WorldWideScience

Sample records for chlorophenols

  1. Enzymatically mediated incorporation of 2-chlorophenol 4-chlorophenol into humic acids

    DEFF Research Database (Denmark)

    Lassen, P.; Randall, A.; Jørgensen, O.;

    1994-01-01

    A possible route to chlorinated humic substances in the environment, is an indirect chlorination of humic material by enzymatically mediated incorporation of low molecular weight organo-chlorine compounds into the humic skeleton. The enzymatically mediated incorporation of 2-chlorophenol and 4-ch......-chlorophenol into humic acids by Horseradish Peroxidase is reported. The incorporation is accompanied by a significant polymerization of the chlorophenols. The stability of the chlorinated humic acids as well as the environmental implication are discussed....

  2. Enhancement of 4-chlorophenol biodegradation using glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tarighian, Alireza; Hill, Gordon; Headley, John [Division of Environmental Engineering, University of Saskatchewan, 105 Maintenance Road, S7N 5C5, Saskatoon, SK (Canada); Pedras, Soledad [Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9, Saskatoon, SK (Canada)

    2003-03-01

    Toxic, xenobiotic chemicals present challenging problems for the environment since they are normally resistant to biodegradation. Sometimes it is possible to induce biodegradation activity by the use of growth cosubstrates. In this study, pure solutions and binary mixtures of glucose, phenol and 4-chlorophenol have been metabolized in batch cultures by a pure strain of Pseudomonas putida. Following a lag period during which slow growth and low production of biomass occurred, phenol was metabolized according to the Monod model. Glucose was also metabolized according to the Monod model but exponential growth commenced immediately after inoculation with no noticeable lag phase. Biokinetic behavior for growth on a mixture of phenol and glucose paralleled the behavior on individual substrates with simultaneous consumption of both substrates. 4-chlorophenol was not consumed as a sole substrate by Pseudomonas putida but was consumed as a cometabolite with either glucose or phenol acting as the primary growth cosubstrate. Surprisingly, glucose was found to be the superior growth cosubstrate, suggesting that inexpensive sugars can be used to enhance the biodegradation of chlorophenol-contaminated sites. Glucose and the excreted metabolic products of the biodegradation process, including a bright yellow pigment, demonstrated negligible toxicity towards Artemia salina, unlike the phenol and 4-chlorophenol substrates. (orig.)

  3. Catalytic wet Air Oxidation of o-Chlorophenol in Wastewater

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翬

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatment of o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence of catalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removed by wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperature of 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited high catalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCr was removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had better catalytic activity for the degradation of o-chlorophenol in wastewater.

  4. Sorption of chlorophenols onto fruit cuticles and potato periderm

    Institute of Scientific and Technical Information of China (English)

    Yungui Li; Yingqing Deng; Baoliang Chen

    2012-01-01

    To better understand the interaction mechanisms of plant surfaces with polar organic compounds,sorption of 4-chlorophenol,2,4-dichlorophenol,and 2,4,6-trichlorophenol by fruit cuticles (i.e.,tomato,apple,and pepper),and potato tuber periderm were investigated.The roles of cuticular components (waxes,cutin,cutan and sugar) on sorption of chlorophenols are quantitatively compared.Cutin and waxes govern the sorption capacity of bulk apple cuticle by hydrophobic interactions.Potato periderm with highest sugar content exhibits the lowest sorption capability for the chlorophenols.With the increase of hydrophobicity (i.e.,Kow ) of sorbate,the relative contribution of lipophilic components (wax,cutin and cutan) on total sorption increases,however,the ratios of Koc to Kow decreases due to increasing ionization degree of sorbates.

  5. The mechanism and pathway of the ozonation of 4-chlorophenol in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    PI; Yunzheng

    2006-01-01

    The removal efficiency of 4-chlorophenol by ozonation was studied, and the reaction mechanism and characteristic of ozonation of 4-chlorophenol were investigated. Ozone and hydroxyl radicals are two strong oxidants during the process of ozonation. The experimental results showed that when there was no scavenger to inhibit OH· radicals, an intermediate product, hydrogen peroxide was formed during the ozonation of 4-chlorophenol. Hydrogen peroxide reacted with ozone at neutral pH and produced hydroxyl radicals. Ozone at the dosage of 113 mg/L could remove 20 mg/L4-chlorophenol and 39% TOC. With the complete inhibition of hydroxyl radicals, molecular ozone could effectively destroy 4-chlorophenol to form 4-quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 4-chlorophenol by ozone and O3/OH· were proposed in this study. Ozonation is an effective method for reducing 4-chlorophenol,and has potential to practical application.

  6. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution.

    Science.gov (United States)

    Zhu, Jie; Chen, Ye-Fei; Dong, Wen-Bo; Pan, Xun-Xi; Hou, Hui-Qi

    2003-01-01

    The reaction mechanism of 3-chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3-chlorophenol aqueous solutions have been saturated with air or N2 previously. Under alkaline condition, the reaction of OH radical with 3-chlorophenol produces 3-chlorinated phenoxyl radical, with the absorption peaks at 400 nm and 417 nm. Under neutral condition, the reaction of OH radical with 3-chlorophenol produces OH-adduct with the maximal absorption at about 340 nm. And in acid solution, the reaction of H with 3-chlorophenol produces H-adduct with the maximal absorption at about 320 nm. 3-chlorophenol is compared with 4-and 2-chlorophenols from the free radical pathways. The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.

  7. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The reaction mechanism of 3-chlorophenol with OH, H inaqueous solution was studied by transient technology. The3-chlorophenol aqueous solutions have been saturated with air or N2previously. Under alkaline condition, the reaction of OH radicalwith 3-chlorophenol produces 3-chlorinated phenoxyl radical, withthe absorption peaks at 400 nm and 417 nm. Under neutral condition,the reaction of OH radical with 3-chlorophenol produces OH-adductwith the maximal absorption at about 340 nm. And in acid solution,the reaction of H with 3-chlorophenol produces H-adduct with themaximal absorption at about 320 nm. 3-chlorophenol is compared with4- and 2-chlorophenols from the free radical pathways. The resultsshow that the positions of chlorine on the aromatic ring stronglyinfluence the dehalogenation and degradation process.

  8. 2-chlorophenol oxidation kinetic by photo-assisted Fenton process

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Experimental data are presented to test and validate a kinetic model for the oxidation of 2-chlorophenol wastewater by photo-assistedFenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2-chlorophenol was removedafter 90-minute reaction time with H2 O2 of 25 % CODcr in while in UV/H2 O2 system only 16.8% 2-chlorophenol was removed after one hourtreatment. The optimal pH in this reaction occurred between pH 3.0 and pH 4.0. The reaction kinetics for photo-assisted Fenton processexperimented in this research was investigated. Kinetic models were proposed for the treatment of 2-chlorophenol wastewater. The reaction wasfound to follow the 2nd order. The equations of reaction kinetics are as follows: - dt/d[RH]= KRH [ RH] [ H2O2 ]0exp(-KH2O2t); -dt/d[CODcr]= KCODCr[CODCr][ H2O2 ]0exp( - K't). The prediction of the models was found to be in a good agreement with experimentalresults, thus confirming the proposed reaction mechanism.

  9. Methanization of 2 chlorophenol (2CP) in presence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, L. M.; Cuervo-Lopez, F. M.; Ramirez, F.

    2009-07-01

    Chlorophenols, very toxic organic compounds, are widely distributed in soils and water. These substances are related to cellular damage as they have mutagenic and carcinogenic characteristics. Aromatic compounds have been eliminated from wastewater under methanogenic conditions; however, in most of the cases the elimination rates are low and some toxic intermediates might be accumulated. (Author)

  10. Optimization of Fenton pretreatment for 2-chlorophenol solution

    Institute of Scientific and Technical Information of China (English)

    贺仲兵; 刘云国; 肖玉

    2013-01-01

    Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.

  11. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  12. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated.Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  13. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  14. QSBR Study on the Anaerobic Biodegradation of Chlorophenols

    Institute of Scientific and Technical Information of China (English)

    YANG Da-Sen; DAI You-Zhi; LI Jian-Hua; ZHU Fei

    2006-01-01

    18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE), while decrease with the increase of molecular connectivity index (1XV), relative molecular mass (Mw) and electronic energy (EE).

  15. In vitro and in silico investigations of the binding interactions between chlorophenols and trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Qing, E-mail: wyqing76@126.com [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province (China); Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Tan, Chun-Yun [Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Zhuang, Shu-Lin [Institute of Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058 (China); Zhai, Peng-Zhan; Cui, Yun; Zhou, Qiu-Hua; Zhang, Hong-Mei [Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Fei, Zhenghao [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province (China); Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China)

    2014-08-15

    Graphical abstract: - Highlights: • Binding interactions of five chlorophenols with trypsin were investigated. • The number of chlorine atoms of chlorophenols partly affected the binding ability of them to trypsin. • Noncovalent interactions stabilized the trypsin–chlorophenols complexes. • There was the one main binding site of trypsin for chlorophenols. - Abstract: Being the first-degree toxic pollutants, chlorophenols (CP) have potential carcinogenic and mutagenic activity and toxicity. Since there still lacks studies on molecular interactions of chlorophenols with trypsin, one major binding target of many exogenous environmental pollutants, the binding interactions between five chlorophenols, 2-CP, 2,6-DCP, 2,4,6-TCP, 2,4,6-TCP, 2,3,4,6-TCP and PCP and trypsin were characterized by the combination of multispectroscopic techniques and molecular modeling. The chlorophenols bind at the one main site of trypsin and the binding induces the changes of microenvironment and global conformations of trypsin. Different number of chloride atoms significantly affects the binding and the binding constants K{sub A} ranks as K{sub A} (2-CP) < K{sub A} (2,6-DCP) ≈ K{sub A} (2,4,6-TCP) < K{sub A} (2,3,4,6-TCP) < K{sub A} (PCP). These chlorophenols interacts with trypsin mainly through hydrophobic interactions and via hydrogen bonding interactions and aromatic–aromatic π–π stacking interaction. Our results offer insights into the binding mechanism of chlorophenols with trypsin and provide important information for possible toxicity risk of chlorophenols to human health.

  16. Fe salts as catalyst for the wet oxidation of o-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    XU Xin-hua; HE Ping; JIN Jian; HAO Zhi-wei

    2005-01-01

    Catalytic wet air oxidation (CWAO) of o-chlorophenol in wastewater was studied in a stainless steel autoclave using four different Fe catalysts in the temperature range of 100-200 ℃. Experimental results showed that high rate of o-chlorophenol and CODcr (Chemical Oxygen Demand, mg/L) removal by CWAO was obtained at relatively low temperature and pressure. The catalysts Fe2(SO4)3, FeSO4, Fe2O3 and FeCl3 all exhibited high catalytic activity. More than 93.7% of the initial CODCr and nearly100% of o-chlorophenol were removed at 150 ℃ after 150 min with FeSO4 as catalyst. The CWAO of o-chlorophenol was found to be pseudo-first order reaction with respect to o-chlorophenol, with activation energy of 75.56 k J/mol in the temperature range of100-175 ℃.

  17. Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol

    Science.gov (United States)

    Bakardjieva, Snejana; Stengl, Vaclav; Subrt, Jan; Houskova, Vendula; Kalenda, Petr

    2007-05-01

    The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200 1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.

  18. Detection of Chlorophenolic Compounds in Bleaching Effluents of Chemical Pulps

    Institute of Scientific and Technical Information of China (English)

    Chhaya Sharma; S.Mohanty; S.Kumar; N.J.Rao; li qian

    2008-01-01

    Laboratory bleaching effluents from the chlorination and caustic extraction stages of mixed wood kraft pulp processing have been analysed both qualitatively and quantitatively for various chlorophenolics by using GC.A number of chlorinated derivaties of phenols,catechols,guaiacols and syringaldehydes have been detected and their concentrations are estimated.The results are compared with that of different agriculture residue / hardwood pulps,which were reported in literature.The concentrations of various compounds detected have also been compared with their reported 96LC50 values.

  19. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    Science.gov (United States)

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  20. Oxidation of phenol and chlorophenols on platinized titanium anodes in an acidic medium

    Science.gov (United States)

    Mokbel, Saleh Mohammed; Kolosov, E. N.; Mikhalenko, I. I.

    2016-06-01

    A comparative study of oxidation of phenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol on Pt/Ti and Ce,Pt/Ti electrocatalysts is performed via cyclic voltammetry. It is shown that the surface morphology and roughness of the anode do not change after modification with cerium. The formal kinetic orders of electrooxidation of all compounds are found to be less than one. It is shown that the β temperature coefficients of the rate of oxidation of chlorophenols grow by 10 to 50% when the Ce,Pt/Ti anode is used at a substrate concentration of 1 mM. A tenfold increase in concentration reduces the effect of cerium additive, except for 3-chlorophenol: the latter exhibits a 250% increase in the β value, compared to the Pt/Ti anode.

  1. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    Science.gov (United States)

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  2. Reductive Dechlorination of p-Chlorophenol by Nanoscale Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe0 under different conditions.Methods Nanoscale Fe0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM).Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate,whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover,the stability and durability of nanoscale Fe0 was evaluated through batch studies over extended periods of time.Conclusion The nanoscale Fe0 can be used for sustainable treatment of contaminants in groundwater.

  3. Comparative study on electrochemical degradation of 4-chlorophenol by different Pd/C gas diffusion electrodes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pd/C catalyst used for the Pd/C gas diffusion cathodes was prepared by hydrogen reduction method and formaldehyde reduction method, and characterized by X-ray diffraction (XRD), transmission electrode microcopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques. The electrochemical degradation of 4-chlorophenol was investigated in the diaphragm electrolysis system, aerating firstly with hydrogen gas then with air, using three different kinds of gas diffusion cathode. The results indicated that the self-made Pd/C gas diffusion cathode can not only reductively dechlorinate 4-chlorophenols by aerating hydrogen gas, but also accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by aerating air. Therefore, the removal efficiency of 4-chlorophenol by using Pd/C gas diffusion cathode is better than that of the C/PTFE gas diffusion cathode (no catalyst). The catalytic activity of Pd/C catalyst prepared by hydrogen reduction method is higher than that prepared by formaldehyde reduction method. The stability of the Pd/C gas diffusion cathodes is good. Therefore, both the removal efficiency and the dechlorination degree of 4-chlorophenol reached about 100% after 60 min, and the removal efficiency of 4-chlorophenol in terms of chemical oxygen demand (COD) in the cathodic compartment reached 87.4% after 120 min.

  4. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    Science.gov (United States)

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  5. Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wang, Jianlong [Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-11-30

    Pd/C catalyst was prepared by hydrogen reduction method and used for the Pd/C gas-diffusion electrode. It was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) techniques. The electrochemical degradation of 4-chlorophenol was investigated in a diaphragm electrolysis device, by two different feeding gas modes, using the Pd/C gas-diffusion electrode and the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion electrode as a cathode, respectively. The results indicated that Pd particles with an average size of 4.0 nm were highly dispersed in the activated carbon with an amorphous structure; Pd content on the surface of the Pd/C catalyst reached 1.3 at.%. Furthermore, feeding with hydrogen gas firstly and then with air was in favor of improving 4-chlorophenol removal efficiency. The Pd/C gas-diffusion cathode can not only reductively dechlorinate 4-chlorophenols by feeding hydrogen gas, but also accelerate the two-electron reduction of O{sub 2} to hydrogen peroxide (H{sub 2}O{sub 2}) by feeding air. Therefore, the removal efficiency of 4-chlorophenol by using the Pd/C gas-diffusion cathode was better than that of the C/PTFE gas-diffusion cathode. And both the removal efficiency and the dechlorination degree of 4-chlorophenol reached about 100% after 60 min, and the average removal efficiency of 4-chlorophenol in terms of chemical oxygen demand (COD) exceeded 70% after 120 min. The analysis of high-performance liquid chromatography (HPLC) identified that phenol was the dechlorination product, and hydroquinone, benzoquinone, maleic, fumaric, crylic, malonic, oxalic, acetic and formic acids were the main oxidation intermediates. A reaction pathway involving all these intermediates was proposed. (author)

  6. Methanization and mineralization of 2-chlorophenol by anaerobic digestion.

    Science.gov (United States)

    Beristain-Montiel, Lizeth; Gómez-Hernández, Jorge; Monroy-Hermosillo, Oscar; Cuervo-López, Flor de María; Ramírez-Vives, Florina

    2010-01-01

    The aim of this study is to contribute to the knowledge about 2-Chlorophenol (2CP) mineralization and methanization in batch culture. This work was focused on evaluating the effect of: (i) the use of sludge with different periods of previous contact to 2CP, (ii) the electron donor addition in stoichiometric relation with 2CP and (iii) the presence of different initial oxygen concentrations. When compared with the control, 50 and 80 days of previous contact to 2CP resulted in a lag phase reduction of 57% and an increase in 2CP specific consumption rate (q(2CP)) of 114%. These results were obtained with no addition of an external electron donor. When acetate was used as an electron donor its consumption resulted independently of 2CP consumption. No lag phase and increase of 46% in q(2CP) was observed when phenol was used as an electron donor. In the third part when sludge without previous contact to 2CP was used, it was found that consumption efficiency (E(2CP)) and q(2CP) values did not increase in the presence of different oxygen concentrations. However, at the highest oxygen concentration, CH(4) yield (Y(CH(4))(-C/2CP-C)) and phenol yield (Y(phenol-C/2CP-C)) values decreased, while CO(2) yield value (Y(CO(2))(-C/2CP-C)) increased with regard to the methanogenic control. The use of sludge previously exposed to both 2CP and O(2) resulted in an increase in q(2CP) of 73%. However, among the different oxygen concentrations, no significant difference in E(2CP) or q(2CP) values was observed when compared to the control without oxygen. Therefore, previous contact to 2CP resulted in being a key factor for improving 2CP mineralization and methanization in batch culture.

  7. Toxic effects of pollutants on the Mineralization of 4-chlorophenol and Benzoate in methanogenic river sediment

    NARCIS (Netherlands)

    van Beelen P; van Vlaardingen PLA

    1993-01-01

    The toxic effects of pollutants on the mineralization of 2 mug/l [U-14C] 4-chlorophenol and benzoate were studied in microcosms with methanogenic sediment from the Rhine river. In contrast with studies using a high substrate concentration no lag time was observed and the half-lives for 4-chlorophen

  8. Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland.

    Science.gov (United States)

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya

    2013-01-01

    This study evaluates the treatment efficiency of horizontal subsurface flow (HSSF) constructed wetland for the removal of AOX (adsorbable organic halides) and chlorophenolics from pulp and paper mill wastewater. The dimensions of HSSF constructed wetland were 3.5 m in length, 1.5 m in width, and 0.28 m in depth, with surface area of 5.25 m2. The HSSF constructed wetland unit was planted with an ornamental plant species, Canna indica. Under hydraulic retention time (HRT) of 5.9 days, the average AOX removal was 89.1%, and 67% to 100% removal of chlorophenolics from pulp and paper mill wastewater was achieved. The complete removal of 2,3-dichlorophenol, 3,4-dichlorophenol, 2,3,5-trichlorophenol, 2,4,6-trichlorophenol, 3,5-dichlorocatechol, 3,6-dichlorocatechol, and 4,5,6-trichloroguaiacol was observed. Some of the chlorophenolics were found to accumulate in the plant biomass and soil. The evapotranspiration rate varied from 6.7 to 12.7 mm day(-1) during the experimental period. The mass balance of chlorophenolics was also studied in constructed wetland system.

  9. Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils.

    Science.gov (United States)

    McLellan, Iain; Hursthouse, Andrew; Morrison, Calum; Varela, Adélia; Pereira, Cristina Silva

    2014-02-01

    A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.

  10. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes.

    Science.gov (United States)

    Ding, Han; Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2016-05-01

    The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi-Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between logKow and logKd suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π-π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84mg/g, from 19 to 65mg/g and from 17 to 65mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pKa of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.

  11. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lifeng, E-mail: yinlifeng@gmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Bao, Yueping, E-mail: baoyueping@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. Black-Right-Pointing-Pointer The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. Black-Right-Pointing-Pointer Ni{sup 0} acts as an indirect reductant and catalyst in dechlorination reaction. Black-Right-Pointing-Pointer The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni{sup 0} and Cu{sup 0} particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni{sup 0} acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni{sup 0} to Cu{sup 0} was also proposed based on hydrogen spillover. The inhibition on the release of Ni{sup 2+} by adding natural organic matters and adjusting pH was investigated.

  12. 2-Chlorophenol Removal of Aqueous Solution Using Advanced Oxidation Processes Resulting from Iron/ Persulfate and Ultra Violet/ Persulfate

    Directory of Open Access Journals (Sweden)

    Shokufeh Astereki

    2016-06-01

    Full Text Available Background: Advanced oxidation processes are used to remove toxic aromatic compounds with low biodegradability, such as 2-chlorophenol. This study investigated the use of sulfate (SO4- and persulfate (S2O82- radicals, as one of the advanced oxidation methods, to remove 2- chlorophenol from aquatic solutions. Methods: This experimental and pilot-scale study was carried out using two chemical batch reactors; one of the reactors equipped with UV lamps and the other was on the hot plate. In iron/ persulfate (Fe/S2O82- and ultra violet/ persulfate (UV/S2O82- processes different parameters were investigated. Results: Iron, UV, the initial pH of the solution, persulfate concentration have considerable effects on the elimination of 2-chlorophenol in both processes. In both processes, the maximum elimination occurred in acidic conditions. The elimination efficiency was increased by increasing the concentration of 2-chlorophenol and UV intensity, and also by decreasing the concentration of persulfate and iron. Accordingly, in iron/ persulfate and ultra violet/ persulfate processes 2-chlorophenol was eliminated with 99.96% and 99.58% efficiencies, respectively. Conclusion: Sulfate radicals produced from activated persulfate ions with hot-Fe ion and UV radiation have significant impact on the removal of 2-chlorophenol. Therefore, the processes of Fe/S2O82- and UV/S2O82- can be regarded as good choices for industrial wastewater treatment plants operators in the future.

  13. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  14. Mathematical Model of In-situ Ozonation for the Remediation of 2-Chlorophenol Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    张晖; 宋孟浩; 黄金宝

    2003-01-01

    A microscopic diffusion-reaction model was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface.The sequential strategy was employed to obtain the numerical solution of the model using finite difference method. A non-uniform grid of discretization points was employed to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the model. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100 ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical model fitted data well during most time of the experiment.

  15. One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Tai Ye; Shi Yan Lu; Qin Qin Hu; Xin Jiang; Guo Fen Wei; Jing Jing Wang; Jian Quan Lu

    2011-01-01

    A simple one-bath strategy has been developed to synthesize a novel CdTe@SiO2@MIP (molecularly imprinted and silica-functionalized CdTe quantum dots, MISFQDs), in which a silica shell was coated on the surface of CdTe quantum dots (CdTe@SiO2 QDs) and then a polymer for selective recognition of 4-chlorophenol (4-CP) was constructed on the surface of CdTe@SiO2 QDs using mercaptoacetic acid as stabilizer, 3-aminopropyl-trimethoxysilane (APTES) as functional monomers and tetraethoxysilane (TEOS) as crosslink agent. The structures of CdTe@SiO2@MIP were analyzed by ultraviolet-visible absorption, Fluorescence, FT-IR spectrum and powder X-ray diffraction. The application and characterization of the CdTe@SiO2@MIP were investigated by experiments. All results indicated that the CdTe@SiO2@MIP can selectively recognize 4-chlorophenol.

  16. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Radwa A. Elsalamony

    2017-02-01

    Full Text Available Ru doped titania was prepared by the impregnation method and examined for the photocatalytic degradation of 2-chlorophenol at ambient conditions. Ru/TiO2 photocatalysts with metal loadings of 0.2, 0.4, 0.6 and 0.8 wt% were prepared and characterized using TEM, XRD, FTIR, SBET and EDX analyses. The degradation of 2-chlorophenol (2-CP in the aqueous phase was investigated under irradiation at 254 nm, employing either photodegradation in the presence of titania, Ru doped titania or photolysis, to compare the efficiency of these photoinduced advanced oxidation techniques. Photocatalysis under visible irradiation was also investigated. The removal efficiency arrived at 50% using 0.2% Ru/TiO2 catalyst.

  17. P-chlorophenol wastewater treatment by microwave-enhanced catalytic wet peroxide oxidation.

    Science.gov (United States)

    Zhao, Guohua; Lv, Baoying; Jin, Yan; Li, Dongming

    2010-02-01

    A microwave-enhanced catalytic wet peroxide oxidation (MW-CWPO) technology was investigated to treat a high concentration of p-chlorophenol wastewater under a mild condition. The MW-CWPO experiments were carried out in a microwave autoclave using copper(II) oxide (CuO)-loaded active carbon as a catalyst. The p-chlorophenol was directly ring-opened within 5 minutes at 343 K and 0.3 MPa and then mineralized to carbon dioxide and water. More than 90% of the total organic carbon was removed within 15 minutes. The reaction activation energy (Ea) of hydrogen peroxide (H2O2) decomposition was decreased from 47.7 to 43.1 kJ/mol under microwave irradiation. The H2O2 catalytic decomposition was fitted to a second-order reaction under microwave irradiation, while it followed a first-order reaction without microwave irradiation. The experimental results indicate that the MW-CWPO method has significant potential applications for a high concentration of p-chlorophenol wastewater.

  18. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  19. Degradation of 4-chlorophenol in aqueous solution by γ-radiation and ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    HU; Jun; WANG; Jianlong; CHEN; Rong

    2006-01-01

    The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP mineralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min(1, 4-chlorophenol at concentration of 10 mg·L(1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min(1, which was 2.4 times higher than the sum of radiation (0.0294 min(1) and ozonation (0.0137 min(1). It revealed that the combination of radiation and ozonation resulted in synergistic effect, which can remarkably increase the degradation efficiency of 4-CP.

  20. Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon.

    Science.gov (United States)

    Yang, Bin; Liu, Yunpeng; Li, Zhongjian; Lei, Lecheng; Zhou, Jie; Zhang, Xingwang

    2016-01-01

    Preferential removal of pentachlorophenol (PCP) from chlorophenols-containing wastewater has been attracted more attentions in wastewater treatment, since it is one of the most toxic pollutants. The adsorbent of N-doped ordered mesoporous carbon (M-OMC) with high BET surface area of 1901 m(2)/g, large pore volume of 1.64 cm(3)/g and uniform pore size of 3.45 nm has been successfully synthesized via evaporation-induced self-assembly (EISA) method. The effects of solution pH, pore structure of adsorbent and their surface chemical properties on PCP adsorption by M-OMC were investigated in comparison with ordered mesoporous carbon (OMC), and much higher PCP adsorption capacities of M-OMC were obtained. The significantly preferential adsorption of PCP was achieved in the treatment of tri-component wastewater including PCP, p-chlorophenol (CP) and 2.4.6-trichlorophenol (TCP), and its adsorption process well fitted the pseudo-second-order kinetics model and the Langmuir isotherm. The initial sorption rate of PCP was 103.5 μmol/(g/min), which was 2.97 times of TCP. It may be attributed to the intensification of π-π interaction between PCP and M-OMC with the nitrogen functional groups. Therefore, M-OMC is promising for removal of PCP in the adsorption pretreatment of chlorophenols-containing wastewater.

  1. Prediction of Environmental Properties for Chlorophenols with Posetic Quantitative Super-Structure/Property Relationships (QSSPR

    Directory of Open Access Journals (Sweden)

    Douglas J. Kleinc

    2006-09-01

    Full Text Available Due to their widespread use in bactericides, insecticides, herbicides, andfungicides, chlorophenols represent an important source of soil contaminants. Theenvironmental fate of these chemicals depends on their physico-chemical properties. In theabsence of experimental values for these physico-chemical properties, one can use predictedvalues computed with quantitative structure-property relationships (QSPR. As analternative to correlations to molecular structure we have studied the super-structure of areaction network, thereby developing three new QSSPR models (poset-average, cluster-expansion, and splinoid poset that can be applied to chemical compounds which can behierarchically ordered into a reaction network. In the present work we illustrate these posetQSSPR models for the correlation of the octanol/water partition coefficient (log Kow and thesoil sorption coefficient (log KOC of chlorophenols. Excellent results are obtained for allQSSPR poset models to yield: log Kow, r = 0.991, s = 0.107, with the cluster-expansionQSSPR; and log KOC, r = 0.938, s = 0.259, with the spline QSSPR. Thus, the poset QSSPRmodels predict environmentally important properties of chlorophenols.

  2. Synthesis of Pd nanoparticles decorated with graphene and their application in electrocatalytic degradation of 4-chlorophenol.

    Science.gov (United States)

    Bian, Zhao-Yong; Bian, Yu; Wang, Hui; Ding, Ai-Zhong

    2014-09-01

    Pd/graphene catalysts were prepared in situ from graphite oxide and palladium salts by the hydrogen-reduction method and were then used for the construction of Pd/graphene gas-diffusion electrodes (GDE). The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential pulse voltammetry (DPV) techniques. In the Pd/graphene catalysts, Pd particles, with an average size of 3.6 nm and an amorphous structure, were highly dispersed in the graphene. The Pd/graphene catalysts accelerated the two-electron reduction of O2 to H2O2 by feeding air, which favors the production of hydroxyl radicals (HO*). In the electrolytic system, HO* was determined in the reaction mixture by the electron spin resonance spectrum (ESR). The dechlorination degree of 4-chlorophenol reached approximately 90.5% after 80 min, and the removal efficiency and the average removal efficiency of 4-chlorophenol, in terms of total organic carbon (TOC) after 120 min, reached approximately 93.3% and 85.1%, respectively. Furthermore, based on the analysis of electrolysis intermediates by high performance liquid chromatography (HPLC) and ion chromatography (IC), a reaction scheme was proposed for the Pd/grapheme GDE catalytic degradation of 4-chlorophenol.

  3. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.

    Science.gov (United States)

    Bódalo, Antonio; Bastida, Josefa; Máximo, M Fuensanta; Montiel, M Claudia; Gómez, María; Murcia, M Dolores

    2008-10-01

    Horseradish peroxidase (HRP) and soybean peroxidase (SBP) were covalently immobilized onto aldehyde glass through their amine groups. The activity yield and the protein content for the immobilized SBP were higher than for the immobilized HRP. When free and immobilized peroxidases were tested for their ability to remove 4-chlorophenol from aqueous solutions, the removal percentages were higher with immobilized HRP than with free HRP, whereas immobilized SBP needs more enzyme to reach the same conversion than free enzyme. In the present paper the two immobilized derivatives are compared. It was found that at an immobilized enzyme concentration in the reactor of 15 mg l(-1), SBP removed 5% more of 4-chlorophenol than HRP, and that a shorter treatment was necessary. Since immobilized SBP was less susceptible to inactivation than HRP and provided higher 4-chlorophenol elimination, this derivative was chosen for further inactivation studies. The protective effect of the immobilization against the enzyme inactivation by hydrogen peroxide was demonstrated.

  4. Evaluation of removal efficiency of 2-chlorophenol in aquatic environments by modified fly ash

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Background: Chlorophenols are classified as priority toxic pollutants. These acidic organic compounds present a serious potential hazard for human health and aquatic life. Chlorophenols accumulate in water, soil and air due to high stability, and impart an unpleasant taste and odor to drinking water and can exert negative effects on different biological processes. Among the different methods of removal, adsorption process by low price adsorbents, such as fly ash (FA is common. Therefore, in this study, the effects of oxidation of FA as modified adsorbent were investigated when the adsorption of 2-chlorophenol (2-CP was increased. Methods: This experimental study was conducted from March to September of 2013. FA obtained from Zarand power plant (located in Kerman province was oxidized with potassium permanganate. Effective factors on the oxidation of FA, such as temperature, oxidation time and concentrations of oxidizers were optimized. Raw sewage of Zarand coal washing plant was tested under optimal conditions. All tests were carried out according to the standard methods book for the examination of water and wastewater. Results: Optimal condition for the preparation of oxidized FA was obtained at 70°C, 1 hour, and 1 mM of potassium permanganate concentration. The absorber obtained was able to remove 96.22% of 2-CP under optimized conditions (pH=3, 2 hours, adsorbent dose 0.8 g and room temperature. The removal efficiency of the real wastewater under optimal conditions was 82.1%. Conclusion: Oxidized FA can be used for the removal of this pollutant from industry wastewater due to its high efficiency of removal in real wastewater, it is easy and inexpensive to prepare and could modify the sorbent.

  5. Synthesis, characterization and application of an inorgano organic material: -chlorophenol anchored onto zirconium tungstate

    Indian Academy of Sciences (India)

    Beena Pandit; Uma Chudasama

    2001-06-01

    Tetravalent metal acid (TMA) salt zirconium tungstate (ZW) has been synthesized, followed by its derivatization using para-chlorophenol (CP). The resulting compound is abbreviated as ZWCP. ZWCP has been characterized for elemental analysis, spectral analysis (FTIR), X-ray analysis and thermal analysis (TGA). Its chemical stability has been assessed in various mineral acids, bases and organic solvents. Ion exchange capacity (IEC) has been determined and distribution behaviour towards several metal ions in different electrolyte solutions with varying concentrations has been studied and a few binary separations achieved.

  6. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process.

  7. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes.

    Science.gov (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire

    2016-08-15

    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  8. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    Directory of Open Access Journals (Sweden)

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  9. Solar efficiency of a new deposited titania photocatalyst. Chlorophenol, pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, Chantal; Disdier, Jean; Maldonado, Manuel I.; Herrmann, Jean-Marie [Laboratoire D' Application de la Chimie a l' Environnement LACE (UMR 5634), Universite Claude Bernard Lyon I, Bat Jules Raulin, 69622 Villeurbanne Cedex (France); Monnet, Christine; Dussaud, Joseph [AHLSTROM Research and Services, ZI de l' Abbaye, 38780 Pont-Eveque (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2003-11-10

    A specially designed titania photocatalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photocatalytic support, with Millennium PC500 anatase. At the same time, a new solar photoreactor (STEP) was designed based on the multi-step cascade falling-film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Several types of reactants were treated: 4-chlorophenol as a model organic pollutant; formetanate, a widely used pesticide in horticulture; a mixture of pesticides used in vineyards; and indigo carmine (IC) and Congo red (CR), which are complex multifunctional dye molecules. Each reaction was performed simultaneously in a solar CPC slurry photoreactor and in the STEP photoreactor under identical solar exposure to better evaluate and validate the results obtained. The STEP solar reactor was found to be as efficient as the CPC for 4-chlorophenol and formetanate total degradation. In contrast, both dyes required longer treatment in STEP experiments. This new system, in which the final tedious filtration can actually be avoided, constitutes a good alternative to slurries.

  10. Kinetics and Mechanism of Dechlorination of o-Chlorophenol by Nanoscale Pd/Fe

    Institute of Scientific and Technical Information of China (English)

    WEI Jian-jun; XU Xin-hua; LIU Yong

    2004-01-01

    Nanoscale Pd/Fe bimetallic particles were synthesized with an efficient method to dechlorinate o-chlorophenol. The nanoscale Pd/Fe particles were determined by transmission electron microscopy and BET specific surface area analysis. Most of the particles are in the size range of 20-100 nm. The BET specific surface area of synthesized nanoscale Pd/Fe particles is 12.4 m2/g. In contrast, a commercially available fine iron powder(<100 mesh) has a specific surface area of 0.49 m2/g. Batch studies demonstrated that the nanoscale particles can effectively dechlorinate o-chlorophenol. The dechlorination reaction takes place on the surface of synthesized nanoscale Pd/Fe bimetallic particles in a pseudo-first order reaction. The surface-area-normalized rate coefficients(kSA) are comparable to those reported in the literature for chlorinated ethenes. The observed reaction rate constants(kobs) are dominated by the mass fraction of Pd and the mass concentration of the nanoscale Pd/Fe particles.

  11. Absence of polychlorinated dibenzodioxins and dibenzofurans after lactoperoxidase-catalyzed transformation of chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, L.G.; Swanson, S.E.

    1987-06-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) have been detected in many species and environments their bioresistance and toxicity being of great concern. PCDDs and PCDFs, or the predioxins and -furans, are formed from chlorophenols (CPs) by burning and pyrolysis by arcing and by photolysis. PCDDs and PCDFs have also been found in emissions from automobiles, municipal waste incinerators, and nickel and copper smelting. Peroxidases (POs), a group of heme-proteins, are found in many organs and organisms. They are exceptional enzymes because of low substrate specificity and multiple reaction mechanisms. This enzyme-catalyzed free radical reaction resembles reactions in pyrolysis, arcing, and photolysis. Halogenated phenols are among the peroxidase substrates, and phenolic substrates have been found to yield dibenzodioxin- and dibenzofuran like products. The question then arose whether CP's in peroxidase-mediated reactions could yield chlorinated dibenzodioxins and dibenzofurans. Since no-one has yet reported a biological formation of PCDDs and PCDFs the authors have analyzed the rpdoct mixture from the lactoperoxidase-catalyzed oxidation of some chlorophenols.

  12. Usefulness of a PARAFAC decomposition in the fiber selection procedure to determine chlorophenols by means SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Rocio; Ortiz, M.C. [University of Burgos, Department of Chemistry, Faculty of Sciences, Burgos (Spain); Sarabia, Luis A. [University of Burgos, Department of Mathematics and Computation, Faculty of Sciences, Burgos (Spain)

    2012-05-15

    In this work, a procedure based on solid-phase microextraction and gas chromatography coupled with mass spectrometry is proposed to determine chlorophenols in water without derivatization. The following chlorophenols are studied: 2,4-dichlorophenol; 2,4,6-trichlorophenol; 2,3,4,6-tetrachlorophenol and pentachlorophenol. Three kinds of SPME fibers, polyacrylate, polydimethylsiloxane, and polydimethylsiloxane/divinylbenzene are compared to identify the most suitable one for the extraction process on the basis of two criteria: (a) to select the equilibrium time studying the kinetics of the extraction, and (b) to obtain the best values of the figures of merit. In both cases, a three-way PARAllel FACtor analysis decomposition is used. For the first step, the three-way experimental data are arranged as follows: if I extraction times are considered, the tensor of data, X, of dimensions I x J x K is generated by concatenating the I matrices formed by the abundances of the J m/z ions recorded in K elution times around the retention time for each chlorophenol. The second-order property of PARAFAC (or PARAFAC2) assesses the unequivocal identification of each chlorophenol, as consequence, the loadings in the first mode estimated by the PARAFAC decomposition are the kinetic profile. For the second step, a calibration based on a PARAFAC decomposition is used for each fiber. The best figures of merit were obtained with PDMS/DVB fiber. The values of decision limit, CC{alpha}, achieved are between 0.29 and 0.67 {mu}g L{sup -1} for the four chlorophenols. The accuracy (trueness and precision) of the procedure was assessed. This procedure has been applied to river water samples. (orig.)

  13. Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells

    Directory of Open Access Journals (Sweden)

    Kuśmierek Krzysztof

    2015-03-01

    Full Text Available The efficiency of walnut, pistachio and hazelnut shells to remove three monochlorophenols (2-CP, 3-CP and 4-CP from aqueous solutions has been investigated. To describe the kinetic data pseudo-first and pseudo-second order models were used. The kinetics data were fitted better into the pseudo-second order model with the coefficient of determination values greater than 0.99. The k2 values increased in the order 4-CP < 3-CP < 2-CP. Sorption was also analyzed as a function of solution concentration at equilibrium. The experimental data received were found to be well described by the Freundlich isotherm equation. Effectiveness of chlorophenols removal from water on the walnut, pistachio and hazelnut shells was comparable. Individual differences in sorption of monochlorophenols were also negligible.

  14. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.

  15. Degradation of 4-Chlorophenol Solution by Synergetic Effect of Dual-frequency Ultrasound with Fenton Reagent

    Institute of Scientific and Technical Information of China (English)

    赵德明; 徐新华; 雷乐成; 汪大翚

    2005-01-01

    4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound in conjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observed in this advanced oxidation process.Experimental results showed that ultrasonic intensity, saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturating gases (Ar, 02, air and N2), 4-CP degradation with Ar-saturated solution was the best. However, in the view of practical wastewater treatment, using oxygen as the saturating gas would be more economical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CP degradation rate.The 4-CP removal rate increased by around 126% within 15 rain treatment. The synergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviously observed.

  16. Oxidation of 4-Chlorophenol by Mesoporous Titania: Effect of Surface Morphological Characteristics

    Directory of Open Access Journals (Sweden)

    Osmín Avilés-García

    2014-01-01

    Full Text Available Mesoporous nanocrystalline anatase was prepared via EISA employing CTAB as structure directing agent. The drying rate was used as a key synthesis parameter to increase the average pore diameter. The resultant mesoporous crystalline phases exhibited specific surface areas between 55 and 150 m2 g−1, average unimodal pore sizes of about 3.4 to 5.6 nm, and average crystallite size of around 7 to 13 nm. These mesophases were used as photocatalysts for the degradation of 4-chlorophenol (4CP with UV light. Under the studied conditions, the mesoporous anatase degraded 100% 4CP. This was twice faster than Degussa P-25. 57% reduction of chemical oxygen demand (COD value was achieved.

  17. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    Science.gov (United States)

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  18. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  19. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.

    Science.gov (United States)

    Geiger, Elisabeth; Hornek-Gausterer, Romana; Saçan, Melek Türker

    2016-07-01

    Organisms in the aquatic environment are exposed to a variety of substances of numerous chemical classes. The unintentional co-occurrence of pharmaceuticals and other contaminants of emerging concern may pose risk to non-target organisms. In this study, individual and binary mixture toxicity experiments of selected pharmaceuticals (ibuprofen and ciprofloxacin) and chlorophenols (2.4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP)) have been performed with freshwater algae Chlorella vulgaris. All experiments have been carried out according to the 96-h algal growth inhibition test OECD No. 201. Binary mixture tests were conducted using proportions of the respective IC50s in terms of toxic unit (TU). The mixture concentration-response curve was compared to predicted effects based on both the concentration addition (CA) and the independent action (IA) model. Additionally, the Combination Index (CI)-isobologram equation method was used to assess toxicological interactions of the binary mixtures. All substances individually tested had a significant effect on C. vulgaris population density and revealed IC50 values ciprofloxacin>3-CP>ibuprofen. Generally, it can be concluded from this study that toxic mixture effects of all tested chemicals to C. vulgaris are higher than the individual effect of each mixture component. It could be demonstrated that IC50 values of the tested mixtures predominately lead to additive effects. The CA model is appropriate to estimate mixture toxicity, while the IA model tends to underestimate the joint effect. The CI-isobologram equation method predicted the mixtures accurately and elicited synergism at low effect levels for the majority of tested combinations.

  20. Local viscosity and solvent relaxation experienced by rod-like fluorophores in AOT/4-chlorophenol/m-xylene organogels

    Science.gov (United States)

    Dandapat, Manika; Mandal, Debabrata

    2017-01-01

    Organogels prepared from AOT/4-chlorophenol/m-xylene are immobile in the macroscopic sense, with a well-characterized internal structure. However, the molecular level dynamics inside the gels is not too clear, although a very slow structural relaxation has been reported previously. Using a set of rod-like fluorophores, we find that the rotational mobility of a small guest molecule inside the gel can be extremely fast, indicating presence of sufficiently low-microviscosity domains. These domains consist of m-xylene solvent molecules trapped in the interstices of fiber bundles comprising columnar stacks of 4-chlorophenol surrounded by AOT molecules. However, interstitial trapping of m-xylene does retard its own dynamics, which explains the slow solvent relaxation inside the gels. Hence, the state of m-xylene in the organogel may be characterized as "bound", in contrast to the "free" state in neat m-xylene.

  1. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  2. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed

    Directory of Open Access Journals (Sweden)

    Nelson Giovanny Rincón-Silva

    2015-01-01

    Full Text Available Activated carbons from shell eucalyptus (Eucalyptus globulus were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1 and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.

  3. Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare.

    Science.gov (United States)

    de Araujo, Brancilene Santos; Dec, Jerzy; Bollag, Jean Marc; Pletsch, Marcia

    2006-04-01

    Hairy root cultures of Daucus carota L., Ipomoea batatas L. and Solanum aviculare Forst were investigated for their susceptibility to the highly toxic pollutants phenol and chlorophenols and for the involvement of inherent peroxidases in the removal of phenols from liquid media. Roots of D. carota grew normally in medium containing 1000 micromol l(-1) of phenol, whilst normal growth of roots of I. batatas and S. aviculare was only possible at levels up to 500 micromol l(-1). In the presence of chlorophenols, normal root growth was possible only in concentrations not exceeding 50 micromol l(-1), except for I. batatas which was severely affected at all concentrations. Despite the reduction in biomass, the growth of S. aviculare cultures was sustained in medium containing up to 2000 micromol l(-1) of phenol or 2-chlorophenol, and up to 500 micromol l(-1) of 2,6-dichlorophenol. The amounts of phenol removed by the roots within 72 h of treatment were 72.7%, 90.7% and 98.6% of the initial concentration for D. carota, I. batatas and S. aviculare, respectively. For the removal of 2,6-dichlorophenol the values were, respectively, 83.0%, 57.7% and 73.1%. Phenols labelled with 14C were absorbed by the root tissues and condensed with highly polar cellular substances as well as being incorporated into the cell walls or membranes. The results suggest that S. aviculare, an ornamental plant, would be best suited for remediation trials under field conditions.

  4. Formation of polychlorinated dibenzodioxins, benzenes and phenols from thermal degradation of 2-chlorophenol promoted by CuCl2

    Energy Technology Data Exchange (ETDEWEB)

    Visez, N.; Baillet, C.; Sawerysyn, J.P. [Lille-1 Univ. (France). Physicochimie des Processus de Combustion et de l' Atmosphere - UMR-CNRS

    2004-09-15

    processes of PCDD/Fs from chlorophenols as precursors. These investigations have shown that other organic byproducts, potentially toxic, could also be formed with PCDD/Fs. Born et al. have studied the formation of PCDD/Fs from isomers of monochlorophenol on model and real fly ashes using a fixed bed reactor. The reaction products observed were carbon monoxide, carbon dioxide, 2,4- dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol, PCDDs, monobenzofuran, polychlorodiphenylethers, polychlorobenzenes, methylene chloride and tetrachloroethylene. By investigating the PCDD/Fs formation from ortho-chlorinated phenols and copper chloride, Ryu and Mulholland have identified the following products: chlorophenols, chlorobenzenes, PCDD/Fs, tetrachloroethylene and benzoquinones Hell et al. have studied the reaction of 2,4,6-trichlorophenol on real and model fly ash using a fixed bed reactor. They have observed that polychlorobenzenes formation was favored when time and temperature were increased. This work is aimed at highlighting the organic compounds formed by thermal degradation of 2-chlorophenol (2CP) promoted by copper chloride using sealed tubes as closed reactors. It is clear that this experimental method is unrealistic when compared to conditions of industrial processes. However, it enables us to use residence times (from minutes to hours) long enough to get more informations on reactions pathways responsible for PCCD/Fs formation and degradation which would be difficult to obtain from experiments with much smaller residence times.

  5. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  6. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.

  7. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    Science.gov (United States)

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  8. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.

    Science.gov (United States)

    Kojima, Yoshihiro; Fukuta, Tadashi; Yamada, Takehisa; Onyango, Maurice S; Bernardo, Eileen C; Matsuda, Hitoki; Yagishita, Kohichi

    2005-01-01

    Wet oxidation of a 100 ppm aqueous solution of o-chlorophenol (o-CP) was performed in a lab-scale batch reactor using 3% Ru/TiO(2) catalyst at 373 and 413 K, and a partial oxygen pressure of 0.1 MPa. The experiments were conducted by varying the initial pH values of o-CP solution from pH 6.3 to 9.8 and 11.8. From the results, it was revealed that the catalytic decomposition of o-CP occurred most effectively at 413 K and at the initial pH of 9.8. Complete decomposition and dechlorination of o-CP were almost achieved within 1h, and about 85% of TOC was removed in 3.0 h. On the other hand, the catalytic wet oxidation of o-CP at a higher pH value of 11.8 was not effective in the removal of TOC. The incomplete removal of TOC at the initial pH of 11.8 is likely attributed to a low pK(a) of carboxylic acids formed during the wet oxidation of o-CP.

