranes of the developing chloroplast and visualize the transformation from the tubular arrangement to the linear system of parallel lamellae. We prove that the tubular structure of the PLB transforms directly to flat slats, without dispersion to vesicles. We demonstrate that the grana/stroma thylakoid connections have a helical character starting from the early stages of appressed membrane formation. Moreover, we point out the importance of particular chlorophyll-protein complex components in the membrane stacking during the biogenesis. The main stages of chloroplast internal membrane biogenesis are presented in a movie that shows the time development of the chloroplast biogenesis as a dynamic model of this process. PMID:27002023

  9. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Science.gov (United States)

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  10. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, A.; Jenkins, T.;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  11. Effects of Exogenous Silicon on Photosynthetic Capacity and Antioxidant Enzyme Activities in Chloroplast of Cucumber Seedlings Under Excess Manganese

    Institute of Scientific and Technical Information of China (English)

    FENG Jian-peng; SHI Qing-hua; WANG Xiu-feng

    2009-01-01

    Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem Ⅱ photochemical reactions (Fv/Fm) and the quantum yield of photosysytem Ⅱelectron transport(φPSⅡ),application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.

  12. [Changes in the biochemical composition, structure, and function of pea leaf chloroplasts in iron deficiency and root anoxia].

    Science.gov (United States)

    Ladygin, V G

    2004-01-01

    A combined effect of iron deficiency and root anoxia on the biochemical composition, function, and structure of pea leaf chloroplasts was studied. It was found that the chlorosis of apical leaves in response to iron deficiency was determined by the reduction of light-harvesting complexes I and II. Under root anoxia, complexes of the reaction centers of photosystems I and II degraded first. Weak activity was preserved even in yellow and white leaves under the effect of both factors. The ultrastructure of leaf chloroplasts gradually degraded. Initially, intergranal thylakoid sites were reduced, and the longitudinal orientation of grana was disturbed. However, yellow and white leaves still retained small thylakoids and grana. It is concluded that the degrading effects of iron deficiency and root anoxia on the complex composition and leaf chloroplast structure and function are additive because of their autonomous mechanisms. PMID:15553792

  13. The complete chloroplast genome sequence of the medicinal plant Glehnia littoralis F.Schmidt ex Miq. (Apiaceae).

    Science.gov (United States)

    Lee, Sang-Choon; Oh Lee, Hyun; Kim, Kyunghee; Kim, Soonok; Yang, Tae-Jin

    2016-09-01

    Glehnia littoralis F. Schmidt ex Miq is an oriental medicinal herb belonging to Apiaceae family, and its dried roots and rhizomes are known to show various pharmacological effects. The complete chlorplast genome of G. littoralis was generated by de novo assembly using whole genome sequencing data. The chloroplast genome of G. littoralis was 147 467 bp in length and divided into four distinct regions: large single copy region (93 493 bp), small single copy region (17 546 bp) and a pair of inverted repeat regions (18 214 bp). A total of 114 genes including 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes were predicted and accounted for 57.1% of the chloroplast genome. Phylogenetic analysis with the reported chloroplast genomes revealed that G. littoralis is an herbal species closely related to Ledebouriella seseloides, an herbal medicinal plant. PMID:26367483

  14. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  15. Product identification and adenylyl cyclase activity in chloroplasts of Nicotiana tabacum.

    Science.gov (United States)

    Witters, Erwin; Quanten, Lieve; Bloemen, Jo; Valcke, Roland; Van Onckelen, Harry

    2004-01-01

    In view of the ongoing debate on plant cyclic nucleotide metabolism, especially the functional presence of adenylyl cyclase, a novel detection method has been worked out to quantify the reaction product. Using uniformly labelled (15)N-ATP as a substrate for adenylyl cyclase, a qualitative and quantitative liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) method was developed to measure de novo formed (15)N-adenosine 3',5'-cyclic monophosphate. Adenylyl cyclase activity was observed in chloroplasts obtained from Nicotiana tabacum cv. Petit Havana and the kinetic parameters and influence of various metabolic effectors are discussed in their context.

  16. Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate

    OpenAIRE

    della-Cioppa, Guy; Kishore, Ganesh M.

    1988-01-01

    Import of the precursor to 5-enolpyruvylshikimate-3-phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of ≥10 μm and occurs only when pEPSPS is present as a ternary complex of enzyme–shikimate-3-phosphate–glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate-3-phosphate. Experiments with wild-type and glyph...

  17. Molecular analysis of the chloroplast Cu/Zn-SOD gene (AhCSD2) in peanut

    OpenAIRE

    State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; Qian Wan; Fengzhen Liu; Kun Zhang; Aiqing Sun; Bing Luo; Li Sun; Yongshan Wan

    2015-01-01

    Superoxide dismutase (SOD, EC 1.15.1.1) plays a key role in response to drought stress, and differences in SOD activity changes among cultivars are important under drought conditions. We obtained the full-length DNA of the chloroplast Cu/Zn-SOD gene (AhCSD2) from 11 allotetraploid cultivars and 5 diploid wild species in peanut. BLAST search against the peanut genome showed that the AhCSD2 genes gCSD2-1 and gCSD2-2 are located at the tops of chromosome A03 (A genome) and B03 (B genome), respec...

  18. Biosynthesis of α-Tocopherol and Plastoquinone-9 in spinach chloroplasts

    OpenAIRE

    Soll, Jürgen; Schultz, Gernot

    1980-01-01

    Prenylation and methylation reaction in al biosynthesis is localized in the envelope membranes of the chloroplasts, while PQ-9 biosynthesis takes place in the envelope membranes and also in the thylakoid membranes. The sequence in a-T biosynthesis in spinach is (see also Figure 1): Homogentisate + Phytyl-PP —> Me-6-PQH?—> 2,3-Me2PQH?—>γ J ->a T ; for the PQ-9 biosynthesis it is: Homogentisate + Solanesyf-PP4-> Me-6-SQH2—> PQH2.

  19. Light quality regulates expression of chloroplast genes and assembly of photosynthetic membrane complexes

    OpenAIRE

    Glick, Richard E.; McCauley, Steven W.; Gruissem, Wilhelm; Melis, Anastasios

    1986-01-01

    The concentrations of photosystem I (PSI) and photosystem II (PSII) reaction centers and the level of chloroplast reaction center gene transcripts were determined in pea plants grown under different light-quality regimes. In plants grown in light primarily absorbed by PSI (“red” light), the PSII/PSI reaction center ratio was 2-fold greater than that in plants grown in PSII-sensitizing (“yellow”) light. In addition, the ratio of a PSII gene (psbB) transcript to a PSI gene (psaA) transcript was...

  20. Structure of the c14 Rotor Ring of the Proton Translocating Chloroplast ATP Synthase*

    OpenAIRE

    Vollmar, Melanie; Schlieper, Daniel; Winn, Martyn; Büchner, Claudia; Groth, Georg

    2009-01-01

    The structure of the membrane integral rotor ring of the proton translocating F1F0 ATP synthase from spinach chloroplasts was determined to 3.8 Å resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c11 rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6–10.8 Å apar...

  1. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed.

  2. A novel phycocyanin-Chla/c2-protein complex isolated from chloroplasts of Chroomonas placoidea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nine pigment-protein complexes were separated and characterized from intact Chroomonasplacoidea chloroplasts by IEF. The bands Ⅰ-Ⅵ with their isoelectric points (pI) values from 4 to 6 were phycocyanin components; bands Ⅷ and Ⅸ (pI = 2.8-3.6)were chlorophyll-protein complexes. According to absorption and fluorescence spectra, band Ⅶ was designated as a novel phycocyanin-Chla/c2-protein complex (pI ≈ 3.4-3.7). These results indicated that phycocyanin is structurally and functionally coupled with chlorophyll-protein complex in C. placoidea, and probably interacted with electrostatic force in combination.

  3. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    Science.gov (United States)

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.

  4. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists.

    OpenAIRE

    Serlin, B S; Roux, S J

    1984-01-01

    The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on...

  5. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...... is well above that of the publicly available chloroplast localization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within +/-2 residues from...

  6. 植物叶绿体基因工程研究进展%Progress in chloroplast transformation in plants

    Institute of Scientific and Technical Information of China (English)

    程琳; 瞿波; 李和平; 廖玉才

    2011-01-01

    Chloroplast transformation in plants has many advantages over nuclear transformation.Proteins in chloroplasts can be expressed at high levels with proper folding and disulfide bonds as the cells of higher plants contain a large number of chloroplast genomes. Multiple genes can be co-expressed in chloroplast genomes. Furthermore, chloroplast genes are inherited in a strictly maternal fashion in most angiosperm plant species, and this minimizes the possibility of out-crossing transgenes to related weeds or species. In addition, gene silencing, position effects and random integration have not been reported in chloroplast transformation. Although chloroplast transformation is very attractive, this technology is not as widely used as nuclear transformation. It has been mostly focused on 16 plants species, especially tobacco in which many proteins has been expressed including vaccines and antibodies. In this review we briefly summarize the rationales, methodologies, applications, bottlenecks and prospects of this promising genetic engineering technology for chloroplasts.%植物叶绿体基因工程与细胞核基因工程相比,具有许多独特的优势,如能够实现外源基因特异整合及高效表达、多基因共表达、外源基因不会随花粉扩散、没有位置效应和基因沉默等.目前已在16种植物中成功获得叶绿体转基因植株,改良了植物的农艺性状,特别是在烟草叶绿体中高效表达了40多种外源蛋白,包括多种抗体和疫苗.尽管如此,这项技术目前尚未用于主要粮食作物的性状改良.本文综述了植物叶绿体基因工程的原理、技术、应用、难点及进展.

  7. Spatial location of photosystem pigment-protein complexes in thylakoid membranes of chloroplasts of Pisum sativum studied by chlorophyll fluorescence

    International Nuclear Information System (INIS)

    Ultrastructure of plant chloroplasts was studied by a single-molecule spectroscopy setup at a temperature of 77 K exploring spatial location of photosystems. Two chloroplast thylakoid membrane regions were visualized by fluorescence microscopy and detected at different wavelengths. The size of these regions and the spatial resolution of the microscope allowed us to measure their chlorophyll fluorescence emission spectra of these membrane domains. While the grana regions are characterized by a predominant presence of Photosystem II pigment-protein complexes emitting at 685 nm, Photosystem I complexes are localized in stroma regions and emit at 730 nm

  8. Sample Design.

    Science.gov (United States)

    Ross, Kenneth N.

    1987-01-01

    This article considers various kinds of probability and non-probability samples in both experimental and survey studies. Throughout, how a sample is chosen is stressed. Size alone is not the determining consideration in sample selection. Good samples do not occur by accident; they are the result of a careful design. (Author/JAZ)

  9. Balanced sampling

    NARCIS (Netherlands)

    Brus, D.J.

    2015-01-01

    In balanced sampling a linear relation between the soil property of interest and one or more covariates with known means is exploited in selecting the sampling locations. Recent developments make this sampling design attractive for statistical soil surveys. This paper introduces balanced sampling

  10. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae

    Directory of Open Access Journals (Sweden)

    Marco Ballardini

    2013-12-01

    Full Text Available The genus Phoenix (Arecaceae comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG(GCC-trnfM(CAU spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp comprising the mentioned minisatellite, and located between the psbZ and trnfM(CAU genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis, were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013. For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM(CAU region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.

  11. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption.

    Science.gov (United States)

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-01-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L(-1), and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton. PMID:26108166

  12. Chloroplast DNA Copy Number May Link to Sex Determination in Leucadendron (Proteaceae

    Directory of Open Access Journals (Sweden)

    MADE PHARMAWATI

    2009-03-01

    Full Text Available Leucadendron (Proteaceae is a South African genus, the flowers of which have become a popular item in the Australian cut-flower industry. All species are dioecious. In general the female flowers are the more desirable as cut flowers. The availability of a molecular marker linked to sex determination is therefore needed both to maximize the efficiency of breeding programs and to supply markets with flowers from the preferred sex. The polymerase chain reaction-based method of suppression subtractive hybridization (SSH combined with mirror orientation selection (MOS were applied in an attempt to identify genome differences between male and female plants of Leucadendron discolor. Screening of 416 clones from a male-subtracted genomic DNA library and 282 clones from a female-subtracted library identified 13 candidates for male-specific genomic fragments. Sequence analyses of the 13 candidate DNA fragments showed that they were fragments of the chloroplast DNA, raising the possibility that chloroplast DNA copy number is linked to sex determination in Leucadendron.

  13. 2012 MITOCHONDRIA AND CHLOROPLASTS GORDON RESEARCH CONFERENCE & GORDON RESEARCH SEMINAR, JULY 29 - AUGUST 3, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Alice

    2012-08-03

    The 2012 Gordon Research Conference on Mitochondria and Chloroplasts will assemble an international group of scientists investigating fundamental properties of these organelles, and their integration into broader physiological processes. The conference will emphasize the many commonalities between mitochondria and chloroplasts: their evolution from bacterial endosymbionts, their genomes and gene expression systems, their energy transducing membranes whose proteins derive from both nuclear and organellar genes, the challenge of maintaining organelle integrity in the presence of the reactive oxygen species that are generated during energy transduction, their incorporation into organismal signaling pathways, and more. The conference will bring together investigators working in animal, plant, fungal and protozoan systems who specialize in cell biology, genetics, biochemistry, physiology, proteomics, genomics, and structural biology. As such, this conference will provide a unique forum that engenders cross-disciplinary discussions concerning the biogenesis, dynamics, and regulation of these key cellular structures. By fostering interactions among mammalian, fungal and plant organellar biologists, this conference also provides a conduit for the transmission of mechanistic insights obtained in model organisms to applications in medicine and agriculture. The 2012 conference will highlight areas that are moving rapidly and emerging themes. These include new insights into the ultrastructure and organization of the energy transducing membranes, the coupling of organellar gene expression with the assembly of photosynthetic and respiratory complexes, the regulatory networks that couple organelle biogenesis with developmental and physiological signals, the signaling events through which organellar physiology influences nuclear gene expression, and the roles of organelles in disease and development.

  14. Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin.

    Science.gov (United States)

    Barrera, Daniel J; Rosenberg, Julian N; Chiu, Joanna G; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T; Shoemaker, Charles B; Oyler, George A; Mayfield, Stephen P

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VH H) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen-binding proteins and the heterodimer fusion protein containing two VH H domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin-producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism.