  9. Photocatalytic oxidation of 4-chlorophenol using thermosensitive zinc phthalocyanine copolymer under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel thermosensitive photocatalyst,P(NIPA-co-ZnMPc),has been prepared using zinc tetra(N-carbonylacrylic)aminophthalocya-nine(ZnMPc) to copolymerize with N-isopropylacrylamide(NIPA).The lower critical solution temperature(LCST) of P(NIPA-co-ZnMPc) measured by differential scanning calorimetry(DSC) was 33.5 °C.P(NIPA-co-ZnMPc) effectively catalyzes the oxidation of 4-chlorophenols(4-CP) using oxygen as oxidant under the visible light irradiation,and it has higher photocatalytic activity than ZnMPc under the same condition.The UV-vis spectra of them in aqueous solution indicate that the macromolecular chains in P(NIPA-co-ZnMPc) restrain the aggregation of ZnMPc availably,resulting in the enhanced photocatalytic performance.The results of photocatalytic oxidation at different temperatures show that P(NIPA-co-ZnMPc) presents the highest photocatalytic efficiency around the LCST,suggesting that the macromolecular structure of P(NIPA-co-ZnMPc) can directly influence their photocatalytic activity.The hydrodynamic radius of this copolymer at different temperatures implies the intermolecular hydrophobic aggregation around the LCST,which is advantageous for the enrichment and the photocatalytic oxidation of 4-CP.Due to the high stability of P(NIPA-co-ZnMPc),it can be cyclically used in homogeneous photocatalytic oxidation and heterogeneous separation.

  10. p-Chlorophenol adsorption on activated carbons with basic surface properties

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.

  11. Quantum Chemical and Kinetic Study on Polychlorinated Naphthalene Formation from 3-Chlorophenol Precursor.

    Science.gov (United States)

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu

    2015-08-31

    Polychlorinated naphthalenes (PCNs) are the smallest chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and are often called dioxin-like compounds. Chlorophenols (CPs) are important precursors of PCN formation. In this paper, mechanistic and kinetic studies on the homogeneous gas-phase formation mechanism of PCNs from 3-CP precursor were investigated theoretically by using the density functional theory (DFT) method and canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT). The reaction priority of different PCN formation pathways were disscussed. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600-1200 K. The mechanisms were compared with the experimental observation and our previous works on the PCN formation from 2-CP and 4-CP. This study shows that pathways ended with Cl elimination are favored over those ended with H elimination from the 3-CP precursor. The formation potential of MCN is larger than that of DCN. The chlorine substitution pattern of monochlorophenols has a significant effect on isomer patterns and formation potential of PCN products. The results can be input into the environmental PCN controlling and prediction models as detailed parameters, which can be used to confirm the formation routes of PCNs, reduce PCN emission and establish PCN controlling strategies.

  12. Parameter Identification of the 2-Chlorophenol Oxidation Model Using Improved Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Guang-zhou Chen

    2015-01-01

    Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.

  13. Mechanism and kinetics of 2-chlorophenol degradation in drinking water by photo-electrochemical synergic effect

    Institute of Scientific and Technical Information of China (English)

    SONG; Qiang; (宋; 强); QU; Jiuhui; (曲久辉)

    2003-01-01

    The synergic effect mechanism of photo-electrochemical oxidation is investigated in detail through reaction products and kinetics analysis in a photo-electric integral reactor with 2-chlorophenol (2-CP) as the model pollutant. A kinetics model is constructed for the combinatorial photo-electrochemical (CPE) degradation. A remarkable synergetic effect, which can significantly enhance the mineralization rate of the CPE process, is verified by the comparison of apparent kinetic constants. In the CPE process, complemental effects with multi-level and multi-pathway for pollutants degradation under our experimental conditions are speculated. It is proved that the degradation pathways are not only the simple summation of that of photolysis and electrolysis, but the formation of synergic effect through combination of several new acting approaches. The degradation efficiency is enhanced considerably by three factors, control of electrode poisoning by the UV irradiation, control of excitation and reaction trend of pollutants molecules by the UV irradiation, and control of activation effect and transfer trend by the oriented direct current (DC) electric field. An advanced oxidation system is set up through manifold of free radicals chain reactions in the CPE reactions, so that the aqueous organics can be mineralized fast and completely. It is proven by the kinetics analysis that the mineralization of organic pollutants is mainly attributed to the generation of very active hydroxyl radicals (OH@) in bulk solution from the CPE synergetic effect.

  14. Chemical degradation and toxicity reduction of 4-chlorophenol in different matrices by gamma-ray treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Wook; Shim, Seung-Bo [Division of Environmental Science and Ecological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Jung, Jinho, E-mail: jjung@korea.ac.k [Division of Environmental Science and Ecological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of)

    2011-03-15

    Gamma-ray treatment of 4-chlorophenol (4-CP) in different matrices was studied in terms of both chemical degradation and toxicity reduction. Degradation of 4-CP in a complex effluent matrix was less efficient than that in ultrapure water. This is most likely due to the consumption of reactive radicals by matrix components, such as dissolved organic matter in effluents. The matrix effect caused much more profound changes in toxicity. Gamma-ray treatment of 4-CP in ultrapure water abruptly increased acute toxicity toward Daphnia magna while slightly decreased toxicity of 4-CP in effluent. In the presence of ZrO{sub 2} catalyst, degradation of 4-CP as well as toxicity reduction was substantially improved mostly by adsorption of 4-CP onto the nanoparticles. It was found that benzoquinone, hydroquinone and 4-chlorocatechol were generated for ultrapure water sample while only 4-chlorocatechol was formed for effluent samples by gamma-ray treatment. As determined in this work, EC{sub 50} values of benzoquinone (0.46 {mu}M), hydroquinone (0.61 {mu}M) and chlorocatechol (8.87 {mu}M) were much lower than those of 4-CP (31.50 {mu}M), explaining different toxicity changes of 4-CP in different matrices by gamma-ray treatment. The observed toxicity of gamma-ray treated 4-CP was well correlated with the one calculated from individual toxicity based on EC{sub 50} value.

  15. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bilgili, M. Sinan [Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34349 Istanbul (Turkey)]. E-mail: mbilgili@yildiz.edu.tr

    2006-09-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318 K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson > Langmuir > Toth > Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o} were found as -4.17 (at 298 K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous.

  16. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite.

    Science.gov (United States)

    Koumanova, Bogdana; Peeva-Antova, P

    2002-03-29

    The adsorption of p-chlorophenol (p-CP) from aqueous solutions on bentonite and perlite was studied. These materials are available in large quantities in Bulgaria. Model solutions of various concentrations (1-50 mgdm(-3)) were shaken with certain amounts of adsorbent to determine the adsorption capacity of p-CP on bentonite and perlite as well. The influence of several individual variables (initial adsorbate concentration, adsorbent mass) on the rate of uptake of the studied compound on the adsorbent was determined by carrying out experiments at different contact times using the batch adsorber vessel designed according to the standard tank configuration. Rapid adsorption was observed 20-30 min after the beginning for every experiment. After that, the concentration of p-CP in the liquid phase remained constant. The adsorption equilibrium of p-CP on bentonite and perlite was described by the Langmuir and the Freundlich models. A higher adsorption capacity was observed for bentonite (10.63 mgg(-1)) compared to that for perlite (5.84 mgg(-1)).

  17. Adsorptive Removal of Para-chlorophenol Using Stratified Tapered Activated Carbon Column

    Institute of Scientific and Technical Information of China (English)

    M.EE Sze; G. McKay

    2012-01-01

    The feasibility of adsorptive removal of single component organic compound (para-chlorophenol) by Calgon Filtrasorb 400 (F400) carbon was investigated. The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon. Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons. The Bed Depth Service Time (BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables. When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested, the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics, in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.

  18. 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts.

    Science.gov (United States)

    Bustos-Ramírez, Karina; Barrera-Díaz, Carlos Eduardo; De Icaza-Herrera, Miguel; Martínez-Hernández, Ana Laura; Natividad-Rangel, Reyna; Velasco-Santos, Carlos

    2015-01-01

    Graphite and graphene oxides have been studied amply in the last decade, due to their diverse properties and possible applications. Recently, their functionality as photocatalytic materials in water splitting was reported. Research in these materials is increasing due to their band gap values around 1.8-4 eV, and therefore, these are comparable with other photocatalysts currently used in heterogeneous photocatalytic processes. Thus, this research reports the photocatalytic effectiveness of graphite oxide (GO) and graphene oxide (GEO) in the degradation of 4-chlorophenol (4-CP) in water. Under the conditions defined for this research, 92 and 97% of 4-CP were degraded with GO and GEO respectively, also 97% of total organic carbon was removed. In addition, by-products of 4-CP that produce a yellow solution obtained only using photolysis are eliminated by photocatalyst process with GO and GEO. The degradation of 4-CP was monitored by UV-Vis spectroscopy, High Performance Liquid Chromatography (HPLC) and Chemical Oxygen Demand (COD). Thus, photocatalytic activity to remove 4-CP from water employing GO and GEO without doping is successfully showed, and therefore, a new gate in research for these materials is opened.

  19. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite

    Directory of Open Access Journals (Sweden)

    Atul B. Lavand

    2015-09-01

    Full Text Available C/ZnO/CdS nanocomposite was synthesized using the microemulsion method. Nanocomposite synthesized in the present work was characterized using X-ray diffractometer (XRD, scanning electron microscope (SEM, energy dispersive X-ray spectroscopy (EDX transmission electron microscope (TEM, diffuse reflectance and photoluminescence (PL spectroscopy. TEM study shows that CdS nanoparticles are successfully anchored on the surface of C doped ZnO nanorods. UV–visible spectrum of C/ZnO/CdS nanocomposite shows a red shift. CdS nanoparticles work as photo sensitizers to expand the photo-response of C doped ZnO to the visible region. Photoluminescence (PL spectroscopy reveals evidence for interaction between C/ZnO and CdS. PL quenching observed for C/ZnO/CdS nanocomposite is attributed to improved charge separation properties, which increases its photocatalytic efficiency. C/ZnO/CdS nanocomposite exhibits exceptionally high photocatalytic activity for degradation of 4-chlorophenol (CP via Z-scheme mechanism. C/ZnO/CdS nanocomposite is a highly stable and reusable photocatalyst.

  20. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    Science.gov (United States)

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  1. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: isotherm, kinetic, and thermodynamic analysis.

    Science.gov (United States)

    Bilgili, M Sinan

    2006-09-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson>Langmuir>Toth>Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; DeltaG degrees, DeltaH degrees, and DeltaS degrees were found as -4.17 (at 298K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous.

  2. Removal of phenol and chlorophenols from water by coir pith carbon: equilibrium and rate studies.

    Science.gov (United States)

    Namasivayam, C; Kavitha, D

    2004-07-01

    Batch mode studies were conducted to study the removal of phenol, 2,4,6-Trichlorophenol (TCP) and Pentachlorophenol (PCP) from aqueous solution on coir pith carbon by adsorption process under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Kinetics of adsorption obeyed second order rate equation and the rate constant was found to be in the range 0.0098-0.0672, 0.0949-0.8801 and 0.172-0.305 g/mg/min for phenol, TCP and PCP respectively. Equilibrium adsorption data follow Langmuir isotherm for phenol and PCP and the adsorption capacities were found to be 48.3 mg and 3.7 mg/g, respectively. For TCP, adsorption followed Freundlich isotherm only. Acidic pH was favorable for the adsorption of all the chlorophenols. Studies on pH effect and desorption show that chemisorption seems to play a major rule in the adsorption process. The positive values of H0 24.99, 18.69, and 8.907 kJ/mol for phenol, TCP and PCP respectively, confirm the endothermic nature of adsorption.

  3. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Science.gov (United States)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui; Zhang, Lizhi

    2017-01-01

    In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  4. Novel synergic combinatorial photoelectrochemical technology for degradation of trace of 2-chlorophenol in drinking water

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel combinatorial photoelectrochemical (CPE) technology with combination of ultraviolet (UV)- photolysis and direct current (DC) electrolysis is studied and discussed for drinking water purification. In the self-made compositive photo-electrolysis incorporate reactor, removal rate of the 2-chlorophenol as model environmental pollutants has been investigated experimentally in terms of applied voltage, pH value, flow velocity, temperature, and aeration conditions. A primary analysis of the combinatorial photoelectric synergic effect on the degradation of organic pollutants has been carried out. It is found that the best performance of CPE oxidation is achieved by the following conditions: DC voltage of 5.0 V combined with UV-254-raidation, near neutral of pH 8 with aeration of pure oxygen. The influences of circular velocity, temperature, and initial concentration of the pollutant are minor. Under the optimal conditions, removal ratio of 2-CP is higher than 50% in 30 min, and 100% removal ratio of 2-CP (5 × 10-6) can be reached and TOC removal ratio reached above 90% in 2.5 h. Complete mineralization is achieved eventually. It shows in our investigation that under the studied conditions the synergic effect of UV photolysis and DC electrolysis on the degradation of the model pollutant is remarkable and validated, which may be derived from the coexistence of mutual complementary mechanisms of photoelectrochemical action, and the radicals chain reactions resulted from photo activation and electrolysis excitation in the process of CPE oxidation.

  5. Catalytic Wet Air Oxidation of o-Chlorophenol in Wastewater%邻氯苯酚废水的催化湿式氧化处理

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翚

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatmentof o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence ofcatalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removedby wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperatureof 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited highcatalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCrwas removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had bettercatalytic activity for the degradation of o-chlorophenol in wastewater.

  6. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong [College of Chemistry and chemical engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Chang, Qing, E-mail: changqinghust@163.com [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-01-30

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO{sub 2} nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO{sub 2} nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO{sub 2} to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO{sub 2} nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO{sub 2}, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO{sub 2} P25.

  7. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    Science.gov (United States)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone.

  8. In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring.

    Science.gov (United States)

    Liu, Jia; Niu, Junfeng; Yin, Lifeng; Jiang, Fan

    2011-11-21

    A biosensor based on Trametes versicolor laccase (Lac) was developed for the determination of phenolic compounds. The biosensor was prepared by in situ electrospinning of a mixture of polyvinyl alcohol (PVA), Lac, PEO-PPO-PEO (F108) and gold nanoparticles (Au NPs), where F108 was used as an enzyme stabilizing additive and Au NPs was used to enhance the conductivity of the biosensor. Laser confocal scanning microscopy and electrochemical impedance spectroscopy proved that the enzyme was successfully encapsulated into the electrospun nanofibers. Under the optimal conditions, the lowest detection limit was found to be 0.04 μM (S/N = 3) for 2,4-DCP and the highest detection limit was found to be 12.10 μM for 4-CP. The sensitivity of the biosensor obtained in the linear range for chlorophenols followed the sequence 2,4-dichlorophenol (2,4-DCP) > 2,4,6-trichlorophenol (2,4,6-TCP) > 4-chlorophenol (4-CP). The sensing performance for chlorophenols was attributed to the suitable electrochemical interface of PVA/F108/Au NPs/Lac, resulting from biocompatibility, a high surface area-to-volume ratio (10.42 m(2) g(-1)) and superior mechanical properties of the electrospun nanofibers. The biosensor exhibited good repeatabilities of 7.6%, 2.8% and 9.0% (R.S.D.) and reproducibilities of 14.9%, 10.4% and 13.7% (R.S.D.) for 4-CP, 2,4-DCP and 2,4,6-TCP, respectively. Lac retained 65.8% of its initial activity after a 30-day storage period.

  9. Fluorescence resonance energy transfer in AOT/4-chlorophenol/m-xylene organogels

    Energy Technology Data Exchange (ETDEWEB)

    Dandapat, Manika; Mandal, Debabrata, E-mail: dmandal.chemistry@gmail.com

    2015-06-15

    Fluorescence Resonance Energy Transfer (FRET) between donor coumarins (C102 and C153) and acceptor Rhodamine 6G were studied in AOT/4-chlorophenol/m-xylene organogels. The gel comprises a three-dimensional network of fiber bundles trapping the m-xylene solvent. Each fiber is an aggregate of several strands, and each strand consists of a central columnar stack of the phenols, surrounded by AOT headgroups. Our acceptor is ionic so that it was concentrated near the polar center of the strand, while the neutral donors were likely distributed over a wider region. With C153 as donor, clear evidence of FRET (time-constant~100 ps) was found, which indicated that the donor and acceptor may reside in neighboring strands within the same fiber. However, with C102 as donor, FRET probably occurred over an ultrashort, sub-picosecond time-scale suggesting that the donor and acceptor in this case resided in close vicinity. Thus, C102 tends to localize near the polar centre of the strands, compared to the more hydrophobic C153, which prefers to occupy the relatively non-polar peripheral regions of the strands and fibers. - Highlights: • FRET between coumarin donors and Rhodamine 6G acceptor studied in AOT organogels. • With Coumarin 153 donor, a ~100 ps FRET component detected in both donor and acceptor fluorescence. • With Coumarin 102 donor, FRET component too short to be detected with a time-resolution of ~70 ps. • The FRET rates reveal crucial differences in donor–acceptor distances for the two coumarin donors.

  10. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Li; Haidong Zhang; Xuxu Zheng; Zhongyi Yin; Le Wei

    2011-01-01

    N-F-codoped TiO2 (NFTO) photocatalysts were synthesized by a simple sol-gel process with tetrabutyl titanate (Ti(OBu)4) as the precursor of TiO2 and ammonium fluoride (NH4F) as the source of N and F.The synthesized photocatalysts were investigated by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photodegradation reaction tests of 4-chlorophenol under visible light irradiation to understand the relationship between the structure of NFTO catalyst and corresponding photocatalytic activity.The crystal phase and particle size of catalysts were found to be largely affected by the calcination temperature.In addition,N-F-codoping could inhibit phase transition of TiO2 from anatase to rutile.The presence of N and F atoms in the lattice of TiO2 is responsible for the visible light catalytic activity.In UV-Vis DRS tests,the spectrum of NFTO exhibited red shift compared with Degussa P25 and the band gap was reduced to around 2.92 eV.Under optimal calcination temperature and dopant concentration conditions,the NFTO photocatalyst exhibited the highest activity in the photodegradation reaction tests of 4-chlorophenol under visible light irradiation with a degradation rate of 75.84%.Besides,the 5-recycle test showed that NFTO photocatalyst could be reused and its activity kept stable under visible light irradiation.

  11. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2015-10-01

    Full Text Available Polychlorinated naphthalenes (PCNs are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs and polychlorinated dibenzofurans (PCDFs in thermal and combustion procedures. Chlorophenols (CPs are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT with small curvature tunneling contribution (SCT method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential.

  12. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.

  13. Trace analysis of chlorophenols in river water samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, M.; Ishii, Y.; Okanouchi, N.; Sakui, N.; Ito, R.; Inoue, K.; Nakazawa, H. [Hoshi Univ., Tokyo (Japan). Dept. of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Saito, K. [Saitama Institute of Public Health, Saitama (Japan). Dioxin Research Group

    2004-09-15

    Many analytical methods for the determination of chlorophenols in water samples have been reported including gas chromatography-mass spectrometry (GC-MS). However, GC-MS was initially used for the determination of phenol compounds even though derivatization was required. The derivatization leads to sharper peaks and hence to better separation and higher sensitivity for the phenols. However, the derivatization faces the risk of contamination and hence an overestimation of chlorophenols concentration. In order to overcome these problems, in situ derivatization has been developed, which involves the simple addition of a reagent to a liquid sample. Recently, a new sorptive extraction technique that uses a stir bar coated with polydimethylsiloxane (PDMS) was developed. The technique is known as stir bar sorptive extraction (SBSE). We already reported that determination of 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in river water4 and body fluid samples by using SBSE. In addition, SBSE with in situ derivatization has been successfully used in the determination of bisphenol A (BPA) in human body fluid samples6 and phenolic xenoestrogens in river water samples. The aim of this study is to determine trace amounts of chlorophenols in water samples by SBSE with in situ derivatization, followed by thermal desorption (TD)-GC-MS. The developed method was applied to determination of chlorophenols in river water samples.

  14. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    Science.gov (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  15. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong; Wang, Yifan; Wang, Xiaodong; Li, Mengting; Han, Fei; Ju, Luyu; Zhang, Ge; Shi, Li; Li, Kai; Wang, Bingfeng [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-05-30

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (K{sub A}) of 0.07 × 10{sup 4} L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system.

  16. The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalcite/clay composite.

    Science.gov (United States)

    Zhou, Shiwei; Gu, Chuantao; Qian, Zhenying; Xu, Jinguang; Xia, Chuanhai

    2011-05-15

    Liquid phase catalytic oxidation of chlorophenols (CPs) was carried out over Cu-Al hydrotalcite/clay composite at ambient temperature and pressure using hydrogen peroxide as oxidant. The results showed that the catalyst had high catalytic activity, with complete oxidation of 4-CP within 40 min at 40 °C. The content and position of chlorine on the aromatic ring had significantly different effects on the oxidation rate of CPs, with the rate sequence of phenol > monochlorophenol (MCP) > dichlorophenol (DCP) > trichlorophenol (TCP), 3-CP > 2-CP > 4-CP, and 3,5-DCP > 3,4-DCP > 2,5-DCP > 2,4-DCP > 2,6-DCP. This was ascribed to the interactions among σ-electron withdrawing conductive effect, π-electron donating conjugative effect, and steric hindrance effect of chlorine. It was evidenced that the catalytic peroxide oxidation of CPs in the first step was selective and rate-limiting, where chlorinated 1,4-benzoquinones formed.

  17. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, R.; Kothari, D. C. [Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Patel, N.; Miotello, A. [Dipartimento di Fisica, Universita degli Studi di Trento, I-38123 Povo ( Trento) (Italy)

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  18. Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors.

    Science.gov (United States)

    Murcia, M D; Gómez, M; Bastida, J; Hidalgo, A M; Montiel, M C; Ortega, S

    2014-08-01

    A continuous tank reactor was used to remove 4-chlorophenol from aqueous solutions, using immobilized soybean peroxidase and hydrogen peroxide. The influence of operational variables (enzyme and substrate concentrations and spatial time) on the removal efficiency was studied. By using the kinetic law and the intrinsic kinetic parameters obtained in a previous work with a discontinuous tank reactor, the mass-balance differential equations of the transient state reactor model were solved and the theoretical conversion values were calculated. Several experimental series were used to obtain the values of the remaining model parameters by numerical calculation and using an error minimization algorithm. The model was checked by comparing the results obtained in some experiments (not used for the determination of the parameters) and the theoretical ones. The good concordance between the experimental and calculated conversion values confirmed that the design model can be used to predict the transient behaviour of the reactor.

  19. Oxo iron(IV) as an oxidative active intermediate of p-chlorophenol in the Fenton reaction: a DFT study.

    Science.gov (United States)

    Mignon, Pierre; Pera-Titus, Marc; Chermette, Henry

    2012-03-21

    Debate continues over which active species plays the role of oxidative agent during the Fenton reaction-the HO˙ radical or oxo iron [Fe(IV)O](2+). In this context, the present study investigates the oxidation of p-chlorophenol by [Fe(IV)O(H(2)O)(5)](2+) using DFT calculations, within gas-phase and micro-solvated models, in order to explore the possible role of oxo iron as a reactant. The results show that the chlorine atom substitution of p-chlorophenol by oxo iron is a highly stabilising step (ΔH = -83 kcal mol(-1)) with a free energy barrier of 5.8 kcal mol(-1) in the micro-solvated model. This illustrates the high oxidising power of the [Fe(IV)O(H(2)O)(5)](2+) complex. On the other hand, the breaking of the Fe-O bond, leading to the formation of hydroquinone, is observed to be the rate-determining step of the reaction. The rather large free energy barrier corresponding to this bond cleavage amounts to 10.2 and 9.3 kcal mol(-1) in the gas-phase and micro-solvated models, respectively. Elsewhere, the lifetime of the HO˙ radical has previously been shown to be extremely small. These facts, combined with observations of oxo iron under certain experimental conditions, suggest that oxo iron is a highly plausible oxidative species of the reaction. In addition, a trigonal bipyramidal iron complex, coordinated either by hydroxyl groups and/or by water molecules, has been found in all described mechanisms. This structure appears to be a stable intermediate; and to our knowledge, it has not been characterised by previous studies.

  20. Comparison of dissociation mechanism between collisionally activated dissociation and charge inversion using alkali metal targets for chlorophenol isomers

    Science.gov (United States)

    Hayakawa, Shigeo; Kawamura, Yoshiaki; Takahashi, Yutaka

    2005-11-01

    Chlorinated aromatic compounds are well-known environmental pollutants whose toxicities depend dramatically on the chlorine substitution pattern, making differentiation of chlorophenol isomers important for environmental analysis. Collisionally activated dissociation (CAD) spectra and charge inversion spectra of ortho-, meta-, and para-chlorophenols (ClC6H4OH) and their partially deuterated forms (ClC6H4OD) were measured using alkali metal targets. The peaks associated with C6H4O+ and C5H5Cl+ ions observed in the CAD spectra result from the loss of HCl and CO fragments, respectively, after the re-arrangement of the hydroxyl hydrogen atom. The peaks associated with C6H4OH- and ClC6H4O- ions observed in the charge inversion spectra result from Cl loss and from hydroxyl bond dissociation, respectively. Isomeric differentiation is possible based on the clear differences observed in the relative intensities of these pairs of peaks. Although the intensities of the peaks associated with C6H4O+ relative to those of C5H5Cl+ in the CAD spectra are independent of the target species, the intensities of the peaks associated with C6H4OH- relative to those of ClC6H4O- in the charge inversion spectra are target dependent. The isomeric dependence of the positive ion distribution patterns in the CAD spectra is proposed to be due to the differences in the rate of the hydrogen atom re-arrangement process. In contrast, the isomeric dependence of the negative ion distribution patterns in the charge inversion spectra is attributed to differences in the bond strength involved in the direct dissociation process in the neutral intermediate species.

  1. CHLOROPHENOL DEGRADATION BY ELECTROCATALYSIS COMBINED WITH UV RADIATION%电催化与紫外光辐射降解氯酚

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 叶倩; 周明华; 丛燕青

    2002-01-01

    @@ Chlorinated organic compounds, especially chlorophenols are well-known water priority pollutant family due to their toxicity and potential health hazard. As biological treatment processes for the degradation of chlorinated phenols have not been effective, various technologies and processes such as activated carbon adsorption[1], chemical oxidation[2], have been conventionally attempted for phenolic waster treatment. Recently, advanced oxidation processes (AOPs) have attracted a great deal of attention for treatment of phenolic wastewater, among these chemical oxidation ultraviolet (UV) oxidation system[3], anodic oxidation and indirect electro-oxidation have been widely studied[4]. Though a number of researchers worked on the degradation of chlorophenol by UV radiation or electrochemical processes, there are few reports on both methods for organic wastewater treatment. If these two processes can operate in harmony, the degradation efficiency would be enhanced.

  2. Ecotoxicological evaluation of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol.

    Science.gov (United States)

    Davoren, M; Fogarty, A M

    2005-02-01

    The ecotoxicological effects of three biocidal agents frequently employed as active ingredients in phenolic-based disinfectants were evaluated using a test battery comprising of organisms representing three aquatic trophic levels. Phenolic-based disinfectants are commonly used by mushroom growers to disinfect spent mushroom compost. In general, the most sensitive assay used in this study was the Microtox test. In the case of the fish lethality assay, sodium o-benzyl-p-chlorophenol was found to be slightly more sensitive than the bacterial test system. The freshwater alga and invertebrate tests were also among the most sensitive test species employed. The active ingredient, sodium o-benzyl-p-chlorophenol (with the exception of the Microtox assay), was the most toxic chemical tested on each species. The majority of ecotoxicity data obtained in this research has not been previously reported and may therefore assist in the management and planning decisions regarding the application of pesticides and utilisation of SMC.

  3. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater.

    Science.gov (United States)

    Xia, Chuanhai; Liu, Ying; Zhou, Shiwei; Yang, Cuiyun; Liu, Sujing; Xu, Jie; Yu, Junbao; Chen, Jiping; Liang, Xinmiao

    2009-09-30

    Catalytic hydrotreating of chlorophenols was carried out in water with Pd/C at 25 degrees C under atmospheric pressure. 1.0% (w/w) monocholophenols was completely dechlorinated within 60 min. Phenol, cyclohexanone and cyclohexanol were formed. In contrast to the dechlorination of monochlorophenols, the hydrogenation reaction of polychlorinated phenols became difficult and reaction rates were strongly dependent upon the number of the chlorine atoms. The solvent property had a considerably important influence on the dechlorination reaction. Water as a solvent showed more advantages than organic solvents. It was much easier to be hydrodechlorinated for chlorophenols in aqueous solutions. However, the presence of THF, dioxane, DMSO or DMF in water was disadvantageous to the reaction and easily to cause Pd/C deactivation. Additionally, when different halogenated organic compounds were present in aqueous solution, the dehalogenation reaction was the competitive hydrogenation process.

  4. Development and validation of a simple thin-layer chromatographic method for the analysis of p-chlorophenol in treated wastewater

    Directory of Open Access Journals (Sweden)

    Tešić Živoslav

    2012-01-01

    Full Text Available A thin-layer chromatographic method with densitometric detection was established for quantification of p-chlorophenol in waste water. Degradation efficiency of p-chlorophenol was monitored after each treatment of the wastewater samples. Degradation of p-chlorophenol was performed with advanced oxidation processes (AOPs, using UV, H2O2/UV, O3/H2O2/UV, O3 and O3/UV. Developed TLC procedure has been found to be simple, rapid and precise. The method was characterized by high sensitivity (limit of detection was 11 ng per band and limit of quantification 35 ng per band, linear range (from 75 to 500 ng per band, r = 0.9965, and high precision, accuracy (mean percentage recovery 98.6%, and specificity. Additionally, the efficiency of degradation was monitored using HPLC giving comparable results with RP TLC measurements. [Acknowledgement. This work was performed within the framework of the research project No. 172017 supported by the Ministry of Education and Science of Serbia.

  5. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    Science.gov (United States)

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  6. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.

    Science.gov (United States)

    Fan, Jinhong; Wang, Hongwu; Ma, Luming

    2016-08-01

    The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe(0)-Al(0) significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Fe(II)(ox)0] and [Fe(II)(ox)2 (2-)]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe(2+) and Al(3+), their fate, and the activation mechanisms of O2 reduction. The degradation pathway of 4-CP in ox-enhanced Fe(0)-Al(0)/O2 may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al(0)-Fe(0)-O2 process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe(0)-Al(0)/O2 system for the oxidative degradation of aqueous organic pollutants.

  7. Rapid, one-pot derivatization and distillation of chlorophenols from solid samples with their on-line enrichment.

    Science.gov (United States)

    Ganeshjeevan, R; Chandrasekar, Raghavan; Kadigachalam, Parasuraman; Radhakrishnan, Ganga

    2007-01-26

    A microwave-assisted steam distillation (MASD) sample preparation technique for extracting chlorophenols from solid samples was studied. This open vessel microwave system based study developed as an integrated method since it has incorporated extractive distillation, derivatization and on-line enrichment. Gas chromatography (GC) with electron-capture detection was used for the analysis. The study involved optimization of MASD parameters and on-line enrichments using spiked solid samples. MASD achieved recoveries for spiked soil samples in the range of 94-101% within 20min with a collection of only 20ml distillate facilitating on-line enrichment. Some real samples were analyzed that included soil, wood, leather, textiles, dyes and certified reference materials of soil and wood samples. Limit of detection values of 12ng/g for pentachlorophenol and 194ng/g for monochlorophenol were found. Recoveries of 96.6% in the case of soil certified reference material (CRM) with RSD 2.7% and 80.6% in the case of wood CRM with RSD 3.3% were observed in this study. MASD studied found to produce very clean extracts in comparison to reference techniques.

  8. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater.

  9. Sol-Gel Synthesis and Characterizations of CoMoO4 Nanoparticles: An Efficient Photocatalytic Degradation of 4-Chlorophenol.

    Science.gov (United States)

    Umapathy, V; Neeraja, P

    2016-03-01

    Cobalt molybdate CoMoO4 nanoparticles (NPs) were successfully synthesized using cobalt nitrate, ammonium molybdate, citric acid and ethyl cellulose by a simple sol-gel method. Structural, morphological, optical and magnetic properties of the obtained powder were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, high resolution scanning electron microscope (HR-SEM), energy dispersive X-ray (EDX), UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results indicated that the resultant powder was pure single phase crystalline with monoclinic structure. FT-IR spectra indicate the type of bonds between metals and oxygen. HR-SEM images shows that the morphology of the powder consist with well defined nanoparticles (NPs) structure. VSM results showed antiferromagnetic behavior. Photo-catalytic activity of CoMoO4 nanoparticles (NPs) was performed. The addition of TiO2 catalyst enhanced the photo-catalytic activity of CoMoO4 nanoparticles (NPs). The catalysts CoMoO4, Ti02 and mixed oxide catalyst CoMoO4-TiO2 nano- composites (NCs) were tested for the photo-catalytic degradation (PCD) of 4-chlorophenol (4-CP). It was found that the PCD efficiency of CoMoO4-TiO2 NCs was higher (97.5%) than that of pure CoMoO4 (88.0%) and TiO2 (94.0%) catalysts.

  10. Comparison of reactors for oxygen-sensitive reactions: reductive dechlorination of chlorophenols by vitamin b(12s).

    Science.gov (United States)

    Smith, M H; Woods, S L

    1994-11-01

    Serum bottles are frequently used for studies of reductive dechlorination by vitamin B(12), but reducing conditions can be maintained only for several days. This time period is inadequate for evaluating the reductive dechlorination of some slow-reacting aromatic compounds. Sealed glass ampoules maintain reducing conditions for many months, but this method has the disadvantage of disallowing subsampling of the reaction mixture. A glass serum tube was modified for these experiments which not only maintained anoxic conditions for several days but also allowed subsamples to be removed during experiments. The modification was a restriction placed in the middle of the tube by heating in a flame, creating two chambers separated by a narrow neck. The lower chamber contained the oxygen-sensitive reaction mixture. The upper chamber, sealed with a septum and screw cap, was purged with purified nitrogen or argon introduced and vented through fused silica capillaries. Reductive dechlorination of chlorophenols by vitamin B(12) reduced with Ti(III) citrate was monitored in all three reactor types. Sealed ampoules maintained reducing conditions for up to 12 months. The two-chambered reactor maintained reducing conditions longer than the serum vials when frequent samples were taken.

  11. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1.

    Science.gov (United States)

    Wang, Qing; Li, Yi; Li, Jing; Wang, Yuming; Wang, Chao; Wang, Peifang

    2015-01-01

    This study investigated the kinetics of phenol and 4-chlorophenol (4-CP) biodegradation by a cold-adapted bacteria, Pseudomonas putida LY1, isolated from Songhua River sediment. The results showed that P. putida LY1 cannot grow on 4-CP as a sole carbon source. P. putida LY1 had the potential to cometabolic biodegrade phenol and 4-CP in a wide range of temperature (varying from 5 to 35 °C) with the optimal temperature around 25 °C. Mixture of phenol and 4-CP were completely removed at two 4-CP concentrations (15 and 40 mg/L) over a wide range of phenol (20-400 mg/L) concentrations, whereby the ratio of 4-CP/biomass (S 2/X) was lower than 0.03. The kinetic models of cometabolic biodegradation of phenol and 4-CP were proposed, considering the growth and nongrowth substrate inhibition. These models successfully simulate the processes of cometabolic degradation of phenol and 4-CP.

  12. Simultaneous 4-chlorophenol and nitrogen removal in moving bed sequencing batch reactors packed with polyurethane foam cubes of various sizes.

    Science.gov (United States)

    Lim, Jun-Wei; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-02-01

    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.

  13. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    Science.gov (United States)

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions.

  14. Novel iron metal matrix composite reinforced by quartz sand for the effective dechlorination of aqueous 2-chlorophenol.

    Science.gov (United States)

    Zhang, Yunfei; Yang, Bo; Han, Yanni; Jiang, Chaojin; Wu, Deli; Fan, Jinhong; Ma, Luming

    2016-03-01

    In this work, we tested a novel iron metal matrix composite (MMC) synthesized by mechanically introducing quartz sand (SiO2) into an iron matrix (denoted as SiO2-Fe MMC). The pseudo-first-order reaction rate constant of the SiO2-Fe MMC (initial pH 5.0) for 20 mg/L of 2-chlorophenol (2-CP) was 0.051 × 10(-3) L/m(2)/min, which was even higher than that of some reported Pd/Fe bimetals. This extraordinary high activity was promoted by the quick iron dissolution rate, which was caused by the formation of Fe-C internal electrolysis from carbonization of process control agent (PCA) and the active reinforcement/metal interfaces during the milling process. In addition, pH has slight effect on the dechlorination rate. The SiO2-Fe MMC retained relatively stable activity, still achieving 71% removal efficiency for 2-CP after six consecutive cycles. The decrease in dechlorination efficiency can be attributed to the rapid consumption of Fe(0). A dechlorination mechanism using the SiO2-Fe MMC was proposed by a direct electron transfer from Fe(0) to 2-CP at the quartz sand/iron interface.

  15. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    Science.gov (United States)

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  16. Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Kashif Naeem; Feng Ouyang

    2013-01-01

    The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2)under UV irradiation was examined.The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency.Among the three supports,namely activated carbon (AC),silica (SiO2) and zeolite (ZSM-5),all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone.The optimum concentration was found to be 50 mg for all supporting materials.The efficiency order of the three supports was as follows:AC > ZSM-5 > SiO2,respectively.Whilst,the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%,respectively,within 120 min photocatalysis in the presence of optimal amount of AC.The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.

  17. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Zhang, Zhiqiang; Zhong, Fohua; Zhang, Jiao

    2011-02-28

    A continuously stirred hydrogen-based membrane biofilm reactor (MBfR) with polyvinyl chloride (PVC) hollow fiber membrane was investigated for removing 2-chlorophenol (2-CP) from contaminated drinking water. The bioreactor startup was achieved by acclimating the microorganisms from a denitrifying and sulfate-reducing MBfR to the drinking water contaminated by 2-CP. The effects of some major factors, including 2-CP loading, H(2) pressure, nitrate loading, and sulfate loading, on the removal of 2-CP by the MBfR were systematically investigated. Although the effluent 2-CP concentration increased with its increasing influent loading, the removing efficiency of 2-CP by the MBfR could be up to 94.7% under a high influent loading (25.71 mg/L d). The removing efficiency of 2-CP by the MBfR could be improved by higher H(2) pressure, and lower influent nitrate concentration and sulfate concentration. A high H(2) pressure can assure enough available H(2) as the electron donor for 2-CP degradation. The competition in the electron donor made nitrate and sulfate inhibit the degradation of 2-CP in the MBfR. The electron flux analyses indicated that the degradation of 2-CP only accounted for a small part of electron flux, and the autohydrogenotrophic bacteria in the MBfR were highly efficient for the 2-CP removal.

  18. 2-氯酚在超临界水-NaOH体系中的脱氯特性%Dechlorination characteristics of o-chlorophenol in supercritical water-sodium hydroxide system

    Institute of Scientific and Technical Information of China (English)

    孙治荣; 马林; 韩延波

    2012-01-01

    The dechlorination characteristics of o-chlorophenol in supercritical water-sodium hydroxide system were studied.The conversion of o-chlorophenol,the yield of chloride ion and the dechlorination selectivity were investigated in the presence of sodium hydroxide.Results indicated that sodium hydroxide could significantly improve the conversion of o-chlorophenol,the yield of chloride ion and the dechlorination selectivity.The conversion of o-chlorophenol was improved with the increase of the additive amount of sodium hydroxide.o-chlorophenol conversed completely at residence time of 27 s under the conditions of 460 ℃,25 MPa,and the molar ratio of sodium hydroxide to o-chlorophenol of 1 to 1.%研究了2-氯酚在超临界水-NaOH体系中的脱氯特性,考察了NaOH添加对2-氯酚转化率、Cl-生成率、脱氯选择性等的影响。实验结果表明,NaOH的添加能够显著提高2-氯酚的转化率、Cl-的生成率和脱氯选择性。2-氯酚的转化率随着NaOH添加量的增大而增大,460℃、25 MPa条件下,NaOH添加量与2-氯酚的摩尔比为1∶1时,停留时间27 s时可实现2-氯酚的完全转化。

  19. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles.

  20. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanlin [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Fan, Guangyin, E-mail: fanguangyin@cwnu.edu.cn [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Wang, Chenyu [Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 (United States)

    2014-06-01

    Graphical abstract: The Rh nanoparticles/reduced graphene oxide (Rh NPs/RGO) nanocatalyst synthesized by a solvothermal technique showed high activity and stability for the hydrodechlorination of 4-chlorophenol under mild conditions. - Highlights: • Rh/RGO was synthesized through a one-pot polyol reduction of GO and RhCl{sub 3}. • Complete HDC of 4-chlorophenol was obtained in aqueous phase without any additive. • The Rh/RGO exhibited an excellent catalytic performance for HDC reaction. - Abstract: Reduced graphene oxide (RGO) supported rhodium nanoparticles (Rh-NPs/RGO) was synthesized through one-pot polyol co-reduction of graphene oxide (GO) and rhodium chloride. The catalytic property of Rh-NPs/RGO was investigated for the aqueous phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP). A complete conversion of 4-CP into high valued products of cyclohexanone (selectivity: 23.2%) and cyclohexanol (selectivity: 76.8%) was successfully achieved at 303 K and balloon hydrogen pressure in a short reaction time of 50 min when 1.5 g/L of 4-CP was introduced. By comparing with Rh-NPs deposited on the other supports, Rh-NPs/RGO delivered the highest initial rate (111.4 mmol/g{sub Rh} min) for 4-CP HDC reaction under the identical conditions. The substantial catalytic activity of Rh-NPs/RGO can be ascribed to the small and uniform particle size of Rh (average particle size was 1.7 ± 0.14 nm) on the surface of the RGO sheets and an electron-deficient state of Rh in the catalyst as a result of the strong interaction between the active sites and the surface function groups of RGO.

  1. Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Aghakhani, Ali; Baghernejad, Masoud; Akbarinejad, Alireza [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2012-02-24

    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200 nm for polyamide nanofibers with a homogeneous and porous surface structure. The extraction efficiency of new coating was investigated for headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Effect of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength and polyamide amount were investigated and optimized. In order to improve the chromatographic behavior of phenolic compounds, all the analytes were derivatized prior to the extraction process using basic acetic anhydride. The detection limits of the method under optimized conditions were in the range of 2-10 ng L{sup -1}. The relative standard deviations (RSD) (n = 3) at the concentration level of 1.7-6.7 ng mL{sup -1} were obtained between 1 and 7.4%. The calibration curves of chlorophenols showed linearity in the range of 27-1330 ng L{sup -1} for phenol and monochlorophenols and 7-1000 ng L{sup -1} for dichloro and trichlorophenols. Also, the proposed method was successfully applied to the extraction of phenol and chlorophenols from real water samples and relative recoveries were between 84 and 98% for all the selected analytes except for 2,4,6 tricholophenol which was between 72 and 74%.

  2. Photocatalytic Degradation of 2-Chlorophenol Using Ag-Doped TiO2 Nanofibers and a Near-UV Light-Emitting Diode System

    OpenAIRE

    Ju-Young Park; In-Hwa Lee

    2014-01-01

    This report investigated the photocatalytic degradation of 2-chlorophenol using TiO2 nanofibers and Ag-doped TiO2 nanofibers, synthesized using the sol-gel and electrospinning techniques, and an ultraviolet light-emitting diode (UV-LED) system as a UV light source. The crystallite size of the Ag-doped TiO2 nanofibers was smaller than that of the TiO2 nanofibers, because silver retrained phase transformation not only controls the phase transformation but also inhibits the growth of anatase cry...

  3. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in leather.

    Science.gov (United States)

    de Souza Silveira, Cristine D; Martendal, Edmar; Soldi, Valdir; Carasek, Eduardo

    2012-02-01

    This paper proposes a new analytical procedure based on the headspace solid-phase microextraction (HS-SPME) technique and gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) for the determination of 16 phenols extracted from leather samples. The optimized conditions for the HS-SPME were obtained through two experimental designs - a two-level fractional factorial design followed by a central composite design - using the commercial SPME fiber polyacrylate 85 μm (PA). The best extraction conditions were as follows: 200 μL of derivatizing agent (acetic anhydride), 20 mL of saturated aqueous NaCl solution and extraction time and temperature of 50 min and 75°C, respectively. All optimized conditions were obtained with fixed leather sample mass (250 mg), vial volume (40 mL) and phosphate buffer pH (12) and concentration (50 mmol/L). Detection limits ranging from 0.03 to 0.20 ng/g, and relative standard deviation (RSD) lower than 10.23% (n=6) for a concentration of 800 ng/g (chlorophenols) and 1325 ng/g (2-phenylphenol) in the splitless mode were obtained. The recovery was studied at three concentration levels by adding different amounts of phenols to the leather sample and excellent recoveries ranging from 90.0 to 107.2% were obtained. The validated method was shown to be suitable for the quantification of phenols in leather samples, as it is simple, relatively fast and sensitive.

  4. Solar photocatalytic degradation of chlorophenols mixture (4-CP and 2,4-DCP): Mechanism and kinetic modelling.

    Science.gov (United States)

    Abeish, Abdulbasit M; Ang, Ha Ming; Znad, Hussein

    2015-01-01

    The solar-photocatalytic degradation mechanisms and kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) using TiO2 have been investigated both individually and combined. The individual solar-photocatalytic degradation of both phenolic compounds showed that the reaction rates follow pseudo-first-order reaction. During the individual photocatalytic degradation of both 4-CP and 2,4-DCP under the same condition of TiO2 (0.5 g L(-1)) and light intensities (1000 mW cm(-2)) different intermediates were detected, three compounds associated with 4-CP (hydroquinone (HQ), phenol (Ph) and 4-chlorocatechol (4-cCat)) and two compounds associated with 2,4-DCP (4-CP and Ph). The photocatalytic degradation of the combined mixture (4-CP and 2,4-DCP) was also investigated at the same conditions and different 2,4-DCP initial concentrations. The results showed that the degradation rate of 4-CP decreases when the 2,4-DCP concentration increases. Furthermore, the intermediates detected were similar to that found in the individual degradation but with high Ph concentration. Therefore, a possible reaction mechanism for degradation of this combined mixture was proposed. Moreover, a modified Langmuir-Hinshelwood (L-H) kinetic model considering all detected intermediates was developed. A good agreement between experimental and estimated results was achieved. This model can be useful for scaling-up purposes more accurately as its considering the intermediates formed, which has a significant effect on degrading the main pollutants (4-CP and 2,4-DCP).

  5. Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: statistical modeling and optimization using RSM

    Science.gov (United States)

    Leong, Kwok-Yii; See, Sylvia; Lim, Jun-Wei; Bashir, Mohammed J. K.; Ng, Choon-Aun; Tham, Leony

    2016-02-01

    Results of the interaction of process variables and the consequential mixture of phenolic compounds adsorption study are expected to shed brighter light on the wastewater treatment applications. Accordingly, the aims of this research are to model and optimize the process variables which impinged on the simultaneous adsorption of phenol and 4-chlorophenol (4-CP) in the binary solution by spherical activated carbon (SAC). Batch assessments were designed using response surface methodology software. The process variables, namely SAC dosage and pH were varied over the 1.50-3.50 g/L and 4.00-9.00 g/L ranges, respectively, were experimented. The analysis of variance results showed the significant models could precisely predict the percentage removals of phenol and 4-CP, indicating models reliability. The interaction of process variables was inconspicuous for the case of phenol adsorption. However, increasing the pH would deteriorate the 4-CP adsorption which was partially offset by raising the SAC dosage. Considering the environmental benefits, optimization taken place at the SAC dosage and pH of 3.50 g/L and 7.60 g/L, respectively, was selected. By employing the optimized conditions of SAC dosage of 3.50 g/L at pH 7.60 for the adsorption process, the predicted phenol and 4-CP removal percentages were found to be 85.4 % (73.1 mg/g) and 96.2 % (82.6 mg/g), respectively, which were in agreement with the experimental runs.