  15. Maize ZmFDR3 localized in chloroplasts is involved in iron transport

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Iron is an essential nutrient for plant metabolism such that Fe-limited plants display chlorosis and suffer from reduced photosynthetic efficiency. Differential display previously identified genes whose expression was elevated in Fe-deficient maize roots. Here,we describe the functional characterization of one of the genes identified in the screen,ZmFDR3 (Zea maize Fe-deficiency-related). Heterologous functional complementation assays using a yeast iron uptake mutant showed that ZmFDR3 functions in iron transport. ZmFDR3 contains a domain found in FliN-proteins of the type III secretion system and is predicted to localize to the thylakoid of plastids. Fluorescence immunocytochemistry showed that ZmFDR3 is localized in the plastids of roots,stems and leaves,with high expression found in guard cell chloroplasts. Transgenic tobacco expressing a 35S-ZmFDR3 construct contains elevated iron content,displays well arranged thylakoid membranes and has photosynthetic indices that are higher than those of the wild type. Together,these results suggest that ZmFDR3 functions in chloroplast iron transport.

  16. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  17. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons.

    Directory of Open Access Journals (Sweden)

    Nora Scarcelli

    Full Text Available Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC. Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon and non-coding regions (intron and intergenic spacer. They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC and 15 in the Inverted Repeat region (IR. Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae, Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae, Digitaria excilis and Pennisetum glaucum (Poaceae. The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR. We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies.

  18. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    Science.gov (United States)

    Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S; Bhattacharya, Debashish; Karol, Kenneth G; Fredericq, Suzanne; Zechman, Frederick W; Lopez-Bautista, Juan M

    2016-01-01

    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov. PMID:27157793

  19. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.

    Science.gov (United States)

    Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko

    2016-01-01

    The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900

  20. Development of Lipophilic Antioxidants and Chloroplasts during the Sprouting of Diverse Triticum spp.

    Science.gov (United States)

    Ziegler, Jochen U; Flockerzie, Miriam; Longin, C Friedrich H; Würschum, Tobias; Carle, Reinhold; Schweiggert, Ralf M

    2016-02-01

    The influence of sprouting times and illumination conditions on lipophilic antioxidants (carotenoids, tocochromanols, alkylresorcinols, and steryl ferulates), chlorophylls, and α-amylase activity was investigated using four varieties each of bread wheat (Triticum aestivum ssp. aestivum), spelt (T. aestivum ssp. spelta), durum (T. durum), emmer (T. dicoccum), and einkorn (T. monococcum). Carotenoid levels significantly increased during sprouting, particularly, under light exposure. In contrast, concentrations of other lipophilic antioxidants were affected to a lesser extent. Moreover, the quantitative development of lipophilic antioxidants was evidently determined by genotype. On the basis of the levels of carotenoids newly synthesized during sprouting, a chloroplast development index indicated that chloroplast ontogenesis during sprouting occurred at different species-dependent rates. Thermal degradation of carotenoids, tocochromanols, chlorophylls, and α-amylase activity was observed during the drying of sprouts at 40 and 90 °C, while alkylresorcinol and steryl ferulate levels remained unaffected. Wheat sprouts were shown to be potential functional ingredients to increase the nutritional value of cereal products. PMID:26752117

  1. Improvement of hydrogen production with expression of lba gene in chloroplast of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shuangxiu; Yan, Guangyu; Xu, Lili; Wang, Quanxi; Liu, Xiaolei [Department of Biology, college of life and environmental science, Shanghai Normal University, Guilin road 100, 200234, Shanghai City (China)

    2010-12-15

    An ORF cDNA fragment of one of leghemoglobin genes, lba was cloned from Glycine max and transferred into chloroplasts of Chlamydomonas reinhardtii. More rapidly O{sub 2} consumption, lower O{sub 2} content and higher H{sub 2} output were monitored in the transgenic algal cultures than those in WT cultures either in S-free or S-containing medium. Maximum expression of lba in the transgenic algae consisted with the time when minimal O{sub 2} contents and maximal H{sub 2} evolution occurred. The highest H{sub 2} production achieved in sulfur-free medium for both algal cultures. When restoring sulfate in the medium, H{sub 2} production in the transgenic algal cultures kept steadily around 130-145 {mu}l per bottle while that in WT cultures decreased gradually from 98 {mu}l per bottle at 12.5 {mu}M sulfate to 40 {mu}l per bottle at 100 {mu}M sulfate. The results indicated that heteroexpression of lehemoglaobin genes in chloroplasts of green algae improved H{sub 2} yield by decreasing O{sub 2} content in the medium. This protein had potential to be used in improvement of H{sub 2} production in green algae. (author)

  2. Formation of electrical field accompanying temperature jump in isolated spinach chloroplasts.

    Science.gov (United States)

    Shimizu, M; Nishimura, M

    1977-03-11

    Temperature-jump-induced absorbance changes of spinach chloroplasts in the dark were studied. After the temperature rise, a fast absorbance decrease and a succeeding slow absorbance increase were observed at the wavelength of 515 nm. The spectrum of the fast phase had positive maxima (increase in absorbance) at 430, 470 and 673 nm and a negative maxima (decrease in absorbance) at 525 nm. Permeant ions, tetraphenylboron-, tetraphenylarsonium+, and tetraphenylphosphonium+, decreased the extent of the fast absorbance change and increased the rate of slow recovery. Additions of inorganic potassium salts had a similar effect. Valinomycin, added in the presence of potassium ion, also increased the rate of slow recovery. These ions and ionophore had a parallel effect also on the recovery of flash-induced 515-nm absorbance change in chloroplasts. Electroneutral nigerericin did not affect the temperature-jump-induced absorbanc change. These results suggest the formation of electrical field across the thylakoid membrane in the dark accompanying the temperature rise. A possible involvement of the movement of water molecules (thermo-osmosis) in the observed absorbance changes is also discussed. PMID:849433

  3. NADPH Thioredoxin Reductase C Controls the Redox Status of Chloroplast 2-Cys Peroxiredoxins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Kerstin Kirchsteiger; Pablo Pulido; Maricruz Gonzalez; Francisco Javier Cejudo

    2009-01-01

    Chloroplast 2-Cys peroxiredoxins (2-Cys Prxs) are efficiently reduced by NADPH Thioredoxin reductase C (NTRC). To investigate the effect of light/darkness on NTRC function, the content of abundant plastidial enzymes, Rubisco, glutamine synthetase (GS), and 2-Cys Prxs was analyzed during two consecutive days in Arabidopsis wild-type and ntrc mutant plants. No significant difference of the content of these proteins was observed during the day or the night in wild-type and mutant plants. NTRC deficiency caused a lower content of fully reduced 2-Cys Prxs, which was undetectable in darkness, suggesting that NTRC is the most important pathway for 2-Cys Prx reduction, probably the only one during the night. Arabidopsis contains two plastidial 2-Cys Prxs, A and B, for which T-DNA insertion lines were characterized showing the same phenotype as wild-type plants. Two-dimensional gel analysis of leaf extracts from these mutants allowed the identification of basic and acidic isoforms of 2-Cys Prx A and B. In-vitro assays and mass spectrometry analysis showed that the acidic isoform of both proteins is produced by overoxidation of the peroxidatic Cys residue to sulfinic acid. 2-Cys Prx overoxidation was lower in the NTRC mutant. These results show the important function of NTRC to maintain the redox equilibrium of chloroplast 2-Cys Prxs.

  4. A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice.

    Science.gov (United States)

    Tamiru, Muluneh; Takagi, Hiroki; Abe, Akira; Yokota, Takao; Kanzaki, Hiroyuki; Okamoto, Haruko; Saitoh, Hiromasa; Takahashi, Hideyuki; Fujisaki, Koki; Oikawa, Kaori; Uemura, Aiko; Natsume, Satoshi; Jikumaru, Yusuke; Matsuura, Hideyuki; Umemura, Kenji; Terry, Matthew J; Terauchi, Ryohei

    2016-06-01

    Understanding how plants allocate their resources to growth or defence is of long-term importance to the development of new and improved varieties of different crops. Using molecular genetics, plant physiology, hormone analysis and Next-Generation Sequencing (NGS)-based transcript profiling, we have isolated and characterized the rice (Oryza sativa) LESION AND LAMINA BENDING (LLB) gene that encodes a chloroplast-targeted putative leucine carboxyl methyltransferase. Loss of LLB function results in reduced growth and yield, hypersensitive response (HR)-like lesions, accumulation of the antimicrobial compounds momilactones and phytocassanes, and constitutive expression of pathogenesis-related genes. Consistent with these defence-associated responses, llb shows enhanced resistance to rice blast (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae). The lesion and resistance phenotypes are likely to be caused by the over-accumulation of jasmonates (JAs) in the llb mutant including the JA precursor 12-oxo-phytodienoic acid. Additionally, llb shows an increased lamina inclination and enhanced early seedling growth due to elevated brassinosteroid (BR) synthesis and/or signalling. These findings show that LLB functions in the chloroplast to either directly or indirectly repress both JA- and BR-mediated responses, revealing a possible mechanism for controlling how plants allocate resources for defence and growth. PMID:26864209

  5. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents

    Science.gov (United States)

    Huppe, H. C.; Buchanan, B. B.

    1989-01-01

    A chloroplast type of fructose-1,6-bisphosphatase, a central regulatory enzyme of photosynthetic carbon metabolism, has been partially purified from Chlamydomonas reinhardtii. Unlike its counterpart from spinach chloroplasts, the algal FBPase showed a strict requirement for a dithiol reductant irrespective of Mg2+ concentration. The enzymes from the two sources resembled each other immunologically, in subunit molecular mass and response to pH. In the presence of dithiothreitol, the pH optimum for both the algal and spinach enzymes shifted from 8.5 to a more physiologic value of 8.0 as the Mg2+ concentration was increased from 1 to 16 mM. At 1 mM Mg2+, a concentration estimated to be close to physiological, the Chlamydomonas FBPase was active only in the presence of reduced thioredoxin and was most active with Chlamydomonas thioredoxin f. Under these conditions, the enzyme showed a pH optimum of 8.0. The data suggest that the Chlamydomonas enzyme resembles its spinach counterpart in most respects, but it has a stricter requirement for reduction and less strict reductant specificity. A comparison of the properties of the FBPases from Chlamydomonas and spinach will be helpful for elucidating the mechanism of the reductive activation of this enzyme.

  6. Nuclear-encoded Factors Associated with the Chloroplast Transcription Machinery of Higher Plants

    Directory of Open Access Journals (Sweden)

    Yu Qing-Bo

    2014-07-01

    Full Text Available Plastid transcription is crucial for plant growth and development. There exist two types of RNA polymerases in plastids: a nuclear-encoded RNA polymerase (NEP and plastid-encoded RNA polymerase (PEP. PEP is the major RNA polymerase activity in chloroplast. Its core subunits are encoded by the plastid genome, and these are embedded into a larger complex of nuclear-encoded subunits. Biochemical and genetics analysis identified at least twelve proteins are tightly associated with the core subunit, while about thirty-four further proteins are associated more loosely generating larger complexes such as the transcriptionally active chromosome or a part of the nucleoid. Domain analyses and functional investigations suggested that these nuclear-encoded factors may form several functional modules that mediate regulation of plastid gene expression by light, redox, phosphorylation, and heat stress. Genetic analyses also identified that some nuclear-encoded proteins in the chloroplast that are important for plastid gene expression, although a physical association with the transcriptional machinery is not observed. This covers several PPR proteins including CLB19, PDM1/SEL1, OTP70 and YS1 which are involved in the processing of transcripts for PEP core subunit as well as AtECB2, Prin2, SVR4-Like and NARA5 that are also important for plastid gene expression, although their functions are unclear.

  7. Development of Lipophilic Antioxidants and Chloroplasts during the Sprouting of Diverse Triticum spp.

    Science.gov (United States)

    Ziegler, Jochen U; Flockerzie, Miriam; Longin, C Friedrich H; Würschum, Tobias; Carle, Reinhold; Schweiggert, Ralf M

    2016-02-01

    The influence of sprouting times and illumination conditions on lipophilic antioxidants (carotenoids, tocochromanols, alkylresorcinols, and steryl ferulates), chlorophylls, and α-amylase activity was investigated using four varieties each of bread wheat (Triticum aestivum ssp. aestivum), spelt (T. aestivum ssp. spelta), durum (T. durum), emmer (T. dicoccum), and einkorn (T. monococcum). Carotenoid levels significantly increased during sprouting, particularly, under light exposure. In contrast, concentrations of other lipophilic antioxidants were affected to a lesser extent. Moreover, the quantitative development of lipophilic antioxidants was evidently determined by genotype. On the basis of the levels of carotenoids newly synthesized during sprouting, a chloroplast development index indicated that chloroplast ontogenesis during sprouting occurred at different species-dependent rates. Thermal degradation of carotenoids, tocochromanols, chlorophylls, and α-amylase activity was observed during the drying of sprouts at 40 and 90 °C, while alkylresorcinol and steryl ferulate levels remained unaffected. Wheat sprouts were shown to be potential functional ingredients to increase the nutritional value of cereal products.

  8. Maize ZmFDR3 localized in chloroplasts is involved in iron transport

    Institute of Scientific and Technical Information of China (English)

    HAN JianHui; SONG XiuFang; LI Peng; YANG HuiJun; YIN LiPing

    2009-01-01

    Iron is an essential nutrient for plant metabolism such that Fe-limited plants display chlorosis and suffer from reduced photosynthetic efficiency. Differential display previously identified genes whose expression was elevated in Fe-deficient maize roots. Here, we describe the functional characterization of one of the genes identified in the screen, ZmFDR3 (Zea maize Fe-deficiency-related). Heterologous functional complementation assays using a yeast iron uptake mutant showed that ZmFDR3 functions in iron transport. ZmFDR3 contains a domain found in FliN-proteins of the type Ⅲ secretion system and is predicted to localize to the thylakoid of plastids. Fluorescence immunocytochemistry showed that ZmFDR3 is localized in the plastids of roots, stems and leaves, with high expression found in guard cell chloroplasts. Transgenic tobacco expressing a 355-ZmFDR3 construct contains elevated iron content, displays well arranged thylakoid membranes and has photosynthetic indices that are higher than those of the wild type. Together, these results suggest that ZmFDR3 functions in chloroplast iron transport.

  9. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  10. The complete chloroplast genome sequence of Aster spathulifolius (Asteraceae); genomic features and relationship with Asteraceae.