  6. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong, E-mail: zhangjd@mail.hust.edu.cn

    2015-06-15

    Highlights: • Pd and reduced graphene oxide are deposited on foam-Ni via electrodeposition. • Pd particles supported on RGO possess large active surface area. • Pd/RGO/foam-Ni shows high electrocatalytic activity for dechlorination of 4-CP. • 100% 4-CP can be removed on Pd/RGO/foam-Ni under optimum ECH conditions. - Abstract: A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na{sub 2}SO{sub 4} concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol{sup −1}. Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  7. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples.

    Science.gov (United States)

    Ho, Hsin-Pin; Lee, Ren-Jye; Lee, Maw-Rong

    2008-12-12

    A simple, economical and very effective method is demonstrated for simultaneous determination of 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol, in aqueous samples, by using purge-assisted headspace solid-phase microextraction (PA/HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). In the new method, purging the sample enhances the removal of the trace chlorophenols without derivatization from the matrices to the headspace. Extraction parameters including extraction temperature, purge gas flow rate and extraction time were systematically investigated. Under optimal conditions, the relative standard deviations (RSDs) were 4-11% at 50 pg/mL and 5-14% at 5 pg/mL, respectively. The recoveries were in the range of 83-114%. Detection limits were determined at the fg level. These results indicate that PA/HS-SPME provides a significant contribution to highly efficient extraction of semi-volatile CPs, especially for pentachlorophenol, which has the smallest Henry's constant and large octanol-water partitioning coefficient. In addition, the proposed method was successfully applied to the analysis of chlorophenols in landfill leachate. New perspectives are opened for headspace extraction of relatively low vapor pressure compounds in complex matrices.

  8. Influence of Phases Content on Pt/TiO2, Pd/TiO2 Catalysts for Degradation of 4-Chlorophenol at Room Temperature

    Directory of Open Access Journals (Sweden)

    D. S. García-Zaleta

    2016-01-01

    Full Text Available Different Pt/TiO2 and Pd/TiO2 catalysts were prepared by sol-gel method. The influence of different amounts of noble metals (1–5 mol-% present on the microstructure as well as the photocatalytic property under 4-chlorophenol degradation was evaluated. The anatase phase was favored at low Pt content; however, the apparition of new phases after 3 mol-% (PtO suggests a saturation lattice considering our solubility limit at 1 mol-%. Similar trend was observed when Pd was added to the TiO2 lattice. The as-prepared catalysts were deeply characterized by X-ray diffraction (XRD with the Rietveld Method, Raman spectroscopy, high resolution scanning electron microscopy (HRSEM, scanning transmission electron microscopy (STEM, Brunauer-Emmett-Teller (BET adsorption analysis, and X-Ray photoelectron spectroscopy (XPS. Unit-cell parameter of TiO2 phases varied from 30 to 93 vol-% depending on the amount of Pt or Pd added to the composite. HRTEM and HRSEM identified the phases in the catalysts and confirmed the nanometric size and morphology of the catalysts. An improvement in removal efficiency of 4-chlorophenol was obtained in all the specimens compared with the commercial Degussa P25, which can be explained in terms of phase composition and modification of the band gap.

  9. Suitability of dispersive liquid-liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry.

    Science.gov (United States)

    Saraji, Mohammad; Ghambari, Hoda

    2015-10-01

    Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.

  10. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: laboratory and model assessment of the degradation kinetics, and comparison with field data.

    Science.gov (United States)

    Sur, Babita; De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with OH. NCP has a polychromatic photolysis quantum yield Φ(NCP)=(1.27±0.22)·10(-5), a rate constant with OH k(NCP,)(OH)=(1.09±0.09)·10(10) M(-1) s(-1), a rate constant with (1)O(2)k(NCP,1O2)=(2.15±0.38)·10(7) M(-1) s(-1), a rate constant with the triplet state of anthraquinone-2-sulphonate k(NCP,3AQ2S*)=(5.90±0.43)·10(8) M(-1) s(-1), and is poorly reactive toward CO(3)(-). The k(NCP,3AQ2S*) value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhône delta (Southern France).

  11. Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: Kinetics, intermediates, phytotoxicity and acute toxicity

    Institute of Scientific and Technical Information of China (English)

    Kais Elghniji; Olfa Hentati; Najwa Mlaik; Ayman Mahfoudh; Mohamed Ksibi

    2012-01-01

    A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route.The effects of phosphorus content and calcination temperature on the crystalline structure,grain growth,surface area,and the photocatalytic activity of P-modified TiO2 were investigated.The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900℃.Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5500 prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500℃ had an apparent rate constant equal to 0.0075 min-1,which is superior to the performance of a commercial photocatalyst Degussa P25 Kapp =0.0045 min-1 and of unmodified TiO2(TP(0)500)Kapp =0.0022 min-1.From HPLC analyses,various hydroxylated intermediates formed during oxidation had been identified,including hydroquinone(HQ),benzoquinone(BQ)and(4CC)4-chlorocatechol as main products.Phytotoxicity was assessed before and after irradiation against seed germination of tomato(Lycopersicon esculentum)whereas acute toxicity was assessed by using Folsomia candida as the test organism.Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished.

  12. Caracterización del proceso de adsorción de 3-cloro fenol desde solución acuosa sobre carbon activado por calorimetria de inmersión Characterization of 3-chlorophenol adsorption process from aqueous solution on activated carbon by immersion calorimetry

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2009-01-01

    Full Text Available The immersion enthalpy of activated carbon in 3-chlorophenol solutions, of 100 mg L-1, is determined at different pH values between 3 and 11 with results between 37.6 and 21.2 J g-1. The 3-chlorophenol adsorbed quantities on the activated carbon during the calorimetric experience, are between 1.13 and 2.19 mg g-1, for different pH values of the solution. The 3-chlorophenol adsorbed quantity and the immersion enthalpy decrease by increasing of the pH solution, while increasing the adsorbed quantity increases the immersion enthalpy value.

  13. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF CHLOROPHENOL COMPOUNDS IN THE WATER ENVIRONMENT%水环境中氯酚污染物的高效液相色谱分析

    Institute of Scientific and Technical Information of China (English)

    庄惠生; 王琼娥; 阮国洪

    2003-01-01

    The determination of 2-chlorophenol, 24-dichlorophenol, 2,3,4-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol in the water environment was studied by the high performance liquid chromatography with solid phase extraction in this paper.

  14. Gamma radiation-induced catalytic degradation of 4-chlorophenol using SiO{sub 2}, TiO{sub 2}, and Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Juarez, J.C. [Instituto Tecnologico de Toluca, Instituto Tecnologico Av. ExRancho la Virgen, Metepec, Mexico C.P. 52140 (Mexico); Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. Mexico D.F. 11801 (Mexico); Jimenez-Becerril, J. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. Mexico D.F. 11801 (Mexico)]. E-mail: jjb@nuclear.inin.mx

    2006-07-15

    To study radiocatalytic processes, solutions of 4-chlorophenol (4-CP) were irradiated with gamma radiation, and results indicate that degradation of 4-CP is increased when commercial SiO{sub 2,} TiO{sub 2}, or Al{sub 2}O{sub 3} is added.

  15. 非均相光Fenton降解4-氯酚的研究%Degradation efficiency of 4-chlorophenol via heterogeneous photo-Fenton

    Institute of Scientific and Technical Information of China (English)

    王维明; 张冉; 王树涛; 刘婷; 尤宏

    2013-01-01

    制备了以Al2O3/TiO2为载体的负载型铁氧化物催化剂,对催化剂进行SEM、XRD、UV-vis-DRS和XPS分析,考察H2O2投加量、催化剂投加量、4-氯酚初始质量浓度对4-氯酚处理效果的影响,分析了非均相光Fenton体系的氧化机理.结果表明,所制备的负载型铁氧化物催化剂为α-FeOOH与γ-Fe2O3的混合物,其表面存在较多的颗粒和孔穴,吸附性强,具有很高的催化活性.H2O2、铁氧化物催化剂、紫外灯之间存在协同作用,所构成的非均相光Fenton体系对4-氯酚具有良好的去除效果.其反应机理为表面催化,催化剂表面的Fe(Ⅲ)在光照的作用下被还原为Fe(Ⅱ).在催化剂投加量为1 g/L,H2O2浓度为7.84mmol/L时,对4-氯酚的降解效果达到最佳,反应进行30 min后4-氯酚的去除率大于99%,反应1h矿化度可达91.4%.%This paper aims to introduce our preparation of catalysts loaded on Al2O3/TiO2 and the heterogeneous photo-Fenton reaction system we have established for the study of the degradation efficiency of the 4-chlorophenol. The catalysts we have prepared are characterized by SEM, XRD, by means of which we have investigated the effect of H2O2 dosage, along with the catalyst dosage and initial concentration of the 4-chlorophenol on 4-chlorophenol degradation needed. In addition, we have also done experiments to explore the oxidation mechanism of heterogeneous photo-Fenton system. The results of our research show that the ingredients of iron oxidate catalysts loaded on Al2O3/TiO2 were the mixture of α- FeOOH and γ - Fe2O3; and, as compared with Al2O3/TiO2 carrier, it has been found that there exist more surface particles and cavity on the catalyst surface, whose specific surface area proves to be wider for its adsorption, and, therefore, helps to enhance their catalytic activity. The heterogeneous photo-Fenton system we have established proves to be highly effective for degrading 4-chlorophenol. Furthermore, we have worked out the

  16. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  17. The Removal of 4-Chlorophenol and Dichloroacetic Acid in Water Using Ti-, Zr- and Ti/Zr-Pillared Bentonites as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Houari

    2005-01-01

    Full Text Available Heterogeneous photocatalysis could be alternative remediation technology for water since it does not need the addition of any chemicals and it is suitable for treating low concentrations of pollutant. Although the TiO2 Degussa P 25 is most used photocatalyst its photonic efficiency still low and its recovery from water is considered as an awkward process. In this study the effect of zirconium addition to titanium was investigated. Ti/Zr-pillared montmorillonites have been prepared from natural bentonite and characterized by UV-Vis DRS and X-ray diffraction. The photocatalytic activities have been tested for the removal of 4-chlorophenol and dichloroacetic acid in water. The influence of preparation conditions and the calculation method, on these activities has been investigated. It was found that the photocatalytic activities increase by the addition of zirconium in pillorying process and the calculation by Microwaves (MW improves the photocatalytic activities

  18. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils.

  19. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.

    Science.gov (United States)

    Salah, Numan; Hameed, A; Aslam, M; Babkair, Saeed S; Bahabri, F S

    2016-07-15

    Vanadium doped ZnO powders were used as precursors to deposit thin films of V(5+) incorporated ZnO nanoparticles on glass substrates by the pulsed laser deposition technique. The observed variations in Raman signals, visible region shift in the diffuse reflectance spectra along with a small shift in the (101) reflections of the X-ray diffraction (XRD) confirmed the insertion of V(5+) ions in ZnO lattice. No other additional reflection in the XRD results other than ZnO further endorsed the occupation of lattice positions by V entities rather than independent oxide formation. The asymmetric XPS peaks of Zn2p and V2p core levels confirmed the existence of both in the vicinity. The existence of minimal proportion of V(3+) along with V(5+) states varied the alteration of the oxidation states V in the synthetic route. The SEM images at various resolutions displayed the uniform distribution identical nanoparticles without the presence of additional phases in the deposited films. The SEM cross-section measurements revealed the uniform thickness of ∼90 nm of each film, whereas the surface studies of the films were performed by AFM. The as-synthesized films were tested for photocatalytic activity in sunlight illumination for the removal of 2-chlorophenol. The unique feature of the study was the estimation of the photocatalytic activity 20 ppm of 2-chlorophenol by exposing the low exposed area. The degradation of the substrate was measured by liquid phase UV-vis spectroscopy, whereas total organic carbon measurement revealed the mineralization of the substrate. The released Cl(-) ions were also measured by ion chromatography. The estimated flatband potentials and pHzpc values of the V doped materials, by Mott-Schottky analysis and zeta potential measurements respectively, were correlated with the photocatalytic activity. The kinetics of the photocatalytic degradation/mineralization process was estimated and results were correlated with the plausible mechanism.

  20. Structural and antimicrobial studies of coordination compounds of VO(II, Co(II, Ni(II and Cu(II with some Schiff bases involving 2-amino-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A. P. MISHRA

    2009-05-01

    Full Text Available Complexes of tailor-made ligands with life essential metal ions may be an emerging area to answer the problem of multi-drug resistance (MDR. The coordination complexes of VO(II, Co(II, Ni(II and Cu(II with the Schiff bases derived from 2-hydroxyacetophenone/2-chlorobenzaldehyde with 2-ami¬no-4-chlorophenol were synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, ESR, FAB mass, thermal and magnetic susceptibility measurements. The FAB mass and thermal data show degradation of the complexes. The ligand A (2-hydroxyacetophenone-2amino-4-chlorophenol behaved as tridentate and ligand B (2-chlorobenzylidene-2-amino-4-chlorophenol as bidentate, coordinating through O and N donors. The complexes [VO(A(H2O]×xH2O, [M(A(H2On]×xH2O for Co and Ni, [Cu(A(H2O] and [VO(B2]×xH2O, [M(B2(H2On] for Co and Cu and [Ni(B2] exhibited coordination numbers 4, 5 or 6. X-ray powder diffraction data (a = 11.00417 Å, b = 11.706081 Å and c = 54.46780 Å showed that [Cu(CACP2(H2O2], complex 8, crystallized in the orthorhombic system. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff base and their [M(B2(H2O2] complexes (Co(II, complex 6 and Cu(II, complex 8, indicated that the metal complexes exhibited a higher or lower antimicrobial activity than 2-chlorobenzylidene-2-amino-4-chlorophenol as the free ligand (B.

  1. Simultaneous derivatization and extraction of chlorophenols in water samples with up-and-down shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography/mass spectrometric detection.

    Science.gov (United States)

    Wang, Ke-Deng; Chen, Pai-Shan; Huang, Shang-Da

    2014-03-01

    A new up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) for extraction and derivatization of five chlorophenols (4-chlorophenol, 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,6-trichloro-phenol, and pentachlorophenol) has been developed. The method requires minimal solvent usage. The relatively polar, water-soluble, and low-toxicity solvent 1-heptanol (12 μL) was selected as the extraction solvent and acetic anhydride (50 μL) as the derivatization reagent. With the use of an up-and-down shaker, the emulsification of aqueous samples was formed homogeneously and quickly. The derivatization and extraction of chlorophenols were completed simultaneously in 1 min. The common requirement of disperser solvent in DLLME could be avoided. After optimization, the linear range covered over two orders of magnitude, and the coefficient of determination (r (2)) was greater than 0.9981. The detection limit was from 0.05 to 0.2 μg L(-1), and the relative standard deviation was from 4.6 to 10.8 %. Real samples of river water and lake water had relative recoveries from 90.3 to 117.3 %. Other emulsification methods such as vortex-assisted, ultrasound-assisted, and manual shaking-enhanced ultrasound-assisted methods were also compared with the proposed UDSA-DLLME. The results revealed that UDSA-DLLME performed with higher extraction efficiency and precision compared with the other methods.

  2. Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (NPCS)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qing; WANG Lian-Sheng

    2007-01-01

    20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G* and 6-311G* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-1gEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -1gEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.

  3. Photocatalytic Degradation of 2-Chlorophenol Using Ag-Doped TiO2 Nanofibers and a Near-UV Light-Emitting Diode System

    Directory of Open Access Journals (Sweden)

    Ju-Young Park

    2014-01-01

    Full Text Available This report investigated the photocatalytic degradation of 2-chlorophenol using TiO2 nanofibers and Ag-doped TiO2 nanofibers, synthesized using the sol-gel and electrospinning techniques, and an ultraviolet light-emitting diode (UV-LED system as a UV light source. The crystallite size of the Ag-doped TiO2 nanofibers was smaller than that of the TiO2 nanofibers, because silver retrained phase transformation not only controls the phase transformation but also inhibits the growth of anatase crystallites. The activation energies for the grain growth of the TiO2 nanofibers and the Ag-doped TiO2 nanofibers were estimated to be 20.84 and 27.01 kJ/mol, respectively. The photocatalytic degradation rate followed a pseudo-first-order equation. The rate constants (k of the TiO2 nanofibers and the Ag-doped TiO2 nanofibers were 0.056 and 0.144 min−1, respectively.

  4. Mechanistic Study of Visible-Light-Induced Photodegradation of 4-Chlorophenol by TiO2−xNx with Low Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Guangfeng Shang

    2012-01-01

    Full Text Available TiO2−x Nx powders with low N-doping concentrations (0.021<<0.049 were prepared by annealing commercial TiO2 (P-25 under an NH3 flow at 550°C. Regardless of UV or visible case, the photoactivities of the samples decreased as x increased, and TiO1.979N0.021 showed the highest activity for the 4-chlorophenol (4-CP decomposition under the visible-light irradiation. The visible-light response for N-doped TiO2 could arise from an N-induced midgap level, formed above the valence band (O 2p. Electron spin resonance (ESR measurements and the radical scavenger technologies gave the combined evidence that the active species (•OH and O2•− are responsible for the photodecomposition of 4-CP over TiO2−xNx under the visible irradiation. A possible photocatalytic mechanism was discussed in detail.

  5. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity.

    Science.gov (United States)

    Karci, Akin

    2014-03-01

    Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity?

  6. Photocatalytic degradation of p-chlorophenol by hybrid H₂O₂ and TiO₂ in aqueous suspensions under UV irradiation.

    Science.gov (United States)

    Nguyen, Anh Thu; Juang, Ruey-Shin

    2015-01-01

    In this study, TiO2 particles were used as photocatalysts for the degradation of aqueous p-chlorophenol (p-CP) under UV irradiation. The effect of TiO2 dose (0-3 g/L), initial p-CP concentration, H2O2 concentration (2-45 mM), solution pH (4.6-9.5), and UV light intensity on the degradation of p-CP were examined. Four oxidative degradation processes, which utilized UV alone (direct photolysis), H2O2/UV, TiO2/UV, and H2O2/TiO2/UV, were compared in a batch photoreactor with a 100-W high-pressure mercury lamp. The photodegradation of p-CP could be described by the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Moreover, the apparent degradation rate constants increased considerably from 3.5 × 10(-)(3) min(-)(1) (direct photolysis) to 19.9 × 10(-)(3) min(-)(1) (H2O2/TiO2/UV system).

  7. Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification

    Science.gov (United States)

    Lin, Yen-Hui

    2016-12-01

    A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of 2-chlorophenol (2-CP) by attached and suspended biomass on activated carbon process was derived. The mechanisms in the model system included 2-CP adsorption by activated carbon, 2-CP mass transport diffusion in biofilm, and biodegradation by attached and suspended biomass. Batch kinetic tests were performed to determine surface diffusivity of 2-CP, adsorption parameters for 2-CP, and biokinetic parameters of biomass. Experiments were conducted using a biological activated carbon (BAC) reactor system with high recycled rate to approximate a completely mixed flow reactor for model verification. Concentration profiles of 2-CP by model predictions indicated that biofilm bioregenerated the activated carbon by lowering the 2-CP concentration at the biofilm-activated carbon interface as the biofilm grew thicker. The removal efficiency of 2-CP by biomass was approximately 98.5% when 2-CP concentration in the influent was around 190.5 mg L-1 at a steady-state condition. The concentration of suspended biomass reached up to about 25.3 mg L-1 while the thickness of attached biomass was estimated to be 636 μm at a steady-state condition by model prediction. The experimental results agree closely with the results of the model predictions.

  8. Two heterometallic-organic frameworks composed of iron(III)-salen-based ligands and d(10) metals: gas sorption and visible-light photocatalytic degradation of 2-chlorophenol.

    Science.gov (United States)

    Li, Jing; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2015-03-01

    Two examples of heterometallic-organic frameworks (HMOFs) composed of dicarboxyl-functionalized Fe(III)-salen complexes and d(10) metals (Zn, Cd), [Zn2(Fe-L)2(μ2-O)(H2O)2]⋅4 DMF⋅4 H2O (1) and [Cd2(Fe-L)2(μ2-O)(H2O)2]⋅2 DMF⋅H2O (2) (H4L = 1,2-cyclohexanediamino-N,N'-bis(3-methyl-5-carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2, each square-pyramidal Fe(III) atom is embedded in the [N2O2] pocket of an L(4-) anion, and these units are further bridged by a μ2-O anion to give an (Fe-L)2(μ2-O) dimer. The two carboxylate groups of each L(4-) anion bridge Zn(II) or Cd(II) atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2-chlorophenol (2-CP) under visible-light irradiation, which, to the best of our knowledge, is the first time that this has been observed for Fe(III)-salen-based HMOFs.

  9. 突变株CTM2降解苯酚和4-氯酚的生物降解特性%Biodegradation of Phenol and 4-Chlorophenol by the Mutant Strain CTM 2

    Institute of Scientific and Technical Information of China (English)

    姜岩; 任南琪; 蔡徇; 吴迪; 乔丽艳; 林森

    2008-01-01

    The biodegradations of phenol and 4-chlorophenol(4-cp)were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis.The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg.L-1 within 59.5 h.In the dual.substrate biodegradation,both 2 to degrade phenol.In addition,the kinetic behaviors were described using the kinetic model proposed in this lab.

  10. 固定化对氯苯酚降解菌在生物流化床中的降解特性%Degradation characteristics of immobilized p-chlorophenol-degrading strain in bio-fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    丁成; 李朝霞; 许琦; 杨波

    2011-01-01

    A p-chlorophenol-degrading strain was encapsulated in alginate-chitosan-activate carbon powder microcapsules, and the degradation characteristics of immobilized p-chlorophenol-degrading strain under different conditions in bio-fluidized bed reactor were investigated by gas chromtography. Results indicated that the optimum conditions for the degradation were HRT of 72 h, ratio of the volume of microencapsulated inoculation (about 3.0 × 106cfu/mL in each microencapsulation) to the volume of wastewater of 10% , pH of 7, temperature of 30 ℃ with the initial concentration of p-chlorophenol of 120 mg/L. Both of immobilized strain and free strain were capable of degrading p-chlorophenol and the kinetics was found to correlate with the primary and secondly kinetic equation respectively. But the degradation efficiency of the immobilized strain was higher than the free strain significantly.%为了获得固定化对氯苯酚降解菌在生物流化床中的降解特性,用海藻酸钠-壳聚糖-活性炭微胶囊对实验室保存的对氯苯酚降解菌株进行固定化,在生物流化床中用固定化菌株在不同单因素实验条件下降解对氯苯酚废水,用气相色谱仪测定废水中对氯苯酚的降解率.结果表明,固定化对氯苯酚降解菌株处理污水的适宜条件为:HRT为72 h,微胶囊接种体积为废水体积的10%(其中微胶囊含菌量为3.0×106cfu/mL),降解pH值为7,降解温度为30℃,对氯苯酚初始浓度为120 mg/L.微胶囊固定化菌株与游离态菌株均可以降解对氯苯酚废水,但固定化菌株降解率优于游离态菌株,降解过程分别符合一级和二级动力学方程.

  11. Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer.

    Science.gov (United States)

    Dong, Jia; Fan, Hongtao; Sui, Dianpeng; Li, Liangchen; Sun, Ting

    2014-04-25

    For the first time, a diffusive gradients in thin films (DGT) device using molecularly imprinted polymer (MIP) as the binding agent and nylon membrane (NM) as the diffusive layer (NM-MIP-DGT) has been developed for sampling 4-chlorophenol (4-CP) in water. The MIP was prepared by precipitation polymerization with methacrylic acid as monomer and ethyleneglycoldimethacrylate as cross-linker. The diffusion coefficient of 4-CP through NM was obtained to be 0.788±0.040 μ cm(2) s(-1) by diffusion cell method. The ratio was 1.01±0.05 (mean±standard deviation) for the concentration of 4-CP sampled by NM-MIP-DGT and analyzed by HPLC method to the total concentration of 4-CP in the synthetic solution where free 4-CP species dominated. The results showed that NM-MIP-DGT could sample 4-CP in synthetic solution accurately. The performance of NM-MIP-DGT for sampling 4-CP was independent of pH in the range of 3-7 and ionic strength in the range of 0.0001-0.1 mol L(-1) NaCl solution. The concentration of free form of 4-CP sampled by NM-MIP-DGT decreased with the increasing concentration of dissolved organic carbon in different water samples due to the electrostatic interaction of natural organic compounds with 4-CP. 1.8 mg L(-1) of the free form of 4-CP was determined by HPLC which was sampled by NM-MIP-DGT in an intermediate untreated industrial effluent. The NM-MIP-DGT can be a potential passive tool for sampling the free form of 4-CP in water.

  12. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Su, Jie; Hu, Jian-Qiang; Wang, Qian; Dong, Chun-Ying; Pan, Sheng-Dong; Jin, Mi-Cong

    2016-08-12

    A planar graphene oxide-based magnetic ionic liquid nanomaterial (PGO-MILN) was synthesized. The prepared PGO-MILN was characterized by transmission electronmicroscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The results of adsorption experiments showed that the PGO-MILN had great adsorption capacity for 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on the adsorption experimental data, a sensitive magnetic method for determination of the five CPs in environmental water samples was developed by an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of main MSPE parameters including the solution pH, extraction time, desorption time, and volume of desorption solution on the extraction efficiencies had been investigated in detail. The recoveries ranged from 85.3 to 99.3% with correlation coefficients (r) higher than 0.9994 and the linear ranges were between 10 and 500ngL(-1). The limits of detection (LODs) and limits of quantification (LOQs) of the five CPs ranged from 0.2 to 2.6ngL(-1) and 0.6 to 8.7ngL(-1), respectively. The intra- and inter- day relative standard deviations (RSDs) were in the range from 0.6% to 7.4% and from 0.7% to 8.4%, respectively. It was confirmed that the PGO-MILN was a kind of highly effective MSPE materials used for enrichment of trace CPs in the environmental water.

  13. Application of a Zero-Valente Iron-Per Sulfate System to Treat Petrochemical Wastewater With High-Total Dissolved Solids Containing Para-Chlorophenol

    Directory of Open Access Journals (Sweden)

    Ahmadpour

    2016-02-01

    Full Text Available Background Zero-valent iron (ZVI can effectively activate persulfate (PS generating free sulfate radicals (SO4•–, thereby presenting a promising technology to degrade recalcitrant organic contaminants such as para-chlorophenol (PCP in wastewater. Objectives The current study aimed to examine the feasibility and application of ZVI/PS system through batch experiments to degrade PCP of petrochemical effluent, which its treatment is included in The United States environmental protection agency (USEPA priority pollutant list. Materials and Methods Effects of dosages of ZVI (0.056 - 2.8 g/L, ZVI to PS molar ratio (0.1 - 5.0, PS concentration (2.5 - 25.0 mM/L, pH = (3.0 - 11.0, contact time (5 - 240 minutes, and ZVI reusability (three cycles on PCP degradation were examined. Results The results showed that the PCP degradation increased with an increase in ZVI dosage from 0.056 to 1.4 g/L, an increase in persulfate concentration from 2.5 to 15.0 mM/L, and an increase in ZVI to PS molar ratio from 0.1 to 2.5. The optimal initial pH for PCP removal was 5.0 and the maximum removal efficiency of 70% was achieved within 120 minutes. Moreover, the ZVI catalyst was reused until the third cycle to activate the persulfate and degrade PCP. However, the degradation efficiency of PCP gradually decreased to 51.7% when the ZVI reuse time increased. Conclusions The results indicate that using ZVI/PS system is not an efficient enough method to treat petrochemical effluent, due to the complexity of petrochemical wastewater matrix and high- total dissolved solids (TDS content, as well.

  14. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Gisi, Michelle R; Xun, Luying

    2003-05-01

    Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH(2))-utilizing monooxygenase, and FADH(2) was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH(2) and retarded its rapid oxidation by O(2). A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH(2)-utilizing enzymes, which have homologues in the domains Bacteria and Archaea.

  15. In vitro cytotoxicity assessment of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol using established fish cell lines.

    Science.gov (United States)

    Davoren, Maria; Fogarty, Andrew M

    2006-10-01

    The cytotoxicity of three biocidal agents frequently employed as active ingredients in phenolic-based disinfectants, were evaluated in three established fish cell lines (EPC, CHSE and RTG-2). Cell viability was assessed using two fluorescent indicator dyes, Alamar Blue for metabolism and neutral red for lysosomal activity. Total protein content was also quantified as a measure of cell detachment. In order to evaluate the sensitivity of the cell cultures, the results obtained were compared with toxicity data obtained from a previous study with the same three compounds and the in vivo lethality test with rainbow trout. Results from this study established that each of the three cell lines ranked the tested chemicals in the same order of toxicity as the in vivo test; however, the cell cultures were found to be an order of magnitude less sensitive than whole fish studies with the same compounds. The chemical sodium o-benzyl-p-chlorophenol was consistently ranked the most toxic of the tested compounds with each cell line and the endpoints employed. The rank order of toxicity was always sodium o-benzyl-p-chlorophenol > sodium p-tertiary amylphenol > sodium o-phenylphenol. The EPC cells were found to be the most sensitive cell line tested based on Alamar Blue IC(50) data, and the Alamar Blue assay was consistently found to be the most sensitive endpoint of the three cytotoxicity assays employed.

  16. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.

    Science.gov (United States)

    Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong

    2016-12-29

    The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm(3) and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm(3)) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm(3)). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm(3)) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm(3)). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm(3)) and PAHs (148.6-4986.5 μg/Nm(3)) were detected in the stack gases of MSWI

  17. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography.

    Science.gov (United States)

    Fan, Chen; Li, Nai; Cao, Xueli

    2015-05-01

    In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency.

  18. 2-氯酚污染土壤原位臭氧化修复的数学模型%Mathematical Model of In-situ Ozonation for the Remediation of 2-Chlorophenol Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    张晖; 宋孟浩; 黄金宝

    2003-01-01

    A microscopic diffusion-reaction model was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface.The sequential strategy was employed to obtain the numerical solution of the model using finite difference method. A non-uniform grid of discretization points was employed to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the model. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow time intervals. Compared the experimental data with the simulated values, it was found that the mathematical model fitted data well during most time of the experiment.

  19. Kinetics Studies On Polyphenoloxidase Catalize P-chlorophenol Oxidzing Reaction in onaqueous System%多酚氧化酶在非水相中催化对氯苯酚氧化反应的动力学研究

    Institute of Scientific and Technical Information of China (English)

    李华; 霍瑞贞

    2000-01-01

      In experiment,the polyphenoloxidase was extracted from mushroom by using acetone precipitating method threetimes. And then, it was immobilized by using the absorbentdeposition method with porous glass powder as carriers,It wasstudied to catalize p-chlorophenol oxidizing reaction inchloroform, complys with Michaelis-Menten dynamicmodel.And themoisture content in organic solvent directly affected thecatalytic activity of mushroom polyphenoloxidase. Theoptimum reaction condition for the catalyrtic oxidation of p-chlorophenol in chloroform was determined: pH:7, temperature:25°C, moisture content: 0.5%(v/v).The measured value of dynamic parameters was 29.45kJ. mol-1 for apparent activationenergy,1.058mol. L-1 for Michaelis-Menten kinetics and 9.074×10-2 min-1 for the maximum reaction rate.%  本文用丙酮沉淀法从蘑菇中提取多酚氧化酶,以多孔玻璃粉为载体,用吸附沉积法将酶固定,研究了该酶在氯仿介质中催化对氯苯酚氧化反应的机理遵循米氏(Michaelis-Menten)动力学方程;而且,在有机介质中含水率大小直接影响酶的催化活性.实验测得反应的最佳条件为pH=7.0,温度为25°C,含水率为0.5%(v/v);表观活化能Ea=29.54kJ . mol-1,米氏常数Km=1.058mol . dm-3,最大反应速率rmax=90.74×10-3min-1.

  20. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    Science.gov (United States)

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis.

  1. 硝氯粉和肝蛭净驱除绵羊肝片吸虫效果的对比试验%Effect of NOx Chlorophenol and Liver Fluke Net against Fasciola Hepatica in Sheep

    Institute of Scientific and Technical Information of China (English)

    才项吉

    2012-01-01

    应用硝氯粉和肝蛭净两种药物,采取口服投药方式,分不同剂量,在绵羊肝片吸虫驱虫方面做了对比试验。结果表明:硝氯粉按5mg/kg体重驱虫,肝片吸虫虫卵减少率96.85%;肝蛭净按12mg/kg体重驱虫,虫卵减少率96.74%:二者的驱虫效果差异不大,但在实际操作中,硝氯粉剂量稍大会出现中毒反应,剂量过小则效果不佳,硝氯粉剂量较难控制。建议养畜户在绵羊肝片吸虫驱虫时最好用肝蛭净。%Sheep were used to experiment on effect of NOx ehlorophenol and liver flukd net against Faseiola hepatica. The result showed that the reductive rate of eggs with NOx chlorophenol in dose of 3mg/kg. b w and 5mg/kg . b w were 75.18% and 96.80% ,respectively. The reduetive rate of eggs with liver fluke net in dose of 7mg/kg. b w and 12mg/kg were 67.2% and 100.0%, respectively. The liver fluke net was well than that of NOx chlorophenol for safe and effect.

  2. 超顺磁性氧化石墨烯复合材料固定辣根过氧化物酶催化去除氯酚%Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite

    Institute of Scientific and Technical Information of China (English)

    常青; 江国栋; 唐和清; 李娜; 黄佳; 吴来燕

    2015-01-01

    Magnetic Fe3O4nanoparticles were successfully deposited on graphene oxide sheets by ultra-sound-assisted coprecipitation. The nanoparticles were characterized using transmission electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy. The synthe-sized material was used as a support for the immobilization of horseradish peroxidase (HRP). The removals of 2-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol using the immobilized HRP were investigated. Batch degradation studies were used to determine the effects of the initial solu-tion pH values, reaction temperature, reaction time,H2O2and chlorophenol concentrations, and immobilized enzyme dosage on the removal of chlorophenols. The different numbers and positions of electron-withdrawing substituents affected the chlorophenol removal efficiency; the order of the removal efficiencies was 2-chlorophenol< 4-chlorophenol< 2,4-dichlorophenol. The oxidation products formed during chlorophenol degradation were identified using gas chromatography-mass spectrometry. The biochemical properties of the immobilized HRP were investigated; the results indicated that the storage stability and tolerance to changes in pH and temperature of the immobi-lized HRP were better than those of free HRP. The nanoparticles were recovered using an external magnetic field, and the immobilized HRP retained 66% of its initial activity for the first four cycles, showing that the immobilized HRP had moderate stability. These results suggest that the immobi-lized enzyme has potential application in wastewater treatment.%采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化

  3. Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Yue Wang; Yasushi Hasebe

    2011-01-01

    Tyrosinase (TYR) was covalently immobilized onto amino-functionalized carbon felt surface via glutaraldehyde-coupling under ultrasonic treatment for 10 min. The resulting TYR-immobilized carbon felt was used as a working electrode unit of bioelectrocatalytic flow-through detector for TYR substrates (catechol, p-chlorophenol (p-CP), p-cresol, phenol etc.). Cathodic peak currents based on the electroreducfion of enzymatically produced o-quinones were detected at -50 mV vs. Ag/AgC1. Compared with previous work in which TYR was immobilized onto amino-functionalized carbon felt for 16 hr without the ultrasonic treatment, we succeeded in (1) shortening the enzyme immobilization time from 16 hr to 10 min, (2) enhancing the sensitivity of p-CP, and (3) improving the operational stability of p-CP. The ultrasonic treatment during the TYR immobilization step would lead to certain changes in the structure of the immobilized TYR and the morphology of the immobilized TYR-layer on the carbon felt surface.

  4. Effects of organic modifiers in separation of chlorophenols by capillary zone electrophoresis%有机改性剂对氯代酚毛细管区带电泳分离的影响

    Institute of Scientific and Technical Information of China (English)

    刘学良; 苏立强; 王俊德; 商振华

    2001-01-01

    The effects of organic modifiers such as acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, formamide, methanol, nitromethane, and tetrahydrofuran on the electrophoretic separation of chlorophenols were investigated. The relative migration of these analytes depend upon the ability for them to form hydrogen bonds, suggesting that solvation spheres of modifier molecules around the analytes are important. Selectivities can be tuned by employing organic modifiers with different hydrogen bonding properties.%在分离19种氯代酚的过程中,考察了不同的有机添加剂对其毛细管区带电泳分离的影响,发现除了缓冲溶液的pH值外,缓冲溶液添加剂对氯代酚的电泳分离也有较大影响。这种影响与添加剂和氯代酚形成氢键的能力有关。

  5. 白假丝酵母PDY-07厌氧生物降解4-氯酚的研究%Biodegradation of 4-Chlorophenol by Candida albicans PDY-07 under Anaerobic Conditions

    Institute of Scientific and Technical Information of China (English)

    闻建平; 李红梅; 白静; 姜岩

    2006-01-01

    Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35 ℃, with an initial pH of 7.0-7.2 and a starting inoculum of 10% (by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300 mg·L-1 within 244h and that it had a high tolerance potential of up to 440 mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2-350 mg·L-1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.

  6. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction

    Science.gov (United States)

    Jaafar, N. F.; Jalil, A. A.; Triwahyono, S.

    2017-01-01

    Various weight loadings of Ag (1-10 wt.%) were introduced to mesoporous titania nanoparticles (MTN) via a direct in-situ electrochemical method. The catalysts were characterized by XRD, surface area analysis, FTIR, ESR, FESEM-EDX and TEM. Characterization results indicated that the introduction of Ag onto MTN decreased the particles size and band gap of the MTN while increasing the number of oxygen vacancies (OV) and Ti3+ site defects (TSD). The activity performance of Ag-MTN on photodegradation of 2-chlorophenol (2-CP) under visible light irradiation was in the following order: 5 wt% Ag-MTN> 1 wt% Ag-MTN > MTN > 10 wt% Ag-MTN, with degradation percentages of 97, 88, 80 and 63%, respectively. The synergistic effect between Ag0 and MTN seemed to play an important role in the system. The Ag0 acted as both an electron trap and a plasmonic sensitizer which suppressed the electron-hole recombination, while OV and TSD in the MTN accelerated the production of hydroxyl radicals for enhanced degradation of 2-CP. However, the formation of Ti-O-Ag in 10 wt% Ag-MTN was found to decrease the photoactivity due to the decrease in the formation of Ag0, TSD and OV as well as the increase in band gap energy. The photodegradation of 5 wt% Ag-MTN followed a pseudo-first-order Langmuir- Hinshelwood model and the catalyst was still stable after five cycles.

  7. A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC-ECD.

    Science.gov (United States)

    Farhadi, Khalil; Matin, Amir Abbas; Amanzadeh, Hatam; Biparva, Pourya; Tajik, Hossein; Farshid, Amir Abbas; Pirkharrati, Hossein

    2014-10-01

    This study presents a new technique, dispersive micro solid phase extraction (DMSPE) combined with headspace solid phase micro-extraction (HS-SPME) for extraction and determination of chlorophenols (CPs) in water and honey samples using a Gas Chromatography-Electron Capture Detector (GC-ECD). Zein nanoparticles were made by liquid-liquid dispersion and applied for the first time as the sorbent phase in DMSPE. In the proposed DMSPE-HS-SPME method, 1% w/v of ethanolic zein solution was added to an aqueous sample and then a dose of the in-situ generated zein nanoparticles was applied to a pre-concentration of target analytes. Thermal desorption of analytes was performed after the isolating sorbent phase, and then HS-SPME was applied for enrichment prior to introducing to gas chromatography. All the important parameters influencing efficiency of the extraction process such effects of salt, pH, sorbent concentration, temperature, sorbent solution volume in DMSPE procedure, extraction temperature, extraction time, desorption temperature and time in the HS-SPME procedure were investigated and optimized. Results showed that under optimum extraction conditions, detection limits (signal to noise ratio=3) were in the range of 0.08-0.6 ng mL(-1) and evaluations for relative standard deviations (RSDs %) were between 6.62% and 8.36%.

  8. Adsorption Isotherms of Phenol and 4-Chlorophenol on Petroleum Asphaltenes Adsorption du phénol et du 4-chlorophénol sur les asphaltènes pétroliers

    Directory of Open Access Journals (Sweden)

    Jaoui M.

    2006-11-01

    Full Text Available The adsorption isotherms for phenol and 4-chlorophenol from water onto asphaltenes flocculated in bulk and asphaltenes deposited on silica were established by frontal analysis chromatography at 293, 298, 303, and 308 K. The adsorption was more important with asphaltenes flocculated in bulk and corresponded to a Freundlich isotherm mechanism. The high adsorbed amount of phenols suggests possible migration of phenols through the loose asphaltene structure. Isotherms observed with the silica coated by asphaltenes showed that adsorption occurs in two stages corresponding probably to two different organizations of solute molecules at the surface. Les isothermes d'adsorption du phénol et du 4-chlorophénol en solution dans l'eau sur des asphaltènes floculés en masse et sur des asphaltènes déposés sur de la silice ont été déterminés par analyse chromatographique frontale à 293, 298, 303 et 308 K. L'adsorption sur des asphaltènes floculés en masse était la plus importante avec des isothermes correspondant à un mécanisme de Freundlich. La quantité élevée de phénols adsorbés suggère une migration possible des molécules du phénol à travers la structure peu compacte des asphaltènes. Les isothermes observés dans le cas de silice tapissée d'asphaltènes ont montré que l'adsorption se produit en deux étapes correspondant probablement à deux organisations différentes des molécules de soluté à la surface.

  9. Fotodegradación Solar Heterogénea a Escala Piloto de 4-Clorofenol en un Reactor Cilindro Parabólico Compuesto (CPC Pilot Scale Heterogeneous Solar Photodegradation of 4-Chlorophenol in a Cylindrical Parabolic Composed Reactor (CPC

    Directory of Open Access Journals (Sweden)

    Nhora Suaterna-Ortíz

    2012-01-01

    Full Text Available Se presenta información experimental para la fotodegradación heterogénea del 4-clorofenol con TiO2-P25, en reactores solares a escala piloto del tipo cilindro parabólico compuesto (CPC. Se evaluó el efecto del pH y la concentración de catalizador sobre el porcentaje de degradación del substrato. Los reactores utilizados tuvieron diferentes áreas y diferentes volúmenes totales de operación CPC-I: 1.16 m² de área y 20 L; CPC-II: 2.33 m² y 50 L; CPC-III: 3.50 m² y 60 L. Se realizó el seguimiento de la degradación por mediciones de ion cloruro, por espectrofotometría UV-Vis y la determinación de color verdadero. Se encontró que las variables de mayor influencia en el proceso fueron el pH y el área del reactor. Se evidenció la formación de sustancias intermediarias que aportaron color al sistema y la desaparición de éstas a medida que se incrementa el área de exposición solar.This study presented experimental information about heterogeneous photodegradation of 4-chlorophenol using TiO2-P25 in cylindrical parabolic composed solar reactor (CPC. The effect of pH and catalyst concentration on the degradation percentage of substrate were determined. The reactors have different areas and different total operating volumes: CPC-I: 1.16 m² de area y 20 L; CPC-II: 2.33 m² y 50 L; CPC-III: 3.50 m² y 60 L. The measurements were done using chloride ion, UV-spectrophotometry and color. It was found that the most influential variables on the process were the pH and the reactor area. Also, the formation of intermediary substances that provided color to the reaction system and the disappearance of them when sun exposure area was increased, were observed.

  10. 乙酰苯胺修饰的吸附树脂对苯酚和对氯苯酚的吸附研究%STUDY ON THE ADSORPTION OF PHENOL AND p-CHLOROPHENOL WITH THE ADSORPTION RESIN MODIFIED BY ACETYLANILINE

    Institute of Scientific and Technical Information of China (English)

    刘总堂; 孙玉凤; 施卫忠; 王京平; 李振兴; 费正皓

    2012-01-01

    The resin (named ZH-05) was prepared through the post-crossing of chloromethyl low crosslinking macroporous poly-styrene resin with acetylaniline and characterized by FT-IR and BET. The adsorption performance and mechanism for phenol and p-chlorophenol with ZH-05 were studied by static and kinetic adsorption experiments and adsorption capability of ZH-05 for phenol and/7-chlorophenol were better than that of XAD-4. Langmuir and Freundlich isotherm equation can fit the adsorption isotherm of phenol and p-chlorophenol onto ZH-05 perfectly. Thermodynamics parameters showed that the adsorption was a mainly spontaneous physical adsorption process which driven by enthalpy and the process was exothermic. The pseudo-first-order kinetic adsorption equation can describe the adsorption dynamic behavior perfectly, which meant inner diffusion of the particles was the major controlling step of adsorption process.%通过Friedel-Crafts后交联及化学修饰反应,合成了乙酰苯胺基修饰的超高交联吸附树脂ZH-05,通过红外光谱(IR)和比表面及孔径分析(BET)对其结构进行表征.以Amberlite XAD-4树脂作为参照,通过等温吸附实验和吸附动力学实验探讨了ZH-05树脂对水溶液中苯酚和对氯苯酚的吸附性能和机理.结果表明,与XAD-4树脂相比,ZH-05树脂对苯酚和对氯苯酚均具有更佳的吸附性能.Langmuir和Freundlich方程均能较好拟合ZH-05树脂对苯酚和对氯苯酚的吸附等温线.ZH-05树脂对苯酚和对氯苯酚的吸附以焓推动的自发物理吸附过程为主,吸附过程放热;吸附符合准一级动力学吸附方程,颗粒内扩散是吸附过程的主要控制步骤.

  11. Simultaneous Removal of Nitrates and P-chlorophenol Using PHBV As Solid Phase Carbon Source%以PHBV为固相碳源同时去除地下水中硝酸盐氮和对氯苯酚的试验研究

    Institute of Scientific and Technical Information of China (English)

    赵兰; 王婷; 吴为中

    2015-01-01

    The co-existence of nitrate and pesticide in groundwater resulting from excessive application of fertilizers and pesticides has become one of potential health threats in China. Batch tests using PHBV as solid carbon source were conducted to simultaneously remove nitrate and p-chlorophenol and to further investigate the effect of p-chlorophenol on denitrification and microbial community. Results indicated that at 50 mg·L-1 of NO3--N, addition of p-chlorophenol would lower overall removal of nitrate while improve denitrification rate after initial inhibition. At 10 mg·L-1 of p-chlorophenol,averageremoval mainly due to biodegradation was found to be 45.4% over 24 hours and corresponding microbial community structure tended to diversity and evenness.%化肥和农药的施用导致中国的地下水中硝酸盐氮和农药污染同时存在,并成为威胁人体健康的重要因素之一。其中氯酚类物质是一类常见的农药,具有高毒性和难降解性。目前,关于固相反硝化用于硝酸盐氮和对氯苯酚同时去除的研究较少,并且对微生物群落结构演变情况的分析还鲜见报道。论文以聚羟基丁酸戊酸共聚酯(PHBV)为反硝化固体碳源,通过序批试验研究同步去除硝酸盐氮和对氯苯酚的效果,并探讨对氯苯酚的加入对反硝化速率的影响;利用末端限制性长度多态性分析(T-RFLP)技术,使用Alu I酶切总细菌16S rRNA,研究对氯苯酚的存在对微生物群落的影响。结果表明,(1)在50 mg·L-1的硝酸盐氮(NO3--N)的浓度水平下,对氯苯酚(4-CP)的加入前后,硝酸盐氮(NO3--N)的去除率为(97.5±1.2)%和(95.3±1.7)%,总体上使去除效果略有降低;在10 mg·L-1的质量浓度水平下,对氯苯酚24 h的平均去除率为45.4%,其去除85.5%是由于微生物的降解作用引起的。(2)从对氯苯酚的加入到第45天的时间内,反硝化速率表现为先下降后上升

  12. Estudio clínico comparativo entre colutorio de p-clorofenol y peróxido de hidrógeno con colutorio de clorhexidina al 0.12% en el crecimiento de placa microbiana y gingivitis Mouthwash comparative study between p-chlorophenol and hydrogen peroxide with chlorhexidine mouthwash 0.12% in the growth of microbial plaque and gingivitis

    Directory of Open Access Journals (Sweden)

    PD Jaña

    2010-08-01

    Full Text Available Se formuló un colutorio a base de p-clorofenol alcanforado y peróxido de hidrógeno, y considerando que no se disponían de antecedentes de eficacia y seguridad del colutorio, se realizó un ensayo clínico para medirlas utilizando un modelo de formación de placa microbiana y gingivitis en un período de cuatro días, como control positivo se uso un colutorio de clorhexidina al 0.12%. Participaron 26 sujetos en un estudio doble ciego cruzado y con distribución aleatoria. El colutorio en base a p-clorofenol alcanforado y peróxido de hidrógeno y el de clorhexidina tuvieron un similar efecto en el control de la formación de placa y antigingivitis. No hubo diferencias entre los acontecimientos adversos observados para el colutorio y el control. Por consiguiente, el colutorio en estudio podría ser una alternativa para el control químico de la placa microbiana y gingivitis en el tratamiento de la enfermedad periodontal.A camphorated p-chlorophenol and hydrogen peroxide-based mouthwash was prepared, and a clinical trial to measure the efficiency and safety records of the mouthwash -considering the lack of them- was carried out using a formation model of microbial plaque and gingivitis over a 4-day period, with a 0.12% chlorhexidine mouthwash as positive control. Twenty-six individuals participated in the randomized double-blind crossover study. The camphorated p-chlorophenol and hydrogen peroxide-based and chlorhexidine mouthwash had a similar effect in controlling the formation of plaque and antigingivitis. There was no difference between the adverse events observed for the mouthwash and the control. Therefore, the mouthwash in study might be an alternative to the chemical control of microbial plaque and gingivitis in the periodontal desease treatment.