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2015-11-10

    Aster spathulifolius, a member of the Asteraceae family, is distributed along the coast of Japan and Korea. This plant is used for medicinal and ornamental purposes. The complete chloroplast (cp) genome of A. sphathulifolius consists of 149,473 bp that include a pair of inverted repeats of 24,751 bp separated by a large single copy region of 81,998 bp and a small single copy region of 17,973 bp. The chloroplast genome contains 78 coding genes, four rRNA genes and 29 tRNA genes. When compared to other cpDNA sequences of Asteraceae, A. spathulifolius showed the closest relationship with Jacobaea vulgaris, and its atpB gene was found to be a pseudogene, unlike J. vulgaris. Furthermore, evaluation of the gene compositions of J. vulgaris, Helianthus annuus, Guizotia abyssinica and A. spathulifolius revealed that 13.6-kb showed inversion from ndhF to rps15, unlike Lactuca of Asteraceae. Comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates with J. vulgaris revealed that synonymous genes related to a small subunit of the ribosome showed the highest value (0.1558), while nonsynonymous rates of genes related to ATP synthase genes were highest (0.0118). These findings revealed that substitution has occurred at similar rates in most genes, and the substitution rates suggested that most genes is a purified selection. PMID:26164759

  11. Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases1[OPEN

    Science.gov (United States)

    Ivanova, Aneta; Millar, A. Harvey; Whelan, James

    2016-01-01

    Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control. PMID:27208304

  12. Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong LI; Jian-Wen SHAO; Chang LU; Xiao-Ping ZHANG; Ying-Xiong QIU

    2012-01-01

    Pteroceltis tatarinowii Maxim.(Ulmaceae),one of the most widespread temperate canopy trees in mainland China,is the sole representative of the genus Pteroceltis.To illuminate the biogeographic and demographic history of this temperate tree species,we carried out a survey of chloroplast DNA sequence variation (trnS-trnG and psbA-trnH) within and among 28 populations (284 individuals in total) representing most of the distributional range of the species.Based on a total of 13 haplotypes identified,P.tatarinowii was found to harbor surprisingly high levels ofhaplotype and nucleotide diversity (hT =0.71; πT =2.83 × 10-3),possibly associated with its long evolutionary history and wide-scale geographical distribution.Significant chloroplast DNA population subdivision was detected (GST =0.898; NST =0.938),suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (NST > GST,P < 0.05).The ancestral haplotypes show clear-cut geographical distribution,and most regions possess a unique set of haplotypes,suggesting multiple potential refugia of the species occurring in montane areas of South China.The haplotype mismatch distributions analysis indicates that populations from North China underwent a spatial northward expansion,which might reflect one of the repeated Pleistocene south-to-north shifts of temperate deciduous forest in North China following cold periods.

  13. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.

    Science.gov (United States)

    Nauš, Jan; Šmecko, Slavomír; Špundová, Martina

    2016-08-01

    In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods. PMID:27372712

  14. Exploring ligand recognition, selectivity and dynamics of TPR domains of chloroplast Toc64 and mitochondria Om64 from Arabidopsis thaliana.

    Science.gov (United States)

    Panigrahi, Rashmi; Whelan, James; Vrielink, Alice

    2014-06-01

    The study aims to gain insight into the mode of ligand recognition by tetratricopeptide repeat (TPR) domains of chloroplast translocon at the outer envelope of chloroplast (Toc64) and mitochondrial Om64, two paralogous proteins that mediate import of proteins into chloroplast and mitochondria, respectively. Chaperone proteins associate with precursor proteins in the cytosol to maintain them in a translocation competent conformation and are recognized by Toc64 and Om64 that are located on the outer membrane of the target organelle. Heat shock proteins (Hsp70) and Hsp90 are two chaperones, which are known to play import roles in protein import. The C-termini of these chaperones are known to interact with the TPR domain of chloroplast Toc64 and mitochondrial Om64 in Arabidopsis thaliana (At). Using a molecular dynamics approach and binding energy calculations, we identify important residues involved in the interactions. Our findings suggest that the TPR domain from AtToc64 has higher affinity towards C-terminal residues of Hsp70. The interaction occurs as the terminal helices move towards each other enclosing the cradle on interaction of AtHsp70 with the TPR domain. In contrast, the TPR domain from AtOm64 does not discriminate between the C-termini of Hsp70 and Hsp90. These binding affinities are discussed with respect to our knowledge of protein targeting and specificity of protein import into endosymbiotic organelles in plant cells.

  15. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Alberola

    Full Text Available Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.

  16. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    Science.gov (United States)

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  17. Translocation of the potato 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase into isolated spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M. (Purdue Univ., West Lafayette, IN (USA))

    1990-05-01

    A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised against the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.

  18. Cucumber, melon, pumpkin, and squash: are rules of editing in flowering plants chloroplast genes so well known indeed?

    Science.gov (United States)

    Guzowska-Nowowiejska, Magdalena; Fiedorowicz, Ewa; Plader, Wojciech

    2009-04-01

    The similarities and differences in the chloroplast genes editing patterns of four species from one family (and two genera), which is the first-ever attempt at comparison of such data in closely related species, is discussed. The effective use of the chloroplast genes editing patterns in evolutionary studies, especially in evaluating the kinship between closely related species, is thereby proved. The results indicate that differences in editing patterns between different genera (Cucumis and Cucurbita) exist, and some novel editing sites can be identified even now. However, surprising is the fact of finding editing in the codon for Arg (in flowering plants detected before only in Cuscuta reflexa chloroplast genome, Funk et al.,[Funk H.T., Berg S., Krupinska K., Maier U.G. and Krause K., 2007. Complete DNA sequences of the plastid genomes of two parasitic flowering plants species, Cuscuta reflexa and Cuscuta gronovi. BMC Plant Biol. 7:45, doi: 10.1186/1471-2229-7-45.]), which was believed to have been lost during evolution before the emergence of angiosperms. In addition, the existence of silent editing in plant chloroplasts has been confirmed, and some probable reasons for its presence are pointed out herein.

  19. Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    International Nuclear Information System (INIS)

    Highlights: ► Activity of certain Calvin cycle enzymes and CO2 assimilation are induced by BRs. ► BRs upregulate the activity of the ascorbate–glutathione cycle in the chloroplasts. ► BRs increase the chloroplast thiol reduction state. ► A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO2 assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate–glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate–glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO2 assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  20. A nuclear mutant of Chlamydomonas that exhibits increased sensitivity to UV irradiation, reduced recombination of nuclear genes, and altered transmission of chloroplast genes.

    Science.gov (United States)

    Rosen, H; Newman, S M; Boynton, J E; Gillham, N W

    1991-01-01

    Meiotic progeny of Chlamydomonas reinhardtii normally receive chloroplast genomes only from the mt+ parent. However, exceptional zygotes, which transmit the chloroplast genomes of both parents or, more rarely, only those of the mt- parent, arise at a low frequency. Mutations at the mt(+)-linked mat-3 locus were found previously to elevate the transmission of chloroplast genomes from the mt- parent, resulting in a much higher than normal frequency of exceptional zygotes. In this paper we demonstrate that an ultraviolet-sensitive nuclear mutation mapping at the uvsE1 locus, which is unlinked to mating type, also promotes chloroplast genome transmission from the mt- parent. This mutant, which was previously shown to reduce recombination of nuclear genes in meiosis, acts synergistically with the mat-3-3 mutation to produce an extremely high frequency of exceptional zygotes. Through the use of restriction fragment length polymorphisms existing in the chloroplast genomes of C. reinhardtii and the interfertile strain C. smithii, we show that chloroplast DNA fragments from the mt- parent normally begin to disappear shortly after zygote formation. However, this process appears to be blocked totally in the absence of wild-type uvsE1 and mat-3 gene products. Our findings are consistent with the hypothesis that both gene products contribute to the mechanism responsible for uniparental inheritance of the chloroplast genome from the mt+ parent.

  1. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  2. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  3. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    Science.gov (United States)

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  4. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  5. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chao eLiang

    2015-10-01

    Full Text Available Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2 is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE of AtPAP2 in Arabidopsis thaliana accelerates plant growth and promotes flowering, seed yield and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome and metabolome profiles of the high ATP transgenic line were examined and compared with those of wild-type plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. Overexpression of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data

  6. Traceability of Plant Diet Contents in Raw Cow Milk Samples

    Directory of Open Access Journals (Sweden)

    Diego Breviario

    2009-12-01

    Full Text Available The use of molecular marker in the dairy sector is gaining large acceptance as a reliable diagnostic approach for food authenticity and traceability. Using a PCR approach, the rbcL marker, a chloroplast-based gene, was selected to amplify plant DNA fragments in raw cow milk samples collected from stock farms or bought on the Italian market. rbcL-specific DNA fragments could be found in total milk, as well as in the skimmed and the cream fractions. When the PCR amplified fragments were sent to sequence, the nucleotide composition of the chromatogram reflected the multiple contents of the polyphytic diet.

  7. Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA.

    OpenAIRE

    Montandon, P E; Stutz, E

    1983-01-01

    We characterize a 1.95 kb transcription product of the Euglena gracilis chloroplast DNA fragment Eco-N + Q by S1 nuclease analysis and DNA sequencing and show that it is the product of three splicing events. Exon 1 (0.45 kb), exon 2 (0.74 kb) and 175 nucleotides of exon 3 (0.53 kb) code for the chloroplast elongation factor protein (EF-Tu). The remaining part of exon 3 and exon 4 (0.23 kb) have unidentified open reading frames. The chloroplast EF-Tu protein has 408 aminoacids and is to 70% ho...

  8. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  9. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts.

    Science.gov (United States)

    Kumar, Shashi; Hahn, Frederick M; Baidoo, Edward; Kahlon, Talwinder S; Wood, Delilah F; McMahan, Colleen M; Cornish, Katrina; Keasling, Jay D; Daniell, Henry; Whalen, Maureen C

    2012-01-01

    Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.

  10. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  11. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein

    International Nuclear Information System (INIS)

    The 32-kDa herbicide-binding protein, a component of photosystem II, is synthesized as a membrane-associated 33.5-kDa precursor within the chloroplast. We show that membrane attachment of the precursor and processing to the 32-kDa form occur in the unstacked stromal lamellae. Once processed, the 32-kDa protein translocates, within the thylakoids, to the topologically distinct stacked granal lamellae. Posttranslational palmitoylation of the processed 32-kDa protein is also shown to occur. This modification takes place in a membrane-protected domain and is mainly confined to the protein assembled in the granal lamellae, where functional photosystem II centers are concentrated

  12. UVI31+ is a DNA endonuclease that dynamically localizes to chloroplast pyrenoids in C. reinhardtii.

    Directory of Open Access Journals (Sweden)

    Manish Shukla

    Full Text Available UVI31+ is an evolutionarily conserved BolA family protein. In this study we examine the presence, localization and possible functions of this protein in the context of a unicellular alga, Chlamydomonas reinhardtii. UVI31+ in C. reinhardtii exhibits DNA endonuclease activity and is induced upon UV stress. Further, UVI31+ that normally localizes to the cell wall and pyrenoid regions gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV stress. The observed induction upon UV-stress as well as the endonuclease activity suggests plausible role of this protein in DNA repair. We have also observed that UV31+ is induced in C. reinhardtii grown in dark conditions, whereby the protein localization is enhanced in the pyrenoid. Biomolecular interaction between the purified pyrenoids and UVI31+ studied by NMR demonstrates the involvement of the disordered loop domain of the protein in its interaction.

  13. Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns.

    Science.gov (United States)

    Zhong, Bojian; Fong, Richard; Collins, Lesley J; McLenachan, Patricia A; Penny, David

    2014-04-30

    We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a "fern ally" (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations. This effect will be especially strong in organisms that have large numbers of cell divisions between generations. This shows the necessity of going beyond phylogeny and integrating its study with other properties of organisms.

  14. Genesis of grana and stroma thylakoids in leaf chloroplasts of four orchid species

    Directory of Open Access Journals (Sweden)

    Barbara Damasz

    2014-02-01

    Full Text Available In the chloroplasts of orchid leaves (Paphiopedilum mastersianum Pfitz., Stanhopea tigrina Batem., Coelogyne cristata LDL and Cymbidium insigne Rolfe grana stacks differentiate on the base of primary thylakoids. This process occurs by stratification due to overlapping of thylakoids, by their bending and by invagination of the membrane into the thylakoid. There also may form two membranes ending blindly at both ends, called "central contact zone" ("Kontaktzone" in the interior of the mother thylakoid. Thylakoid multiplication in the grana shacks takes place by the same processes; and also by the "overgrowth" of thylakoids over the stroma localized between the closely overlaid grana. The increase in the number of stroma thylakoids usually occurs by fusion of the flattend vesicles lying in rows in the stroma or by elongation of the grana thylakoids.

  15. The complete chloroplast genome of Cupressus gigantea, an endemic conifer species to Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Li, Huie; Guo, Qiqiang; Zheng, Weilie

    2016-09-01

    The complete chloroplast genome of the wild Cupressus gigantea (Cupressaceae) is determined in this study. The circular genome is 128 244 bp in length with 115 single copy genes and two duplicated genes (trnI-CAU and trnQ-UUG). This genome contains 82 protein-coding genes, four ribosomal RNA genes and 31 transfer RNA genes. In these genes, eight genes (atpF, rpoC1, ndhA, ndhB, petB, petD, rpl16 and rpl2) harbor a single intron and two genes (rps12 and ycf3) harbor two introns. This genome does not contain canonical IRs, and the overall GC content is 34.7%. A maximum parsimony phylogenetic analysis revealed that C. gigantea and C. sempervirens are more closely related. PMID:26359779

  16. The nucleotide sequences of the initiator transfer RNAs from bean cytoplasm and chloroplasts.

    OpenAIRE

    Canaday, J; Guillemaut, P; Weil, J H

    1980-01-01

    The initiator tRNAsMet from the cytoplasm and chloroplasts of Phaseolus vulgaris have been purified and sequenced. The sequence of bean cytoplasmic initiator tRNAiMet is : pA-U-C-A-G-A-G-U-m1G-m2G-C-G-C-A-G-C-G-G-A-A-G-C-G-U-m2G-G-U-G-G-G2-C-C-C-A-U-t6A-A-C-C-C-A-C-A-G-m7G-D-m5C-C-C-A-G-G-A-psi-C-G-m1A-A-A-C-C-U-Gm-G-C-U-C-U-G-A-U-A-C-C-AOH. The sequence of bean cytoplasmic tRNAiMet is almost identical to that of wheat germ and shows a high degree of homology with other cytoplasmic initiator ...

  17. Identification and Analysis of the Chloroplast rpoC1 Gene Differentially Expressed in Wild Ginseng

    Directory of Open Access Journals (Sweden)

    Lee Kwang-Ho

    2012-06-01

    Full Text Available Panax ginseng is a well-known herbal medicine in traditional Asian medicine, and wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention. However, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Thus, to identify and analyze those differences, we used suppressive subtraction hybridization (SSH sequences with microarrays, realtime polymerase chain reaction (PCR, and reverse transcription PCRs (RT-PCRs. One of the clones isolated in this research was the chloroplast rpoC1 gene, a β subunit of RNA polymerase. Real-time RT-PCR results showed that the expression of the rpoC1 gene was significantly upregulated in wild ginseng as compared to cultivated ginseng, so, we conclude that the rpoC1 gene may be one of the important markers of wild ginseng.