  13. Studies on the Extraction of Phenol, o-Chlorophenol, o-Nitrophenol in Water by Using Liquid-Solid Extraction System Composed of Tween 80/Sodium Citrate%吐温80/柠檬酸钠液固体系萃取水中苯酚、邻氯酚、邻硝基酚的研究

    Institute of Scientific and Technical Information of China (English)

    张剑; 李步海; 孙小梅

    2005-01-01

      研究了吐温80/柠檬酸钠液-固萃取体系对苯酚、邻氯酚和邻硝基酚的适宜萃取条件:吐温80浓度为10.5(vol)%,柠檬酸钠2.6000g• L-1,萃取酸度pH5.95.用该法对水中苯酚、邻氯苯酚、邻硝基苯酚进行萃取,一次回收率分别为96.8%、93.0%、86.2%.当柠檬酸钠是成相盐时,酸度能改变盐的型体,也影响酚的萃取率.讨论其萃取机理,认为酚类物是与吐温80形成氢键而被萃入固相的.%  The proper extraction conditions of phenol, o-chlorophenol and o-nitrophenol were studied by using the liquid-solid extraction system composed of tween80/sodium citrate. They were: 10.5(vol)%Tween80, 2.6000g• L-1 sodium citrate, pH5.95. Under the above-mentioned circumstances, the once recoveries of phenol, o-chlorophenol and o-nitrophenol in analogous water samples are 96.8%, 93.0%, 86.2% respectively. When sodium citrate is as salt separate phase, the acidity of the solution not only can change the shape of sodium citrate, but has the effect on extraction yield (E%) of the phenol substances as well. Through the discussion of the extraction mechanism for Tween80 solid phase, it is stated that the extraction in this system has been achieved by the formation of the hydrogen bond between the phenol compounds and tween80.

  14. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  15. TiO2光催化降解4-氯苯酚过程中的电分析监测%On-Line Monitoring in Photocatalytic Degrad ation of 4-Chlorophenol by Using Cyclic Voltammetry and UV-Vis Spectrometry

    Institute of Scientific and Technical Information of China (English)

    贺飞; 沈伟韧; 方程; 方佑龄

    2001-01-01

    On-line monitoring in photocatalytic degradation process oforganic compound 4-chlorophenol (4-CP) w as carrie d out by using cyclic voltammetry and UV-Vis spectrometry. The result showed th at the degradation process undertook at least a two-route mechanism to the comp lete mineralization: through redox pairs of benzoquinone(BQ) and hydrobenzoquinone(HQ ) and of hydroxybenzoquinone(HBQ) and hydroxyhydrobenzoquinone(HHQ). UV-Vis spe ctra taken at different time showed the breakage of benzene ring and the complet e mineralization. The electroanalysis was proved to be a proper technique for on -line monitoring as it could detect simultaneously both initial reactants and intermed iates, and thus it is suitable for on-line monitoring and complementary for mec hanism study.%采用循环伏安法和紫外光谱法对有机物的光催化降解进行机理研究和在线监测.以标准光催化剂DegussaP25在紫外光照射下催化降解4-氯苯酚,发现在降解过程中至少有两对氧化还原中间产物:对苯二酚-苯醌和羟基氢醌-羟基苯醌.由4-氯苯酚及中间产物的电极响应,可以观测到它们在光催化降解过程中的含量变化,从而对整个过程实现在线监测,并由此全面了解光催化反应机理.从不同反应时间后测得的紫外光谱可以看到,苯环特征峰逐渐消失.这表明4-氯苯酚的苯环逐渐被打开,直至被彻底降解.

  16. Efeito de gomas de mascar contendo clorofenol / peróxido de hidrogênio, xilitol ou clorexidina no fluxo salivar, pH, capacidade tampão e escores salivares de Streptococcus mutans = Effects of chlorophenol / hydrogen peroxide versus xylitol or chlorhexidine as chewing gum on salivary flow rate, pH, buffer capacity and salivary Streptococcus mutans scores

    Directory of Open Access Journals (Sweden)

    Yévenes López, Ismael

    2014-01-01

    Full Text Available Objetivos: Gomas de mascar medicadas são preparações sólidas, de dose única, que devem ser mastigadas por um determinado período de tempo a fim de que um ou mais agentes farmacológicos sejam admnistrados. Neste contexto, gomas de mascar medicadas com três ingredientes farmacêuticos ativos – cânfora, p-clorofenol e peróxido de hidrogênio – foram avaliadas como agentes terapêuticos para cárie dentária. O objetivo deste estúdio foi comparar o efeito de gomas de mascar contendo chlorophenol / peróxido de hidrogênio, xilitol ou clorexidina sobre Streptococos mutans salivares, pH, capacidade tampão, a taxa de secreção salivar. Métodos: Foi realizado estudo duplo-cego, com deliamento de randomização cruzada de tratamento em 24 pacientes. Esses foram submetidos a seis sequências diferentes de tratamento. Gomas de mascar foram administradas três vezes ao dia durante 20 minutos, pela manhã, tarde e noite. No início e no final das três fases de amostras de saliva experimentais foram obtidas para a determinação de pH, capacidade tampão, fluxo salivar e enumeração quantitativa de S. mutans. Resultados: O uso de goma medicado de cânfora com p-clorofenol e peróxido de hidrogénio não modificaram os parâmetros químicos salivares medidos, e reduziram o número de S. mutans, após 7 dias. Gomas de mascar contendo clorexidina reduziram significativamente a contagem quantitativa de S. mutans e a taxa de fluxo salivar em um período de 7 dias. Conclusões: O uso de gomas de mascar medicadas com base de cânfora / p-clorofenol ou com peróxido de hidrogênio não altera significativamente os parâmetros químicos salivares e não reduz significativamente o número de S. mutans após a utilização por período de 7 dias

  17. Acute toxicity of benzene, chlorobenzene, phenol, p-chlorophenol on zebrafish,guppy and Xiphophorus helleri%苯、氯苯、苯酚、4-氯酚对斑马鱼、孔雀鱼、剑尾鱼的急性毒性

    Institute of Scientific and Technical Information of China (English)

    邢军

    2011-01-01

    In the research, zebrafish, guppy, and Xiphophorus helleri were used as test fishes to study the acute toxicity of four highly toxic substances benzene, chlorobenzene, phenol, and p-chlorophenol on them through semi static toxicity test. The results indicated that 96 h LC50 of the above chemicals toward zebrafish were 132.22, 28.86, 9.66, and 4.29 mg/L, toward Xiphophorus helleri were 123.76, 27.25, 8.86, 4.29 mg/L, and toward guppy were 131.25, 7.88, 9.33, 4.59 mg/L respectively. The toxicity sequence for the studied chemicals is benzene

  18. Comparison of Natural and Engineered Chlorophenol Bioremediation Enzymes

    Science.gov (United States)

    2015-02-26

    dehaloperoxidase-hemoglobin from Amphitrite ornata, Biopolymers , (05 2012): 27. doi: 10.1002/bip.21674 Stefan Franzen, Koroush Sasan, Bradley E. Sturgeon, Blake...pH (typically pH 5) because they are secreted into the soil where the pH is typically low. Their function is to degrade various biopolymers so that

  19. Degradation of chlorobenzoates and chlorophenols by methanogenic consortia

    NARCIS (Netherlands)

    Ennik-Maarsen, K.

    1999-01-01

    Pollution of the environment with chlorinated organic compounds mainly results from (agro)industrial activity. In many studies, biodegradation is examined under anaerobic conditions, because highly chlorinated compounds are more easily degradable under anaerobic than under aerobic conditions. Proble

  20. 分散液液微萃取-反相液液微萃取-扫集-胶束电动色谱法测定红酒中的3种氯酚类物质%Determination of three chlorophenols in red wine by sweeping-micellar electrokinetic chromatography coupled with dispersive liquid-liquid microextraction and reversed phase liquid-liquid microextraction

    Institute of Scientific and Technical Information of China (English)

    孙建芝; 贺晖; 刘书慧

    2014-01-01

    A method of dispersive liquid-liquid microextraction( DLLME)and reversed phase liquid-liquid microextraction(RP-LLME)procedures coupled with sweeping-micellar electroki-netic chromatography( sweeping-MEKC)was established to extract and determine the three chlorophenols( CPs)including pentachlorophenol( PCP),2,4,6-trichlorophenol( TCP)and 2,4-dichlorophenol( DCP) in red wine. The influences of the parameters of two extraction steps and the electrophoresis conditions were investigated. The optimum extraction conditions were as follows:for DLLME,3. 5 mL red wine sample(pH 3. 0,120 g / L NaCl),300 μL hexane (extraction solvent),extraction for 3 min,centrifugation for 3 min at 5000r / min;for RP-LLME,25 μL 0. 16 mol / L NaOH solution,extraction for 2 min,centrifugation for 2 min at 5000r / min. The optimum running buffer( pH 2. 3)was an aqueous solution containing 25 mmol / L NaH 2 PO 4 ,100 mmol / L sodium dodecyl sulfate( SDS)and 30% ( v / v)acetonitrile. The opti-mum on-line concentration conditions were as follows:sample matrix,80 mmol / L NaH 2PO 4;hydrodynamic injection of 20 s at 20. 67 kPa(3 psi). Under the optimum conditions,the excel-lent linearity was obtained over the range of 0. 5-100 μg / L(r≥0. 991 0)for PCP and TCP,and 1. 5-80 μg / L( r≥0. 985 1)for DCP. The limits of detection( S / N = 3)were in the range of 0. 035-0. 114 μg / L. The average recoveries were in the range of 75. 2% -104. 7% with the rela-tive standard deviations(RSDs)not more than 6. 17% . The results indicated that the proposed method may find wide applications for the determination of trace CPs in various sample matri-xes and other weak acidic organic contaminants.%建立了分散液液微萃取(DLLME)-反相液液微萃取(RP-LLME)-扫集-胶束电动色谱富集模型,并用于红酒中五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)3种氯酚的测定。实验考察了两步微萃取的萃取参数对氯酚萃取率的影响和样品

  1. DETERMINATION OF CHLOROPHENOLS, NITROPHENOLS, AND METHYLPHENOLS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  2. Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A microbial fuel cell with 4-CP as oxidant was established to investigate the feasibility of 4-CP dechlorination in the cathodic chamber of MFC. It demonstrated good performance on electricity generation with Pmax 12.4 mW/m2 and CE 22.7%. Besides, 60 mg/L 4-CP could be completely dechlorinated in 45 h in the MFC, and 4-CP dechlorination process and electricity generation process had obvious synergistic effect.

  3. A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols

    NARCIS (Netherlands)

    van de Pas, BA; Harmsen, HJM; Raangs, GC; de Vos, WM; Schraa, G; Stams, AJM

    2001-01-01

    An anaerobic bacterium, strain DP7, was isolated from human feces in mineral medium with formate and 0.02% yeast extract as energy and carbon source. This rod-shaped motile bacterium used pyruvate, lactate, formate, hydrogen, butyrate, and ethanol as electron donor for sulfite reduction. Other elect

  4. Photocatalytic Degradation of Nitro and Chlorophenols Using Doped and Undoped Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hassan Ilyas

    2011-01-01

    Full Text Available Pure and Ag-TiO2 nanoparticles were synthesized, with the metallic doping being done using the Liquid Impregnation (LI method. The resulting nanoparticles were characterized by analytical methods such as scanning electron micrographs (SEMs, Energy Dispersive Spectroscopy (EDS, and X-ray diffraction (XRD. XRD analysis indicated that the crystallite size of TiO2 was 27 nm to 42 nm while the crystallite size of Ag-TiO2 was 11.27 nm to 42.52 nm. The photocatalytic activity of pure TiO2 and silver doped TiO2 was tested by photocatalytic degradation of p-nitrophenol as a model compound. Ag-TiO2 nanoparticles exhibited better results (98% degradation as compared to pure TiO2 nanoparticles (83% degradation in 1 hour for the degradation of p-nitrophenol. Ag-TiO2 was further used for the photocatalytic degradation of 2,4-dichlorphenol (99% degradation, 2,5-dichlorophenol (98% degradation, and 2,4,6-trichlorophenol (96% degradation in 1 hour. The degree of mineralization was tested by TOC experiment indicating that 2,4-DCP was completely mineralized, while 2,5-DCP was mineralized upto 95 percent and 2,4,6-TCP upto 86 percent within a period of 2 hours.

  5. Evidence against hydroxyl radical mechanism in photo-Fenton degradation of p-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper provides evidence for the degradation of organic pollutant by the photo-Fenton complex mechanism. Both the tum yield. The hydroxyl radical involved in the photo-Fenton process can also be generated from the decomposition of H2O2,photolysis of Fe3+ and degradation of hydrated Fe(Ⅵ)-complex, excepting the traditional Fenton reaction.

  6. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide.

    Science.gov (United States)

    Pezzotti, Fabio; Okrasa, Krzysztof; Therisod, Michel

    2004-01-01

    Degradation of 2,6-dichlorophenol (2,6-DCP) was accomplished by oxidation catalyzed by Coprinus cinereus peroxidase. Immobilization of the enzyme in a polyacrylamide matrix enhanced DCP oxidation. Hydrogen peroxide, peroxidase's natural substrate, was produced enzymatically in situ to avoid peroxidase inactivation by its too high concentration. In the case of larger scale utilization, the method would also avoid direct handling of this hazardous reagent.

  7. Laccase immobilized on mesoporous SiO2 and its use for degradation of chlorophenol pesticides

    Science.gov (United States)

    Yang, Yuxiang; Xu, Yong; Yang, Yiwen; Yang, Huan; Yuan, Hongmin; Huang, Yan; Liu, Xiangnong

    2016-10-01

    In this paper, mesoporous silica with large specific surface area was used to immobilize laccase by the glutaraldehyde cross-linking method, and after screening and optimization experiments, the best enzyme immobilization process conditions were found (25°C, pH 5.4, 4% glutaraldehyde and 0.2 g/L laccase, treatment time 6 h). After that, the removal and degradation ratio of 2,4-dichlorophenol (abbreviated as DCP) under different conditions were also studied. After the degradation process was performed for 6 h at 30°C, pH 5.4, and DCP initial concentration of 50 mg/L in the presence of 0.1 g of immobilized laccase, the removal ratio and the degradation ratio were 42.28 and 15.93%, respectively. Compared with free laccase, the reusability of immobilized laccase is significantly improved.

  8. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen;

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay, for ve...

  9. ENHANCED ENZYMATIC REMOVAL OF CHLOROPHENOLS IN THE PRESENCE OF CO-SUBSTRATES. (R823847)

    Science.gov (United States)

    The effect of reactive co-substrates such as guaiacol and 2,6-dimethoxyphenol on the removal of chlorinated phenols by horseradish peroxidase (HRP) and alaccase from the fungus Trametes versicolor was investigated. Addition of 50 mM guaiacol enhanced the precipitation of 4-ch...

  10. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Trapp, Stefan

    2008-01-01

    /L. For concentrations ≥37.3 mg/L, transpiration decreased to ≤50%, and the trees wilted. Trees exposed to 79.9 mg/L wilted and eventually died. For concentrations of 79.9 mg/L, a significantly higher amount of 4-CP remained at the end of experiments in the test system compared with the amount remaining at all other...... concentrations. The loss of chemical from the system in experiments with trees was high, ≤99.5%. In treeless experiments, the mass loss of 4-CP was only 6% to 10%. The results indicated that degradation in the root zone is the main reason for the removal of 4-CP from the media. Phytoremediation of 4-CP in willow...

  11. Effects of Cd(II) and Cu(II) on microbial characteristics in 2-chlorophenol-degradation anaerobic bioreactors

    Institute of Scientific and Technical Information of China (English)

    HUANG Aiqun; CHEN Hao; CHEN Ling; DAI Yalei; ZHAO Jianfu

    2008-01-01

    The effects of Cd2+ and CU2+ at 300 mg/L on anaerobic microbial communities that degrade 2.cholorophenol(2-CP) were examined. Based on the polymerase chain reaction (PCR) of 16S rDNA, bacterial community diversity and archaeal community structure were analyzed with denaturing gradient gel electrophoresis (DGGE) and cloning,respectively.Degradation capabilities of the anaerobic microbial community were drastically abated and the degradation efficiency of 2-CP was reduced to 60%after shock by Cu2+ and Cd2+, respectively.The bacterial community structure was disturbed and the biodiversity Was reduced after shock by Cu2+ and Cdz+ for 3 d.Some new metal-resistant microbes which could cope with the new condition appeared.The sequence analysis showed that there existed common Archaea species in control sludge and systems when treated with Cu2+ and Cd2+, such as Methanothrix soehngenii,Methanosaeta concilii,uncultured euryarchaeote, and so on.Both the abundance and diversity of archaeal species were altered with addition of Cd2+ and Cu2+ at high concentration.AIthough the abundance of the predominant archaeal species decreased wim Cd2+ and Cu2+ addition for 3 d.tIley recovered to some extent after 10 d.The diversity of archaeal species Was remarkably reduced after recovery for 10 d and the shift in archaeal composition seemed to be irreversible.The 2-CP-degradation anaerobic system was more sensitive to Cu2+ than Cd2+.

  12. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.

    Science.gov (United States)

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong

    2016-11-01

    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment.

  13. Plasma dioxin levels and cause-specific mortality in an occupational cohort of workers exposed to chlorophenoxy herbicides, chlorophenols and contaminants

    NARCIS (Netherlands)

    Boers, D.; Portengen, L.; Turner, W.E.; Bueno-de-Mesquita, H.B.; Heederik, D.; Vermeulen, R.

    2012-01-01

    BACKGROUND: We recently reported increased risks for all cancers and urinary cancers in workers exposed to chlorophenoxy herbicides using data from the Dutch herbicide cohort study. These risks could not be linked to the qualitative exposure proxies available. Here, we re-investigate exposure-respon

  14. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Webb, Brian N; Ballinger, Jordan W; Kim, Eunjung; Belchik, Sara M; Lam, Ka-Sum; Youn, Buhyun; Nissen, Mark S; Xun, Luying; Kang, Chulhee

    2010-01-15

    Burkholderia cepacia AC1100 completely degrades 2,4,5-trichlorophenol, in which an FADH(2)-dependent monooxygenase (TftD) and an NADH:FAD oxidoreductase (TftC) catalyze the initial steps. TftD oxidizes 2,4,5-trichlorophenol (2,4,5-TCP) to 2,5-dichloro-p-benzoquinone, which is chemically reduced to 2,5-dichloro-p-hydroquinone (2,5-DiCHQ). Then, TftD oxidizes the latter to 5-chloro-2-hydroxy-p-benzoquinone. In those processes, TftC provides all the required FADH(2). We have determined the crystal structures of dimeric TftC and tetrameric TftD at 2.0 and 2.5 A resolution, respectively. The structure of TftC was similar to those of related flavin reductases. The stacked nicotinamide:isoalloxazine rings in TftC and sequential reaction kinetics suggest that the reduced FAD leaves TftC after NADH oxidation. The structure of TftD was also similar to the known structures of FADH(2)-dependent monooxygenases. Its His-289 residue in the re-side of the isoalloxazine ring is within hydrogen bonding distance with a hydroxyl group of 2,5-DiCHQ. An H289A mutation resulted in the complete loss of activity toward 2,5-DiCHQ and a significant decrease in catalytic efficiency toward 2,4,5-TCP. Thus, His-289 plays different roles in the catalysis of 2,4,5-TCP and 2,5-DiCHQ. The results support that free FADH(2) is generated by TftC, and TftD uses FADH(2) to separately transform 2,4,5-TCP and 2,5-DiCHQ. Additional experimental data also support the diffusion of FADH(2) between TftC and TftD without direct physical interaction between the two enzymes.

  15. Reaction kinetic model of the surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol on a CuP/Silica suface

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, S.; Khachatryan, L.; Dellinger, B. [Louisiana State Univ., Baton Rouge (United States). Dept. of Chemistry

    2004-09-15

    One of the major challenges in developing predictive models of the surface mediated pollutant formation and fuel combustion is the construction of reliable reaction kinetic mechanisms and models. While the homogeneous, gas-phase chemistry of various light fuels such as hydrogen and methane is relatively well-known large uncertainties exist in the reaction paths of surface mediated reaction mechanisms for even these very simple species. To date, no detailed kinetic consideration of the surface mechanisms of formation of complex organics such as PCDD/F have been developed. In addition to the complexity of the mechanism, a major difficulty is the lack of reaction kinetic parameters (pre-exponential factor and activation energy) of surface reactions, Consequently, numerical studies of the surface-mediated formation of PCDD/F have often been incorporated only a few reactions. We report the development of a numerical multiple-step surface model based on experimental data of surface mediated (5% CuO/SiO2) conversion of 2-monochlorphenol (2-MCP) to PCDD/F under pyrolytic or oxidative conditions. A reaction kinetic model of the catalytic conversion of 2-MCP on the copper oxide catalyst under pyrolytic conditions was developed based on a detailed multistep surface reaction mechanism developed in our laboratory. The performance of the chemical model is assessed by comparing the numerical predictions with experimental measurements. SURFACE CHEMKIN (version 3.7.1) software was used for modeling. Our results confirm the validity of previously published mechanism of the reaction and provides new insight concerning the formation of PCDD/F formation in combustion processes. This model successfully explains the high yields of PCDD/F at low temperatures that cannot be explained using a purely gas-phase mode.

  16. Aqueous solubilities of phenol derivatives by conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Achard, C.; Jaoui, M.; Schwing, M.; Rogalski, M. [Univ. de Metz (France). Lab. de Thermodynamique et d`Analyse Chimique

    1996-05-01

    The aqueous solubilities of five chlorophenols and three nitrophenols were measured by conductimetry at temperatures between 15 and 48C. The solubilities of 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, 2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol were studied. Automatic conductivity measurements allow the determination of the solute concentration and, hence, the determination of the solubility. Emulsion formation can also be followed. Results obtained are in good agreement with literature values.

  17. UV-Fenton体系氧化降解邻氯苯酚废水反应动力学研究%Kinetic study of o-chlorophenol wastewater treatment by UV-Fenton oxidation

    Institute of Scientific and Technical Information of China (English)

    熊思江; 刘琼玉; 张如月; 王芬

    2007-01-01

    采用UV-Fenton高级氧化技术对邻氯苯酚废水进行了处理研究.从反应速率系数着手探讨了污染物初始浓度、双氧水加入量、亚铁离子浓度及pH值对反应降解速率的影响.用半衰期法对邻氯苯酚的反应级数进行了探讨,确定其在UV-Fenton体系降解过程中的表观反应级数为3/2,并初步建立了邻氯苯酚UV-Fenton降解的动力学模型.

  18. QSAR Study on Acute Toxicity of Chlorophenol to Zebra-fish%氯代酚类物质对斑马鱼的急性毒性及QSAR研究

    Institute of Scientific and Technical Information of China (English)

    宋志慧; 孙欣欣; 李捍东

    2014-01-01

    收集整理了取代苯类化合物与斑马鱼的48 h和96h急性毒性(LC南)的定量关系数据,依据定量结构-活性关系原理,利用AM1法计算分子描述符表征化合物后,以多元线性回归法进行建模,并对建好的QSAR模型进行评价与检验.为进一步验证所建模型的预测能力,选择建模过程中所用化合物以外的3种氯代酚:对氯酚、2,4-二氯酚、2,4,6-三氯酚对斑马鱼做48h和96h的急性毒性验证试验,其48 h-LC50分别为8.171、6.146、1.385 mg/L; 96 h-LC50分别为6.475、4.327、1.132 mg/L.验证试验结果与已构建QSAR模型预测值进行对比和评价,经过残差分析,得出试验值与模型预测值残差均满足δ<1,从而进一步验证所构建的该苯系化合物的急性毒性QSAR模型有良好的预测能力.

  19. 臭氧与TiO2/UV协同降解对氯苯酚%Degradation of P-chlorophenol by ozone combined with TiO2/UV

    Institute of Scientific and Technical Information of China (English)

    毛传峰; 童少平; 刘维屏

    2003-01-01

    利用O3/UV、TiO 2/UV和O3/TiO2/UV降解对氯苯酚表明,臭氧与TiO 2/UV具有明显的协同作用,如在本实验条件下降解5 min后,上述3者对对氯苯酚的去除率分别为55%、10%和77%.O 3/TiO2/UV协同作用的本质是由于臭氧能带走二氧化钛光致电子空穴对中的电子,从而产生了更多的羟基自由基,加速了有机物的降解.

  20. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process in an important way. Finally, when the particle size decreased, the saturation percentage decreased as well as the adsorption capacity increased for the studied phenolic compounds. (Author)

  1. 天然锰矿催化臭氧氧化降解水中4-氯酚的研究%Treatment of 4-chlorophenol in aqueous by catalyzed ozonation with manganese ore

    Institute of Scientific and Technical Information of China (English)

    李海燕; 施银桃; 夏东升; 曾庆福

    2004-01-01

    以天然锰矿为金属催化剂,研究了锰矿催化臭氧氧化水中4-氯酚的降解效果.采用毛细管电泳方法及色质联用技术,分别对反应的中间产物和终产物进行了分析.推测了锰矿催化臭氧氧化水中4-氯酚的降解反应机理可能为:锰矿的吸附氧化与锰矿生成的Mn2+催化臭氧分解,产生更多高活性的羟基自由基,从而提高了臭氧的氧化能力.

  2. 高压脉冲放电与臭氧氧化联用降解水中对氯苯酚%Degradation of 4-Chlorophenol in Aqueous Solution by High-voltage Pulsed Discharge-Ozone Technology

    Institute of Scientific and Technical Information of China (English)

    文岳中; 姜玄珍; 刘维屏

    2002-01-01

    研究高压脉冲放电与臭氧协同降解水中对氯苯酚影响因素的结果表明,250mg/L对氯苯酚处理30min后降解率达96%.臭氧浓度、自由基捕获剂以及电极之间的距离均可影响对氯苯酚的降解率.增加臭氧浓度及降低电极之间的距离,提高了对氯苯酚的降解率;加入自由基捕获剂,降低了对氯苯酚的降解率.

  3. 载铁有序介孔碳材料的合成及对对氯酚的吸附性能%Synthesis of ordered Fe-containingmesoporous carbon materials and its adsorption of 4-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    朱瑶瑶; 凌晓凤; 苗小郁; 李健生; 孙秀云; 沈锦优; 韩卫清; 王连军

    2013-01-01

    以酚醛树脂为碳源,F127为模板剂,硝酸铁为铁源,采用软模板路线,一步合成了载铁有序介孔碳(Fe/OMC)复合材料.采用XRD、N2吸附、TEM手段对材料的结构进行了表征,结果表明Fe/OMC复合材料具有高度有序的二维六方介孔结构,孔径均一.在此基础上,比较了未载铁介孔碳(OMC)与Fe/OMC对对氯酚的吸附性能.在初始浓度为1.20×10-4,吸附剂用量为0.5g/L的条件下,OMC对对氯酚的去除率为46.6%,Fe/OMC对对氯酚的去除率94.6%,去除率约为OMC的2倍.采用Langmuir等温吸附线对吸附结果进行拟合.结果表明两种材料对氯酚的吸附行为均能较好地拟合Langmuir方程,OMC材料对4-CP的饱和吸附量为82mg/g,Fe/OMC材料对4-CP的饱和吸附量为284mg/g,Fe/OMC材料的饱和吸附容量约为OMC的3倍.

  4. 高压脉冲放电降解水溶液中4-氯酚过程的数学模型(Ⅱ)鼓泡过程中臭氧传质增强因子E与4-氯酚浓度的关系%Mathematical model of 4-chlorophenol degradation in aqueous solution by pulsed high-voltage discharge(Ⅱ)Relationship between enhancement factor of ozone mass transfer and 4-chlorophenol concentration

    Institute of Scientific and Technical Information of China (English)

    陈银生; 张新胜; 戴迎春; 袁渭康

    2005-01-01

    臭氧从气相传质到废水溶液中并与其中的有机污染物发生氧化还原反应是一个含有化学反应增强的臭氧吸收过程.在酸性废水中主要发生臭氧与4-氯酚分子和4-氯酚盐离子的反应,而臭氧在水溶液中分解形成的羟基自由基的氧化作用可以忽略.提出了由于发生化学反应而形成的臭氧传质增强因子E与废水中有机物浓度[PCP]的定量关系的表达式.

  5. Biodegradation of Complex Bacteria on Phenolic Derivatives in River Water

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; ZHE SUN

    2009-01-01

    Objective To isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal microbes and co-metabolic degradation of mixed chlorophenols in river water. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water. Results The complex bacteria were identified as Mycopiana, Alcaligenes, Pseudvmonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied. Conclusion The complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.

  6. Dechlorination by combined electrochemical reduction and oxidation

    Institute of Scientific and Technical Information of China (English)

    CONG Yan-qing; WU Zu-cheng; TAN Tian-en

    2005-01-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol.

  7. Rhamnolipids as active protective agents for microorganisms against toxic substances

    Directory of Open Access Journals (Sweden)

    Marta Woźniak

    2012-12-01

    Full Text Available The presence of microbial biosurfactants decreases the toxicity of chlorophenols towards Pseudomonas putida 2A cells. The rhamnolipid-originating micelles selectively entrapped chlorophenol molecules, which resulted in their lower bioavailability to microbial cells. It was observed that the effective concentrations causing 50% growth inhibition increased by 0.5, 0.35 and 0.15 for phenol, 4-chlorophenol and 2.4-dichlorophenol, accordingly. The application of surfactants as protective agents for microorganisms brings about new possibilities of using this phenomenon in bioremediation techniques.

  8. Voorspelling van de biodegradatie van gesubstitueerde monocyclische aromaten in de bodem

    NARCIS (Netherlands)

    Verschoor AJ

    1993-01-01

    The project "Prediction of the biodegradation of substituted monocyclic aromatic compounds in soils" has resulted in the development of the model SPAR (Soil Properties Activity Relationship), which describes the initial and maximal biodegradation rate of chlorophenols and chloroanilines in

  9. Effect of electron beam irradiation on the degradation of monochlorophenols in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    ADELEKE Olukunle Francis; ZHOU Rui-min; Zu Jian-hua; Ekoko Bakambo Gracien

    2005-01-01

    Electron beam was successfully used for the degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) in aqueous solutions in this research. The effect of radiation dose on substrate degradation and dechlorination of solutions with concentration of 50 mg/L was investigated. The effect of initial concentration, pH and presence of oxygen was also investigated. The concentration of 2-CP and 4-CP remaining in solution after irradiation were measured by HPLC. The results showed that increased radiation dose led to increased degradation of the chlorophenols and increased Cl- yield. Deaeration was also found to significantly increase the rate of degradation of chlorophenols in water while degradation and dechlorination under alkaline condition was lower than at low to neutral pH.

  10. Adsorption of phenolic compound by aged-refuse

    Energy Technology Data Exchange (ETDEWEB)

    Chai Xiaoli [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: xlchai@mail.tongji.edu.cn; Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  11. 78 FR 24197 - Product Cancellation Order for Certain Pesticide Registrations

    Science.gov (United States)

    2013-04-24

    ... Brand 2-Benzyl-4- Disinfectant. chlorophenol; o- phenylphenol. 001043-00115 Process Vesphene II 4-Tert amylphenol; o- ST. phenylphenol. 001448-00092 Busan 1024 3,5,7-Triaza-1- azoniatricyclo(3.3. 1.1...

  12. The Installation Restoration Program Toxicology Guide. Volume 2

    Science.gov (United States)

    1987-05-01

    from consumption of meat or poultry that has accumulated o-chlorophenol through dermal contact with or ingestion of surface waters. In general, exposures...with 65 or 130 mg/kg of o-chlorophenol dissolved in olive oil, weight gain was signif- icantly reduced and liver weight was increased. Liver function...chemicals category and the pulp paper and paperboard point source category (891,893). Guidelines also exist for effluent containing phenols in the timber

  13. Kinetics of P-Chlorophenol Wastewater Treatment by UV/H2O2 Oxidation%UV/H2O2光化学氧化降解对氯苯酚废水的反应动力学

    Institute of Scientific and Technical Information of China (English)

    陈琳; 杜瑛珣; 雷乐成

    2003-01-01

    研究了UV/H2O2体系降解对氯苯酚废水的过程及动力学结果表明,反应降解速率与双氧水加入量、污染物初始浓度及载气种类有关.在双氧水理论投加量一半的情况下,通入氧气或空气,总酚的降解率可达到96%,CODCr去除率接近50%.反应体系加入载气,显著影响污染物的去除率.在本实验中,总酚降解为拟一级反应.

  14. Mathematical model of 4-chlorophenol degradation in aqueous solution by pulsed high-voltage discharge (Ⅰ) Calculation of formation rate of ozone due to oxygen discharge%高压脉冲放电降解水溶液中4-氯酚过程的数学模型(Ⅰ)氧气放电形成臭氧的速率计算

    Institute of Scientific and Technical Information of China (English)

    陈银生; 张新胜; 李云飞; 戴迎春; 袁渭康

    2005-01-01

    采用电子碰撞理论计算了点-面式高压脉冲电晕放电过程中的臭氧产生速率.研究发现,臭氧形成速率是电场中能量大于等于6.0eV的电子形成速率的2倍.脉冲电压峰值和放电频率与臭氧生成速率均几乎有线性关系.放电电极直径比电极间距对臭氧生成速率的影响更加显著.

  15. 锌铝水滑石负载羧酸基酞菁锌可见光降解水中氯苯酚%Immobilization of zinc phthalocyaninecarboxylate onto Zn/Al-hydrotalcites for chlorophenol degradation in water under visible light

    Institute of Scientific and Technical Information of China (English)

    蔡苏彦; 孙琼; 许宜铭

    2012-01-01

    以锌铝类水滑石为载体,1.0%(质量分数)水溶性羧酸基酞菁锌为光敏剂,制备了不溶于水的负载型光敏剂,并对其结构进行表征.结果表明,在可见光和氧气作用下,该复合催化剂能够引发水中对氯苯酚、2,4-二氯苯酚和2,4,6-三氯苯酚的降解.但有机物降解的速率与载体的锌铝比和煅烧温度有关.研究表明,最佳的锌铝比和煅烧温度分别为2.0和300℃.在反应过程中,载体及其煅烧产物具有电子导体的功能,可加快光敏剂与氧气之间的电子转移过程,进而引发氯苯酚的降解.此外,该复合催化剂能被重复循环使用,但光敏活性逐渐降低.%Layered double hydroxides (LDH) with different Zn/A1 atomic ratios were used as a support of water soluble zinc tetracarboxylphthalocyanine (ZnPc) at 1.0%. In the presence of visible light and 02, this immobilized sensitizer was very active for the degradation of 4-chloro-,2,4-dichloro- and 2,4,6-trichlorophenol in water at pH 6.5, whereas in the presence of LDH or ZnPc,organic degradation was absent or very slow. However, the rate of organic degradation was influenced by the Zn/A1 ratio and sintering temperature of LDH. The optimum Zn/Al ratio was 2.0 and sintering temperature was 300 ℃. It is proposed that both LDH and its thermally decomposed products are able to function as an electron conductor for the electron transfer from the electronically excited ZnPc to 02 ,resulting in organic degradation. Moreover,the immobilized sensitizer could be repeatedly used,but its activity gradually decreased mainly due to slow bleaching of ZnPc sensitizer.

  16. 4-CHLOROPHENOL WASTERWATER TREATMENT WITH MICROBE ENCAPSULED IN ALGINATE-CHITOSAN-ACTIVE CARBON POWDER MICROCAPSULE%海藻酸钠-壳聚糖-活性炭微胶囊固定化微生物处理对氯苯酚废水的研究

    Institute of Scientific and Technical Information of China (English)

    马小剑; 许琦; 杨春生; 姚成

    2009-01-01

    采用海藻酸钠-壳聚糖-活性炭(SA-CA-PAC)微胶囊固定一株对氯苯酚优势降解菌.比较了微胶囊固定化菌与悬浮菌对对氯苯酚的降解效果,同时研究了接种量,温度和pH对降解效果的影响.研究表明,微胶囊固定化菌的降解效果优于悬浮态茵,微胶囊固定化茵处理120 mg·L-1的对氯苯酚废水的最佳接种量为3 g·L-1,微胶囊固定化菌降解对氯苯酚的最适宜pH为7.0,最适宜温度为30~35℃.

  17. Determination of o-phenylphenol and 2-benzyl-4-chlorophenol in Disinfectant by HPLC%消毒剂中的邻苯基苯酚和邻苯基对氯苯酚的高效液相色谱测定法

    Institute of Scientific and Technical Information of China (English)

    杨艳伟; 朱英

    2010-01-01

    目的 建立同时测定消毒剂中的邻苯基苯酚和邻苯基对氯苯酚2种杀菌有效成分的高效液相色谱法.方法 在C18(4.6mm×250mm,5μm)色谱柱上,流动相为甲醇-水(体积比为85:15),流量为1.0ml/min,检测波长为230 nm,柱温为25℃下进行检测.结果 邻苯基苯酚和邻苯基对氯苯酚的线性范围为5~200 mg/L,相关系数为1.0000,检出限为1 mg/L,相对标准偏差小于0.23%,加标回收率为93.2%~98.9%.结论 该方法操作简便、快速、灵敏度高,适合消毒剂中的邻苯基苯酚和邻苯基对氯苯酚的同时测定.

  18. Estudio clínico comparativo entre colutorio de p-clorofenol y peróxido de hidrógeno con colutorio de clorhexidina al 0.12% en el crecimiento de placa microbiana y gingivitis Mouthwash comparative study between p-chlorophenol and hydrogen peroxide with chlorhexidine mouthwash 0.12% in the growth of microbial plaque and gingivitis

    OpenAIRE

    PD Jaña; LI Yévenes; AS Rivera

    2010-01-01

    Se formuló un colutorio a base de p-clorofenol alcanforado y peróxido de hidrógeno, y considerando que no se disponían de antecedentes de eficacia y seguridad del colutorio, se realizó un ensayo clínico para medirlas utilizando un modelo de formación de placa microbiana y gingivitis en un período de cuatro días, como control positivo se uso un colutorio de clorhexidina al 0.12%. Participaron 26 sujetos en un estudio doble ciego cruzado y con distribución aleatoria. El colutorio en base a p-cl...

  19. Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase.

    Science.gov (United States)

    Sjoblad, R D; Bollag, J M

    1977-04-01

    The soil fungus Rhizoctonia praticola produced an enzyme that accumulated in the growth medium and caused the polymerization of phenolic and naphtholic intermediates of various pesticides. The dialyzed crude enzyme was purified by ion-exhange column chromatography with diethylaminoethyl-cellulose, followed by gel filtration with Sephadex G-200. The enzyme, a phenol oxidase, was capable of polymerizing 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, and 4-bromo-2-chlorophenol. 1-Naphthol, 2-naphthol, and some of their derivatives formed oligomers or polymers when incubated with the enzyme, but 4-nitrophenol and 2,4-dinitriphenol were not oxidized. Chlorinated and brominated anilines, which are derivatives of herbicides, were not altered by the phenol oxidase from R. praticola, but 4-methoxyaniline was transformed by the enzyme to 2-amino-5-p-anisidinobenzoquinone-di-p-methoxyphenylimine. The formation of polymeric products was determined by mass spectrometric analysis.

  20. Catalytic dechlorination of o-cllorophenol by nanoscale Pd/Fe

    Institute of Scientific and Technical Information of China (English)

    WEI Jian-jun; XU Xin-hua; WANG Da-hui

    2004-01-01

    Transformation of chlorophenols by nanoscale bimetallic particles represents one of the latest innovative technologies for environmental remediation. Nanoscale Pd/Fe bimetallic particles were synthesized in the laboratory for treatment of o-chlorophenol. Most of the nanoscale particles are in the size range of 20-100 nm. BET specific surface area of the nanoscale Pd/Fe particles is 12.4 m2/g. In comparison, a commercially available Fe powder( <100 mesh) has a specific surface area of just 0.49 m2/g. Batch experiments demonstrated that the nanoscale Pd/Fe bimetallic particles can effectively dechlorinate o-chlorophenol. Dechlorination efficiency is affected by the mass fraction of Pd in the bimetal, nanoscale Pd/Fe mass concentration and mixing intensity.

  1. Evaluación de un electrodo de carbón vítreo modificado con Zeolita tipo “A” en la adsorción de 2-clorofenol

    Directory of Open Access Journals (Sweden)

    Aurora Molina

    2009-10-01

    Full Text Available Glassy carbon electrodes modified with Zeolite “A” were studied in order to evidence the adsorption of 2-chlorophenol. Synthesis of zeolite was undertaken by a hydrothermal method using calcined kaolin as raw material. The zeolite was first exchanged with calcium ions. Then, it was modified with the cationic surfactant CTAB (cetyl trimethyl ammonium bromide or the non-ionic surfactant Triton X-100 (t-octylphenoxy-polyethoxyethanol. Adsorption of 2-chlorophenol was evaluated by cyclic voltammetry, once it was adsorbed onto the modified electrode. Electrochemical results indicated that the films surfactant-zeolites were able to adsorb the 2-chlorophenol from an aqueous alkaline medium. The best results were achieved when the cationic surfactant CTAB was used. The importance of electrode surface cleaning to guarantee the complete adherence between the vitreous carbon and the modified surfactant zeolite was determinated. Polishing and cleaning processes depend on the type of surfactant used.

  2. Impact of phenolic substrate and growth temperature on the arthrobacter chlorophenolicus proteome

    Energy Technology Data Exchange (ETDEWEB)

    Unell, Maria; Abraham, Paul E.; Shah, Manesh; Zhang, Bing; Ruckert, Christian; VerBerkmoes, Nathan C.; Jansson, Janet K.

    2009-02-15

    We compared the Arthrobacter chlorophenolicus proteome during growth on 4-chlorophenol, 4-nitrophenol or phenol at 5 C and 28 C; both for the wild type and a mutant strain with mass spectrometry based proteomics. A label free workflow employing spectral counting identified 3749 proteins across all growth conditions, representing over 70% of the predicted genome and 739 of these proteins form the core proteome. Statistically significant differences were found in the proteomes of cells grown under different conditions including differentiation of hundreds of unknown proteins. The 4-chlorophenol-degradation pathway was confirmed, but not that for phenol.

  3. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  4. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds

    NARCIS (Netherlands)

    Scheublin, T.R.; Deusch, S.; Moreno-Forero, S.K.; Müller, J.A.; van der Meer, J.R.; Leveau, J.H.J.

    2014-01-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.

  5. Endurance test of TiO2-based photocatalytic oxidation

    NARCIS (Netherlands)

    Assink, J.W.; Slaager, J.M.

    1998-01-01

    The long term behaviour of suspended photocatalysts (Degussa P25) is studied in two endurance tests. Model waste water with an acid dye (Special Brilliant Blue FFR) or 4-chlorophenol as main contaminant have been used. Titanium dioxide is recovered from the effluent by pressure filtration and reused

  6. Manganese zinc ferrite nanoparticles as efficient catalysts for wet peroxide oxidation of organic aqueous wastes

    Indian Academy of Sciences (India)

    Manju Kurian; Divya S Nair

    2015-03-01

    Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for wet peroxide oxidation of 4-chlorophenol. Complete degradation of the target pollutant occurred within 90 min at 70°C. Zinc substitution enhanced the catalytic efficiency and the unsubstituted ZnFe2O4 oxidized the target compound completely within 45 min. Studies on the effect of reaction variables revealed that only a small amount of the oxidant, H2O2 (3–4 mL) is required for complete degradation of 4-chlorophenol. More than 80% of 4-chlorophenol was removed at catalyst concentrations of 100 mg/L. Direct correlation between the amount of catalyst present and the extent of degradation of 4-chlorophenol was observed, ruling out hesterogeneous-homogeneous mechanism. The catalysts are reusable and complete degradation of target pollutant occurred after five successive runs. The extent of iron leaching was fairly low after five consecutive cycles indicating the mechanism to be heterogeneous.

  7. 40 CFR Appendix A to Part 430 - Methods 1650 and 1653

    Science.gov (United States)

    2010-07-01

    ... STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Pt. 430, App. A Appendix A to Part 430... acetylation, extraction, and analysis by capillary column gas chromatography/mass spectrometry (GCMS). This method is based on existing methods for determination of chlorophenolics in pulp and paper...

  8. Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense

    DEFF Research Database (Denmark)

    Christensen, Nina; Ahring, Birgitte Kiær; Wohlfarth, Gert;

    1998-01-01

    The membrane-bound 3-chloro-4-hydroxyphenylacetate (Cl-OHPA) reductive dehalogenase from the chlorophenol- educing anaerobe Desulfitobacterium hafniense was purified 11.3-fold to apparent homogeneity in the presence of the detergent CHAPS. The purified dehalogenase catalyzed the reductive dechlor...

  9. Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness

    NARCIS (Netherlands)

    Scheublin, T.R.; Leveau, J.H.J.

    2013-01-01

    Bacteria of the genus Arthrobacter are common inhabitants of the soil environment, but can also be recovered from leaf surfaces (the phyllosphere). Using enrichment cultures on 4-chlorophenol, we succeeded in specifically isolating Arthrobacter bacteria from ground cover vegetation in an apple orcha

  10. An efficient and green synthesis of novel benzoxazole under ultrasound irradiation.

    Science.gov (United States)

    Nikpassand, Mohammad; Fekri, Leila Zare; Farokhian, Pegah

    2016-01-01

    Ultrasound as green process and an alternative energy source was investigated for the environmentally benign synthesis of novel benzoxazoles from different azo-linked salicylic acid derivatives and 2-amino-4-chlorophenol in short reaction time and high yield. These benzoxazole compounds have been characterized by elemental analysis, FT-IR, (1)H NMR and (13)C NMR spectroscopy.