  18. [Analysis of chloroplast rpS16 intron sequences in Lemnaceae].

    Science.gov (United States)

    Martirosian, E V; Ryzhova, N N; Kochieva, E Z; Skriabin, K G

    2009-01-01

    Chloroplast rpS16 gene intron sequences were determined and characterized for twenty-five Lemnaceae accessions representing nine duckweed species. For each Lemnaceae species nucleotide substitutions and for Lemna minor, Lemna aequinoctialis, Wolffia arrhiza different indels were detected. Most of indels were found for Wolffia arrhiza and Lemna aequinoctialis. The analyses of intraspecific polymorphism resulted in identification of several gaplotypes in L. gibba and L. trisulca. Lemnaceae phylogenetic relationship based on rpS16 intron variability data has revealed significant differences between L. aequinoctialis and other Lemna species. Genetic distance values corroborated competence of Landoltia punctata separations from Spirodela into an independent generic taxon. The acceptability of rpS16 intron sequences for phylogenetic studies in Lemnaceae was shown. PMID:19334524

  19. The nucleotide sequence of 4.5S ribosomal RNA from tobacco chloroplasts.

    OpenAIRE

    Takaiwa, F; Sugiura, M

    1980-01-01

    The nucleotide sequence of tobacco chloroplast 4.5S ribosomal RNA has been determined to be: OHG-A-A-G-G-U-C-A-C-G-G-C-G-A-G-A-C-G-A-G-C-C-G-U-U-U-A-U-C-A-U-U-A-C-G-A-U-A-G-G-U-G-U-C-A-A-G-U-G-G-A-A-G-U-G-C-A-G-U-G-A-U-G-U-A-U-G-C-(G-A)-C-U-G-A-G-G-C-A-U-C-C-U-A-A-C-A-G-A-C-C-G-G-U-A-G-A-C-U-U-G-A-A-COH. The 4.5S RNA is 103 nucleotides long and its 5'-terminus is not phosphorylated.

  20. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  1. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L..

    Directory of Open Access Journals (Sweden)

    Meng Yang

    Full Text Available BACKGROUND: Date palm (Phoenix dactylifera L., a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp and small single-copy (SSC, 17,712 bp regions separated by a pair of inverted repeats (IRs, 27,276 bp. Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS: Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.

  2. Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis.

    Science.gov (United States)

    Fettke, Joerg; Malinova, Irina; Albrecht, Tanja; Hejazi, Mahdi; Steup, Martin

    2011-04-01

    Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.

  3. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    Science.gov (United States)

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  4. Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L.

    Science.gov (United States)

    Zhang, Ying; Zhang, Hui; Sun, Xin; Wang, Lei; Du, Na; Tao, Yue; Sun, Guoqiang; Erinle, Kehinde O; Wang, Pengjie; Zhou, Changjian; Duan, Shuwei

    2016-01-01

    Pollution of agricultural soils caused by widely employed plastic products, such as phthalic acid esters (PAEs), are becoming widespread in China, and they have become a threat to human health and the environment. However, little information is available on the influence of PAEs on vegetable crops. In this study, effects of different dimethyl phthalate (DMP) treatments (0, 30, 50, 100, and 200 mg L(-1)) on seed germination and growth of cucumber seedlings were investigated. Although germination rate showed no significant difference compared to control, seed germination time was significantly delayed at DMP greater than 50 mg L(-1). Concentrations of DMP greater than 30 mg L(-1) reduced cucumber lateral root length and number. The measurement of five physiological indexes in cucumber leaves with increasing DMP concentration revealed a decrease in leaf chlorophyll content, while proline and H2O2 contents increased. Peroxidase (POD) and catalase (CAT) activities increased in cucumber plants under 30 and 50 mg L(-1) DMP treatments compared to control; while after a 7-day treatment, these activities were seriously reduced under 100 and 200 mg L(-1) DMP treatments. According to transmission electron microscopy (TEM) micrographic images, the control and 30 mg L(-1) DMP treatments caused no change to leaf chloroplast shape with well-structured thylakoid membrane and parallel pattern of lamellae. At concentrations higher than 30 mg L(-1), DMP altered the ultrastructure of chloroplast, damaged membrane structure, disordered the lamellae, and increased the number and volume of starch grains. Moreover, the envelope of starch grains began to degrade under 200 mg L(-1) DMP treatment. PMID:26631021

  5. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.

    Science.gov (United States)

    Picault, N; Cazalé, A C; Beyly, A; Cuiné, S; Carrier, P; Luu, D T; Forestier, C; Peltier, G

    2006-11-01

    The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.

  6. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.

    Science.gov (United States)

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T; Lorenzo, Oscar; Revuelta, José L; McCabe, Paul F; Arellano, Juan B

    2014-07-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.

  7. Nelumbonaceae: Systematic position and species diversification revealed by the complete chloroplast genome

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua XUE; Wen-Pan DONG; Tao CHENG; Shi-Liang ZHOU

    2012-01-01

    Nelumbonaceae is a morphologically unique family of angiosperms and was traditionally placed in Nymphaeales; more recently,it was placed in Proteales based on molecular data,or in an order of its own,Nelumbonales.To determine the systematic position of the family and to date the divergence time of the family and the divergence time of its two intercontinentally disjunct species,we sequenced the entire chloroplast genome of Nelumbo lutea and most of the chloroplast genes of N.nucifera.We carried out phylogenetic and molecular dating analyses of the two species and representatives of 47 other plant families,representing the major lineages of angiosperms,using 83 plastid genes.The N.lutea genome was 163 510 bp long,with a total of 130 coding genes and an overall GC content of 38%.No significant structural differences among the genomes of N.lutea,Nymphaea alba,and Platanus occidentalis were observed.The phylogenetic relationships based on the 83 plastid genes revealed a close relationship between Nelumbonaceae and Platanaceae.The divergence times were estimated to be 109 Ma between the two families and 1.5 Ma between the two Nelumbo species.The estimated time was only slightly longer than the age of known Nelumbo fossils,suggesting morphological stasis within Nelumbonaceae.We conclude that Nelumbonaceae holds a position in or close to Proteales.We further conclude that the two species of Nelumbo diverged recently from a common ancestor and do not represent ancient relicts on different continents.

  8. Language sampling

    DEFF Research Database (Denmark)

    Rijkhoff, Jan; Bakker, Dik

    1998-01-01

    This article has two aims: [1] to present a revised version of the sampling method that was originally proposed in 1993 by Rijkhoff, Bakker, Hengeveld and Kahrel, and [2] to discuss a number of other approaches to language sampling in the light of our own method. We will also demonstrate how our...

  9. Sampling Development

    Science.gov (United States)

    Adolph, Karen E.; Robinson, Scott R.

    2011-01-01

    Research in developmental psychology requires sampling at different time points. Accurate depictions of developmental change provide a foundation for further empirical studies and theories about developmental mechanisms. However, overreliance on widely spaced sampling intervals in cross-sectional and longitudinal designs threatens the validity of…

  10. The Chloroplast Import Receptor Toc90 Partially Restores the Accumulation of Toc159 Client Proteins in the Arabidopsis thaliana ppi2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Sibylle Infanger; Sylvain Bischof; Andreas Hiltbrunner; Birgit Agne; Sacha Baginsky; Felix Kessler

    2011-01-01

    Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana,precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied,but the function of Toc90 still remains unclear. Here,we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.