  11. Structure-Antimicrobial Activity Relationship for a New Class of Antimicrobials, Silanols, in Comparison to Alcohols and Phenols

    Science.gov (United States)

    2006-08-01

    1 and the free OH peak at 3610cm-1 while 3-chlorophenol displayed H-boned OH at 3287cm-1 and free OH at 3606cm-1. 2- phenylphenol exhibited its H...2.16 318 2- phenylphenol 3.28 252 2.4 Conclusions The silanols were prepared through the hydrolysis of chlorine derivative silanes. The

  12. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  13. ELUTION OF ORGANIC SOLUTES FROM DIFFERENT POLARITY SORBENTS USING SUBCRITICAL WATER. (R825394)

    Science.gov (United States)

    The intermolecular interactions between organic solutes and sorbent matrices under subcritical water conditions have been investigated at a pressure of 50 bar and temperatures ranging from 50 to 250°C. Both polar and nonpolar organics (chlorophenols, amines, n-alkanes...

  14. Drug: D00149 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 0149.gif Antibacterial [topical] Same as: C02124 CAS: 106-48-9 PubChem: 7847217 PDB-CCD: 4CH LigandBox: D001...D00149 Drug Parachlorophenol (JAN/USP); p-Chlorophenol C6H5ClO 128.0029 128.5563 D0

  15. Means for sealing hemp packings in gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pistek, P.; Kubat, J.; Novak, L.

    1981-02-15

    The means for sealing hemp packings in gas pipelines has the following composition: 25-35% diethylene glycol, 10-15% glycerin, 10-15% triethylene glycol, 5-15% high ethylene glycols with an average molecular weight of 300, 20-35% the monobutyl ether of triethylene glycol, 4-7% ethoxylated p-chlorophenol, and 5-15% monoethanol amine.

  16. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata)

    NARCIS (Netherlands)

    Hermens, J.L.M.; Leeuwangh, Peter; Musch, Aalt

    1985-01-01

    In this study acute lethal concentrations (LC50) to the guppy (Poecilia reticulata) were determined for mixtures of 4 groups of aquatic pollutants. The groups were composed of 11 nonreactive, nonionized organic chemicals, 11 chloroanilines, 11 chlorophenols, and 9 reactive organic halides. Earlier s

  17. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  18. Performance Evaluation of AOP/Biological Hybrid System for Treatment of Recalcitrant Organic Compounds

    Directory of Open Access Journals (Sweden)

    Stanford S. Makgato

    2010-01-01

    Full Text Available Process water from nuclear fuel recovery unit operations contains a variety of toxic organic compounds. The use of decontamination reagents such as CCl4 together with phenolic tar results in wastewater with a high content of chlorophenols. In this study, the extent of dehalogenation of toxic aromatic compounds was evaluated using a photolytic advanced oxidation process (AOP followed by biodegradation in the second stage. A hard-to-degrade toxic pollutant, 4-chlorophenol (4-CP, was used to represent a variety of recalcitrant aromatic pollutants in effluent from the nuclear industry. A UV-assisted AOP/bioreactor system demonstrated a great potential in treatment of nuclear process wastewater and this was indicated by high removal efficiency (>98% under various 4-CP concentrations. Adding hydrogen peroxide (H2O2 as a liquid catalyst further improved biodegradation rate but the effect was limited by the scavenging of OH• radicals under high concentrations of H2O2.

  19. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach.

    Science.gov (United States)

    Khuzwayo, Z; Chirwa, E M N

    2015-12-30

    This study investigated, modelled and simulated the influence of multi-chlorohalogenation in heterogeneous photocatalytic degradation of substituted phenols (pentachlorophenol (PCP), trichlorophenol (TCP), dichlorophenol (DCP), and monochlorophenol (CP)). The Langmuir-Hinshelwood approach was applied to determine oxidation kinetics. Aquasim 2.0 computational software was used to model, simulate and estimate model parameters of the different chlorophenols. Chemical adsorption equilibrium isotherms for the four chlorophenols and phenol were studied and modelled for adsorption onto titanium dioxide (TiO2) semiconductor catalyst. Langmuir adsorption parameters were determined and used to calculate adsorption constant and maximum adsorption capacity. The adsorption of chloride phenolics onto titanium dioxide catalyst increased in the order of 4 - CP Photocatalytic studies analysed the efficiency of oxidation and found improved degradation with higher chloride substituted phenolics in the order of PCP > TCP > DCP ≥ 4 - CP. Photocatalytic parameters were calculated and estimated along with sensitivity and uncertainty analyses.

  20. Microbial dehalogenation of trichlorophenol by a bacterial consortium: characterization and mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorinated phenolic compounds are a class of toxic and refractory organic pollutants. The pollution caused by chlorophenols poses serious ecological and environmental problems. A stable bacterial consortium capable of reductively dechlorinating trichlorophenol was isolated using chlorophenol as the sole source of carbon and energy. The physiological characteristics of the mixed cultures were studied and the results show that the consortium could use pyruvate as the carbon and energy source. The fermentation of pyruvate, sulfate reduction and dechlorination process proceeded strictly in succession within this consortium. The effect of specific inhibitors on the dechlorinating activity of the consortium was investigated, and the results indicate that sulfate and molybdate (1 mmol/L) have a strong inhibitive influence on the dechlorination activity. Fluorescence in situ hybridization (FISH) technique was applied to analyzing the composition of the consortium and the results reveal that one major subpopulation within the consortium was phylogenetically affiliated to gamma and delta subclass of Proteobacteria.

  1. IMPACT OF SPLITTING OF CHEMICAL DOSES IN C STAGE ON TOXICITY DURING PAPER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Divya Prakash

    2014-09-01

    Full Text Available The laboratory generated spent bleach liquor from the chlorination stages of Bamboo pulp has been analysed both qualitatively and quantitatively (without washing and with washing for various chlorophenolics acids using gas chromatography. A number of chlorinated derivatives of phenols, catechols, guaiacols, syringaldehydes have been identified. The concentrations of various compounds identified have also been compared with the reported 96LC50 values. The results indicates that splitting of chlorine dose gives 47% lower formation of chlorinated phenolic compounds in without washing in splitting of chemical dose in C stage and the total chlorophenolic compounds decrease by 54% which is 7% more in comparison to chlorination stage (Dosage being splitted into two equal parts and no in between washing has taken place.

  2. Solar efficiency of a new deposited titania photocatalyst: Pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Dinh An, C.; Dussaud, J.; Guillard, C.; Disdier, J.; Malato, S.; Herrmann, J.M.

    2002-07-01

    A specially designed titania catalyst was prepared by coating Ahlstrom nonwoven paper with Millennium PC 500 anatase which was therefore used as a flexible photocatalytic support. Simultaneously, a new solar photoreactor (STEP) has been designed based on the multistep cascade falling film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Four reactants were treated: 4-chlorophenol as a basic organic pollutant model, formetanate as a widely used pesticide, indigo carmine and congo res as complex multifunctional dye molecules. Each reaction was performed simultaneously in a slurry solar CPC photoreactor to better evaluate and validate the results obtained in the STEP reactor under identical solar exposure. The STEP solar reactor was found as efficient as the CPC for 4-chlorophenol and formetanate total degradation. By contrast, both dyes required longer treatment in STEP experiments. This new system constitutes a good alternative to slurries, whose final filtration is actually eliminated. (Author) 21 refs.

  3. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents.

  4. Microwave-Assisted Synthesis and Antifungal Activity of Some Novel Thioethers Containing 1,2,4-Triazole Moiety

    Directory of Open Access Journals (Sweden)

    Li-Jing Min

    2015-11-01

    Full Text Available A series of novel thioether derivatives containing 1,2,4-triazole moiety were designed and synthesized from 4-chlorophenol and ethyl 2-chloroacetate as starting materials by multi-step reactions under microwave irradiation, and their structures were characterized by 1H-NMR, MS and elemental analysis. The antifungal activity of title compounds was determined. The results indicated that some of title compounds exhibited moderate antifungal activity.

  5. Effects of Na2SO4 or NaCl on sonochemical degradation of phenolic compounds in an aqueous solution under Ar: Positive and negative effects induced by the presence of salts.

    Science.gov (United States)

    Uddin, Md Helal; Nanzai, Ben; Okitsu, Kenji

    2016-01-01

    Sonochemical degradation of 4-chlorophenol, phenol, catechol and resorcinol was studied under Ar at 200 kHz in the absence and presence of Na2SO4 or NaCl. The rates of sonochemical degradation in the absence of salts decreased in the order 4-chlorophenol>phenol>catechol>resorcinol and this order was in good agreement with the order of log P (partition coefficient) value of each phenolic compound. The effects of salts on the rates of sonochemical degradation consisted of no effect or slight negative or positive effects. We discussed these unclear results based on two viewpoints: one was based on the changes in pseudo hydrophobicity and/or diffusion behavior of phenolic compounds and the other was based on the changes in solubility of Ar gas. The measured log P value of each phenolic compound slightly increased with increasing salt concentration. In addition, the dynamic surface tension for 4-chlorophenol aqueous solution in the absence and presence of Na2SO4 or NaCl suggested that phenolic compounds more easily accumulated at the interface region of bubbles at higher salt concentration. These results indicated that the rates of sonochemical degradation should be enhanced by the addition of salts. On the other hand, the calculated Ar gas solubility was confirmed to decrease with increasing salt concentration. The yield of H2O2 formed in the presence of Na2SO4 or NaCl decreased with increasing salt concentration. These results suggested that sonochemical efficiency decreased with decreasing gas amount in aqueous solution: a negative effect of salts was observed. Because negative and positive effects were induced simultaneously, we concluded that the effects of salts on the rates of sonochemical degradation of phenolic compounds became unclear. The products formed from sonochemical degradation of 4-chlorophenol were also characterized by HPLC analysis. The formation of phenol and 4-chloro-1,3-dihydroxy benzene was confirmed and these concentrations were affected by the

  6. Effect of bromine substituents in the formation of PXDD from poly halogenated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T.; Ohono, T.; Weber, R.

    2002-07-01

    The condensation of chlorophenols has been studied extensively in the last two decades and was discussed as one mechanism in particular for the formation of PCDD in thermal processes. Brominated flame retardants and brominated and brominated-chlorinated dibenzodioxins and dibenzofurans have received increased attention recently due to the growing use of brominated flame retardants during the last decade. This is resulting than increase of brominated compounds in waste (e.g. Electric and electronic shredder waste), containing a considerable amount of bromine, in the form of brominated flame retardants. Many studies reported on the formation of PBDD/PBDF from brominated diphenylethers, or bromophenosl. However with the exception of Sodhu et al, a comparison of the condensation behaviour of bromophenols and chlorophenols was not done. The condensation of brominated phenols is interesting from several aspects. Bromophenols are used as flame retardants and might be a source of PBDD/F during thermal stress. Bromophenols can also be generated during the combustion/pyrolysis of bromodiphenylether or tetrabromobisphenol A containing material, serving as potential precursors for the formation of PBDD/PBDF. Further, in municipal waste incinerators with sufficient secondary combustion, the largest amount of chlorinated aromatic compounds (PCDD, PCDF, PCBs, PCNs, and chlorophenols) are formed in the cooling section (boiler, duct, dust filtration). Therefore in combustion processes involving high concentrations of brominated flame retardants, mixed PXDD/PXDF might be formed by condensation reactions of precursors or de novo synthesis in the cooling zone. Therefore we investigated the condensation of abrominated phenol in more detail and compare it to the condensation reaction of the analogous chlorophenol. (Author)

  7. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols.

    Science.gov (United States)

    Nowak, Agnieszka; Greń, Izabela; Mrozik, Agnieszka

    2016-12-01

    The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.

  8. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-05

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

  9. Pulsed electrical discharges in water for removal of organic pollutants: a comparative study

    OpenAIRE

    Dang, T.H.; Denat, A.; Lesaint, O.; Teissedre, G.

    2009-01-01

    Abstract In this study, the efficiency of different types of pulsed electrical discharges for the removal of organic pollutants from wastewater has been determined. Three discharge types, either in the water volume or in close proximity to the water surface are studied. The production of hydrogen peroxide in pure water, and the degradation of two typical pollutants (4-chlorophenol and 4-nitrophenol) is measured together with the amount of electrical energy d...

  10. Polymer/Solvent and Polymer/Polymer Interaction Studies

    Science.gov (United States)

    1979-08-01

    experiment. The solvent trap prevents noxious, toxic, corrosive and carcinogenic solvents from escaping to the atmosphere. The sample is injected into the...a new apparatus was constructed to reflux the o-chlorophenol containing the PBT flakes without exposure to oxygen after the distillation. The reflux...Perfluorotributylamine J23 Dio-idomethane 01 Acetonitile J24 Pentachloroethane 02 Acrylonitrile J25 Tetrachloroethylene 03 Propionitrile J26 t,ct

  11. Gamma radiolytic eradication of methoxychlor in aqueous media. The degradation pathways using HPLC and SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Butt, S.B.; Zafar, A. [PINSTECH, Nilore, Islamabad (Pakistan). Central Analytical Facility Div.; Riaz, M. [PINSTECH, Nilore, Islamabad (Pakistan). Chemistry Div.

    2013-08-01

    The gamma radiation-induced degradation of environmental pollutant methoxychlor in water was investigated. A {sup 60}Co gamma radiation source with a dose rate of 372 Gy h{sup -1} was used for gamma irradiation of 1 mg L{sup -1} and 10 mg L{sup -1} methoxychlor in water with a varied absorbed dose of 1-5 kGy. A single step clean up and pre-concentration procedure based on solid phase micro-extraction was optimized. The extent of radiolytic degradation was monitored by reversed phase HPLC-UV and GC-ECD. The trace and ultra trace level degradation products were identified using GC-MS-SPME by comparing their mass spectra with the NIST 98 m mass spectral library. Most of the generated products for 4 kGy dose are substituted chlorophenols. The reaction pathways of these substituted chlorophenols and benzophenone formation are also proposed. However, generated chlorophenols disappeared along with methoxychlor for an absorbed dose of 5 kGy. The attained degradation of methoxychlor is {proportional_to} 95% that reflects the potential use of ionization radiation for wastewater treatment. (orig.)

  12. Aerobic biodegradation of a mixture of monosubstituted phenols in a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Isaac; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián, E-mail: julian.carrera@uab.es

    2013-09-15

    Highlights: • Aerobic biodegradation of a mixture of p-nitrophenol and o-cresol is feasible. • Simultaneous biodegradation of p-nitrophenol and o-cresol was achieved at long-term. • o-Chlorophenol caused complete failure of the sequencing batch reactor. • Biomass had good settling properties although no mature granules were obtained. • p-Nitrophenol is believed to be responsible for granulation failure. -- Abstract: A sequencing batch reactor (SBR) was inoculated with p-nitrophenol-degrading activated sludge to biodegrade a mixture of monosubstituted phenols: p-nitrophenol (PNP), PNP and o-cresol; and PNP, o-cresol and o-chlorophenol. Settling times were progressively decreased to promote biomass granulation. PNP was completely biodegraded. The PNP and o-cresol mixture was also biodegraded although some transitory accumulation of intermediates occurred (mainly hydroquinone and catechol). o-Chlorophenol was not biodegraded and resulted in inhibition of o-cresol and PNP biodegradation and complete failure of the SBR within a few days. The biomass had very good settling properties when a settling time of 1 min was applied: sludge volume index (SVI{sub 5}) below 50 mL g{sup −1}, SVI{sub 5}/SVI{sub 30} ratio of 1 and average particle size of 200 μm.

  13. Validation of computationally predicted substrates for laccase

    Directory of Open Access Journals (Sweden)

    Reena

    2014-10-01

    Full Text Available Present study reports the validation (oxidation of computationally predicted oxidation of xenobiotic contaminants by commercially available pure laccase from Trametes versicolor. Selected contaminants were predicted as potential targets for laccase oxidation by using in-silico docking tool. The oxidation by laccase was measured by change in absorbance at specific λ max of each compound. Sinapic acid and tyrosine were taken as positive and negative controls, respectively. Oxidation was observed in m-chlorophenol, 2,4 di-chlorophenol, 2,4,6 tri-chlorophenol, captan, atrazine and thiodicarb, except malathion, which showed no activity. It could be speculated that the predicted substrates showing oxidation shared homology at structural and chemical level with positive control compounds. In case of malathion, structural non-homology with sinapic acid could be attributed to its inactivity towards laccase that required further structural analysis. Thus, a remediation tool proposing an advanced remediation approach combining the application of theoretical in-silico method and subsequent experimental validation using pure laccase could be proposed. As number and type of xenobiotics increase, the unfeasibility to screen them experimentally for bioremediation also rise. This approach would be useful to reduce the time and cost required in other screening methods.

  14. Simultaneous anaerobic-aerobic biodegradation of halogenated phenolic compound under oxygen-limited conditions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-cai; LAN Hui-xia; ZHAN Huai-yu; FU Shi-yu

    2005-01-01

    The successful application of co-immobilized aerobic-anaerobic biomaes under limited aeration in wastewater treatment systems would eliminate the problems associated with the intermediates mono-chlorophenol(MCP) and di-chlorophenol(DCP) accumulations. With low initial pentachlorophenol(PCP) concentration, all PCP could be completely removed under oxygen-limited strict anaerobic conditions,and the removal efficiencies with different initial haedspace oxygen percentage(IHOP) were not obviously different from each other. While at high initial PCP concentration, under strictly anaerobic conditions PCP and their intermediates were clearly higher than that under other conditions, and produced obvious accumulation, the highest PCP reduction was achieved by the system receiving 30 IHOP, oxygen-limited system also exhibited lower residual TOC concentration and lower concentration of metabolic intermediates MCP and DCP. These results suggested that under strictly anaerobic condition the reductive dechlorination of low chlorinated compounde became rate limiting in the reductive dechlorination pathway, less chlorinated compounds be more amenable to aerobic degradation, and the aerobes of outer layers could function under limited oxygen. The co-immobilized aerobic-anaerobic biomass for methanogeneeis under limited-aeration for chlorophenol degradation might be an attractive and efficient altemative for the sequential anaerobic/aerobic system to achieve mineralization of a broad range of recalcitrance highly chlorinated organics and low final TOC concentrations.

  15. Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden.

    Science.gov (United States)

    Lorentzen, J C; Juran, S A; Nilsson, M; Nordin, S; Johanson, G

    2016-04-01

    Indoor mold odor is associated with adverse health effects, but the microbial volatiles underlying mold odor are poorly described. Here, chloroanisoles were studied as potential key players, being formed by microbial metabolism of chlorophenols in wood preservatives. Using a three-stage approach, we (i) investigated the occurrence of chloroanisoles in buildings with indoor air quality problems, (ii) estimated their frequency in Sweden, and (iii) evaluated the toxicological risk of observed chloroanisole concentrations. Analyses of 499 building materials revealed several chloroanisole congeners in various types of buildings from the 1950s to 1970s. Evaluation of Swedish records from this time period revealed three coinciding factors, namely an unprecedented nationwide building boom, national regulations promoting wood preservatives instead of moisture prevention, and use of chlorophenols in these preservatives. Chlorophenols were banned in 1978, yet analysis of 457 indoor air samples revealed several chloroanisole congeners, but at median air levels generally below 15 ng/m(3) . Our toxicological evaluation suggests that these concentrations are not detrimental to human health per se, but sufficiently high to cause malodor. Thereby, one may speculate that chloroanisoles in buildings contribute to adverse health effects by evoking odor which, enhanced by belief of the exposure being hazardous, induces stress-related and inflammatory symptoms.

  16. The adsorptive properties of powdered carbon materials with a strongly differentiated porosity and their applications in electroanalysis and solid phase microextraction.

    Science.gov (United States)

    Kuśmierek, K; Sankowska, M; Skrzypczyńska, K; Świątkowski, A

    2015-05-15

    The adsorption of 4-chlorophenol from an aqueous solution on carbonaceous materials (one carbon black and two powdered activated carbons) with a strongly differentiated porosity was investigated. The kinetic data were fitted well to the pseudo-second order model. The amount of 4-chlorophenol adsorbed at equilibrium was increased with an increase in the specific surface area of the tested materials. The adsorption isotherms were analyzed using the Langmuir and Freundlich models. The Langmuir isotherm was slightly favorable (R(2)>0.99) rather than the Freundlich isotherm (R(2)>0.98). Carbon materials were also used for the modification of carbon paste electrodes as well as for the preparation of novel solid phase microextraction fibers. The peak current of the differential pulse voltammetry curves was increased along with the amount of added carbon paste electrode modifier. The signal response was closely related to the porosity of the materials used, and increased with the increase in the specific surface area. The amount of 4-chlorophenol extracted from the samples by the solid phase microextraction fiber's surface was also correlated with the specific surface area of the tested materials. All the novel fibers were better than the commercially available fibers prepared from polidimethylosiloxane.

  17. Effectiveness of Rice Husk Ash in Removal of Phenolic Compounds from Aqueous Solutions, Equilibrium and Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Phenols in trace quantities are usually present in the treated effluent of many wastewater-treatment plants. Phenol compounds even at low concentration can cause toxicity, health and significant taste and odor problem in drinking waters. This research focuses on understanding the sorption process and developing a cost-effective technology for the treatment of water contaminated with phenolic compounds, which are discharged into the aquatic environment from a variety of sources. In order to remove phenolic compounds from water, a new natural sorbent, rice husk ash, was developed.Materials and Methods: Removal of phenol, 2-chlorophenol and 4-chlorophenol were characterized by spectrophotometric technique at wavelengths of 269.5, 274 and 280 nm, respectively, under batch equilibrium conditions and via changing the parameters of contact time, initial pH, and initial concentration of adsorbates and dosages of sorbent. Finally, the results were analyzed by the kinetic and isotherm models.Results: in this study, the equilibrium time was found to be 240 min for full equilibration of adsorbates. Removal percent of 2-chlorophenol was lower than two others. The maximum removal of phenol, 2-CP and 4-CP was observed at an initial pH of 5. The percentage removal of these phenolic compounds increased with increasing adsorbent dose and decreasing initial concentration. In kinetics studies, correlation coefficient and ARE factor showed that the sorption of phenol (R2=0.9999, 2-chlorophenol (R2=0.9992 and 4-chlorophenol (R2=1 fitted by pseudo second order model. Isotherm studies also revealed that, Langmuirmodel for phenol (R2=0.9499, Freundlich model for 2-chlorophenol (R2=0.9659 and 4-chlorophenol (R2=0.9542 were the best choices to describe the sorption behaviors.Conclusion: Sorption process is highly dependent on the pH and it affects adsorbent surface

  18. A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H2O2 at neutral pH

    Science.gov (United States)

    Zhai, Qian; Zhang, Lizhong; Zhao, Xiufeng; Chen, Han; Yin, Dongju; Li, Jianhui

    2016-07-01

    An iron-containing polyoxometalate (FeШLysSiW) was synthesized from ferric chloride (FeIII), lysine (Lys) and silicotungstic acid (SiW), and characterized using ICP-AES, TG, FT-IR, UV-vis DRS, XRD and SEM. The chemical formula of FeШLysSiW was determined as [Fe(H2O)5(C6H14N2O2)]HSiW12O40·8H2O, with Keggin-structured SiW12O404- heteropolyanion and lysine moiety. As a heterogeneous catalyst, the as prepared FeШLysSiW showed good performance in the degradation of 4-chlorophenol by H2O2 in both the dark and irradiated systems. Under the conditions of 4-chlorophenol 100 mg/L, FeШLysSiW 1.0 g/L, H2O2 20 mmol/L and pH 6.5, 4-chlorophenol could be completely degraded in ca. 40 min in the dark and ca. 15 min upon irradiation. Prolonging the reaction time to 3 h, the TOC removal reached to ca. 71.3% in the dark and ca. 98.8% under irradiation. The catalytic activity of FeШLysSiW stems from synergetic effect of ferric iron and SiW12O404- in the catalyst, corresponding to Fenton-like catalysis and photocatalysis, respectively. The enhanced degradation of 4-CP under irradiation is due to the simultaneous oxidation of 4-CP through the Fenton-like and photocatalytic processes. The high catalytic activity of FeШLysSiW is also strongly related to the chemisorption of H2O2 on FeШLysSiW surface by hydrogen bonding, which promotes both the Fenton-like and photocatalytic processes.

  19. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat; Seraphin, Supapan

    2009-08-30

    Nitrogen-doped TiO(2) was developed to enable photocatalytic reactions using the visible range of the solar spectrum. This work reports on the synthesis, characterisation and kinetic study of interstitial N-doped TiO(2) prepared by the sol-gel method using three different types of nitrogen dopants: diethanolamine, triethylamine and urea. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-visible spectroscopy were used to analyse the titania. Different interstitial N-doped TiO(2) properties, such as absorption ability in the UV-visible light region, redshift in adsorption edge, good crystallisation and composition ratio of titania structures (anatase and rutile) could be obtained from different nitrogen dopants. Amongst investigated nitrogen precursors, diethanolamine provided the highest visible light absorption ability of interstitial N-doped TiO(2) with the smallest energy bandgap and the smallest anatase crystal size, resulting in the highest efficiency in 2-chlorophenol degradation. The photocatalytic activity of all N-doped TiO(2) can be arranged in the following order: TiO(2)/diethanolamine>TiO(2)/triethylamine>TiO(2)/urea>un-doped TiO(2). The initial rate of 2-chlorophenol degradation using the interstitial N-doped TiO(2) with diethanolamine was 0.59 mg/L-min and the kinetic constant was 2.34 x 10(-2)min(-1) with a half-life of 98 min. In all cases, hydroquinone was detected as a major intermediate in the degradation of 2-chlorophenol.

  20. Metabolites of chlorinated syringaldehydes in fish bile as biomarkers of exposure to bleached eucalypt pulp effluents.

    Science.gov (United States)

    Brumley, C M; Haritos, V S; Ahokas, J T; Holdway, D A

    1996-04-01

    Metabolites of chlorinated phenolic compounds in fish bile have been found to be sensitive biomarkers of bleached pulp mill effluent exposure. Chlorinated syringaldehydes are largely unstudied chlorophenolics found in bleached hardwood effluent. Sand flathead (Platycephalus bassensis), Australian marine fish, were exposed to 100% chlorine dioxide-bleached eucalypt pulp effluent at concentrations of 0.5, 2, and 8% (v/v) for 4 days. Metabolites of 2-chlorosyringaldehyde (2-CSA), the predominant chlorophenolic in this effluent, were measured in the bile. The major metabolite was the conjugate of 2-chloro-4-hydroxy-3,5-dimethoxy-benzylalcohol (2-CB-OH), the reduced product of 2-CSA. 2-CB-OH was found in all fish exposed to diluted effluent and was concentrated in the bile over 1000 times above 2-CSA levels in the effluent. A separate experiment examined the metabolic fate of 2,6-dichlorosyringaldehyde (2,6-DCSA), which is one of the major chlorophenolics in chlorine-bleached eucalypt pulp effluent. Sand flathead were exposed to 2,6-DCSA by intraperitoneal injection at 15 mg/kg or through the water to 0.5, 2, or 8 micrograms/liter for 4 days. Analysis of the bile revealed the major metabolite of 2,6-DCSA to be the conjugate of 2,6-dichloro-4-hydroxy-3,5-dimethoxybenzylalcohol, which was found in all exposed fish and was concentrated in the bile over 20,000 times above 2,6-DCSA exposure levels. Results reveal that the analysis of metabolites of chlorinated syringaldehydes in fish bile can provide a biomarker of bleached hardwood effluent exposure that is sensitive to low levels of exposure, specific to certain bleaching sequences, and correlates well with exposure concentrations.

  1. Determination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei; Danielson, Neil D

    2003-10-01

    An on-line quinine-sensitized photo-oxidation with quenched chemiluminescence (CL) detection method is developed for phenols using flow injection (FI) and liquid chromatography (LC). This detection method is based on the decrease of light emission from the luminol CL reaction due to the photo-oxidation of phenols that scavenge the photogenerated reactive oxygen species (e.g. singlet oxygen ({sup 1}O{sub 2}) and superoxide (O{sub 2}{center_dot}{sup -})). On-line photo-oxidation is achieved using a coil photo-reactor made from fluoroethylene-propylene copolymer tubing (3048 mmx0.25 mm i.d.) coiled around a mercury UV lamp. A buffer of pH 7 and a concentration of 350 {mu}M for quinine sulfate are determined optimum for the sensitized photo-oxidation. Using a carrier system flow rate of 60 {mu}l/min, calibration curves taken by FI for 10 phenolic compounds in aqueous solutions showed this decreasing sensitivity order: 4-chlorophenol, phenol, 4-nitrophenol, 3-hydroxy-L-kynurenine, 2-nitrophenol, salicylate, 3-nitrophenol, catechol, 2,4-dinitrophenol, and 2,4-dichlorophenol. This detection method using two tandem coil photo-reactors is also applied for the LC separation of phenol, 4-nitrophenol and 4-chlorophenol on an octadecyl (C18) silica LC column using acetonitrile-H{sub 2}O (40:60, v/v) as a mobile phase. The quenched CL detection limits (about 1 {mu}M or 20 pmol) for phenol and 4-chlorophenol are comparable to those for UV detection at 254 nm. Some selectivity in the quenched CL detection is evident by no interference in the FI phenol response even when benzaldehyde and phenethanol concentrations are 8 and 15 times that of phenol.

  2. Purification of peroxidase from Horseradish (Armoracia rusticana) roots.

    Science.gov (United States)

    Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B

    2010-08-11

    Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.

  3. Synthesis of Schiff Base Calix[4]arene Crowns

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This letter reports the synthesis of Schiff base calix[4]arene crowns containing m-xylylene phenol subunit, in which calix[4]arene Schiff base crowns 2a, 2b and 2c were formed by 1:1 condensation of calix[4]arene diamine 1 with dialdehydes (2, 6-diformyl-4-chlorophenol 3a, 2, 6-diformyl-4-methylphenol 3b, 2, 6-diformyl-4-tert-butylphenol 3c) under high dilute condition in refluxing anhydrous ethanol in 65-70% yield.

  4. Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties

    Science.gov (United States)

    Figgemeier, E.; Kylberg, W.; Constable, E.; Scarisoreanu, M.; Alexandrescu, R.; Morjan, I.; Soare, I.; Birjega, R.; Popovici, E.; Fleaca, C.; Gavrila-Florescu, L.; Prodan, G.

    2007-12-01

    TiO 2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.

  5. Thermodynamic study of adsorption of phenolic compounds onto Amberlite XAD-4 polymeric adsorbents and its acetylized derivative MX-4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption equilibrium isotherms of phenolic compounds,phenol, p-cresol, p-chlorophenol and p-nitrophenol, from aqueoussolutions by Amberlite XAD-4 polymeric adsorbent and its acetylizedderivative MX-4 within temperature range of 283-323K were obtainedand fitted to the Freundlich isotherms. The capacities ofequilibrium adsorption for all four phenolic compounds from theiraqueous solutions increased around 20% on the acetylized resin,which may be contributed to the specific surface area and thepartial polarity on the network. Estimations of the isosteric enthalpy, free energy , and entropy for the adsorption process arereported.

  6. Integral toxicity test of sea waters by an algal biosensor.

    Science.gov (United States)

    Tonnina, Daniele; Campanella, Luigi; Sammartino, Maria Pia; Visco, Giovanni

    2002-04-01

    An integral toxicity test, based on an algal biosensor and suitable to be used in sea water, is presented. The biosensor was designed and built by coupling a Clark oxygen electrode as transducer and the marine alga Spirulina subsalsa as biological mediator; it constitutes the "core" in a lab-scale prototype of a flow apparatus suitable to continuously monitor, in sea water, the photosynthetic activity of the alga and, from its variation, the marine pollution from the toxicological point of view. Inorganic pollutants (heavy metals) were tested in previous researches while organic ones (chlorophenols, pesticides and surfactants) are the object of the present paper.

  7. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water

    Institute of Scientific and Technical Information of China (English)

    TONG Shao-ping; WEI Hong; MA Chun-an; LIU Wei-ping

    2005-01-01

    Detoxification of chlorinated organic compounds via reaction with nickel/iron powder was implemented in aqueous solution. Compared to iron, nickel/iron bimetallic powder had higher hydrodechlorination activities for both atrazine (ATR) and p-chlorophenol (pCP); nickel/iron (2.96%, w/w) was shown to have the largest specific surface area and the optimum proportion for the dechlorination of both ATR and pCP. Electrochemical measurements showed that the adsorbed hydrogen atom on the nickel must have been the dominant reductive agent for the dechlorination of both ATR andpCP in this system.

  8. CURE CHARACTERISTICS OF HYDROXYL TERMINATED POLYBUTADIENE PREPOLYMER WITH BLOCKED TOLUENE DIISOCYANATE-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Prathima Kamath; M. Srinivasan; V. N. Krishnamurthy

    1994-01-01

    Cure characteristics of hydroxyl terminated polybutadiene (HTPB) prepolymer with a variety of blocked toluene diisocyanate (TDI) in the presence of triethylamine (TEA) and chloroacetic acid catalyst are reported. Phenol, thiophenol, p-chlorophenol, p-nitrophenol,p-cresol , resorcinol, naphthols, caprolactam and butylated-hydroxytoluene were used as blocking agents. Viscosity measurements have been carried out using a mixture of HTPB and blocked TDI in cyclohexanone in the presence of the catalysts at 50℃ and 60℃ using Haake rotational viscometer. Viscosity measurements have also been carried out with 50% solids such as ammonium sulphate along with HTPB and TDI adduct.

  9. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  10. Determination of Chlorine Dioxide and Chlorite in Water Supply Systems by Verified Methods

    Science.gov (United States)

    Tkáčová, Jana; Božíková, Jarmila

    2014-07-01

    This work is dedicated to the development and optimization of appropriate analytical methods for the determination of chlorine dioxide and chlorite in drinking water in order to obtain accurate and correct results in the quality control of drinking water. The work deals with the development and optimization of a method for the determination of chlorine dioxide using chlorophenol red. Furthermore, a new spectrophotometric method for the determination of chlorite via bromometry using methyl orange was developed, optimized and validated. An electrochemical method for the determination of chlorite by flow coulometry was also developed, optimized and validated.

  11. Gas and high-performance liquid chromatography of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Tesarova, E.; Pacakova, V.

    1983-05-01

    Gas (GC) and high-performance liquid chromatographic (HPLC) methods in the analysis of phenols are reviewed. Among the great number of phenolic compounds analyzed, alkylphenols, chlorophenols, dihydroxy-and trihydroxy-benzenes and biphenols are chiefly considered. The advantages and drawbacks of the methods are discussed. Relationships between the structural characteristics of phenols, the stationary phase structure, the mobile phase composition and the retention data are treated. Typical examples of the conditions for GC and HPLC analysis are summarized in tables. 276 references

  12. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-06-01

    This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the

  13. Triangle Area Water Supply Monitoring Project, October 1988 Through September 2001, North Carolina-Description of the Water-Quality Network, Sampling and Analysis Methods, and Quality-Assurance Practices

    Science.gov (United States)

    2004-01-01

    Triazine herbicides in filtered water by GC/MS 1379 1992 – 1993 1–L amber baked glass Chilled. Pesticides in filtered water (Carbopak-B solid-phase...of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of organonitrogen herbicides in water by solid-phase...34581 A GC/MS 5 2-Chlorophenol 34586 A GC/MS 5 2- Nitrophenol 34591 A GC/MS 5 Di-N-octylphthalate 34596 A GC/MS 10 2,4-Dichlorophenol 34601 A GC/MS 5

  14. A comparative study of proton transport properties of metal (IV) tungstates and their organic derivatives

    Indian Academy of Sciences (India)

    Heemanshu Patel; Alpana Parikh; Uma Chudasama

    2005-04-01

    New hybrid inorgano–organic materials were synthesized by anchoring organic moieties, ortho chlorophenol and para chlorophenol onto metal (IV) tungstates viz. tin tungstate (SnW), titanium tungstate (TiW) and zirconium tungstate (ZW) to give SnWoCP, SnWpCP, TiWoCP, TiWpCP, ZWoCP and ZWpCP, respectively. The materials were characterized for elemental analysis, thermal analysis (TGA, DSC), X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials were assessed in several acidic, basic and organic media. Further, the study of transport properties of these materials has been explored by measuring proton conductivity at different temperatures in the range 30–175°C using HP4192A impedance analyser over a frequency range 5 Hz–13 MHz at a signal level below 1 V. Based on the specific conductance data and Arrhenius plots, a suitable mechanism was proposed and conductance performance of derivatized and nonderivatized materials compared.

  15. Development of adsorbents from used tire rubber. Their use in the adsorption of organic and inorganic solutes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Troca-Torrado, Cesar; Alexandre-Franco, Maria; Fernandez-Gonzalez, Carmen; Gomez-Serrano, Vicente [Extremadura Univ., Badajoz (Spain). Dept. de Quimica Organica e Inorganica; Alfaro-Dominguez, Manuel [Extremadura Univ., Badajoz (Spain). Dept. de Ingenieria Mecanica, Energetica y de los Materiales

    2011-02-15

    Using used tire rubber (UTR), carbonaceous adsorbents (CAs) were prepared by chemical treatment of the material with HCl, HNO{sub 3} and NaOH aqueous solutions and by heat treatment at 900 C for 2 h in N{sub 2} atmosphere (H900). UTR and the UTR-derived products were first characterized in terms of texture by N{sub 2} adsorption at - 196 C and of oxygen surface groups by FT-IR spectroscopy and pH of the point of zero charge (pH{sub pzc}). Then, the products were tested as adsorbents of phenol, p-aminophenol, p-nitrophenol, and p-chlorophenol and of chromium, cadmium, mercury and lead in aqueous solution. The development of porosity is very poor in UTR and in the chemically treated products. H900 is the only CA with a better developed porosity, mainly in the regions of meso and macropores. pH{sub pzc} is close to 7.0 for most of the CAs. As an exception to the rule, pH{sub pzc} is 8.4 for H900. For this CA, the adsorption of all the adsorptives is greater. Usually, adsorption kinetics are fast. This is so in particular for p-nitrophenol and p-chlorophenol, on the one side, and for mercury and lead, on the other side. Adsorption is much higher for mercury and lead than for the remaining adsorptives. (author)

  16. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    Science.gov (United States)

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  17. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    Science.gov (United States)

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-01

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed.

  18. IMPACT OF C STAGE VARIABLES ON THE TOXICITY DURING PAPER PRODUCTION IN MILLS

    Directory of Open Access Journals (Sweden)

    Divya Prakash

    2013-09-01

    Full Text Available Chlorinated phenolics are formed during chlorination stage of pulp bleaching. These phenolics are dissolved in the alkaline extraction stage. The bleach plant effluent therefore contains these compounds in appreciable amount. As these chlorophenolics are highly toxic in nature, efforts have been made to reduce their concentration by changing the bleaching parameters. In the present studies experiments were conducted with bamboo pulp employing CEH sequence of bleaching under varying conditions. The effect of changing the chlorination stage parameters like pH, temperature, pulp consistency and distribution of bleaching chemicals between C and H was changed. The effluent parameters and pulp characteristics have also been determined. The results show that the amount of all categories of chlorinated phenolics are reduced by increasing the pH (1.5–4.0, decreasing temperature (35-150C and all chlorophenolics are decreased by decreasing the consistency (4-2% and C:H ratio (65:35 to 45:55.

  19. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids.

    Science.gov (United States)

    de Carvalho, Carla C C R; Fischer, Martin A; Kirsten, Sandra; Würz, Birgit; Wick, Lukas Y; Heipieper, Hermann J

    2016-12-01

    Mycolata form a group of Gram-positive bacteria with unique cell envelope structures that are known for their high tolerance against antibiotics and both aromatic and aliphatic hydrocarbons. An important part of the unique surface structure of the mycolata is the presence of long chain α-alkyl-β-hydroxy fatty acids, the mycolic acids. In order to investigate the adaptive changes in the mycolic acid composition, we investigated the composition of mycolic acids during the response both to osmotic stress caused by NaCl and to 4-chlorophenol in Rhodococcus opacus PWD4. This bacterium was chosen as it is known to adapt to different kinds of stresses. In addition, it is a potential biocatalyst in bioremediation as well as for biotechnological applications. In the present study, cells of R. opacus PWD4, grown in liquid cultures, responded to toxic concentrations of NaCl by increasing the ratio between mycolic acids and membrane phospholipid fatty acids (MA/PLFA-ratio). Cells reacted to both NaCl and 4-chlorophenol by decreasing both the average chain length and the unsaturation index of their mycolic acids. These changes in mycolic acid composition correlated with increases in cell surface hydrophobicity and saturation of membrane fatty acids, demonstrating the relation between mycolic acid and phospholipid synthesis and their contribution to cell surface properties of R. opacus PWD4.

  20. Pentachlorophenol remediation by Enterobacter sp. SG1 isolated from industrial dump site.

    Science.gov (United States)

    Karn, Santosh Kumar; Geetanjali

    2014-02-01

    Chlorophenols contamination is serious concern to the environment due toxicity to all forms of life. Among all the chlorophenols, pentachlorophenol (PCP) is more detrimental to the environment. Pentachlorophenol used as pesticide, herbicide, antifungal agent and wood preservative which causes environmental pollution. In the present research a PCP degrading bacterium was isolated and characterized from industrial dump site. This isolate used PCP as its sole source of carbon and energy and was capable of degrading this compound, as indicated by stoichiometric release of chloride, ring cleavage activity and biomass formation. Based on morphological, biochemical and 16S rRNA gene sequence analysis this strain was identified as Enterobacter sp. SG1. Gas Chromatography (GC) analysis revealed that this strain was able to degrade PCP up to a concentration of 2 mM. This study showed that the removal efficiency of PCP by SG1 was found to be very effective and can be used in degradation of PCP contaminated site or waste in the environment.

  1. Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: synthesis, characterisation and potential application in water purification.

    Science.gov (United States)

    Mamba, G; Mbianda, X Y; Govender, P P

    2013-10-15

    Multiwalled carbon nanotubes were synthesised by the nebulised spray pyrolysis method and purified to remove amorphous carbon and fullerenes. The purified multiwalled carbon nanotubes were oxidised using a 3:1 H2SO4/HNO3 mixture to introduce carboxylic groups and to a smaller extent hydroxyl groups on the walls of the carbon nanotubes. Subsequently, the oxidised carbon nanotubes were chlorinated using oxalyl chloride to generate acyl chloride groups through which phosphorylation took place. 4-Aminophenyl methylphosphonate was attached to the multiwalled carbon nanotubes via an amidation reaction. FT-IR and XPS confirmed the presence of PO, PO and PCP functional groups in the phosphorylated carbon nanotubes. Polymerisation of the phosphorylated carbon nanotubes with cyclodextrins was achieved using hexamethylene diisocyanate as a bifunctional linker. Surface morphology of the polymer was investigated by SEM while FT-IR was used to confirm the polymerisation reaction. Moreover, the thermal stability of the polymer was probed using TGA while BET was employed to determine the surface area and pore volume of the polymer. Furthermore, the polymer was tested for the removal of cobalt and 4-chlorophenol from synthetic aqueous solutions of the pollutants. The polymer displayed potential as an adsorbent for both cobalt and 4-chlorophenol.

  2. Ordered mesoporous carbon coating on cordierite: Synthesis and application as an efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ying, E-mail: ywan@shnu.edu.cn [Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Cui, Xiangting; Wen, Zhentao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2011-12-30

    Highlight: Black-Right-Pointing-Pointer Surfactant self-assembly of ordered mesoporous carbon coating on honeycomb cordierite. Black-Right-Pointing-Pointer Carbon coating with opened, hexagonally ordered pore arrays. Black-Right-Pointing-Pointer Honeycomb adsorbents for removal of p-chlorophenol. Black-Right-Pointing-Pointer The adsorbents exhibit large processing volume, and great advantages in reusability. - Abstract: Ordered mesoporous carbon coating on the honeycomb cordierite substrate has been prepared using low-polymerized phenolic resins as carbon sources and triblock copolymer F127 as the structure directing agent via the evaporation induced self-assembly route. The high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), and nitrogen sorption techniques prove the hexagonally ordered pore arrays of carbon coating on the cordierite. The honeycomb monolith adsorbents coated by ordered mesoporous carbons are directly used without any activation, and exhibit adsorption capacities for chlorinated organic pollutants in water with 200 mg/g for p-chlorophenol and 178 mg/g for p-chloroaniline (with respect to the net carbon coating), high adsorption ratio for low-concentration pollutants, large processing volumes and reusability. More than 200 repeated times can be achieved without obvious loss in both adsorption capacity and weight.

  3. Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2011-04-01

    Full Text Available Inhibition of α-glucosidase (EC 3.2.1.20 and β-galactosidase (EC 3.2.1.23 biosynthesis by phenolic compounds (phenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol in Escherichia coli, Bacillus and Pseudomonas species isolated from petroleum refinery wastewater was assessed. At sufficient concentrations, phenols inhibited the induction of α-glucosidase and β-galactosidase. The patterns of these toxic effects can be mathematically described with logistic and sigmoid dose-response models. The median inhibitory concentrations (IC50 varied among the phenols, the bacteria and enzymes. Quantitative structure–activity relationship (QSAR models based on the logarithm of the octanol–water partition coefficient (log10Kow were developed for each bacterium. The correlation coefficients varied between 0.84and 0.99 for the enzymes. The test results indicated α-glucosidase and β-galactosidase biosynthesis as important microbial indices for evaluation of toxicity of phenolic compounds.

  4. A clinical and radiographic study of four different root canal fillings in primary molars

    Directory of Open Access Journals (Sweden)

    Alaa O Al-Ostwani

    2016-01-01

    Full Text Available Background: Successful treatment of infected primary teeth aims to preserve the child′s health. However, the complex morphology of primary root canals and the desire for shorter therapy sessions put the necessity to search for the ideal root canal paste. Aims: To evaluate pulpectomy of nonvital primary molars using four different root canal filling pastes zinc oxide and propolis (ZOP as a new paste, endoflas-chlorophenol-free as a new paste free of chlorophenol, metapex paste, and zinc oxide and eugenol (ZOE paste as a control paste. Materials and Methods: Pulpectomy of 64 nonvital primary molars were accomplished in 39 children aged 3-9 years. Teeth were randomly divided into four equal groups of 16 molars according to the type of root canal filling. Pulpectomy was performed in one stage using 5.25% sodium hypochlorite irrigation and stainless-steel crown for final restoration. Clinical and radiographic results were evaluated double-blindly for two periods of 6, 12 months. Data were analyzed using Chi-square/Fisher′s exact test, and P-value was set as 0.05. Results: The four pastes achieved convergent clinical and radiographic success within the two observation periods (P > 0.05. ZOE paste was the slowest in its resorption. Conclusions: ZOP is a promising paste with its natural antibacterial component (propolis. ZOE paste had convergent efficacy to the other pastes.

  5. Biomarkers for monitoring efficacy of bioremediation by microbial inoculants

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, J.K.; Elvang, A.M. [Stockholm University (Sweden). Arrhenius Laboratories for Natural Sciences; Bjorklof, K.; Jorgensen, K.S. [Finnish Environment Institute, Helsinki (Finland). Research Laboratory

    2000-07-01

    Bioaugmentation of contaminated sites with microbes that are adapted or genetically engineered for degradation of specific toxic compounds is an area that is currently being explored as a clean-up option. Biomarkers have been developed to track the survival and efficacy of specific bacteria that are used as inocula for bioremediation of contaminated soil. Examples of biomarkers include the Iuc gene, encoding firefly luciferase and the gfp gene, encoding the green fluorescent protein (GFP). The luc gene was used to tag different bacteria used for bioremediation of gasoline or chlorophenols. The bacteria were monitored on the basis of luciferase activity in cell extracts from soil. The gfp gene was also used to monitor bacteria during degradation of chlorophenol in soil, based on fluorescence of the GFP protein. Other biomarkers can also be used for monitoring of microbial inocula used for bioaugmentation of contaminated sites. The choice of biomarker and monitoring system depends on the particular site, bacterial strain and sensitivity and specificity of detection required. (author)

  6. Reductive dechlorination of 2,4-dichlorophenol using nanoscale Fe0: influencing factors and possible mechanism

    Institute of Scientific and Technical Information of China (English)

    CHENG Rong; WANG JianLong; ZHANG WeiXian

    2007-01-01

    Nanoscale Fe0 was synthesized through a reductive method in this paper. The experiments were performed to investigate the reduction of 2,4-dichlorophenol (2,4-DCP) by nanoscale Fe0 under different conditions. The pathways for the reduction of 2,4-DCP by nanoscale Fe0 were discussed. Batch studies demonstrated that the mechanism includes adsorption, dechlorination and cleavage of the benzene ring. Dechlorination, which occurs after 2,4-DCP molecule is adsorbed on the interface of Fe particle, is an interfacial reaction. One or two chlorine atom can be removed from 2,4-DCP to form 2-chlorophenol, 4-chlorophenol or phenol. As the concentration of 2,4-DCP increased, the relative dechlorination ratio decreased. However, the reduced quantities of 2,4-DCP increased. Temperature can influence dechlorination rate and pathway. Dechlorination is prior to cleavage of the benzene ring at a higher temperature, but at a lower temperature, adsorption may be the main pathway, and cleavage of the benzene ring may be prior to dechlorination.

  7. Science Letters:Dechlorination mechanism of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid

    Institute of Scientific and Technical Information of China (English)

    Jing-jing WO; Zhen ZHANG; Xin-hua XU

    2009-01-01

    To understand the feasibility of its application to the in situ remediation of contaminated groundwater, the dechlori-nation of 2,4-dichlorophenol (2,4-DCP) by Ni/Fe nanoparticles in the presence of humic acid (HA) was investigated. We found that, as high performance liquid chromatography (HPLC) was used, the 2,4-DCP was first quickly reduced to o-chlorophenol (o-CP) andp-chlorophenol (p-CP), and then reduced to phenol as the final product. Our experimental results indicated that HA had an adverse effect on the dechlorination of 2,4-DCP by Ni/Fe nanoparticles, as the HA concentration increased, the removal rate decreased evidently. It also demonstrated that 2,4-DCP was reduced more easily to o-CP than to p-CP, and that the sequence of the tendency in dechlorination of intermediates was p-CP>o-CP. Transmission electron microscope (TEM) showed that HA could act as an adsorbate to compete reactive sites on the surface of Ni/Fe nanoparticles to decrease the dechlorination rate. Also we con-cluded that the dechlorination reaction of 2,4-DCP over Ni/Fe nanoparticles progressed through catalytic reductive dechlorination.

  8. Reductive dechlorination of 2,4-dichlorophenol using nanoscale Fe~0:influencing factors and possible mechanism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanoscale Fe0 was synthesized through a reductive method in this paper. The experiments were per-formed to investigate the reduction of 2,4-dichlorophenol (2,4-DCP) by nanoscale Fe0 under different conditions. The pathways for the reduction of 2,4-DCP by nanoscale Fe0 were discussed. Batch studies demonstrated that the mechanism includes adsorption, dechlorination and cleavage of the benzene ring. Dechlorination, which occurs after 2,4-DCP molecule is adsorbed on the interface of Fe particle, is an interfacial reaction. One or two chlorine atom can be removed from 2,4-DCP to form 2-chlorophenol, 4-chlorophenol or phenol. As the concentration of 2,4-DCP increased, the relative dechlorination ratio decreased. However, the reduced quantities of 2,4-DCP increased. Temperature can influence dechlo-rination rate and pathway. Dechlorination is prior to cleavage of the benzene ring at a higher tempera-ture, but at a lower temperature, adsorption may be the main pathway, and cleavage of the benzene ring may be prior to dechlorination.

  9. Impact of continuous and intermittent supply of electric assistance on high-strength 2,4-dichlorophenol (2,4-DCP) degradation in electro-microbial system.

    Science.gov (United States)

    Cao, Zhanping; Zhang, Minghui; Zhang, Jingli; Zhang, Hongwei

    2016-07-01

    The high-strength 2,4-DCP, which exists in two states: dissolved and colloidal, was studied by a continuously electro-microbial system (CEMS) and an intermittently electro-microbial system (IEMS). The hydrolysis rate of colloidal 2,4-DCP in the IEMS without electric assistance was much higher than that in the CEMS. However, the degradation rate of the dissolved 2,4-DCP and the dissolved intermediates (2-chlorophenol and 4-chlorophenol) in the IEMS without electric assistance were much lower than that in the CEMS. By adjusting the intermittent operation mode, the degradation time of 2,4-DCP was shortened greatly. Microbial characteristics in the CEMS and the IEMS were different. The correlation analysis for the main factors affecting the hydrolysis was performed by SPSS, and it was found that the correlation coefficient (rp) was -0.912 for extracellular polymeric substances (EPS) content, 0.823 for zeta potential and 0.632 for relative hydrophobicity, respectively.

  10. Thermodynamics of multisolute adsorption from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jossens, L. (Univ. Calif. Berkeley); Fritz, W.; Myers, A.L.; Prausnitz, J.M.; Schluender, E.U.

    1978-01-01

    Equilibrium adsorption data were obtained at 20/sup 0/C on activated carbon for six ternary aqueous systems simulating organic chemical wastewaters (phenol/p-nitrophenol, p-chlorophenol/p-nitrophenol, p-nitrophenol/benzoic acid, p-chlorophenol/phenyl acetic acid, o-phenylphenol/p-nitrophenol, and 2,4-dichlorophenol/dodecyl benzol sulfonic acid). The three-parameter Toth adsorption isotherm represented well the component single-solute data adsorption. With the thermodynamic ideal-adsorbed-solution method, total adsorptions were calculated from single-solute data predicted by the Toth equation and compared with experimental data. Prediction for total adsorption was within approx. 2-10Vertical Bar3<; for adsorption of individual components, within approx. 3-20Vertical Bar3<. A new three-parameter adsorption isotherm was derived, which also represented well the single-solute data. For bi-solute systems where dissociation is negligible, calculated individual adsorptions agreed with experiment within 2Vertical Bar3<. Systematic deviations between calculation and observed results may be due to the acidities of the solutes.

  11. Electro oxidation of Phenol on a Ti/RuO{sub 2} anode: effect of some electrolysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Iranildes D. dos; Dutra, Achilles J.B. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Afonso, Julio C., E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The influences of electrolysis time, anodic area, current density and supporting electrolyte on phenol and its byproducts degradation on a Ti/RuO{sub 2} anode were investigated. It was observed that phenol and its byproducts were rapidly broken down in the presence of chloride ions. Gas chromatography/mass spectrometry (GC/MS) data have shown that the presence of chloride ions lead to chlorophenols formation, due to reactions with Cl{sub 2} and/or OCl{sup -} generated during electrolysis. However, these intermediate products were also degraded later by the oxidizing agents. The standards established by the CONAMA (Brazilian National Council for the Environment) for phenols and chlorophenols in effluents were achieved after 360 min of electrolysis with a current density of 10 mA cm-2. Cyclic voltammograms obtained with the anodes before and after 436 h of electrolysis under severe salinity conditions (2 mol L-1) and current density (800 mA cm-2) showed that Ti/RuO{sub 2} did not lose its electrocatalytic properties. This fact indicates that Ti/RuO{sub 2} can be used for the treatment of effluents containing phenols in a chloride environment. (author)

  12. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites.

    Science.gov (United States)

    Anh, Tuan Mai; Dzyadevych, Sergei V; Van, Minh Chau; Renault, Nicole Jaffrezic; Duc, Chien Nguyen; Chovelon, Jean-Marc

    2004-05-28

    The determination of diuron, atrazine, desisopropylatrazine (DIA) and desethylatrazine (DEA) were investigated using conductometric tyrosinase biosensor. Tyrosinase was immobilised on the biosensor sensitive part by allowing it to mix with bovine serum albumin (BSA) and then cross-linking in saturated glutaraldehyde (GA) vapour for 30min. The determination of pollutants in a solution was performed by comparison of the output signal (i.e percentage of the enzymatic activity) of the biosensor before and after contact with pollutants. The measurement of the enzymatic activity was performed using 4-chlorophenol, phenol and catechol substrates and response times ranging from 1 to 5min were observed. A 4-chlorophenol substrate was used to detect pesticides. A 30min contact time of the biosensor in the pollutant solution was used. Under the experimental conditions employed, detection limits for diuron and atrazine were about 1ppb and dynamic range of 2.3-2330 and 2.15-2150ppb were obtained for diuron and atrazine, respectively. A relative standard deviation (n=3) of the output signal was estimated to be 5% and a slight drift of 1.5muSh(-1) was observed. The 90% of the enzyme activity was still maintained after 23 days of storage in a buffer solution at 4 degrees C.

  13. Synthesis and Characterization of Molecularly Imprinted Polymer Membrane for the Removal of 2,4-Dinitrophenol

    Directory of Open Access Journals (Sweden)

    Md. Jelas Haron

    2013-02-01

    Full Text Available Molecularly imprinted polymers (MIPs were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA and polystyrene (PS after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP and the PS membrane with MIP (PS-MIP was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo–second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.

  14. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter (Quercus suber L).

    Science.gov (United States)

    Farnet, A M; Criquet, S; Pocachard, E; Gil, G; Ferre, E

    2002-01-01

    A new isoform of laccase from Marasmius quercophilus is described in this study. The strain of this white-rot fungus was isolated for the first time on a cork oak litter. This isoform exhibited certain common properties of laccases (a molecular weight of 65 Kda, an optimum pH of 6.2 with syringaldazine). But this laccase has also particularly novel features: the best activity measured was observed at high temperatures (80 C) and this isoform was not inhibited with EDTA. Furthermore, this induced laccase was able to transform most of the aromatic compounds tested without the addition of mediators to the reaction mixture, and the transformation of certain chlorophenols (2-chlorophenol and 2,4-dichlorophenol) by a laccase isoform from M. quercophilus is reported here for the first time. We also demonstrate the importance of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as a mediator since it allowed veratryl alcohol and p-hydroxybenzoic acid transformation. Moreover, new products of transformation were observed using the combination of ABTS with this isoform of laccase.

  15. Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles.

    Science.gov (United States)

    del Castillo, I; Hernández, P; Lafuente, A; Rodríguez-Llorente, I D; Caviedes, M A; Pajuelo, E

    2012-04-15

    Cork manufacturing is a traditional industry in Southern Europe, being the main application of this natural product in wine stoppers and insulation. Cork processing begins at boiling the raw material. As a consequence, great volumes of dark wastewaters, with elevated concentrations of chlorophenols, are generated, which must be depurated through costly physicochemical procedures before discarding them into public water courses. This work explores the potential of bacteria, isolated from cork-boiling waters storage ponds, in bioremediation of the same effluent. The bacterial population present in cork-processing wastewaters was analysed by DGGE; low bacterial biodiversity was found. Aerobic bacteria were isolated and investigated for their tolerance against phenol and two chlorophenols. The most tolerant strains were identified by sequencing 16S rDNA. The phenol-degrading capacity was investigated by determining enzyme activities of the phenol-degrading pathway. Moreover, the capacity to form biofilms was analysed in a microtitre plate assay. Finally, the capacity to form biofilms onto the surface of residual small cork particles was evaluated by acridine staining followed by epifluorescence microscopy and by SEM. A low-cost bioremediation system, using phenol-degrading bacteria immobilised onto residual cork particles (a by-product of the industry) is proposed for the remediation of this industrial effluent (self-bioremediation).

  16. Assessment of priority phenolic compounds in sediments from an extremely polluted coastal wetland (Lake Maryut, Egypt).

    Science.gov (United States)

    Khairy, Mohammed A

    2013-01-01

    Although high concentrations of trace organic pollutants were recorded along the Egyptian Mediterranean Coast and its corresponding coastal wetlands, no published data are available for the levels of phenolic compounds. Thus, this work aimed to investigate the levels of phenolic compounds in sediments of a heavily polluted coastal wetland (Lake Maryut, Egypt). For that purpose, a method was optimized for the extraction and detection of chlorophenols, methylphenols, and nitrophenols in sediments using GC-MS. Sediments were extracted with 0.1 M NaOH/methanol by sonication. Cleanup of sediment extracts using liquid-liquid extraction and SPE was found important to remove most of the interfering co-extracts. The proposed analytical methodology was validated by analysis of matrix spikes. Detection limits were 0.063-0.694 μg/kg dw for sediments. Good recoveries (70-110%) and precision values (RSD Lake Maryut. Results revealed that higher concentrations were observed in the main basin (MB) of Lake Maryut affected by the discharge of effluents from a primary wastewater treatment plant, direct discharge of industrial effluents, domestic wastes, and agricultural effluents from Qalaa Drain (QD). Chlorophenols (CPs) were the major group detected in the lake sediments followed by methylphenols (MPs) and nitrophenols (NPs). CPs were dominated by 2-, 4-, and 3-chlorophenols. Concentrations of CPs were higher at the north and northwestern parts of the MB indicating the influence of industrial effluents discharged into the lake. On the other hand, higher concentrations of NPs were observed at the south and southwestern parts of the MB, which is subjected to the discharge of agricultural and domestic effluents via QD. Results of the risk assessment revealed that phenol, cresols, 2,4-dinitrophenol, 4-NP, 2-CP, 2,3,4,6-tetrachlorophenol and 2,4-dimethylphenol are contaminants of concern and that adverse ecological effects could possibly occur to benthic species from the exposure to

  17. APPLICATION OF MAGNETIC CATALYSTS TO THE CATALYTIC WET PEROXIDE OXIDATION (CWPO OF INDUSTRIAL WASTEWATER CONTAINING NON BIODEGRADABLE ORGANIC POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Macarena Munoz

    2014-03-01

    Full Text Available A new ferromagnetic -Al2O3-supported iron catalyst has been prepared and its activity and stability have been compared with those of a previous iron-based conventional catalyst and with the traditional homogeneous Fenton process in the oxidation of chlorophenols. The use of solid catalysts improved significantly the efficiency on the use of H2O2, achieving higher mineralization degrees. The magnetic catalyst led to significantly higher oxidation rates than the conventional one due to the presence of both Fe (II and Fe (III. On the other hand, the use of a catalyst with magnetic properties is of interest, since it allows rapid recovery after treatment using a magnetic field. Moreover, it showed a high stability with fairly low iron leaching (<1% upon CWPO runs. An additional clear advantage of this new catalyst is its easy separation and recovery from the reaction medium by applying an external magnetic field.

  18. Potentialities of a membrane reactor with laccase grafted membranes for the enzymatic degradation of phenolic compounds in water.

    Science.gov (United States)

    Chea, Vorleak; Paolucci-Jeanjean, Delphine; Sanchez, José; Belleville, Marie-Pierre

    2014-10-06

    This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L-1), consumption increased with flux (up to 7.9 × 103 mg·h-1·m-2 at 128 L·h-1·m-2), whereas at the highest substrate concentration (500 mg·L-1), it was shown that the reaction was limited by the oxygen content.

  19. Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation.

    Science.gov (United States)

    Putta, Thapanan; Lu, Ming-Chun; Anotai, Jin

    2011-09-01

    Tungsten doping and hydrothermal treatment were found to significantly improve the visible-light photoactivity of TiO(2) synthesized by the sol-gel method. It was observed that TiO(2) doped with a 0.5% W:Ti mole ratio and treated with 4 h of hydrothermal curing showed photoactivity under blue light irradiation equal to 74% of the commercial Degussa P-25 under UV irradiation, i.e., 0.01 mM 2-chlorophenol was completely removed in 120 and 90 min, respectively. Light absorptivity and photocatalytic activity under blue light irradiation were not dependent on the crystallite structure of the TiO(2). The oxidation kinetics under blue light irradiation can be effectively explained by the Langmuir-Hinshelwood model with an apparent reaction rate constant and a Langmuir constant of 3.60 × 10(-4) mM min(-1) and 206.53 mM(-1), respectively.

  20. Conductometric Microbiosensors for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Sergei V. Dzyadevych

    2008-04-01

    Full Text Available This review presents the principles of conductometric measurements in ionic media and the equivalent electrical circuits of different designs for conductometric measurements. These types of measurements were first applied for monitoring biocatalytic reactions. The use of conductometric microtransducers is then presented and detailed in the case of pollutant detection for environmental monitoring. Conductometric biosensors have advantages over other types of transducers: they can be produced through inexpensive thinfilm standard technology, no reference electrode is needed and differential mode measurements allow cancellation of a lot of interferences. The specifications obtained for the detection of different pesticides, herbicides and heavy metal ions, based on enzyme inhibition, are presented as well as those obtained for the detection of formaldehyde, 4- chlorophenol, nitrate and proteins as markers of dissolved organic carbon based on enzymatic microbiosensors.

  1. Homogeneous gas-phase formation of polychlorinated naphthalene from dimerization of 4-chlorophenoxy radicals and cross-condensation of phenoxy radical with 4-chlorophenoxy radical: Mechanism and kinetics study

    Science.gov (United States)

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu

    2015-10-01

    A direct density functional theory (DFT) calculation was performed for the formation of polychlorinated naphthalenes (PCNs) from dimerization of 4-chlorophenoxy radicals (4-CPRs) and cross-condensation of phenoxy radical (PhR) with 4-CPR, respectively. Several energetically feasible formation routes were proposed. The rate constants were computed by the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution over temperature range of 600-1200 K. This study shows that PCN productions from the dimerization of 4-CPRs just contain DCNs. All the monochlorinated naphthalene (MCN) detected in the experiment from 4-chlorophenol (4-CP) as precursor are formed form the cross-condensation of PhR with 4-CPR.

  2. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  3. Reactor modeling in heterogeneous photocatalysis: toxicity and biodegradability assessment.

    Science.gov (United States)

    Satuf, M L; José, S; Paggi, J C; Brandi, R J; Cassano, A E; Alfano, O M

    2010-01-01

    Photocatalysis employing titanium dioxide is a useful method to degrade a wide variety of organic and inorganic pollutants from water and air. However, the application of this advanced oxidation process at industrial scale requires the development of mathematical models to design and scale-up photocatalytic reactors. In the present work, intrinsic kinetic expressions previously obtained in a laboratory reactor are employed to predict the performance of a bench scale reactor of different configuration and operating conditions. 4-Chlorophenol was chosen as the model pollutant. The toxicity and biodegradability of the irradiated mixture in the bench photoreactor was also assessed. Good agreement was found between simulation and experimental data. The root mean square error of the estimations was 9.9%. The photocatalytic process clearly enhances the biodegradability of the reacting mixture, and the initial toxicity of the pollutant was significantly reduced by the treatment.

  4. Solvation dynamics of coumarin 153 embedded in AOT + phenol organogels studied by time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Nishiyama, Katsura; Takata, Kei; Watanabe, Keiichi; Shigematsu, Hirotake

    2012-03-01

    We investigate solvation dynamics of organogel utilizing ps-ns fluorescence spectroscopy. The organogel studied in this Letter comprises bis(2-ethylhexyl) sulfosuccinate (AOT) and p-chlorophenol in the m-xylene solvent, that produce an organogel architecture with self-assembly. Within the organogel, an emitting probe, coumarin 153 (C153), is embedded. We then obtain dynamic response functions of solvation derived from the time-resolved fluorescence spectra of C153. We propose that total energy of the C153-organogel system relaxes with a relaxation time of 3.9 ns, whereas the entire rearrangement of the organogel structure around C153 is achieved with that of 6.1 ns, respectively.

  5. [Oxidative efficiency of the system of electrolysis coupled ozonation].

    Science.gov (United States)

    Zhou, Qi; Zhang, Rong; Wang, Xun-Hua; Tong, Shao-Ping; Ma, Chun-An

    2010-09-01

    The oxidation system of electrolysis coupled ozonation (electrolysis-ozonation) was used to degrade 4-chlorophenol (4-CP), and its mechanism was discussed on the basis of kinetic analysis. The experimental results indicated the electrolysis-ozonation system had a significant synergistic effect during degradation of 4-CP. For example, the electrolysis-ozonation had the 4-CP removal rate of 92.7% and the COD removal rate of 64.9% in 900 s, respectively; while electrolysis alone plus ozonation alone only had the 4-CP removal rate of 69.7% and the COD removal rate of 30.1% under the same conditions. The results of H2O2 concentration analysis and photocurrent test showed that the synergistic mechanism of electrolysis-ozonation included two factors: (1) production of *03- at the cathode; (2) H2O2 generation resulting from reduction of dissolved oxygen. The above two factors led to generation of *OH in system effectively.

  6. Assessment of PCDD/Fs levels in soil at a contaminated sawmill site in Sweden--a GIS and PCA approach to interpret the contamination pattern and distribution.

    Science.gov (United States)

    Henriksson, S; Hagberg, J; Bäckström, M; Persson, I; Lindström, G

    2013-09-01

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) were analysed in soil from a Swedish sawmill site where chlorophenols (CPs) had been used more than 40 years ago. The most contaminated area at the site was the preservation subarea where the PCDD/F WHO2005-TEQ level was 3450 times higher than the current Swedish guideline value of 200 ng TEQ/kg soil for land for industrial use. It was also shown that a fire which destroyed the sawmill might have affected the congener distribution at the concerned areas. To get a broader picture of the contamination both GIS (spatial interpolation analysis) and multivariate data analysis (PCA) were applied to visualize and compare PCDD/F levels as well as congener distributions at different areas at the site. It is shown that GIS and PCA are powerful tools in decisions on future investigations, risk assessments and remediation of contaminated sites.

  7. Design and application of a GC-SNIff/MS system for solving taste and odour episodes in drinking water.

    Science.gov (United States)

    Hochereau, C; Bruchet, A

    2004-01-01

    This paper describes the implementation of a GC-Sniff/MS system that allows the simultaneous determination of the odorous properties of compounds eluting from a GC column and their identification by MS. The technique was first tested with standard compounds then applied to real cases of taste and odour episodes. This approach allowed the identification of geosmin at low levels and suggested the possible implication of methylnaphthalene in the development of chemical odours. It provided the first clue of the presence of a halophenol with a very low odour threshold involved in a chlorophenolic odour episode. The chemical was finally identified as 2,6-dibromophenol. The method was also applied to the characterization of a complex mixture of additives leaching from a flexible rubber pipe. In the latter case, Time-of-Flight MS was also used to confirm the identity of the additives.

  8. Broad range pH sensor based on sol-gel

    Institute of Scientific and Technical Information of China (English)

    Bai Xiao-peng

    2014-01-01

    A broad-range fibre optic pH sensor based on evanescent wave absorption is presented in this paper. This sensor is prepared by immobilizing a mixture of three pH sensitive indicators (dyes):cresol red, bromophenol blue and chlorophenol red onto the unclad fibre surface using a sol–gel cladding technology. Triton is introduced into the sol–gel cladding to improve the cladding quality. Smooth and strong sol–gel cladding with entrapped indicators and triton has been fabricated and observed using a scanning electron microscope (SEM), an energy dispersive X-ray detector (EDX) and an atomic force microscopy (AFM). The pH sensor based the cladding has shown a linear, reversible and repeatable response over a broad range of pH values between 4.5 and 13.0.

  9. ANTIBACTERIAL EFFECT OF CALCIUM HYDROXIDE IN DIFFER ENT VEHICLES

    Directory of Open Access Journals (Sweden)

    Hari

    2012-11-01

    Full Text Available ABSTRACT: AIM: This study evaluated the antibacterial effect of ca lcium hydroxide in different vehicles in an in vitro model. MATERIAL AND METHODS: Calcium hydroxide paste prepared with two conventionally used vehicles namely, campho rated monochlophenol, distilled water and also propylene glycol. The antibacterial activity of these paste were tested against five micro- organisms that can commonly occur in the inf ected root canals. RESULTS AND CONCLUSIONS: The results of the study indicate that a paste of ca lcium hydroxide made with propylene glycol exerts significant antibacterial act ion. Hence, it can be recommended for use as an intracanal medicament in preference to a paste prepa red with a tissue toxic phenolic compound like camphorated mono chlorophenol

  10. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    Directory of Open Access Journals (Sweden)

    Vorleak Chea

    2014-10-01

    Full Text Available This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR. The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1, consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2, whereas at the highest substrate concentration (500 mg·L−1, it was shown that the reaction was limited by the oxygen content.

  11. Structural, spectroscopic characterization of (E)-4-chloro-2-((4-methoxybenzylidene)amino)phenol as potential antioxidant compound

    Science.gov (United States)

    Şen, Fatih; Efil, Kürşat; Bekdemir, Yunus; Dinçer, Muharrem

    2017-01-01

    A new imine derivative, (E)-4-chloro-2-((4-methoxybenzylidene)amino)phenol has been synthesized from the reaction of 4-Anisaldehyde with benzoyl 2-Amino-4-chlorophenol. The results of a combined experimental and DFT investigations of the structural and spectroscopic properties of the title compound are given. The crystal and molecular investigations are performed by X-ray diffraction and spectral results obtained by IR, NMR and UV-Vis spectrometers. The structural geometry, vibration frequencies, 1H and 13C NMR chemical shifts, UV-Vis spectral analysis and HOMO-LUMO of molecule in the ground state have been also calculated using the density functional theory (DFT) employing B3LYP exchange correlation with the 6-311G+(d, p) basis set, and check aganist the experimental data. The stability of antioxidant at different concentrations of compound are evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and determined its specific absorbance properties.

  12. The comparative study of a laccase-natural clinoptilolite-based catalyst activity and free laccase activity on model compounds.

    Science.gov (United States)

    Donati, Enrica; Polcaro, Chiara M; Ciccioli, Piero; Galli, Emanuela

    2015-05-30

    For the first time a laccase from Trametes versicolor was immobilized on a natural clinoptilolite with Si/Al=5 to obtain a biocatalyst for environmental applications. Immobilization procedures exploiting adsorption and covalent binding were both tested, and only the last provided enough activity for practical applications. The optimal conditions for the immobilization of the enzyme on the support and the kinetic parameters for the free and covalent bonded laccase were determined. The laccase bonded to the zeolitic support showed a lower activity than the free laccase, but the pH and thermal stability were greater. 20 mg of dry biocatalyst containing 1 U of laccase were able to remove in 50h 73-78% of 2-chlorophenol and 2,4-dichlorophenol in relatively concentrated aqueous solutions (100 μmol L(-1)).

  13. Effect of phenol and halogenated phenols on energy transfer reactions of rat liver mitochondria.

    Directory of Open Access Journals (Sweden)

    Izushi,Fumio

    1988-02-01

    Full Text Available The in vitro effects of phenol and p-halogenated phenols on mitochondrial energy transfer reactions were examined using isolated rat liver mitochondria. The relationship between physiochemical properties of phenolic compounds and their effects on mitochondria were studied. Phenol and p-halogenated phenols induced the release of K+ ions from mitochondria, suggesting a change in permeability to K+ ions. A decrease in the respiratory control index, an increase in K+ release and stimulation of latent ATPase activity were observed with these compounds in the descending order of p-iodophenol, p-bromophenol, p-chlorophenol, p-fluorophenol and phenol. The concentrations of the phenolic compounds resulting in fifty percent inhibition of the respiratory control index and those resulting in fifty percent release of K+ ions significantly correlated with Hammett's substituent constant (sigma and the hydrophobic binding constant (pi of the compounds.

  14. Hemp (Cannabis sativa L.).

    Science.gov (United States)

    Feeney, Mistianne; Punja, Zamir K

    2015-01-01

    Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.

  15. Preparation and Photocatalytic Properties of Ti1-xZrxO2 Solid Solution

    Institute of Scientific and Technical Information of China (English)

    GAO,Bi-Fen; MA,Ying; CAO,Ya-An; GU,Zhan-Jun; ZHANG,Guang-Jin; YAO,Jian-Nian

    2007-01-01

    A series of Ti1-xZrxO2 materials were synthesized through a multistep sol-gel process.The structural characteristics were investigated using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and Raman measurements.The experimental results showed that a solid solution could be obtained at low Zr/(Ti+Zr)molar ratios(x≤0.319).Raman measurements exhibited that the presence of zirconium in the solid solutions greatly retarded the amoorphous-anatase and anatase-rutile transitions.The diffuse reflectance UV-Vis spectra revealed that the bandgap of the solid solution was enlarged gradually with the increment of incorporated zirconium content.The Til-xZrxO2solid solutions exhibited higher photocatalytic activity than pure TiO2 for the degradation of 4-chlorophenol aqueous solution.

  16. Enhancement of Sensitivity for Determination of Phenols in Environmental Water Samples by Single-drop Liquid Phase Microextraction Using Ionic Liquid prior to HPLC

    Institute of Scientific and Technical Information of China (English)

    Qing Xiang ZHOU; Jun Ping XIAO; Cun Ling YE; Xin Ming WANG

    2006-01-01

    A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the optimized conditions, the linear range of proposed phenol, 2-naphthol, 2-nitrophenol and 4-chlorophenol, respectively. The experimental results indicated that the effect of complex matrices natural water samples could be resolved with addition of sodium ethylene diamine tetracetate (EDTA) into the samples. Excellent spiked recoveries were achieved for these four phenols ranged from 86.2%-114.9 %. All these facts demonstrated that the proposed method with merits of low cost, simplicity and easy operating would be a competitive alternative procedure for the determination of such compounds at trace level.

  17. Mechanochemical Synthesis of Visible Light Sensitive Titanium Dioxide Photocatalyst

    Directory of Open Access Journals (Sweden)

    Jan Šubrt

    2011-01-01

    Full Text Available Phase transition of anatase nanoparticles into the phases TiO2-II and rutile under grinding was studied. The addition of ammonium carbamate to the reaction mixture inhibits the phase conversion and the cold welding of particles. The UV-visible absorption spectrum showed narrowing the band gap width after grinding with an ammonium carbamate additive resulting in shift of the light absorption of the ground sample towards the visible region. By EPR, intensive formation of OH• radical at irradiation of the sample with both UV (λ > 300 nm and visible (λ > 435 nm light was observed. High photocatalytic activity of the ground sample in visible light region was demonstrated also by measurement of kinetics of the photocatalytic decomposition of 4-chlorophenol.

  18. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    Science.gov (United States)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  19. Fabrication and characterization of TiO2 coated cone shaped nano-fiber pH sensor

    Science.gov (United States)

    Pathak, A. K.; Bhardwaj, V.; Gangwar, R. K.; De, M.; Singh, V. K.

    2017-03-01

    In the present paper a novel cone shaped nano-fiber (CSNF) pH sensor using multi-mode fiber (MMF) has been fabricated and demonstrated. Three different pH indicators, chlorophenol red, bromothymol blue and cresol red with precursor tetraethyl orthosilicate (TEOS) have been used for fabrication of pH sensing layer. A significant enhancement in sensing properties of pH sensor with TiO2 thin film has been observed. The pH sensor with TiO2 thin film shows the quite high sensitivity (1.16 dBm/pH) as compared to sensor with simple pH coating (0.81 dBm/pH) at 1550 nm with a good linear response. Moreover, the sensor with TiO2 film exhibits fast response time of ∼ 25 s for pH values ranging from 4 to 11 with excellent stability and durability.

  20. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    Science.gov (United States)

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment.

  1. Biochemical and physiological effects of phenols on human health

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2011-03-01

    Full Text Available Introduction of phenol compounds into environment results from human activities.. Moreover plants produce polyphenols as by products of metabolism Their influence on human health is very important. It is observed, that polyphenols found in groceries are the most abundant dietary antioxidants, anti-inflammatory, anti allergic, antiarteriosclerotic and antitumour factors. Alkylphenols, chlorophenols, nitrophenols or biphenyls can be toxic for body systems and because of their similarity to ligands of steroid receptors they can influence the activity of endocrine system. Their appearance in organisms enhances the risk of developing type 2 diabetes mellitus, hypertension, dyslipidemia, cancer, problems with fertility. Moreover strong genotoxic activities of these compounds is observed. Because they influence human health in many different ways continuous monitoring of phenols content in environment seems to be very important.

  2. Toxicants inhibiting anaerobic digestion: a review.

    Science.gov (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  3. Self-regeneration of activated carbon modified with palladium catalyst for electrochemical.dechlorination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously remove chlorinated pollutants and in situ regenerate the spent catalyst. Activated carbon modified with palladium catalyst (AC-Pd) was prepared for electrochemical dechlorination. For the 4-chlorophenol wastewater of initial concentration 200 mg L-1, the removal efficiency could nearly reach 100% in less than 30 min. Catalytic activity of AC-Pd catalyst was preserved effectively even in consecutive cycling run without special regeneration. *OH radicals, generated by electrochemical reaction, played a critical role in self-regeneration of AC-Pd. High catalytic activity of spent AC-Pd catalyst provided an attractive alternative in wastewater treatment.

  4. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  5. Optimization of C/N Ratio and Inducers for Wastewater Paper Industry Treatment Using Trametes versicolor Immobilized in Bubble Column Reactor

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2013-01-01

    Full Text Available C/N ratio and MnSO4 and CuSO4 concentrations were optimized for decolorization and chemical oxygen demand (COD removal of bleached Kraft pulp mill effluent by Trametes versicolor immobilized in polyurethane foam. Statistical differences (P<0.0001 at high C/N ratios (169, 2 mM CuSO4, and 0.071 mM MnSO4 were determined. Decolorization of 60.5%, COD removal of 55%, laccase (LAC 60 U/L, and manganese peroxidase (MnP 8.4 U/L were obtained. Maximum of decolorization (82%, COD removal (83%, LAC (443.5 U/L, and MnP (18 U/L activities at C/N ratio of 405 (6.75 mM CuSO4 and 0.22 mM MnSO4 was achieved in step 7 at 4 d. Positive correlation between the decolorization, COD removal, and enzymatic activity was found (P<0.0001. T. versicolor bioremediation capacity was evaluated in bubble column reactor during 8 d. Effluent was adjusted according to optimized parameters and treated at 25°C and air flow of 800 mL/min. Heterotrophic bacteria growth was not inhibited by fungus. After 4 d, 82% of COD reduction and 80% decolorization were recorded. Additionally, enzymatic activity of LAC (345 U/L and MnP (78 U/L was observed. The COD reduction and decolorization correlated positively (P<0.0001 with enzymatic activity. Chlorophenol removal was 98% of pentachlorophenol (PCP, 92% of 2,4,5-trichlorophenol (2,4,5-TCP, 90% of 3,4-dichlorophenol (3,4-DCP, and 99% of 4-chlorophenols (4CP.

  6. Adsorption and detection of some phenolic compounds by rice husk ash of Kenyan origin.

    Science.gov (United States)

    Mbui, Damaris N; Shiundu, Paul M; Ndonye, Rachel M; Kamau, Geoffrey N

    2002-12-01

    Rice husk ash (RHA) obtained from a rice mill in Kenya has been used as an inexpensive and effective adsorbent (and reagent) for the removal (and detection) of some phenolic compounds in water. The abundantly available rice mill waste was used in dual laboratory-scale batch experiments to evaluate its potential in: (i) the removal of phenol, 1,3-dihydroxybenzene (resorcinol) and 2-chlorophenol from water; and (ii) the detection of 1,2-dihydroxybenzene (pyrocatechol) and 1,2,3-trihydroxybenzene (pyrogallol) present in an aqueous medium. The studies were conducted using synthetic water with different initial concentrations of the phenolic compounds. The effects of different operating conditions (such as contact time, concentration of the phenolic compounds, adsorbent quantity, temperature, and pH) were assessed by evaluating the phenolic compound removal efficiency as well as the extent of their color formation reactions (where applicable). RHA exhibits reasonable adsorption capacity for the phenolic compounds and follows both Langmuir and Freundlich isotherm models. Adsorption capacities of 1.53 x 10(-4), 8.07 x 10(-5), and 1.63 x 10(-6) mol g(-1) were determined for phenol, resorcinol and 2-chlorophenol, respectively. Nearly 100% adsorption of the phenolic compounds was possible and this depended on the weight of RHA employed. For the detection experiments, pyrocatechol and pyrogallol present in water formed coloured complexes with RHA, with the rate of colour formation increasing with temperature, weight of RHA, concentration of the phenolic compounds and sonication. This study has proven that RHA is a useful agricultural waste product for the removal and detection of some phenolic compounds.

  7. Applications of Ferrate(VI) to Wastewater Reclamation and Water Treatment

    Science.gov (United States)

    Kim, H.; Choi, H.; Lee, K.; Nam, J.; Kim, I.

    2010-12-01

    The estimated amount of water resources is about 63 billion cubic meters in Korea. However, due to the lack of precipitation during the dry season, natural flows are not enough for the water supply. In addition, since the lack of water affects water quality, environmental problems are occurred in natural and social systems. In this study, we investigated the application feasibility of ferrate(VI) systems to water and wastewater treatment. And we'd like to suggest an alternative solution for conservation and efficient reuse of the limited water resources. In the research area of environmental applications, a primary interest has been focused to the power of ferrate(VI) systems in the decomposition of pollutants in wastewater and industrial effluents due to its potential use as a strong, relatively non-toxic, and oxidizing agent for diverse environmental contaminants. Also ferrate(VI) has additional advantages as a very efficient coagulant and a sorbent of pollutants. We have analysed and compared several ferrate(VI) manufacturing processes, especially focused on the electro chemical methods(Fig. 1). And we have investigated the applications of the manufactured ferrate(VI) in our own laboratory and the commercial ferrate(VI) to decomposition of persistent organic pollutants in water. Under optimal conditions, the removal efficiencies of 2-chlorophenol and benzothiophene were above 90%(Fig. 2). The ferrate system(VI) is promising and can be one of the most efficient alternatives among the advanced oxidation processes(AOPs) for degradation of persistent organic pollutants, and is an innovative technology for the wastewater reclamation, water reusing systems, and water treatment systems. Fig 1. Comparison of Electro-Chemical Ferrate(VI) manufacturing Processes Fig 2. Degradation of 2-Chlorophenol and Bezothiophene by Ferrate. (Experimental Conditions : 2-CP = 3ppm, BT = 5ppm, NaClO4 = 0.05M)

  8. Effect of magnetic field on the zero valent iron induced oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-hyo; Kim, Jungwon [School of Environmental Science and Engineering, Pohang University of Scienceand Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Choi, Wonyong, E-mail: wchoi@postech.edu [School of Environmental Science and Engineering, Pohang University of Scienceand Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} We investigate the zero valent iron induced oxidation in the presence of magnetic field. {yields} The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. {yields} ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. {yields} The magnetic field affects the mass transfer of O{sub 2} and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O{sub 2} by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H{sub 2} production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O{sub 2} and Fe{sup 0} are paramagnetic, the diffusion of O{sub 2} onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe{sup 0} and O{sub 2} can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  9. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Vanina A. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Orejas, Joaquin [Facultad de Ingenieria, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Medina, Maria I. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Agostini, Elizabeth, E-mail: eagostini@exa.unrc.edu.ar [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina)

    2011-01-15

    Research highlights: {yields}B. napus hairy roots were effectively used for a large scale removal of 2,4-DCP. {yields} High removal efficiencies were obtained (98%) in a short time (30 min). {yields} Roots were re-used for six consecutive cycles with high efficiency. {yields} Post removal solutions showed no toxicity. {yields} This method could be used for continuous and safe treatment of phenolic effluents. - Abstract: Chlorophenols are harmful pollutants, frequently found in the effluents of several industries. For this reason, many environmental friendly technologies are being explored for their removal from industrial wastewaters. The aim of the present work was to study the scale up of 2,4-dichlorophenol (2,4-DCP) removal from synthetic wastewater, using Brassica napus hairy roots and H{sub 2}O{sub 2} in a discontinuous stirred tank reactor. We have analyzed some operational conditions, because the scale up of such process was poorly studied. High removal efficiencies were obtained (98%) in a short time (30 min). When roots were re-used for six consecutive cycles, 2,4-DCP removal efficiency decreased from 98 to 86%, in the last cycle. After the removal process, the solutions obtained from the reactor were assessed for their toxicity using an acute test with Lactuca sativa L. seeds. Results suggested that the treated solution was less toxic than the parent solution, because neither inhibition of lettuce germination nor effects in root and hypocotyl lengths were observed. Therefore, we provide evidence that Brassica napus hairy roots could be effectively used to detoxify solutions containing 2,4-DCP and they have considerable potential for a large scale removal of this pollutant. Thus, this study could help to design a method for continuous and safe treatment of effluents containing chlorophenols.

  10. Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesized mesoporous nano-titania photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Preethi, T.; Abarna, B.; Rajarajeswari, G.R., E-mail: rajiaravind@gmail.com

    2014-10-30

    Highlights: • Binary templated (PEG and chitosan) mesoporous nano titania was prepared by sol–gel method. • PEG:chitosan in the ratio of 1:3 (P1-C3 titania) offered the best template effect. • P1-C3 titania had superior activity in degrading 4-chlorophenol under UV irradiation. • PEG acted as a physical template for mesopore formation. • Chitosan played a major role in defining the crystallite dimensions. - Abstract: Nano-titania is by far, the most studied material for its photocatalytic application in air and water pollution abatement. In this study, we have demonstrated the advantage offered by using a binary template of PEG and chitosan for the sol–gel synthesis of titania. Nano-titania samples were prepared using PEG, chitosan and the binary combination of these two as templates. XRD showed that all synthesized samples preserved the anatase structure. Titania sample prepared on 1% PEG and 3% chitosan as template (P1-C3 titania) possessed spherical shaped particles with an average particle size of 12.3 nm, a surface area of 82.9 m{sup 2}/g and uniform dispersion. DRS UV–Vis spectra indicated that, P1-C3 titania showed blue shift in its absorption profile due to decrease in particle size. Consistent with the characteristics, the P1-C3 titania exhibited the highest photocatalytic activity for the degradation of 4-chlorophenol under UV irradiation, in comparison with all the synthesized photocatalytic systems and Degussa-P25. The chitosan bio template is believed to offer controlled growth of titania through Lewis base type interaction with Ti metallic centers in TiO{sub 2}. Such controlled growth route will be significant in synthesizing custom-made titania for its advanced applications in catalytic processes.

  11. Reprint of “Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesised mesoporous nanotitania photocatalyst”

    Energy Technology Data Exchange (ETDEWEB)

    Preethi, T.; Abarna, B.; Rajarajeswari, G.R., E-mail: rajiaravind@gmail.com

    2014-11-15

    Highlights: • Binary templated (PEG and chitosan) mesoporous nano titania was prepared by sol–gel method. • PEG:chitosan in the ratio of 1:3 (P1-C3 titania) offered the best template effect. • P1-C3 titania had superior activity in degrading 4-chlorophenol under UV irradiation. • While, PEG acted as a physical template for mesopore formation. • Chitosan played a major role in defining the crystallite dimensions. - Abstract: Nano-titania is by far, the most studied material for its photocatalytic application in air and water pollution abatement. In this study, we have demonstrated the advantage offered by using a binary template of PEG and chitosan for the sol–gel synthesis of titania. Nano-titania samples were prepared using PEG, chitosan and the binary combination of these two as templates. XRD showed that all synthesized samples preserved the anatase structure. Titania sample prepared on 1% PEG and 3% chitosan as template (P1-C3 titania) possessed spherical shaped particles with an average particle size of 12.3 nm, a surface area of 82.9 m{sup 2}/g and uniform dispersion. DRS UV–Vis spectra indicated that, P1-C3 titania showed blue shift in its absorption profile due to decrease in particle size. Consistent with the characteristics, the P1-C3 titania exhibited the highest photocatalytic activity for the degradation of 4-chlorophenol under UV irradiation, in comparison with all the synthesized photocatalytic systems and Degussa-P25. The chitosan bio template is believed to offer controlled growth of titania through Lewis base type interaction with Ti metallic centers in TiO{sub 2}. Such controlled growth route will be significant in synthesizing custom-made titania for its advanced applications in catalytic processes.

  12. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays.

    Science.gov (United States)

    Xu, Zhihua; Yu, Jiaguo

    2011-08-01

    Fe-modified TiO(2) nanotube arrays (TiO(2) NTs) were prepared by annealing amorphous TiO(2) NTs whose surface was covered with Fe(3+) by a dip-coating procedure, and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible reflectance spectroscopy. The photoelectrochemical properties were evaluated by the photocurrent response and photoelectrocatalytic (PEC) degradation of methylene orange (MO) and 4-chlorophenol in water under visible-light irradiation (λ > 420 nm). The results showed that a Fe-modified TiO(2) NTs electrode exhibited a larger photocurrent response and higher PEC activity for the degradation of organic pollutants than a pure TiO(2) NTs electrode. At a bias potential of 0.4 V, the photocurrent response of a 0.5 M Fe-modified TiO(2) NTs electrode exceeded that of a pure TiO(2) NTs electrode by a factor of about 10, and the PEC degradation rates of MO and 4-chlorophenol on a 0.5 M Fe-modified TiO(2) NTs electrode exceeded those on a pure TiO(2) NTs electrode by a factor of about 2.5. The larger photocurrent response and higher PEC activity of Fe-modified TiO(2) NTs could be attributed to the enhancement of separation of charge-carriers at the external electric field and the extension of the light response range of TiO(2) to the visible-light region with the narrowing of the band gap.

  13. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  14. Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM.

    Science.gov (United States)

    Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-09-01

    Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water.

  15. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion.

    Science.gov (United States)

    Jansson, Stina; Fick, Jerker; Marklund, Stellan

    2008-07-01

    Non- to octa-chlorinated naphthalenes (PCNs) were analyzed in flue gas samples collected simultaneously at three different temperatures (450 degrees C, 300 degrees C and 200 degrees C, respectively) in the post-combustion zone during waste combustion experiments using a laboratory-scale fluidized-bed reactor. PCN homologue profiles in all samples were dominated by the lower chlorinated homologues (mono- to triCN), with successive reductions in abundance with each additional degree of chlorination. The isomer distribution patterns reflected ortho-directionality behavior of the first chlorine substituent, and the beta-positions, i.e. the 2,3,6,7-substitution sites, seemed to be favored for chlorination. Injection of naphthalene into the post-combustion zone resulted in increased PCN levels at 200 degrees C, demonstrating the occurrence of chlorination reactions in the post-combustion zone. However, the increases were restricted to the least-chlorinated homologue (monoCN), probably because there was insufficient residence time for further chlorination. In addition, an episode of poor combustion (manifested by high CO levels) was accompanied by extensive formation of 1,8-diCN, 1,2,3- and 1,2,8-triCN; congeners with substitution patterns that are not thermodynamically favorable. These are believed to be products of PAH breakdown reactions and/or chlorophenol condensation. Overall, PCN formation is likely to occur via more than one pathway, including chlorination of naphthalene that is already present, de novo synthesis from PAHs and, possibly, chlorophenol condensation.

  16. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  17. Determination of 5 phenol compounds in textiles by GC/MS%气相色谱/质谱联用测定纺织品中5种苯酚类化合物

    Institute of Scientific and Technical Information of China (English)

    顾娟红; 潘葵; 黄丽娟; 严敏

    2014-01-01

    探讨了气相色谱/质谱(GC/MS)联用测定纺织品中4种含氯酚及邻苯基苯酚残留量的方法.样品经甲醇超声提取、浓缩后,用0.1 mol/L的硼砂溶液溶解,再经乙酸酐乙酰化后用正己烷提取,GC/MS测定,外标法定量.在0.05~2.5 mg/L,方法的线性关系良好,相关系数为0.9990~0.9995,加标回收率为89%~105%,相对标准偏差为1.46%~5.32%.该方法简便、快速、灵敏度高,完全可满足进出口纺织品中4种含氯酚及邻苯基苯酚残留量检测的要求.%Method for simultaneous determination of content of 4 chlorophenols and o-phenylphenol in textiles by gas chromatography/mass spectrometry (GC/MS) was established. The sample was extracted with methanol in ultrasonic bath. The extract was concentrated and dissolved in 0.1 mol/L borax solution, then de-rivatized by acetic anhydride and extracted by hexane. The targets of compounds were analyzed by GC/MS with external standard method. The result indicated that the calibration curves showed good linear relation-ships between the peak area and concentration in the range of 0.05~2.5 mg/L. The correlation coefficients were in the range of 0.999 0~0.999 5. The average recoveries ranged 89%~105% with relative standard devia-tions of 1.46%~5.32%. The method was simple, rapid and sensitive, and was suitable for the determination of 4 chlorophenols and o-phenylphenol in the import and export of textiles.