  11. Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination.

    Science.gov (United States)

    Naydov, I A; Mubarakshina, M M; Ivanov, B N

    2012-02-01

    The dye H(2)DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H(2)O(2), was used to study light-induced H(2)O(2) production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H(2)O(2) production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H(2)O(2) export from chloroplasts to

  12. SUPPRESSOR OF VARIEGATION4,a New var2 Suppressor Locus,Encodes a Pioneer Protein that Is Required for Chloroplast Biogenesis

    Institute of Scientific and Technical Information of China (English)

    Fei Yu; Gordon R.Gray; Steven R.Rodermel; Sung-Soon Park; Xiayan Liu; Andrew Foudree; Aigen Fu; Marta Powikrowska; Anastassia Khrouchtchova; Poul Erik Jensen; Jillian N.Kriger

    2011-01-01

    VAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) that contain white sectors with abnormal plastids and green sectors with normal-appearing chloroplasts. In a continuing effort to isolate second-site suppressors of var2 variegation,we characterize in this report ems2505,a suppressor strain that has a vi-rescent phenotype due to a missense mutation in At4g28590,the gene for a pioneer protein. We designated this gene SVR4 (for SUPPRESSOR OF VARIEGATI0N4) and the mutant allele in ems2505 as svr4-1. We demonstrate that SVR4 is located in chloroplasts and that svr4-1 single mutants are normal with respect to chloroplast anatomy and thylakoid membrane protein accumulation. However,they are modestly impaired in several aspects of photochemistry and have enhanced non-photochemical quenching (NPQ) capacity. A T-DNA insertion allele of SVR4,svr4-2,is seedling-lethal due to an early blockage of chloroplast development. We conclude that SVR4 is essential for chloroplast biogenesis,and hypothesize that SVR4 mediates some aspect of thylakoid structure or function that controls NPQ. We propose that in the suppressor strain,photoinhibitory pressure caused by a lack of VAR2 is ameliorated early in chloroplast development by enhanced NPQ capacity caused by reduced SVR4 activity. This would result in an increase in the number of chloroplasts that are able to surmount a threshold necessary to avoid photo-damage and thereby develop into functional chloroplasts.

  13. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts

    OpenAIRE

    Pfalz, Jeannette; Bayraktar, Omer Ali; Prikryl, Jana; Barkan, Alice

    2009-01-01

    Chloroplast mRNA populations are characterized by overlapping transcripts derived by processing from polycistronic precursors. The mechanisms and functional significance of these processing events are poorly understood. We describe a pentatricopeptide repeat (PPR) protein, PPR10, whose binding defines mRNA segments derived from two transcription units in maize chloroplasts. PPR10 interacts in vivo and in vitro with two intergenic RNA regions of similar sequence. The processed 5′ and 3′ RNA te...

  14. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide

    OpenAIRE

    Boyhan, Diane; Daniell, Henry

    2010-01-01

    Current treatment for type I diabetes includes delivery of insulin via injection or pump, which is highly invasive and expensive. The production of chloroplast-derived proinsulin should reduce cost and facilitate oral delivery. Therefore, tobacco and lettuce chloroplasts were transformed with the cholera toxin B subunit fused with human proinsulin (A, B, C peptides) containing three furin cleavage sites (CTB-PFx3). Transplastomic lines were confirmed for site-specific integration of transgene...

  15. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz.

    Science.gov (United States)

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the "basal" position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research. PMID:27399686

  16. 中国野生葡萄叶绿体分离及叶绿体DNA 提取的研究%An Optimized Chloroplast Isolation and Chloroplast DNA Extraction Protocol for Chinese Wild Grapes

    Institute of Scientific and Technical Information of China (English)

    谢海坤; 焦健; 樊秀彩; 张颖; 姜建福; 孙海生; 刘崇怀

    2016-01-01

    Mature leaves collected from Vitis davidii ,V .amurensis ,V .heyneana and V .chunganensis were used for chloroplast isolation and cpDNA extraction in this study .The two methods were the column plant chloroplast DNAout and modified high-salt low-pH method ,and the results were compared with each other .(1) Both methods had separated the chloroplast of Chinese wild grapes ,but the modified high-salt low-pH method obtained higher concentration and less impurity of chloroplast than that of column plant chloroplast DNAout .So the modified high-salt low-pH method was more suitable for chloroplast isolation . (2) The value of OD260/OD280 of cpDNA extracted by the column plant chloroplast DNAout was between 1 .28 and 1 .36 ,and the concentration was between 4 .2 ng・μL -1 and 7 .8 ng・μL -1 ,which did not meet the demand of subsequent chloroplast genome sequencing .In contrast ,the value of OD260/OD280 of cpDNA extracted by the modified high-salt low-pH method was between 1 .84 and 1 .90 and the concentration was between 2 514 .4 ng ・ μL -1 and 4 133 .7 ng・ μL -1 ,so the cpDNA extracted in this way was extremely high-quality and pure .As a result ,the cpDNA extracted by the modified high-salt low-pH method meet the demand of subsequent chloroplast genome sequencing .As a conclusion ,the modified high-salt low-pH method isolated intact chloroplast and extract high-quality cpDNA of Chinese wild grapes simply and quickly .And the cpDNA meet the demand of subsequent chloroplast genome sequencing .It was also a critical step to make further research of chloroplast genomes of V itis L .%以中国野生刺葡萄、山葡萄、桑叶葡萄和东南葡萄的成熟叶片为材料,比较柱式植物叶绿体DNAout试剂盒和改良的高盐-低pH法分离叶绿体及提取cpDNA效果。结果显示:(1)2种方法均分离得到了中国野生葡萄的叶绿体,但与柱式植物叶绿体DNAout试剂盒相比,改良的高盐-低pH法得到的叶绿体浓度高

  17. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives.

    Science.gov (United States)

    Welch, Andreanna J; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I; Schuster, Stephan C; Lindqvist, Charlotte

    2016-06-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material. PMID:27077093

  18. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives

    Science.gov (United States)

    Welch, Andreanna J.; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I.; Schuster, Stephan C.; Lindqvist, Charlotte

    2016-01-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, “The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)” [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material. PMID:27077093

  19. The complete chloroplast genome sequence of Citrus sinensis (L. Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Jansen Robert K

    2006-09-01

    Full Text Available Abstract Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs. Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP and maximum likelihood (ML methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and

  20. Complete chloroplast genome sequence of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis.

    Science.gov (United States)

    Wang, Shuo; Gao, Li-Zhi

    2016-09-01

    The complete chloroplast genome of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis, is first reported in this study. The genome harbors a large single copy (LSC) region of 81 016 bp and a small single copy (SSC) region of 12 456  bp separated by a pair of inverted repeat (IRa and IRb) regions of 22 315 bp. GC content is 38.92%. The proportion of coding sequence is 57.97%, comprising of 111 (19 duplicated in IR regions) unique genes, 71 of which are protein-coding genes, four are rRNA genes, and 36 are tRNA genes. Phylogenetic analysis indicated that S. viridis was clustered with its cultivated species S. italica in the tribe Paniceae of the family Poaceae. This newly determined chloroplast genome will provide valuable genetic resources to assist future studies on C4 photosynthesis in grasses. PMID:26305916