  18. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Science.gov (United States)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-01

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 × 10-9 s) at lower energies. Microstructural studies, conducted by X-ray diffraction (θ-2θ and φ techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO⟨111 ⟩||c-YSZ⟨001⟩ and in-plane NiO⟨110⟩||c-YSZ⟨100⟩. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min-1 for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies ease the adsorption of 4-chlorophenol, hydroxyl, and water molecules to the surface. Thus, n

  19. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.

    Science.gov (United States)

    Zhong, Cheng; He, Man; Liao, Huaping; Chen, Beibei; Wang, Cheng; Hu, Bin

    2016-04-01

    In this work, covalent triazine frameworks (CTFs) were introduced in stir bar sorptive extraction (SBSE) and a novel polydimethylsiloxane(PDMS)/CTFs stir bar coating was prepared by sol-gel technique for the sorptive extraction of eight phenols (including phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-chloro-m-cresol and 2,4-dichlorophenol, 2,4,6-trichlorophenol) from environmental water samples followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared PDMS/CTFs coated stir bar showed good preparation reproducibility with the relative standard deviations (RSDs) ranging from 3.5 to 5.7% (n=7) in one batch, and from 3.7 to 9.3% (n=7) among different batches. Several parameters affecting SBSE of eight target phenols including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.08-0.30 μg/L. The linear range was 0.25-500 μg/L for 2-nitrophenol, 0.5-500 μg/L for phenol, 2-chlorophenol, 4-nitrophenol as well as 2,4-dimethylphenol, and 1-500 μg/L for p-chloro-m-cresol, 2,4-dichlorophenol as well as 2,4,6-trichlorophenol, respectively. The intra-day relative standard deviations (RSDs) were in the range of 4.3-9.4% (n=7, c=2 μg/L) and the enrichment factors ranged from 64.9 to 145.6 fold (theoretical enrichment factor was 200-fold). Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/CTFs stir bar showed better extraction efficiency for target phenol compounds. The proposed method was successfully applied to the analysis of phenols in environmental water samples and good relative recoveries were obtained with the spiking level at 2, 10, 50 μg/L, respectively.

  20. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Wei, Xuefeng; Han, Yanbo; Tong, Shan [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Hu, Xiang, E-mail: huxiang99@163.com [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-01-15

    Highlights: ► Pd/PPy-CTAB/foam-Ni electrode with high surface area and low Pd content was prepared. ► The composite electrode was applied to dechlorination of 2,4-DCP in aqueous solution. ► Complete dechlorination of 2,4-DCP was achieved with higher current efficiency. ► Removal efficiency kept 100% after 10 times dechlorination on the stable electrode. ► The electrochemically reductive activation energy was 25.8 kJ mol{sup −1} in this system. -- Abstract: The electrochemically reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel electrode (Pd/PPy-CTAB/foam-Ni electrode) was investigated in this paper. Pd/PPy-CTAB/foam-Ni electrode was prepared and characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The influences of some experimental factors such as the dechlorination current, dechlorination time and the initial pH on the removal efficiency and the current efficiency of 2,4-DCP dechlorination on Pd/PPy-CTAB/foam-Ni electrode were studied. Complete removal of 2,4-DCP was achieved and the current efficiency of 47.4% could be obtained under the conditions of the initial pH of 2.2, the dechlorination current of 5 mA and the dechlorination time of 50 min when the initial 2,4-DCP concentration was 100 mg L{sup −1}. The analysis of high performance liquid chromatography (HPLC) identified that the intermediate products were 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP). The final products were mainly phenol. Its further reduction product cyclohexanone was also detected. The electrocatalytic dechlorination pathways of 2,4-DCP on Pd/PPy-CTAB/foam-Ni electrode were discussed. The stability of the electrode was favorable that it could keep dechlorination efficiency at 100% after having been reused

  1. Halogen bonds in some dihalogenated phenols: applications to crystal engineering.

    Science.gov (United States)

    Mukherjee, Arijit; Desiraju, Gautam R

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending

  2. Halogen bonds in some dihalogenated phenols: applications to crystal engineering

    Directory of Open Access Journals (Sweden)

    Arijit Mukherjee

    2014-01-01

    Full Text Available 3,4-Dichlorophenol (1 crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9 Å. The structure is unique in that both type I and type II Cl...Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C—Cl...Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2 and 3-bromo-4-chlorophenol (3 have been determined. The crystal structure of (2 is isomorphous to that of (1 with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3 is different; while the structure still has O—H...O hydrogen bonds, the tetramer O—H...O synthon seen in (1 and (2 is not seen. Rather than a type I Br...Br interaction which would have been mandated if (3 were isomorphous to (1 and (2, Br forms a Br...O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4 and 3,5-dibromophenol (5 were also determined. A computational survey of the structural landscape was undertaken for (1, (2 and (3, using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3 takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1, (2 and (4. Length variations with temperature are greater for type II contacts compared with type I. The type II Br...Br interaction in (2 is stronger than the corresponding type II Cl...Cl interaction in (1, leading to elastic

  3. THE MECHANISM STUDIES ON SONOPHOTO-DEGRADATION OF 4CP BY RADICAL%超声波协同紫外光催化处理4-氯酚自由基作用机理

    Institute of Scientific and Technical Information of China (English)

    陈国宁; 王双飞; 邓超冰; 杨滨

    2009-01-01

    研究了超声波协同紫外光催化(US-UV)处理4-氯酚的去除效果,探讨了反应中自由基的作用机理.结果表明,超声波在紫外光催化反应中的协同效果明显,·OH的生成速率和4-氯酚的降解速率分别遵从0级和1级动力学方程,Cl~(-1)生成速率不属于简单动力学方程.向溶液中投加羟基自由基清除剂可以大大抑制4-氯酚的降解;向溶液中投加氧化剂和金属离子可以清除溶液中的光生电子,提升4-氯酚的降解率,但体系中金属离子到达一定含量后,"短路"现象就会出现,4-氯酚的降解反应大大被削弱.试验还通过UV-Vis漫反射光谱发现TiO_2和氯酚物质形成了化合物,并认为自由基首先是与这些表面化合物发生反应的.%A ultrasound assisted photocatalysis (US-UV) was used for photo-degradation of 4-chlorophenol (4CP),and the mechanism of sonophoto-degradation of 4CP by free radical was studied. The results showed the synergistic effect was notable. ·OH radical production rate and 4 - chlorophenol degradation rate complied with zero -and first-order kinetic equation. Meanwhile Cl~(-1) production rate did not comply with simple kinetic equation. Adding·OH radical scavenger to the solution could inhibit the degradation of 4CP. Oxidants and metal ions in the solution could enhance the degradation rate of 4CP by scavenging the photogenerated electrons on the TiO_2 surface, but when the concentrations of metal ions in the solution increased to a certain level, short-circuiting phenomenon emerged which reduced the degradation rate of 4CP greatly. Furthermore diffuse reflectance UV-Vis spectra indicated that surface complexes were formed and surface complexes were likely oxidized by free radicals at first.

  4. TRANSIMIDIZATION IN THERMOPLASTIC POLYIMIDES

    Institute of Scientific and Technical Information of China (English)

    Yoan Kim; Mingming Guo; Lei Zhu; Doyun Kim; Frank W.Harris; Stephen Z.D.Cheng

    1999-01-01

    solution than in the melt. For the two mixtures with monomer solutions, the transimidization can only be found in the mixture of Ultem(R) DAP/DODA system in p-chlorophenol, and this process does not effectively occur in the Ultem(R) DODA/DAP system in p-chlorophenol, indicating that free DODA can efficiently attack the imide linkage of Ultem(R) DA-DAP. The final product resulting from the transimidization in the mixtures is a random copolyimide with a major population of DAP as end groups for the copolymer system.

  5. P(o-chlorophenol–co-o-hydroxyphenol: kinetic formation studies and pH-sensor application

    Directory of Open Access Journals (Sweden)

    Said M. Sayyah

    2017-03-01

    Full Text Available Electrochemical copolymerization of o-chlorophenol (o-ClPh with o-hydroxyphenol (o-HOPh was conducted in aqueous H2SO4 using cyclic voltammetry technique at the Pt electrode. The reaction rate was found to be of the second order in the monomer concentration and first order in the acid concentration. The activation energy, enthalpy, and entropy for the copolymerization were found to be 20.20 kJ mol-1, 19.24 kJ mol-1 and -281.47 J K-1 mol-1, respectively. The obtained copolymer films show smooth feature with amorphous nature. Copolymer films adhere Pt electrode very well and show less reactivity in the H2SO4 medium. The pH sensitivity of the poly(oClPh-co-HOPh-modified electrode has been investigated potentiometrically using different polymer thicknesses. The potentiometric responses to pH change of the poly(oClPh-co-HOPh-modified electrode appeared reversible and linear in the range from pH 2-11 with a maximum sub-Nernstian potentiometric response slope of 40.7 mV/pH (30 °C. The slope became close to 56.2 mV/pH in the range from pH 4 to 9 at (30 °C. The poly(oClPh-co-HOPh-modified electrode readily responded to pH change but was not stable with time.

  6. Evaluation of the estrogenic potential of river and treated waters in the Paris area (France) using in vivo and in vitro assays.

    Science.gov (United States)

    Cargouët, Maëlle; Perdiz, Daniel; Levi, Yves

    2007-05-01

    For many years, surface waters have been shown to be contaminated by endocrine-disrupting compounds (EDCs), which can cause adverse effects on human and wildlife growth, development, and reproduction. It is therefore of primary importance to determine if drinking water could be contaminated by EDCs when produced from polluted surface waters. It is also essential to determine if disinfection by-products can account for estrogenic activity in treated waters. The estrogenic potential of river and treated waters was investigated using an in vivo assay. Adult male zebrafish were placed in three drinking water treatment plants (DWTPs) in the Paris area and exposed for 1 month to the two types of waters. After exposure, vitellogenin (VTG) was measured in the plasma of fish using a competitive ELISA. In addition, an in vitro assay (MELN cells) was used to assess the estrogenic potential of 10 major chlorination by-products. No significant induction of VTG was observed in fish exposed to river or treated waters. Among the 10 chlorination by-products tested, only 2-chlorophenol was found to be weakly estrogenic at concentrations up to 1mg/L. Therefore, the risk for the three DWTPs studied to produce drinking water with significant level of estrogenic substances appears to be low.

  7. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  8. Experiments on the VERONA test facility on formation and decomposition of polyhalogenated dioxins and furans and other organic halogen compounds in the combustion process; Untersuchungen an der Technikumsanlage VERONA zur Bildung und zum Abbau von polyhalogenierten Dioxinen und Furanen und anderen Organohalogenverbindungen in Verbrennungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, D.

    2002-09-01

    The study examines measures to reduce dioxin formation in thermal waste treatment. The VERONA pilot plant (VErbrennungsanlage mit feststehendem ROst und getrennter NAchbrennkammer - incineration plant with stationary grate and separate post-combustion chamber) was developed to carry out practical experiments. The experiments were conducted using wood and propane as basic combustible materials and with controlled dosage of various bromine-, chlorine- and copper-containing compounds. The behaviour of the following compounds was studied in the combustion chamber, after the post-combustion chamber and after the heat exchanger: PCPh, PBrPh, PCBz, PBrBz, PCDD/F and PBDD/F. Experiments involving the variation of various primary measures (moisture content of combustible material, air supply, temperature in the combustion chamber, quality of post-combustion, quantities and structures of halogen compounds) have shown that the quality of post-combustion plays a much greater role than the other measures. For this reason, a search was launched for indicators which can be measured readily and by means of which the quality of post-combustion in terms of organohalide decomposition can be evaluated, and which correlate closely with the dioxin concentrations after the heat exchanger. It became apparent that the congeners of the chlorophenols and of the chlorobenzenes, measured in various incineration stages, are not suited, nor is the CO content. (orig.)

  9. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    Science.gov (United States)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  10. Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe₂O ₄ nanocomposite synthesized using gamma radiation.

    Science.gov (United States)

    Taleb, Manal F Abou

    2014-12-19

    Photocatalytic degradation of 2-chlorophenol (2-CP) was studied using the photocatalyst chitosane/CoFe2O4 nanocomposite (CS/CF) under visible light. CS/CF nanocomposites were synthesized via gamma irradiation cross-linking method with the aid of sonication. Physical characteristics of CS/CF were studied using infrared spectrophotometer (IR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Their photocatalytic activity was tested for the degradation of 2-CP in aqueous medium using sunlight. The effect of different parameters such as catalyst concentration, 2-CP concentration and reaction pH on degradation was also examined. It was verified that the 2-CP degradation rate fits a pseudo-first-order kinetics for initial 2-CP concentrations between 25 and 100mg/l, at 30°C. The degradation kinetics fit well Langmuir-Hinshelwood rate law. The degradation of (2-CP) follows pseudo-first-order kinetics. Results showed that after the catalyst had been used 5 times repeatedly, the degradation rate was still above 80%.

  11. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst.

    Science.gov (United States)

    Babu, Sundaram Ganesh; Ramalingam Vinoth; Neppolian, Bernaurdshaw; Dionysiou, Dionysios D; Ashokkumar, Muthupandian

    2015-06-30

    Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO-TiO2 photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV-vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO-TiO2 more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO2 and CuO facilitates the separation of photogenerated electron-hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC-MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO2 based photocatalysts for the complete mineralization of organic contaminants.

  12. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide.

    Science.gov (United States)

    Xu, Aihua; Li, Xiaoxia; Xiong, Hui; Yin, Guochuan

    2011-02-01

    Bicarbonate anion is an efficient activator for hydrogen peroxide to generate many active oxygen species including peroxymonocarbonate (HCO(4)(-)), superoxide ion (O(2)(-)) and singlet oxygen ((1)O(2)). This study aims to understand the oxidative degradation of organic pollutants including methyl blue, methyl orange, rhodamine B, and 4-chlorophenol, with H(2)O(2) activated by sodium bicarbonate at room temperature. The obtained results indicate that such a method is apparently efficient in versatile pollutant degradation. Compared with using H(2)O(2) alone under similar pH conditions, the degradation rates of the pollutants were greatly enhanced through adding NaHCO(3). Through LC-MS, FT-IR and the TOC analysis, the degradation of methylene blue was revealed to proceed by the transformation of dimethylamino group in methylene blue to methylamino, aldehyde and nitro group, and the opening of phenyl ring into small molecular compounds and CO(2). The studies using the (1)O(2) scavenger sodium azide and the O(2)(-) indicator nitro blue tetrazolium suggest that the active O(2)(-) intermediate, generated from HCO(4)(-) decomposition, rather than (1)O(2) was involved in the pollutant degradation.

  13. 纳米N掺杂TiO2的制备及可见光催化活性研究%Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light

    Institute of Scientific and Technical Information of China (English)

    於煌; 郑旭煦; 殷钟意; 陶丰; 房蓓蓓; 侯苛山

    2007-01-01

    N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4Cl as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irradiation were carried out. Multiple techniques (XRD,TEM,DRIF,DSC,and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the degradation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ>400nm) irradiation is evidenced by the decomposition of 4-chlorophenol,showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.

  14. Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible- light photoactivity of TiO2 fabricated by microwave-hydrothermal process

    Institute of Scientific and Technical Information of China (English)

    姜洪泉; 刘彦铎; 李井申; 王海燕

    2016-01-01

    Effects of La, N, and P doping on the structural, electronic and optical properties of TiO2 synthesized from TiCl4 hydroly-sis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission electron microscopy, N2 adsorp-tion-desorption isotherm, X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-vis absorbance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy. The results showed that the presence of La in the tri-doped TiO2 played a predominant role in inhibiting the recombination of the photogenerated electrons and holes. The existence of the substitutional N, interstitial N, and oxygen vacancies in TiO2 lattices led to the band gap narrowing. It was P-doping rather than La or N doping that played a key role in inhibiting both anatase-to-rutile phase transformation and crystal growth, in stabilizing the mesoporous textural properties, and in increasing the content of surface bridging hydroxyl. Moreover, the tri-doping significantly en-hanced the surface Ti4+−O2−−Ti4+−O−• species.All above-mentioned factors cooperated to result in the enhanced photoactivity of the tri-doped TiO2. As a result, it exhibited the highest photoactivity towards the degradation of 4-chlorophenol (4-CP) under visible-light irradiation among all samples, whichwas much superior to commercial P25 TiO2.

  15. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag⁺/TiO₂: Influence of electron donating and withdrawing substituents.

    Science.gov (United States)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-03-05

    A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag(+)/TiO2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (O2(-)) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between O2(-) and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of O2(-) and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by O2(-), while O2(-) preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by O2(-) could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  16. THERMODYNAMIC STUDY OF ADSORPTION OF PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTION BY A WATER-COMPATIBLE HYPERCROSSLINKED POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    Ai-min Li; Hai-suo Wu; Quan-xing Zhang; Gen-cheng Zhang; Chao Long; Zheng-hao Fei; Fu-qiang Liu; Jin-long Chen

    2004-01-01

    Equilibrium data for the adsorption of phenolic compounds, i.e., phenol, p-cresol, p-chlorophenol and pnitrophenol from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent (NJ-8) within temperature range of 283-323 K were obtained and correlated with a Freundlich-type of isotherm equation, so that equilibrium constants KF and n were obtained. The capacities of equilibrium adsorption for all the four phenolic compounds on the NJ-8 from aqueous solutions are around 2 times as high as those of Amberlite XAD-4, which may be attributed to the unusual micropore structure and the partial polarity on the network. The values of the enthalpy (always negative) are indicative of an exothermic process, which manifests the adsorption of all the four phenolic compounds on the two polymeric adsorbents to be a process of physical adsorption. The negative values of free energy change show that the solute is more concentrated on the adsorbent than in the bulk solution. The absolute free energy values of adsorption for NJ-8 are always higher than those for Amberlite XAD-4, which indicates that phenolic compounds are preferentially adsorbed on NJ-8. The negative values of the adsorption entropy are consistent with the restricted mobilities of adsorbed molecules of phenolic compounds as compared with the molecules in solution. The adsorption entropy values of phenolic compounds for NJ-8 are lower than those for Amberlite XAD-4, which means the micropores of NJ-8 require more orderly arranged adsorbate.

  17. Toxicity of three oil spill remediation techniques to the Australian bass Macquaria novemaculeata.

    Science.gov (United States)

    Cohen, A M; Nugegoda, D

    2000-10-01

    Australian bass, Macquaria novemaculeata, were exposed to the water accommodated fraction (WAF) of Bass Strait crude oil, dispersed crude oil, burnt crude oil, and 4-chlorophenol. The WAF of dispersed crude oil was the most toxic treatment with 96-h LC(50) values of 7. 15% (7.94% upper and 6.42% lower 95% CI) and 7.45% (8.26% upper and 6.71% lower 95% CI). The WAF of crude oil was less toxic, with 96-h LC(50) values of 43.72% (49.21% upper and 38.87% lower 95% CI) and 45.87% (51.51% upper and 40.97% lower 95% CI). The WAF of burnt crude oil was the least toxic treatment with 96-h LC(50) values of 49.81% (63.33% upper and 39.44% lower 95% CI) and 47.28% (59.72% upper and 37.62% lower 95% CI). Sublethal toxicity of the crude oil WAF and burnt crude oil WAF was observed at dilutions seven to eight times less than in the dispersed crude oil WAF.

  18. Role of black carbon in the distribution of polychlorinated dibenzo-p-dioxins/dibenzofurans in aged field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y.Z.; Davis, J.W.; Wilken, M.; Martin, G.D.; Mowery, D.M.; Ghosh, U. [Dow Chemical Co USA, Midland, MI (United States). Toxicology & Environmental Research & Consulting

    2011-01-15

    Floodplain soils containing elevated levels of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were collected from several locations along the Tittabawassee River (Michigan, USA). The PCDD/F profiles of these soils exhibited distinct congener patterns consistent with byproducts from either chloralkali manufacturing or chlorophenols productions. Black carbon (BC) particles were isolated for the first time from floodplain soil impacted by PCDD/Fs. Petrographic analysis showed that BC particles, including coal, oxidized coal, metallurgical coke, depositional carbon, coal tar/pitch, cenosphere, and charcoal, comprised approximately 30% by volume of the organic fraction with size range of 250 {mu} m-2000 {mu} m from a typical floodplain soil. The BC particles with anthropogenic origin such as pitch and coke associated with the chloralkali production process served as both the source and subsequent transporter for the highly hydrophobic PCDD/Fs. These anthropogenic BC particles were enriched with high levels of PCDFs, containing approximately 1000-fold the concentration found in the bulk soil. The strong association of PCDD/Fs with anthropogenic BC directly impacts the physicochemical and biological availability thus the risk associated with these hydrophobic organochlorines in soils and sediments.

  19. Role of black carbon in the distribution of polychlorinated dibenzo-p-dioxins/dibenzofurans in aged field-contaminated soils.

    Science.gov (United States)

    Chai, Yunzhou; Davis, John W; Wilken, Michael; Martin, Greg D; Mowery, Daniel M; Ghosh, Upal

    2011-01-01

    Floodplain soils containing elevated levels of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were collected from several locations along the Tittabawassee River (Michigan, USA). The PCDD/F profiles of these soils exhibited distinct congener patterns consistent with byproducts from either chloralkali manufacturing or chlorophenols productions. Black carbon (BC) particles were isolated for the first time from floodplain soil impacted by PCDD/Fs. Petrographic analysis showed that BC particles, including coal, oxidized coal, metallurgical coke, depositional carbon, coal tar/pitch, cenosphere, and charcoal, comprised approximately 30% by volume of the organic fraction with size range of 250μm-2000μm from a typical floodplain soil. The BC particles with anthropogenic origin such as pitch and coke associated with the chloralkali production process served as both the source and subsequent transporter for the highly hydrophobic PCDD/Fs. These anthropogenic BC particles were enriched with high levels of PCDFs, containing approximately 1000-fold the concentration found in the bulk soil. The strong association of PCDD/Fs with anthropogenic BC directly impacts the physicochemical and biological availability thus the risk associated with these hydrophobic organochlorines in soils and sediments.

  20. Coupled Transport Phenomena in Corrugated Photocatalytic Reactors

    Institute of Scientific and Technical Information of China (English)

    Adam A. Donaldson; ZHANG Zisheng

    2011-01-01

    Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.

  1. Species-specific accumulation of dioxin related compounds in cetaceans collected from Japanese coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, N.; Watanabe, M.; Tanabe, S. [Center for Marine Environmental Studies (CMES), Ehime Univ. (Japan); Amano, M. [Ocean Research Inst., Univ. of Tokyo, Iwate (Japan); Yamada, T. [National Science Museum, Tokyo (Japan)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are extremely hazardous and persistent chemicals identified as contaminants in chlorophenols, herbicides, fly ash and other incineration products. Dioxin-like PCBs including non- and mono-ortho coplanar PCBs are referred to as dioxin related compounds and are evaluated on par with PCDD/Fs in environmental risks since they have a high toxicity, similar to that of PCDD/Fs. These congeners have a range of physicochemical characteristics, which profoundly affect their persistence, environmental distribution, and bioaccumulation in aquatic food chains. Fish-eating wildlife such as marine mammals are particularly vulnerable to such contamination given their long lives, high trophic level, relative inability to metabolize many persistent organic pollutants (POPs), and the biomagnification of these contaminants in aquatic food chains. However, most studies dealing with PCDDs and PCDFs in marine mammals have been carried out on pinnipeds, and data on PCDD/Fs levels in cetaceans are scarce. The present study is aimed at understanding the recent pattern of contamination by dioxin related compounds including non- and mono-ortho coplanar PCBs and PCDD/Fs in three cetacean species collected from Japanese coastal waters during 1998-2001, and also to discuss the factors determining the accumulation.

  2. A new sorbent that simultaneously sequesters multiple classes ofpollutants from water: Surfactant modified zeolite

    Institute of Scientific and Technical Information of China (English)

    XIE; Qiang; XIE; Jie; CHI; LiNa; LI; ChunJie; WU; DeYi; ZHANG; ZhenJia; KONG; HaiNan

    2013-01-01

    A zeolite (ZFA) was synthesized from coal fly ash and then modified using hexadecyltrimethylammonium. The surfactant modified ZFA (SMZFA) was evaluated for its versatility to sequester multiple classes of pollutants from water. The target pollutants include ionic inorganic pollutants (ammonium and phosphate), ionic organic pollutants (methylene blue and humic acid), ionizable organic pollutants (bisphenol A,-chlorophenol and phenol, with different pKa), and electrically neutral or-ganic pollutants (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The SMZFA showed high potential for the retention of ammonium and phosphate, being comparable with ZFA. While the negative charge in the internal pores of zeolite was responsible for the retention of ammonium, the oxides of CaO, Al2O3and Fe2O3in the non-zeolite fraction, which originated from coal fly ash but received modification during zeolite synthesis, accounted for the removal of phosphate. Results also showed that while ZFA had little affinity for humic acid, the ionizable, and the electrically neutral organic compounds, SMZFA exhibited greatly enhanced adsorption capacity. Thus, the surfactant modified external surface, which formed a bilayer micelle of zeolite, imparts a hydrophobic characteristic that enables the uptake of the organic pollutants. We showed that SMZFA is a promising versatile sorbent for water treatment.

  3. Graphene oxide reinforced polymeric ionic liquid monolith solid-phase microextraction sorbent for high-performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples.

    Science.gov (United States)

    Sun, Min; Bu, Yanan; Feng, Juanjuan; Luo, Chuannan

    2016-01-01

    A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate monomer and 1,6-di-(3-vinylimidazolium) hexane bihexafluorophosphate cross-linking agent. Coupled to high-performance liquid chromatography, the monolith was used as a solid-phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5-400 μg/L for 3-nitrophenol, 2-nitrophenol, and 2,5-dichlorophenol and 2-400 μg/L for 4-chlorophenol, 2-methylphenol, and 2,4,6-trichlorophenol (R(2) = 0.9973-0.9988). The limits of detection were 0.5 μg/L for 3-nitrophenol and 2-nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5-113%.

  4. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.

  5. A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijie Li

    2017-01-01

    Full Text Available Developing efficient visible-light-driven (VLD photocatalysts for environmental decontamination has drawn significant attention in recent years. Herein, we have reported a novel heterostructure of multiwalled carbon nanotubes (MWCNTs coated with BiOI nanosheets as an efficient VLD photocatalyst, which was prepared via a simple solvothermal method. The morphology and structure were characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (DRS, and specific surface area measurements. The results showed that BiOI nanosheets were well deposited on MWCNTs. The MWCNTs/BiOI composites exhibited remarkably enhanced photocatalytic activity for the degradation of rhodamine B (RhB, methyl orange (MO, and para-chlorophenol (4-CP under visible-light, compared with pure BiOI. When the MWCNTs content is 3 wt %, the MWCNTs/BiOI composite (3%M-Bi achieves the highest activity, which is even higher than that of a mechanical mixture (3 wt % MWCNTs + 97 wt % BiOI. The superior photocatalytic activity is predominantly due to the strong coupling interface between MWCNTs and BiOI, which significantly promotes the efficient electron-hole separation. The photo-induced holes (h+ and superoxide radicals (O2− mainly contribute to the photocatalytic degradation of RhB over 3%M-Bi. Therefore, the MWCNTs/BiOI composite is expected to be an efficient VLD photocatalyst for environmental purification.

  6. A novel integrated UV-biofilter system to treat high concentration of gaseous chlorobenzene

    Institute of Scientific and Technical Information of China (English)

    WANG Can; XI JinYing; HU HongYing

    2008-01-01

    A novel integrated UV-biofilter system using UV reactor as the pretreatment process was setup to treat high concentration of gaseous volatile organic compounds (VOCs). Another control biofilter without the UV pretreatment was also established to compare the performance of the two systems. Chloro-benzene was selected as a model compound. The two systems were operated in parallel under different the integrated system could eliminate chlorobenzene completely (100% removal efficiency) at the inlet ter. Also the elimination capacity for the organic carbon of the integrated system was much higher than that of the control biofilter. On the basis of intermediates analysis by lon Chromatography and Gas Chromatography-Mass Spectrometry, the UV pretreatment has been proven to be able to enhance the performance of the following biofilter by transferring the recalcitrant target to some more biodegrad-able and soluble organic products (such as formic acid and chlorophenol). Furthermore, the produced ozone, a harmful by-product from UV photo-degradation, could be easily eliminated by the following biofiltration process.

  7. Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration.

    Science.gov (United States)

    Nisenbaum, Melina; Sendra, Gonzalo Hernán; Gilbert, Gastón Alfredo Cerdá; Scagliola, Marcelo; González, Jorge Froilán; Murialdo, Silvia Elena

    2013-03-01

    We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader, Pseudomonas strain H. The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P. aeruginosa PA01. This strain was able to degrade n-hexadecane, 1-undecene, 1-nonene, 1-decene, 1-dodecene and kerosene. It grew in the presence of 1-octene, while this hydrocarbons is toxic to other hydrocarbons degraders. Pseudomonas strain H was also chemotactic towards n-hexadecane, kerosene, 1-undecene and 1-dodecene. These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments. Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations, we demonstrate the use of the dynamic speckle laser method, which is simple and inexpensive, to confirm bacterial chemotaxis at low cell concentrations (less than 10(5) colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.

  8. Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols.

    Science.gov (United States)

    Aslam, M; Ismail, Iqbal M I; Chandrasekaran, S; Hameed, A

    2014-07-15

    The surfactant assisted synthesis of disc-shaped WO3 powder and its photocatalytic performance in sunlight exposure is reported. UV-vis DRS, XRD and FESEM characterized the synthesized WO3. The synthesized powder exhibited a bandgap of ∼2.55eV with cubic lattice and high crystallinity. The photocatalytic activity of the synthesized WO3 was examined for the degradation of phenol, resorcinol, 2-chlorophenol and 2-nitrophenol in complete spectrum and visible segment of sunlight. The highly efficient degradation/mineralization of 2-chloro and 2-nitrophenol compared to that of phenol and resorcinol, under identical experimental conditions, suggested the regulatory role of substituents attached to the aromatic ring in degradation/mineralization process. The time-scale HPLC degradation profiles, identification of intermediates by GC-MS and removal of organic carbon during the course of reaction were utilized to approximate the possible route of degradation/mineralization of phenolic substrates. The measurement of the anions released during the photocatalytic process was used to identify the nature of the major oxidants (O2(•-), OH(•)) and the possible interaction sites. A significant decrease in the photocatalytic activity of synthesized WO3, ∼50%, was observed in visible portion of sunlight however, a sustained activity was observed in the repeated exposures.

  9. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads.

    Science.gov (United States)

    Li, Dawei; Zhu, Qi; Han, Chengjie; Yang, Yingnan; Jiang, Weizhong; Zhang, Zhenya

    2015-03-21

    A novel cylindrical multi-column photocatalytic reactor (CMCPR) has been developed and successfully applied for the degradation of methyl orange (MO), amoxicillin (AMX) and 3-chlorophenol (3-CP) in water. Due to its higher adsorption capacity and simpler molecular structure, 3-CP compared with MO and AMX obtained the highest photodegradation (100%) and mineralization (78.1%) after 300-min photocatalytic reaction. Electrical energy consumption for photocatalytic degradation of MO, AMX and 3-CP using CMCPR was 5.79×10(4), 7.31×10(4) and 2.52×10(4) kW h m(-3) order(-1), respectively, which were less than one-thousand of those by reported photoreactors. The higher flow rate (15 mL min(-1)), lower initial concentration (5 mg L(-1)) and acidic condition (pH 3) were more favorable for the photocatalytic degradation of MO using CMCPR. Five repetitive operations of CMCPR achieved more than 97.0% photodegradation of MO in each cycle and gave a relative standard deviation of 0.72%. In comparison with reported slurry and thin-film photoreactors, CMCPR exhibited higher photocatalytic efficiency, lower energy consumption and better repetitive operation performance for the degradation of MO, AMX and 3-CP in water. The results demonstrated the feasibility of utilizing CMCPR for the degradation of recalcitrant organic pollutants in water.

  10. Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Junjie Qian

    2012-01-01

    Full Text Available Nitrogen-doped titanium dioxide (N-doped TiO2 photocatalyst was synthesized from nanotube titanic acid (denoted as NTA; molecular formula H2Ti2O5·H2O precursor via a hydrothermal route in ammonia solution. As-synthesized N-doped TiO2 catalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffuse reflectance spectrometry, X-ray photoelectron spectroscopy, electron spin resonance spectrometry and Fourier transform infrared spectrometry. It was found that nanotube ammonium titanate (NAT was produced as an intermediate during the preparation of N-doped TiO2 from NTA, as evidenced by the N1s X-ray photoelectron spectroscopic peak of NH4 + at 401.7 eV. The catalyst showed much higher activities to the degradation of methylene blue and p-chlorophenol under visible light irradiation than Degussa P25. This could be attributed to the enhanced absorption of N-doped TiO2 in visible light region associated with the formation of single-electron-trapped oxygen vacancies and the inhibition of recombination of photo-generated electron-hole pair by doped nitrogen.

  11. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance

    Science.gov (United States)

    Lu, Y. Y.; Zhang, Y. Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z. C.; Li, C.

    2016-05-01

    CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO2 (CuS/TiO2) at low temperature. CuS/TiO2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO2 samples. It is found that CuS/TiO2 photocatalyst, which CuS are loaded on the surface of rutile TiO2, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO2 by forming heterojunction between CuS and rutile TiO2, which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant influence on photocatalytic activity and 2 wt% CuS/TiO2 showed the maximum photocatalytic activity for degradation of MB.

  12. Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems.

    Science.gov (United States)

    Sánchez Arribas, Alberto; Bermejo, Esperanza; Chicharro, Manuel; Zapardiel, Antonio; Luque, Guillermina L; Ferreyra, Nancy F; Rivas, Gustavo A

    2007-07-23

    This work reports the advantages of using glassy carbon electrodes (GCEs) modified with multi-wall carbon nanotubes (CNT) dispersed in polyethylenimine (PEI) as detectors in flow injection and capillary electrophoresis. The presence of the dispersion of CNT in PEI at the electrode surface allows the highly sensitive and reproducible determination of hydrogen peroxide, different neurotransmitters (dopamine (D) and its metabolite dopac, epinephrine (E), norepinephrine (NE)), phenolic compounds (phenol (P), 3-chlorophenol (3-CP) and 2,3-dichlorophenol (2,3CP)) and herbicides (amitrol). Sensitivities enhancements of 150 and 140 folds compared to GCE were observed for hydrogen peroxide and amitrol, respectively. One of the most remarkable properties of the resulting electrode is the antifouling effect of the CNT/PEI layer. No passivation was observed either for successive additions (30) or continuous flow (for 30 min) of the compounds under investigation, even dopac or phenol. A critical comparison of the amperometric and voltammetric signal of these different analytes at bare- and PEI-modified glassy carbon electrodes and pyrolytic graphite electrodes is also included, demonstrating that the superior performance of CNT is mainly due to their unique electrochemical properties. Glassy carbon electrodes modified with CNT-PEI dispersion also show an excellent performance as amperometric detector in the electrophoretic separation of phenolic compounds and neurotransmitters making possible highly sensitive and reproducible determinations.

  13. Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography.

    Science.gov (United States)

    Chicharro, Manuel; Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio

    2007-12-15

    This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-dichlorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).

  14. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans.

    Science.gov (United States)

    Osimitz, Thomas G; Droege, Wiebke; Boobis, Alan R; Lake, Brian G

    2013-10-01

    Limited testing resources, the need to limit animal use, and the demand for better knowledge about carcinogenic hazards require that the carcinogenicity testing paradigm based on lifetime cancer bioassays in rats and mice should be as efficient and reliable as possible. We have therefore reevaluated the rodent bioassay, particularly for nongenotoxic chemicals and conducted a rigorous examination of the 710 substances listed in the Carcinogenic Potency Database (CPDB) that were tested in both mice and rats. The CPDB is a web-based database that provides access to the literature and the results of 6540 bioassays on 1547 chemicals that have been published in the general literature through 2001 and by the National Cancer Institute/National Toxicology Program through 2004. Only three chemicals (o-benzyl-p-chlorophenol, Elmiron®, p-tolylurea) were identified as unequivocally non-genotoxic, mouse non-liver carcinogens. A careful analysis showed that their carcinogenicity in mice is irrelevant for assessment of human cancer hazards. This is consistent with data showing, with a few well-known exceptions, that non-genotoxic carcinogens in rodents are considered to be non-carcinogenic to humans. As a result, we propose that the inclusion of the mouse bioassay in the standard assessment scheme for non-genotoxic chemicals is no longer necessary.

  15. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling.

  16. Hodgkin's disease, work, and the environment. A review.

    Science.gov (United States)

    McCunney, R J

    1999-01-01

    Hodgkin's disease (HD), a lymphoma with an annual incidence in the United States of approximately 7500 cases, primarily affects the lymph nodes, spleen, and liver. The point of this article is to critically review the literature regarding the purported relationships between HD, certain occupations, and exposure to chemical agents. Attention will also be focused on recent advances in molecular genetics in the etiology of this ailment. A MEDLINE search was conducted to assess case-control and mortality evaluations that investigated links between HD and certain occupations and exposure to designated hazards. A review of citations in the Silver Platter Occupational and Environmental Medicine CD-ROM database was also conducted to ensure that all pertinent reports were obtained. Of the industries evaluated, woodworking showed the most consistent link between an increased risk of HD (relative risk, 1.8 to 7.2), but not all studies conducted showed positive associations. Although certain chemicals (ie, chlorophenols, pesticides) were reported as risks, no chemical was consistently and unambiguously linked with HD. Recent investigative work, however, points to a major etiological role for the Epstein-Barr virus (EBV), genetic fragments of which have been noted in Reed-Sternberg cells, the classic malignant cells of HD. The occupation most consistently associated with HD appears to be woodworking, although no specific chemical has been consistently linked with this lymphoma. The most persuasive evidence regarding the cause of HD arises from recent studies, including epidemiological, clinical, and genetic studies, that point to a major role by the EBV.

  17. Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration

    Institute of Scientific and Technical Information of China (English)

    Melina Nisenbaum; Gonzalo Hernán Sendra; Gastón Alfredo Cerdá Gilbert; Marcelo Scagliola; Jorge Froilán González; Silvia Elena Murialdo

    2013-01-01

    We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P.aeruginosa PA01.This strain was able to degrade n-hexadecane,1-undecene,1-nonene,1-decene,1-dodecene and kerosene.It grew in the presence of 1-octene,while this hydrocarbons is toxic to other hydrocarbons degraders.Pseudomonas strain H was also chemotactic towards n-hexadecane,kerosene,1-undecene and 1-dodecene.These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments.Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations,we demonstrate the use of the dynamic speckle laser method,which is simple and inexpensive,to confirm bacterial chemotaxis at low cell concentrations (less than 105 colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.

  18. Carbon monolith: preparation, characterization and application as microextraction fiber.

    Science.gov (United States)

    Shi, Zhi-Guo; Chen, Fei; Xing, Jun; Feng, Yu-Qi

    2009-07-10

    A carbon monolith was synthesized via a polymerization-carbonization method, styrene and divinylbenzene being adopted as precursors and dodecanol as a porogen during polymerization. The resultant monolith had bimodal porous substructure, narrowly distributed nano skeleton pores and uniform textural pores or throughpores. The carbon monolith was directly used as an extracting fiber, taking place of the coated silica fibers in commercially available solid-phase microextraction device, for the extraction of phenols followed by gas chromatography-mass spectrometry. Under the studied conditions, the calibration curves were linear from 0.5 to 50 ng mL(-1) for phenol, o-nitrophenol, 2,4-dichlorophenol and p-chlorophenol. The limits of detection were between 0.04 and 0.43 ng mL(-1). The recoveries of the phenols spiked in real water samples at 10 ng mL(-1) were between 85% and 98% with the relative standard deviations below 10%. Compared with the commercial coated ones (e.g. PDMS, CW/DVB and DVB/CAR/PDMS), the carbon monolith-based fiber had advantages of faster extraction equilibrium and higher extraction capacity due to the superior pore connectivity and pore openness resulting from its bimodal porous substructure.

  19. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds.

    Science.gov (United States)

    Du, Wei; Zhao, Faqiong; Zeng, Baizhao

    2009-05-01

    A novel multiwalled carbon nanotubes-polyaniline composite (MWCNTs-PANI) film coated platinum wire was fabricated through electrochemical deposition. The coating was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry and thermogravimetry. It was found that the coating was porous and had large specific area and adsorption capacity; in the composite MWCNTs and polyaniline interacted with each other and the film kept stable up to 320 degrees C. The as-made fiber was used for the headspace solid-phase microextraction (HS-SPME) of some phenolic compounds (i.e. 2-chlorophenol, 2,4-dichlorophenol, 2-methylphenol, 3-methylphenol, 2,6-dimethylphenol, 2-nitrophenol), followed by gas chromatographic analysis. The MWCNTs-PANI coating showed better analytical performance than PANI. Under the optimized conditions, the detection limits were 1.89-65.9 ng L(-1), the relative standard deviations (RSDs) were 2.7-6.5% for six successive measurements with single fiber, the RSDs for fiber-to-fiber were 5.2-12.4%, the linear ranges exceeded two magnitudes with correlation coefficient above 0.992. The fiber could be used for more than 250 times without decrease of efficiency. The proposed method was successfully applied to the extraction and determination of phenolic compounds in water sample, and the recoveries were 87.7-111.5% for different analytes. In addition, the fiber also presented advantages of easy preparation and low cost. Therefore, it is a promising SPME fiber.

  20. Design and evaluation of a UV LED Photocatalytic Reactor Using Anodized TiO2 Nanotubes.

    Science.gov (United States)

    Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H

    2016-08-01

    A bench-scale flow-through photocatalytic reactor using light emitting diodes (LED) as light source and a TiO2 nanotube array (TN) as immobilized catalyst has been designed, fabricated and tested on commonly studied contaminants. The photoreactor is comprised of 144, 365-nm UV-LED lamps mounted along the inner periphery of an annular cylinder. An ordered array of TN, as catalyst, was immobilized by electrochemical anodization of a titanium cylinder and placed in the center of the reactor. Synthesized TN was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Laboratory investigations were conducted on the photoreactor to treat 4-chlorophenol (4-CP), atrazine and methylene blue. The performance of the photoreactor at different flow rates and at varying distances of photocatalyst from the light source was monitored. The photocatalytic reaction rates increased with bubbling oxygen into the reservoir. Significant improvement was observed when H2O2 was added and degradation to detection limits was observed.

  1. Stabilization of chloro-organics using organophilic bentonite in a cement-blast furnace slag matrix.

    Science.gov (United States)

    Cioffi, R; Maffucci, L; Santoro, L; Glasser, F P

    2001-01-01

    The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.

  2. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    Science.gov (United States)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  3. Investigation of Photocatalytic Properties of NiO/TiO2 Layers Grown via PEO/EPD Method

    Directory of Open Access Journals (Sweden)

    S. Bassaki

    2015-12-01

    Full Text Available Titanium dioxide-nickel oxide porous coatings were synthesized by Plasma Electrolytic Oxidation (PEO/ ElectroPhoretic Deposition (EPD in one step and within a short time. The main purpose of this research was to increase photocatalytic activity of titanium oxide by increasing surface area and coupling of titanium oxide with nickel oxide. Applied voltage effects on phase structure, surface morphology and photocatalytic efficiency of coatings were studied. Phase structure and surface morphology of the synthesized catalysts were investigated by XRD and SEM, respectively. Photocatalytic efficiency of the samples was studied through measuring the decomposition rate of 4-chlorophenol. The results showed that the coatings mainly consisted of anatase and nickel oxide phases whose amounts in coatings increased with the voltage. There was an enhancement of the photocatalytic efficiency in TiO2/NiO composite coatings compared with TiO2 coatings. Besides, there was an optimum amount of NiO to reach maximum photocatalytic efficiently.

  4. Synthesis of Phenolic Compounds by Trapping Arynes with a Hydroxy Surrogate

    Directory of Open Access Journals (Sweden)

    Rajdip Karmakar

    2015-08-01

    Full Text Available Trapping of arynes with various nucleophiles provides a range of heteroatom-functionalized arene derivatives, but the corresponding reaction with water does not provide phenol derivatives. Silver trifluroacetate (AgO2CCF3 can nicely solve this problem. It was found that in typical organic solvent, AgO2CCF3 readily reacts with arynes to generate trifluoroacetoxy organosilver arene intermediate, which, upon treating with silica gel, provides phenolic products. This protocol can be extended to the synthesis of α-halofunctionalized phenol derivatives by simply adding NBS (N-bromosuccinimides or NIS (N-iodosuccinimides to the reaction along with silver trifluroacetate, which provided α-bromo or α-iodophenol derivatives in good yield. However, the similar reactions with NCS (N-chlorosuccinimides afforded only the protonated product instead of the expected α-chlorophenols derivatives. Interestingly, substrates containing silyl substituents on 1,3-diynes resulted in α-halotrifluoroacetates rather than their hydrolyzed product. Additionally, trapping the same arynes with other oxygen-based nucleophiles containing silver counter cation, along with NXS (N-halosuccinimides, generated α-halooxyfunctionalized products.

  5. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  6. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  7. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites

    Science.gov (United States)

    Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail

    2015-11-01

    CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.

  8. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents.

    Science.gov (United States)

    Zhong, Wenjue; Wang, Donghong; Xu, Xiaowei

    2012-05-30

    Phenols pose a risk to the environment and to human health. Phenols found in rivers mainly originate from sewage treatment plants (STPs). In this paper, analytical procedures, based on deconvolution technology and retention time locking technology, were investigated to simultaneously identify and determine the concentrations of fifty different phenols in sewage water and effluents. Seventeen different phenols were found in sewage and five - including two regulated phenols (phenol and 2,4,6-trichlorophenol) and three un-regulated phenols (2-chlorophenol, 2,5-dichlorophenol and 2,4-dichloro-3-ethyl-6-nitrophenol) - were identified in effluents of five STPs. A number of processes undertaken in five STPs were also investigated. These processes can be used to remove phenols at efficiency levels of between 88.95% and 99.97%. Among the processes tested, a combination of anaerobic/anoxic/oxic (A(2)/O), continuous microfiltration (CMF), ozone oxidation (O(3)), and chlorination, appeared to be the best option for the removal of key phenols. Among the five phenols identified in effluents, 2,5-dichlorophenol (1.89 μg/L) and 2,4-dichloro-3-ethyl-6-nitrophenol (22.6 μg/L) pose the greatest ecological risk to receiving waters.

  9. Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor

    Science.gov (United States)

    Li, Zhi-Ling; Nan, Jun; Huang, Cong; Liang, Bin; Liu, Wen-Zong; Cheng, Hao-Yi; Zhang, Chunfang; Zhang, Dongdong; Kong, Deyong; Kanamaru, Kyoko; Kobayashi, Tetsuo; Wang, Ai-Jie; Katayama, Arata

    2016-01-01

    Functional interplays of microbial activity, genetic diversity and contaminant transformation are poorly understood in reactors for mineralizing halogenated aromatics anaerobically. Here, we investigated abundance and distribution of potential microbes and functional genes associated with pentachlorophenol (PCP) anaerobic mineralization in a continuous-flow cylindrical reactor (15 cm in length). PCP dechlorination and the metabolite (phenol) were observed at segments 0–8 cm from inlet, where key microbes, including potential reductive dechlorinators (Dehalobacter, Sulfurospirillum, Desulfitobacterium and Desulfovibrio spp.) and phenol degraders (Cryptanaerobacter and Syntrophus spp.), as well as putative functional genes, including putative chlorophenol reductive dehalogenase (cprA) and benzoyl-CoA reductase (bamB), were highly enriched simultaneously. Five types of putative cprAs, three types of putative bamBs and seven types of putative nitrogenase reductase (nifHs) were determined, with their copy numbers decreased gradually from inlet to outlet. Distribution of chemicals, bacteria and putative genes confirmed PCP dechlorination and phenol degradation accomplished in segments 0–5 cm and 0–8 cm, respectively, contributing to a high PCP mineralization rate of 3.86 μM d‑1. Through long-term incubation, dechlorination, phenol degradation and nitrogen fixation bacteria coexisted and functioned simultaneously near inlet (0–8 cm), verified the feasibility of anaerobic mineralization of halogenated aromatics in the compact reactor containing multiple functional microbes.

  10. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    Science.gov (United States)

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  11. Photocatalysis with solar energy at a pilot-plant scale. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Malato, Sixto; Blanco, Julian; Vidal, Alfonso [CIEMAT-Plataforma Solar de Almeria, Crta. Senes Km. 4, 04200 Tabernas, Almeria (Spain); Richter, Christoph [DLR-Plataforma Solar de Almeria, Crta. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2002-04-08

    Advanced oxidation processes (AOPs) are characterized by a common chemical feature: the capability of exploiting the high reactivity of OH radicals in driving oxidation processes which are suitable for achieving the complete abatement and through mineralization of even less reactive pollutants. This paper reviews the use of sunlight to produce (.)OH radicals. The experimental systems necessary for performing pilot-plant scale solar photocatalytic experiments are described. It outlines the basic components of these pilot plants and the fundamental parameters related to solar photocatalysis reactions. This paper summarizes also most of the research carried out at Plataforma Solar de Almeria (PSA) related with solar photocatalytic degradation of water contaminants. A description is given of how solar photocatalysis could become a significant segment of the wastewater treatment technologies related with the degradation of very persistent toxic compounds. It outlines also the decomposition of organic and inorganic contaminants and different examples are also shown for better comprehension of the ability of solar energy for carrying out oxidation and reduction processes. These examples include chlorophenols, chlorinated solvents, pesticides and cyanide. Besides, the possibility of using the photo-Fenton reaction illuminated with solar light opens the boundary where solar photocatalysis could be applied.

  12. Solar photocatalytic degradability of carboxylic and nitrogen-containing aqueous pollutants. Comparative efficiencies of TiONA PC (Millennium Inorganic Chemicals) and Degussa P-25 photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, C.; Disdier, J.; Herrmann, J.M.; Pichat, P. [Laboratoire CNRS. CEDEX, France (France); Malato, S.; Blanco, J. [Plataforma Solar de Almeria (Spain); Lehaut, C.; Choping, T. [Centre de Recherches. CEDEX France (France)

    1999-07-01

    The aim of our study was to extrapolate laboratory experiments performed with artificial UV-light to the large scale solar pilot CPC photoreactor at the Plataforma Solar de Almeria (PSA). The first part concerned the photocataltytic degradation of nitrobenzene (NBZ) and of 2-chlorobenzoic (2-CBA) chosen as model pollutants containing heteroatoms. It was shown that all the kinetic results obtained in our laboratory could be directly extrapolated to the solar pilot plant at PSA, with similar quantum yields. A faster TOC disappearance could be obtained at PSA because of the recirculation design of the CPC reactor. The second part concerned the determination of the photoactivities of a new series of TiONA PC photocatalysts of industrial origin (Millenium Inorganic Chemicals). It was shown that at a concentration of 0.2 g TiO{sub 2} g/L{sub 3}, TiONA PC catalyst with 11 m''2/g was surprisingly the most efficient in the desappearance of 4-chlorophenol (4-CB), but Degussa P-25 remained the most efficient catalyst for TOC disappearance. Increasing the concentration of TiONA PC catalysts up to 0.4 g/L enabled these catalysts to reach their full absorption of solar light. They then became more active in both 4-CP and TOC disappearance than Degussa P-25 chosen as reference. (Author) 9 refs.

  13. An insight in magnetic field enhanced zero-valent iron/H2O2 Fenton-like systems: Critical role and evolution of the pristine iron oxides layer

    Science.gov (United States)

    Xiang, Wei; Zhang, Beiping; Zhou, Tao; Wu, Xiaohui; Mao, Juan

    2016-04-01

    This study demonstrated the synergistic degradation of 4-chlorophenol (4-CP) achieved in a magnetic field (MF) enhanced zero-valent iron (ZVI)/H2O2 Fenton-like (FL) system and revealed an interesting correlative dependence relationship between MF and the pristine iron oxides layer (FexOy) on ZVI particles. First, a comparative investigation between the FL and MF-FL systems was conducted under different experimental conditions. The MF-FL system could suppress the duration of initial lag degradation phase one order of magnitude in addition of the significant enhancement in overall 4-CP degradation. Monitoring of intermediates/products indicated that MF would just accelerate the Fenton reactions to produce hydroxyl radical more rapidly. Evolutions of simultaneously released dissolved iron species suggested that MF would not only improve mass-transfer of the initial heterogeneous reactions, but also modify the pristine ZVI surface. Characterizations of the specific prepared ZVI samples evidenced that MF would induce a special evolution mechanism of the ZVI particles surface depending on the existence of FexOy layer. It comprised of an initial rapid point dissolution of FexOy and a following pitting corrosion of the exposed Fe0 reactive sites, finally leading to appearance of a particular rugged surface topography with numerous adjacent Fe0 pits and FexOy tubercles.

  14. Effect of magnetic field on the zero valent iron induced oxidation reaction.

    Science.gov (United States)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-08-30

    The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O(2) by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H(2) production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O(2) and Fe(0) are paramagnetic, the diffusion of O(2) onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe(0) and O(2) can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  15. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  16. Analysis of organic micropollutants in drinking water using SPME and GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, M.; Ravaioli, G. [Presidio Multizonale di Prevenzione, Rieti (Italy). Settore Ambiente

    1999-12-01

    In this work the purpose was to develop accurate and reproducible methods for the qualitative and quantitative analysis of pesticides/herbicides, phthalates, chlorinated solvents, trihalomethanes, polycyclic aromatic hydrocarbons (PAHs) and chlorophenols in drinking waters, using solid-phase micro extraction and GC-MS techniques. The SPME developed by J. Pawliszyn and co-workers, consists of an fused silica fibre, coated with an appropriate absorbent phase, hosted inside the needle of a holder that looks like a GC-syringe; the needle pierces the septum of a sealed vial and the fibre is lowered, by depressing the plunger of the holder, into the liquid (or in the headspace, if that is the case) that contains the analytes of interest. After a set period of time, necessary to reach the partitioning equilibrium, the fibre is retracted inside the needle, the needle is inserted into the GC injector port and the fibre pushed in the heated injector. Here the compounds of interest (that have adsorbed onto the fibre) are thermally desorbed and analysed by GC-MS. After three minutes the fibre is extracted and is ready for a new analysis. The SPME technique has already found many applications in food and environmental analysis. Many of the analytes investigated in this research are listed Italian legislation as possible pollutants of drinking waters and their presence and concentrations require monitoring. The list of compounds included in this work is reported in Table 1.

  17. Biological treatment of synthetic wastewater containing 2,4 dichlorophenol (DCP) in an activated sludge unit.

    Science.gov (United States)

    Kargi, Fikret; Eker, Serkan; Uygur, Ahmet

    2005-08-01

    Chlorophenol compounds present in many chemical industry wastewaters are resistant to biological degradation because of the toxic effects of such compounds on microorganisms. Synthetic wastewater containing different concentrations of 2,4 dichlorophenol (DCP) was subjected to biological treatment in an activated sludge unit. Effects of feed DCP concentration on COD, DCP, and toxicity removals and on sludge volume index were investigated at a constant sludge age of 10 days and hydraulic residence time (HRT) of 25 h. The Resazurin method based on dehydrogenase activity was used for assessment of toxicity for the feed and effluent wastewater. Percent COD, DCP, and toxicity removals decreased and the effluent COD, DCP, and toxicity levels increased with increasing feed DCP concentrations above 150 mgl(-1) because of inhibitory effects of DCP. Biomass concentration in the aeration tank decreased and the sludge volume index (SVI) increased with feed DCP concentrations above 150 mgl(-1) resulting in lower COD and DCP removal rates. The system should be operated at feed DCP concentrations of less than 150 mgl(-1) in order to obtain high COD, DCP, and toxicity removals.

  18. Impacts of COD and DCP loading rates on biological treatment of 2,4-dichlorophenol (DCP) containing wastewater in a perforated tubes biofilm reactor.

    Science.gov (United States)

    Eker, Serkan; Kargi, Fikret

    2006-08-01

    Biofilm processes offer considerable advantages for biological treatment of chlorophenol containing wastewaters since such industrial effluents are difficult to treat by conventional activated sludge processes. A rotating perforated tubes biofilm reactor (RTBR) was developed and used for treatment of 2,4-dichlorophenol (DCP) containing synthetic wastewater. Effects of COD and DCP loading rates on COD, DCP and toxicity removals were investigated. Percent COD removal decreased and effluent COD increased with increasing COD and DCP loading rates due to toxic effects of high DCP content in the feed. DCP and toxicity removals showed similar trends. As the DCP loading rate increased the effluent DCP content increased yielding high toxicity levels in the effluent. COD and DCP loading rates should be below 90gCODm(-2)d(-1) and 2.8gDCPm(-2)d(-1) in order to obtain more than 90% DCP and toxicity removals. However, DCP loading rates lower than 1gDCPm(-2)d(-1) are required to obtain more than 90% COD removal. Empirical equations were developed to estimate percent COD, DCP and toxicity removals as functions of COD and DCP loading rates. The coefficients of the empirical equations were determined by using the experimental data. Empirical model predictions for percent COD, DCP and toxicity removals were in good agreement with the experimental data.

  19. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    Science.gov (United States)

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  20. Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Wang Le

    2009-01-01

    Full Text Available Abstract One-dimensional (1D CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles with a diameter of ca. 4 nm, which anchored on the nanowires without any surface pretreatment. The 1D CdS@ZnS core-shell nanocomposites were confirmed by XRD, SEM, TEM, HR-TEM, ED, and EDS techniques. The optical properties and photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites towards methylene blue (MB and 4-chlorophenol (4CP under visible light (λ > 420 nm were separately investigated. The results show that the ZnS shell can effectively passivate the surface electronic states of the CdS cores, which accounts for the enhanced photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites compared to that of the uncoated CdS nanowires.

  1. Preparation of Ti/PTFE-F-PbO2 Electrode with a Long Life from the Sulfamic Acid Bath and Its Application in Organic Degradation

    Institute of Scientific and Technical Information of China (English)

    洪夏萍; 张蓉; 童少平; 马淳安

    2011-01-01

    A polytetrafluoroethylene (PTFE)-doped PbO2 electrode on a Ti substrate was prepared by galvanostatic method from the sulfamic acid bath (Ti/PTFE-F-PbO2-I) or nitric acid bath (Ti/PTFE-F-PbO2-II). Scanning Electron Microscopy revealed that the Ti/PTFE-PbO2-I electrode had a more regular morphology with smaller size crystals than the Ti/PTFE-F-PbO2-II electrode. On the basis of the results of both the accelerated electrolysis test and the empirical formula for estimating the service life of an electrode, the service life of the Ti/PTFE-PbO2-I electrode was predicted to be more than 7 years under conventional electrolysis conditions (0.1 A·cm^-2). During the treatment of 4-chlorophenol-contaminated water, the Ti/PTFE-PbO2-I anode showed both a good electro-catalytic activity and high electrochemical stability, exhibiting an excellent potential application.

  2. Electrochemical sensor based on chlorohemin modified molecularly imprinted microgel for determination of 2,4-dichlorophenol.

    Science.gov (United States)

    Zhang, Jin; Lei, Jianping; Ju, Huangxian; Wang, Chaoying

    2013-07-05

    A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0-100 μmol L(-1) with a detection limit of 1.6 μmol L(-1). Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2-111.8%, showing a promising potential in practical application.

  3. Environmental Green Chemistry Applications of Nanoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J.; Garcia, A; Poon, P

    2010-01-01

    Influence of surface properties of nanoporous carbons on activity and selectivity during the photooxidation of 4-chlorophenol on UV-irradiated TiO{sub 2} was performed. Characterization by infrared spectroscopy, X-ray photoelectronic spectroscopy and X-ray absorption near edge structure spectroscopy confirm the presence of a contact interface between both solids and suggest the coordination of some functional organic groups of the carbon surface, mainly ethers and carboxylic acids, to metallic centre Ti{sup +4} in TiO{sub 2}. Changes in surface pH of carbons from basic to neutral or acid remarkably increase the production of 4-chlorocathecol by a factor of 22 on TiO{sub 2}-Carbon in comparison of TiO{sub 2} alone. A scheme of interaction between TiO{sub 2} and carbon is proposed to the increased photoactivity of TiO{sub 2} and a reaction mechanism for the different intermediate products detected is also proposed. Results showed that TiO{sub 2}-Carbon can be used as an alternative photocatalyst for environmental green chemistry and selective organic synthesis applications.

  4. Synthesis and Characterization of Fe₂(MoO₄)₃Nano-Photocatalyst by Simple Sol-Gel Method.

    Science.gov (United States)

    Umapathy, V; Manikandan, A; Ramu, P; Antony, S Arul; Neeraja, P

    2016-01-01

    Ferric molybdate (Fe₂(MoO₄)₃) nanorods (NRs) were successfully synthesized using metal nitrates, citric acid and ethyl cellulose by a simple sol-gel method. Structural, morphological, optical and magnetic properties of the obtained powder were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, high resolution scanning electron microscope (HR-SEM), energy dispersive X-ray (EDX), UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results indicated that the resultant powder was pure single phase crystalline with monoclinic structure. FT-IR spectra indicate the type of bonds between metals and oxygen. HR-SEM images shows that the morphology of the powder consist with well defined nanorods (NRs) structure. VSM results showed ferromagnetic behavior. The addition of TiO₂ catalyst, it enhanced the photo-catalytic activity of Fe₂(MoO₄)₃. The mixed oxide catalyst of Fe₂(MoO₄)₃-TiO₂ nano-composites (NCs) were also tested for the photocatalytic degradation (PCD) of 4-chlorophenol (4-CP). It was found that the PCD efficiency of Fe₂(MoO₄)₃ NCs is higher than pure Fe₂(MoO₄)₃ and TiO₂ catalysts.

  5. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.

    Science.gov (United States)

    Yang, Yawei; Que, Wenxiu; Zhang, Xinyu; Xing, Yonglei; Yin, Xingtian; Du, Yaping

    2016-11-05

    Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS2 quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS2 heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS2 film with the deposition duration of 80min showed the highest degradation rate and photocurrent density (0.95mA/cm(2)), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS2 QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS2 loading and well-maintained one-dimensional nanostructure.

  6. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe.

    Science.gov (United States)

    Chen, Juhong; Alcaine, Samuel D; Jiang, Ziwen; Rotello, Vincent M; Nugen, Sam R

    2015-09-01

    In this study, we demonstrate a bacteriophage (phage)-based magnetic separation scheme for the rapid detection of Escherichia coli (E. coli) in drinking water. T7 phage is a lytic phage with a broad host range specificity for E. coli. Our scheme was as follows: (1) T7 bacteriophage-conjugated magnetic beads were used to capture and separate E. coli BL21 from drinking water; (2) subsequent phage-mediated lysis was used to release endemic β-galactosidase (β-gal) from the bound bacterial cells; (3) the release of β-gal was detected using chlorophenol red-β-d-galactopyranoside (CRPG), a colorimetric substrate which changes from yellow to red in the presence of β-gal. Using this strategy, we were able to detect E. coli at a concentration of 1 × 10(4) CFU·mL(-1) within 2.5 h. The specificity of the proposed magnetic probes toward E. coli was demonstrated against a background of competing bacteria. By incorporating a pre-enrichment step in Luria-Bertani (LB) broth supplemented with isopropyl β-d-thiogalactopyranoside (IPTG), we were able to detect 10 CFU·mL(-1) in drinking water after 6 h of pre-enrichment. The colorimetric change can be determined either by visual observation or with a reader, allowing for a simple, rapid quantification of E. coli in resource-limited settings.

  7. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil.

    Science.gov (United States)

    Anasonye, Festus; Winquist, Erika; Kluczek-Turpeinen, Beata; Räsänen, Markus; Salonen, Kalle; Steffen, Kari T; Tuomela, Marja

    2014-09-01

    The current treatment method for PCDD/F-contaminated soil, which fulfils the requirements for POP soils, is incineration at high temperature. In this study, we investigated if bioaugmentation with fungal inoculum or treatment with manganese peroxidase (MnP) enzyme preparation could be used instead. The main source of PCDD/F contamination in Finland has been the national production and use of a chlorophenol containing wood preservative, which contained PCDD/Fs as impurities. Therefore, historically contaminated soils from three sawmill sites were used in the experiments. In bioaugmentation experiments with living fungal mycelia, enzyme production, CO2 production and degradation of chlorinated dioxins were measured. When cell free MnP preparation was added to the soil, it was likewise important to follow how enzyme activity was maintained in the soil. As a result of this study, we showed that fungi were able to efficiently degrade PCDD/F, but surprisingly the addition of MnP preparation did not have any effect to the PCDD/F concentration. However, substantial amounts of MnP activity were found in the soil still after 10d of incubation. Treatment with either Stropharia rugosoannulata or Phanerochaete velutina resulted in 62-64% decrease in WHO-TEQ value in 3months. One critical factor for efficient biodegradation was strong growth of fungal mycelia in non-sterile contaminated soil.

  8. Feasibility of a simple laboratory approach for determining temperature influence on SPMD-air partition coefficients of selected compounds

    Science.gov (United States)

    Cicenaite, A.; Huckins, J.N.; Alvarez, D.A.; Cranor, W.L.; Gale, R.W.; Kauneliene, V.; Bergqvist, P.-A.

    2007-01-01

    Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD-air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (-16, -4, 22 and 40 ??C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the -16 ??C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Feasibility of a simple laboratory approach for determining temperature influence on SPMD–air partition coefficients of selected compounds

    Science.gov (United States)

    Cicenaite, Aurelija; Huckins, James N.; Alvarez, David A.; Cranor, Walter L.; Gale, Robert W.; Kauneliene, Violeta; Bergqvist, Per-Anders

    2007-01-01

    Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD–air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (−16, −4, 22 and 40 °C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the −16 °C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration.

  10. An integrated anaerobic/aerobic bioprocess for the remediation of chlorinated phenol-contaminated soil and groundwater.

    Science.gov (United States)

    Ehlers, George A; Rose, Peter D

    2006-07-01

    An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.

  11. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    Science.gov (United States)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  12. Photocatalytic pre-treatment with food-grade TiO(2) increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico.

    Science.gov (United States)

    Brame, Jonathon A; Hong, Seok Won; Lee, Jaesang; Lee, Sang-Hyup; Alvarez, Pedro J J

    2013-02-01

    Using the 2010 Deepwater Horizon oil spill in the Gulf of Mexico as an impetus, we explored the potential for TiO(2)-mediated photocatalytic reactive oxygen species (ROS) generation to increase the bioavailability (solubility) and biodegradability of weathered oil after a spill. Food grade TiO(2), which is FDA approved for use as food additive in the United States, was tested as a photocatalyst for this novel application. Photocatalytic pre-treatment (0.05 wt.% TiO(2), UV irradiation 18 W m(-2), 350-400 nm) for 24 h in a bench top photoreactor increased the soluble organic carbon content of weathered oil by 60%, and enhanced its subsequent biodegradation (measured as O(2) consumption in a respirometer) by 37%. Photocatalytic pre-treatment was also tested outdoors under sunlight illumination, but no significant increase in solubility or biodegradation was observed after 11 d of exposure. Although sunlight irradiation of food-grade TiO(2) generated ROS (assessed by the degradation of 4-chlorophenol as a probe compound), the efficacy of weathered oil pre-treatment was apparently hindered by sinking of the photocatalysts under quiescent conditions and illumination occlusion by the oil. Overall, results indicate that photocatalytic pre-treatment to stimulate bioremediation of weathered oil deserves further consideration, but controlling the buoyancy and surface hydrophobicity of the photocatalysts will be important for future efforts to enable ROS generation in proximity to the target compounds.

  13. The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review.

    Science.gov (United States)

    McLellan, Iain; Carvalho, Mariana; Silva Pereira, Cristina; Hursthouse, Andrew; Morrison, Calum; Tatner, Paul; Martins, Isabel; San Romão, M Vitória; Leitão, Maria

    2007-10-01

    Pentachlorophenol (PCP) has been used as a herbicide, biocide and preservative worldwide since the 1930s and as a result, extensive and prolonged contamination exists. The environmental impact increases when its many degradation products are taken into consideration. A number of chloroanisols and their related chlorophenols have been found in cork slabs collected from Portuguese oak tree forests before stopper manufacturing, and contamination by PCP and polychlorinated anisole (PCA) has been detected in Canadian forests. It is suggested that the use of polychlorinated phenols, in particular PCP, is thought to be a cause of the cork taint problem in wine, a major socio-economic impact not only for industry but on sensitive and highly biodiverse ecosystems. It also highlights particular issues relating to the regional regulation of potentially toxic chemicals and global economics world wide. To fully understand the impact of contamination sources, the mechanisms responsible for the fate and transport of PCP and its degradation products and assessment of their environmental behaviour is required. This review looks at the current state of knowledge of soil sorption, fate and bioavailability and identifies the challenges of degradation product identification and the contradictory evidence from field and laboratory observations. The need for a systematic evaluation of PCP contamination in relation to cork forest ecosystems and transfer of PCP between trophic levels is emphasised by discrepancies in bioaccumulation and toxicity. This is essential to enable long term management of not only transboundary contaminants, but also the sustainable management of socially and economically important forest ecosystems.

  14. Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans.

    Science.gov (United States)

    Li, Zhiling; Yoshida, Naoko; Wang, Aijie; Nan, Jun; Liang, Bin; Zhang, Chunfang; Zhang, Dongdong; Suzuki, Daisuke; Zhou, Xue; Xiao, Zhixing; Katayama, Arata

    2015-01-01

    Anaerobic mineralization of 2,4,6-tribromophenol (2,4,6-TBP) was achieved by a synthetic anaerobe community comprising a highly enriched culture of Dehalobacter sp. phylotype FTH1 acting as a reductive debrominator; Clostridium sp. strain Ma13 acting as a hydrogen supplier via glucose fermentation; and a novel 4-chlorophenol-degrading anaerobe, Desulfatiglans parachlorophenolica strain DS. 2,4,6-TBP was debrominated to phenol by the combined action of Ma13 and FTH1, then mineralized into CO2 by sequential introduction of DS, confirmed using [ring-(14)C(U)] phenol. The optimum concentrations of glucose, SO4(2-), and inoculum densities were 0.5 or 2.5mM, 1.0 or 2.5mM, and the densities equivalent to 10(4)copiesmL(-1) of the 16S rRNA genes, respectively. This resulted in the complete mineralization of 23μM 2,4,6-TBP within 35days (0.58μmolL(-1)d(-1)). Thus, using a synthetic microbial community of isolates or highly enriched cultures would be an efficient, optimizable, low-cost strategy for anaerobic bioremediation of halogenated aromatics.

  15. Preparation, Characterisation, and Photocatalytic Behaviour of Co-TiO2 with Visible Light Response

    Directory of Open Access Journals (Sweden)

    Rossano Amadelli

    2008-01-01

    Full Text Available The preparation of cobalt-modified TiO2 (Co-TiO2 was carried out by the incipient impregnation method starting from commercial TiO2 (Degussa, P-25 and cobalt acetate. XPS data show that cobalt is incorporated as divalent ion, and it is likely present within few subsurface layers. No appreciable change in structural-morphologic properties, such as surface area and anatase/rutile phase ratio, was observed. Conversely, Co addition brings about conspicuous changes in the point of zero charge and in surface polarity. Diffuse reflectance spectra feature a red shift in light absorption that is dependent on the amount of cobalt. The influence of cobalt addition on the performance of TiO2 as a photocatalyst in the degradation of 4-chlorophenol and Bisphenol A is investigated. The results show that the modified oxide presents a higher photoactivity both for illumination with UV-visible (λ>360 nm and visible light (λ>420 nm; λ>450 nm, and that this enhancement depends on the amount of the added species and on the final thermal treatment in the preparation step. We also show that Co-TiO2 is a more active catalyst than pure TiO2 for the reduction of O2 in the dark, which is an important reaction in the overall photocatalytic processes.

  16. Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe–Ni–SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Beijing Jiaotong University, Beijing 100044 (China); Huang, Jun [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Zhang, Wang [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Beijing General Research Institute of Milling and Metallurgy, Beijing 100070 (China); Yu, Yunfei; Deng, Shubo; Wang, Bin [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China)

    2013-04-15

    Highlights: ► Toxic PCNB was completely destroyed by ball milling using Fe–Ni–SiO{sub 2}. ► Nonhazardous destruction residue can effectively dechlorinate the 4-CP in water. ► Dechlorination mechanism involving reactions on 3 interfaces (Fe–Ni, Fe–C and Fe–C–Ni) was proposed. -- Abstract: A novel combined process was developed for mechanochemical destruction of pentachloronitrobenzene (PCNB) in solid waste, coupled with the dechlorination of aqueous 4-chlorophenol (4-CP) using the nonhazardous residue from the solid-phase destruction step. Using the mixture of iron powder, nickel powder and quartz sand as the additives in a planetary ball mill under the room temperature, the mechanochemical reaction was induced and a complete destruction of PCNB was realized. The resulting solid residue was characterized by various measures including X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS), which suggested that main components were carbon, chloride besides excess additives. Such nonhazardous residue was then used to effectively dechlorinate aqueous 4-CP. The residue achieving over 93% dechlorination rate was selected as the optimized content. With a series of verification experiments, a possible dechlorination mechanism was proposed, involving the reactions occurred on three interfaces (i.e. Fe/Ni, Fe/C and Fe/C/Ni)

  17. Transparent thin films of Cu-TiO2 with visible light photocatalytic activity.

    Science.gov (United States)

    Janczarek, Marcin; Zielińska-Jurek, Anna; Markowska, Irmina; Hupka, Jan

    2015-03-01

    Thin films of Cu-TiO2 with a high level of transparency were prepared by a dip-coating procedure on the glass surface. CuCl2 was used as a copper precursor added during sol-gel synthesis of TiO2. The extension of optical absorption into the visible region of as-prepared thin films was indicated by UV/Vis spectroscopy. Only the anatase phase was detected by X-ray diffraction analysis (XRD). The presence of copper in the structure of thin films was confirmed by energy dispersive X-ray spectrometry (EDS). The significant rate of phenol and 4-chlorophenol mineralization was observed during visible light irradiation. The photocatalytic activity of the prepared thin films is correlated with the optimum copper content in the structure. Copper in metallic form and cupric oxides were not detected by XRD and scanning electron microscopy analysis. It is suggested that copper may exist as dispersed ions in the TiO2 lattice.

  18. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants.

    Science.gov (United States)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing

    2016-11-05

    The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C3N4/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C3N4/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C3N4/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  19. MULTI-RESIDUE ANALYSIS OF PESTICIDES IN GRAPES IN BIJAPUR DISTRICT

    Directory of Open Access Journals (Sweden)

    U.S.Pujeri

    2010-10-01

    Full Text Available Fruit samples of grapes were analyzed for pesticide residues, employing multi-residue analysis by gas- liquid chromatography-mass spectrography (GC-MS/ LCMS/ MS. All the fruit samples showed the presence of pesticide residues with one or other group of pesticides. Some of the grape samples contain more than the minimum residue limit. The increasing interest in the study of pesticides in grapes is justified from an enological point of view, since some pesticides can interfere with fermentative microflora used in wine production, as well as affect consumer safety. There were no significant differences between some pesticide levels found in the whole grape (skin and pulp and in the grape skin. Chlorpyriphos, captan, dichlorovos, oxyfluorfen, fipronoil, 4- bromo-2-chlorophenol and indoxycarb were detected. Nevertheless, consumer intake of pesticides from grapes studied in this work should be decreased as a result of water washing of the grapes. In this paper, multiresidue determination of pesticides using GCMS/ LC-MS/MS are discussed.

  20. Degradation of chlorinated phenols by nanoscale zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    Rong CHENG; Jianlong WANG; Weixian ZHANG

    2008-01-01

    Chlorophenols (CPs), as important contami-nants in groundwater, are toxic and difficult to biode-grade. Recently nanoscale zero-valent iron received a great deal of attention because of its excellent performance in treating recalcitrant compounds. In this study, nanoscale zero-valent iron particles were prepared using chemical reduction, and the reductive transformations of three kinds of chlorinated phenols (2-CP, 3-CP, and 4-CP) by nanoscale zero-valent iron under different conditions were investigated. The transformation process of the CPs was shown to be dechlorination first, then cleavage of the benzene ring. The removal efficiency of the CPs varied as follows: 2-CP3-CP4-CP. The reactivity of CPs was associated with their energy of lowest unoccupied molecular orbit (ELUMO). With the increase in initial concentrations of CPs, removal efficiency decreased a little. But the quantities of CPs reduced increased evidently. Temperature had influence on not only the removal efficiency, but also the transformation pathway. At higher temperatures, dechlorination occurred prior to benzene ring cleavage. At lower temperatures, however, the oxidation product was formed more easily.

  1. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Anh, Tuan Mai [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Dzyadevych, Sergei V. [Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev 03143 (Ukraine); Prieur, Nicolas [Institute of Natural Products Chemistry, Vietnam National Centre for Science and Technology, Hoang Quoc Viet Str., Hanoi, Vietnam (Viet Nam); Duc, Chien Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Pham, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Renault, Nicole Jaffrezic [Ecole Centrale de Lyon, CEGELY, UMR CNRS 5005, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Chovelon, Jean-Marc [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France)]. E-mail: chovelon@univ-lyon1.fr

    2006-03-15

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors.

  2. Photocatalytic applications of paper-like poly(vinylidene fluoride)-titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying.

    Science.gov (United States)

    Ramasundaram, Subramaniyan; Son, Aseom; Seid, Mingizem Gashaw; Shim, Sujin; Lee, Sang Hyup; Chung, Yun Chul; Lee, Changha; Lee, Jaesang; Hong, Seok Won

    2015-03-21

    A paper-like photocatalyst was fabricated by electrospraying an N,N'-dimethylformamide (DMF) dispersion of titanium dioxide (TiO2) nanoparticles (NPs) on a poly(vinylidene fluoride) nanofiber (PVDF NF) mat prepared by electrospinning. Morphological studies revealed that the TiO2 NPs uniformly deposited as clusters on the surface of the PVDF NF mat. The immobilized amount of TiO2 was found to be 2.08, 2.44, 3.80, and 4.73 mg per 45 cm(2) of PVDF-TiO2 hybrids for the electrospraying of 10, 20, 40, and 60 ml of TiO2-DMF, respectively. The hybrid photocatalysts were effective in degrading bisphenol A (BPA), 4-chlorophenol (4-CP), and cimetidine (CMT), which dissolved in both deionized water and secondary wastewater effluents, with activity being proportional to the quantity of TiO2 NPs immobilized. For the highest loading amount of TiO2, BPA, 4-CP, and CMT degraded completely within 100, 100, and 40 min of UV irradiation, respectively. Stable photo-oxidation of CMT was maintained through 10 repeated cycles. During these cycles, it was confirmed that there was no loss of TiO2 NPs by inductively coupled plasma optical emission spectrometry. Our results suggest that effective and stable PVDF-TiO2 hybrid photocatalysts can be fabricated on a large scale by combining electrospinning and electrospraying techniques.

  3. Study on Mimetic Peroxidase and Molecular Recognition of Phenols With Inclusion Complex of *Ironporphyrin Immobilized by β-CD Polymer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    β-Cyclodextrin (β-CD) and its cross-linke d polymer (β-CDP) were known as the mimetic models.Metalloporphyrin had been widely used in the enzymatic method of analysis and molecular recognition. In present work, it was investigation that supramolecular recognition for halogenated phenols, three cresols,three nitrophenols and three aminophenols, served respectively as the substrate of the mimetic receptor,iron-5,10,15,20-tetrakis (sulforphenyl)-21H, 23H-porphine (FeTPPS) or FeTPPS-ββ-CDP. Supramolecular complex, FeTPPS-β-CDP with tunction of mult i-recognition and induced-fit, was a advanced kind of mimetic peroxidase; Methyl phenol or polyphenol was the substitute of chlorophenic acid, while aminophenols and other phenols were suggested not to be utilized to enzymatic assay of H2O2. Being a mimetic enzyme mimicking the space structure of overall proteinase, beaimed by immobilized mimetic enzyme with a large number of β-CD interior cavities, chlorophenol was identified optimal substrate in the system tested.

  4. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    Science.gov (United States)

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  5. Organic compounds in concrete from demolition works.

    Science.gov (United States)

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  6. Degrading Endocrine Disrupting Chemicals from Wastewater by TiO Photocatalysis: A Review

    Directory of Open Access Journals (Sweden)

    Jin-Chung Sin

    2012-01-01

    Full Text Available Widespread concerns continue to be raised about the impacts of exposure to chemical compounds with endocrine disrupting activities. To date, the percolation of endocrine disrupting chemical (EDC effluent into the aquatic system remains an intricate challenge abroad the nations. With the innovation of advanced oxidation processes (AOPs, there has been a consistent growing interest in this research field. Hence, the aim of this paper is to focus one such method within the AOPs, namely, heterogeneous photocatalysis and how it is used on the abatement of EDCs, phthalates, bisphenol A and chlorophenols in particular, using TiO2-based catalysts. Degradation mechanisms, pathways, and intermediate products of various EDCs for TiO2 photocatalysis are described in detail. The effect of key operational parameters on TiO2 photocatalytic degradation of various EDCs is then specifically covered. Finally, the future prospects together with the challenges for the TiO2 photocatalysis on EDCs degradation are summarized and discussed.

  7. Preliminary studies of bioelectrochemical removal of phenolic compounds of residuals water of refinery; Estudos preliminares de remocao bioeletroquimica de compostos fenolicos de aguas residuais de refinaria

    Energy Technology Data Exchange (ETDEWEB)

    La Rotta H, Camilo E.; Bon, Elba P.S. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Tecnologia Enzimatica]. E-mail: elba1996@iq.ufrj.br; Luetz, Stephan; Liese, Andreas [Forschungszentrum Juelich GmbH, Juelich (Germany)]. E-mail: a.liese@fz-juelich.de

    2003-07-01

    Chloroperoxidase from Caldariomyces fumago has been previously reported for the oxidation of several phenolic compounds and is emerging as a promising alternative for the treatment of industrial effluents. Nevertheless, a high efficiency of the enzymatic removal means the use of high concentrations of hydrogen peroxide, causing a fast loss of enzyme activity. The electroenzymatic approach allows a significantly lower and easily controllable hydrogen peroxide formation rate than any other so far. The stability of peroxidase could be significantly increased in this electroenzymatic system. Using the enzymatic method a distinct pattern of products regarding colour, concentration and solubility was observed in response to pH, substrate concentration and stoichiometry. A higher number of events concerning to product variety and intensity was observed at pH 6,0 in absence of chloride ions, and equimolar concentration of 5,0 mM of 4- chlorophenol and hydrogen peroxide. Under these conditions up to 95% of phenol removal and formation of dark precipitate was observed. The bioelectrochemical experiment showed also a high phenol oxidation of up to 90% of the initial phenol concentration. Nevertheless, the formation of dark precipitate was not observed. CPO showed to be active for conventional and bioelectrochemical experiments, during three and six hours, respectively. (author)

  8. A WATER-COMPATIBLE PHENOLIC HYDROXYL MODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) foradsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol,and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-l for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distributior. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite X4D-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-I over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-I resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  9. A WATER—COMPATIBLE PHENOLIC HYDROXYL ODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    LIAimin; FeiZhenghao; 等

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads,this resin can be used directly without wetting process.A comparison of the sorption properites of the new resin and Amberlite XAD-4 toward four phenolic compounds,phenol,p-cresol,p-chlorophenol,and p-nitrophenol was made.The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4,which may be contributed to pheonl hydroxyl group on the surface and the unusual poe distribution.At their dilute solution,the equilibrium adsorption capacities of AM-1 for phenol increased aout 62% over that of Amberlite XAD-4,while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%,suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compunds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins,Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  10. Membrane filtration process and bioreactor for elimination of chlorinated hydrocarbons from industrial effluents; Membranfiltration und Bioreaktor zur Eliminierung chlorierter Kohlenwasserstoffe aus Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Schierenbeck, A.

    2003-07-01

    Selective separation and elimination of chlorinated hydrocarbons from industrial effluents directly at the production site was to be achieved by a combined process including membrane technology and biodegradation. This way, closed cycle processes can be designed which will be a major contribution to environmental protection integrated in production processes. First, chlorinated hydrocarbons are characterized in terms of occurrence and biodegradability. Two model substances are discussed (3-chlorobenzoic acid and 4-chlorophenol), and a practical example is presented. The fundamentals of the processes used for treatment of industrial effluents are outlined, and their advantages and shortcomings are discussed, with particular regard to integrated application in production processes. [German] Das Ziel dieser Arbeit ist die Entwicklung einer Verfahrenstechnik, bei der durch die Kombination der Membrantechnik mit dem biologischen Abbau die selektive Abtrennung und Eliminierung chlorierter Kohlenwasserstoffe aus dem Industrieabwasser schon am Ort des Entstehens realisiert werden. Durch den Einsatz dieser Technik wird die Schliessung von Wasserkreislaeufen moeglich. Dies stellt fuer alle Bereiche, in denen chlorierte Kohlenwasserstoffe in das Abwasser gelangen koennen, einen wichtigen Beitrag zum produktionsintegrierten Umweltschutz dar. Dazu wird zunaechst die Problemstoffgruppe der chlorierten Kohlenwasserstoffe hinsichtlich ihres Auftretens und der biologischen Abbaubarkeit charakterisiert. Zwei Modellsubstanzen (3-Chlorbenzoesaeure und 4-Chlorphenol) werden diskutiert sowie ein Beispiel aus der Praxis vorgestellt, bei dem ein Abwasser mit chlorierten Kohlenwasserstoffen anfaellt. Die Grundlagen der verwendeten Verfahren zur Behandlung von Industrieabwaessern mit entsprechenden Abwasserinhaltsstoffen werden dargestellt. Die Moeglichkeiten und Grenzen dieser Verfahren, insbesondere im Hinblick auf den produktionsintegrierten Einsatz, werden diskutiert. (orig.)

  11. Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Patil, Gunvant; Deokar, Amit; Jain, P K; Thengane, R J; Srinivasan, R

    2009-11-01

    To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l(-1) mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l(-1) mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.

  12. Facile fabrication of reduced graphene oxide-encapsulated silica: a sorbent for solid-phase extraction.

    Science.gov (United States)

    Luo, Yan-Bo; Zhu, Gang-Tian; Li, Xiao-Shui; Yuan, Bi-Feng; Feng, Yu-Qi

    2013-07-19

    In this study, a facile hydrothermal reduction strategy was developed for the preparation of reduced graphene oxide-encapsulated silica (SiO2@rGO). Compared with other conventional methods for the synthesis of SiO2@rGO, the proposed strategy endowed the obtained SiO2@rGO with larger amount of immobilized rGO. The prepared functionalized silica shows remarkable adsorption capacity toward chlorophenols (CPs) and peptides. When it was used as solid-phase extraction (SPE) sorbent, a superior recovery could be obtained compared to commercial sorbents, such as C18 silica, graphitized carbon black and carbon nanotubes. Based on these, the prepared material was used as SPE sorbent for the enrichment of CPs, and a method for the analysis of CPs in water samples was established by coupling SPE with high performance liquid chromatography-ultra violet detection (SPE-HPLC/UV). In addition, the obtained SiO2@rGO was further successfully extended to the enrichment of peptides in bovine serum albumin (BSA) digests.

  13. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl{sub 2} activated coir pith carbon

    Energy Technology Data Exchange (ETDEWEB)

    Namasivayam, C. [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046 (India)]. E-mail: cnamasi@yahoo.com; Sangeetha, D. [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046 (India)

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl{sub 2} activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl{sub 2} activated coir pith carbon is effective for the removal of toxic pollutants from water.

  14. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Sangeetha, D

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water.

  15. Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker.

    Science.gov (United States)

    Bakshi, Souvika; Saha, Bedabrata; Roy, Nand Kishor; Mishra, Sagarika; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2012-06-01

    A new method for obtaining transgenic cowpea was developed using positive selection based on the Escherichia coli 6-phosphomannose isomerase gene as the selectable marker and mannose as the selective agent. Only transformed cells were capable of utilizing mannose as a carbon source. Cotyledonary node explants from 4-day-old in vitro-germinated seedlings of cultivar Pusa Komal were inoculated with Agrobacterium tumefaciens strain EHA105 carrying the vector pNOV2819. Regenerating transformed shoots were selected on medium supplemented with a combination of 20 g/l mannose and 5 g/l sucrose as carbon source. The transformed shoots were rooted on medium devoid of mannose. Transformation efficiency based on PCR analysis of individual putative transformed shoots was 3.6%. Southern blot analysis on five randomly chosen PCR-positive plants confirmed the integration of the pmi transgene. Qualitative reverse transcription (qRT-PCR) analysis demonstrated the expression of pmi in T₀ transgenic plants. Chlorophenol red (CPR) assays confirmed the activity of PMI in transgenic plants, and the gene was transmitted to progeny in a Mendelian fashion. The transformation method presented here for cowpea using mannose selection is efficient and reproducible, and could be used to introduce a desirable gene(s) into cowpea for biotic and abiotic stress tolerance.

  16. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    Science.gov (United States)

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values.

  17. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  18. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron.

    Science.gov (United States)

    Zhou, Lei; Thanh, Thao Le; Gong, Jianyu; Kim, Jae-Hwan; Kim, Eun-Ju; Chang, Yoon-Seok

    2014-06-01

    Nanoscale zerovalent iron (NZVI) with modified surface via coating with organic stabilizers has been documented with enhanced colloidal stability and dispersity. Therefore, the expanded application potential and accompanying intrinsic exposure of such nanoparticle can be anticipated. In our study, carboxymethyl cellulose (CMC)-stabilized NZVI (CNZVI) exerted minimized oxidative stress response and slower disruption of cell membrane integrity, resulting in mitigated cytotoxicity towards bacteria Agrobacterium sp. PH-08 as compared with the uncoated counterpart. The corrosive oxidation of both nanoparticles in oxygenic water provided a better understanding of coating effect. The decreased oxidative degradation of probe 4-chlorophenol with CNZVI than NZVI implicated a weaker oxidizing capacity, which might overweight massive adhesion-mediated redox damage and explain the different exposure outcome. However, enhanced evolution of iron oxide as well as the promoted production of hydrogen peroxide adversely demonstrated CMC-coating facilitated iron corrosion by oxygen, suggesting CMC was most likely to act as a radical scavenger and compete with organics or bacteria for oxidants. Moreover, XRD, XPS and TEM results showed that the spherical NZVI was oxidized to form needle-shaped iron oxide-hydroxide (γFeOOH) with no detectable oxidative stress for PH-08, alleviating worries regarding exotoxicological impact of iron nanotechnology.

  19. The Removal of Phenol and Its Derivatives from Aqueous Solutions by Adsorption on Petroleum Asphaltene

    Directory of Open Access Journals (Sweden)

    Omer El-Amin Ahmed Adam

    2013-01-01

    Full Text Available This research describes the adsorption of phenol and o-substituted phenols and xylenol isomers on petroleum asphaltenes from aqueous solution. The results revealed that the adsorption equilibrium data were best fitted with the generalized and Freundlich isotherms. For o-substituted phenols, it was found that electron-withdrawing groups increase the adsorption capacity. The uptake of these phenols decreases in the order: o-nitrophenol > o-chlorophenol > o-aminophenol > o-cresol > phenol, while the adsorption of xylenol isomers decreases in the order: 2,6-xylenol > 2,5-xylenol > 3,5-xylenol > 3,4-xylenol. Batch equilibrium results at different temperatures suggest that the adsorption of 2,6-xylenol and 3,5-xylenol onto asphaltene is an endothermic process, values obtained were positive indicating a nonspontaneous process with increasing randomness at the solid-solution interface. The influence of solution pH on the adsorption of 3,5-xylenol on asphaltenes was also investigated. The adsorption process was found to be independent on the solution pH. The adsorption capacity of 3,5-xylenol was found to increase with the decrease in particle size of the adsorbent.

  20. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Jean-Marie; Guillard, Chantal; Disdier, Jean [URA au CNRS, Photocatalyse, Catalyse et Environment, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully -Cedex (France); Lehaut, Corinne [Millennium Inorganic Chemicals, 85 Avenue Victor Hugo, 92563 Cedex Rueil-Malmaison (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria, CIEMAT, 04200 Tabernas (Spain)

    2002-01-25

    A new series of titania industrial photocatalysts have been elaborated by Millennium Inorganic Chemicals and were denoted Millennium-PC/10, PC/25 and PC/50 with respective specific surface areas equal to 11, 23 and 43m{sup 2}g{sup -1}. Their photocatalytic activities have been determined and compared in the solar pilot CPC-photoreactor at the Plataforma Solar de Almeria (PSA) (Spain) in the photocatalytic degradation of four different representative pollutants (4-chlorophenol, nitrobenzene, 2-chlorobenzoic acid and hydrobutanedioic (malic) acid), whose degradation pathways had previously been elucidated in laboratory experiments with artificial light, using titania Degussa P-25 as a reference photocatalyst. The study concerned the influence of (1) the nature of organic pollutants, (2) the surface area and (3) the concentration of suspended TiO{sub 2}. The affinity of the pollutants for TiO{sub 2} and the presence of heteroatoms in the reactant molecules intervened on the activities of Millennium-PCs when compared to Degussa P-25. The higher the affinity of the organic pollutants for titania, the higher the efficiency of Millennium-PC/10 photocatalyst calibrated on the initial rate of pollutant disappearance. The degradation pathways were found similar for both photocatalysts and the primary steps of the degradation for the different types of molecules were discussed. 4-Chlorophenol (4-CP), a model pollutant for waste waters, was then chosen for the study of the influence of the surface areas and of the concentration of Millennium-PC photocatalysts. The initial apparent rate constants of 4-CP degradation in presence of all Millennium-PC catalysts were all higher than that obtained with Degussa P-25. When choosing the total organic carbon (TOC) disappearance rate as an overall kinetic parameter, Millennium-PC/10 and PC/25 appeared as less active than Degussa P-25, with longer solar exposures (by about 10%) necessary to obtain a total mineralisation. However

  1. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    Science.gov (United States)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  2. Chlorinated hydrocarbons in livers of American mink (Mustela vison) and river otter (Lutra canadensis) from the Columbia and Fraser River Basins, 1990-1992

    Science.gov (United States)

    Elliott, J.E.; Henny, Charles J.; Harris, M.L.; Wilson, L.K.; Norstrom, R.J.

    1999-01-01

    We investigated chlorinated hydrocarbon contaminants in aquatic mustelid species on the Fraser and Columbia Rivers of northwestern North America. Carcasses of river otter (Lutra canadensis) (N=24) and mink (Mustela vison) (N=34) were obtained from commercial trappers during the winters of 1990-91 and 1991a??92. Pooled liver samples were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), including non-ortho congeners, polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Most samples contained detectable concentrations of DDE, PCBs, although there was substantial variability in patterns and trends among neighboring samples. Concentrations of DDE were in some mink and several otter samples from the lower Columbia River elevated (to 4700 g/kg wet weight); excluding one mink sample from the Wenatchee area, mean DDE levels generally decreased between 1978a??79 and 1990a??92. PCBs were present in all samples. PCB concentrations in otter livers collected from the lower Columbia were ten-fold lower than measured a decade previously; nevertheless, a sample taken near Portland had a mean concentration of 1500 g/kg, within a range of concentrations associated with reproductive effects in captive mink. Concentrations of 2,3,7,8-TCDD and TCDF were generally below detection limits, except for one otter collected near a pulp mill at Castlegar, on the upper Columbia, with 11 ng TCDD/kg in liver. Elevated concentrations of higher chlorinated PCDD/Fs, probably resulting from use of chlorophenolic wood preservatives, were found in both species; one otter sample from the lower Columbia had 2200 ng OCDD/kg. International TCDD toxic equivalent levels in mink (31 ng/kg) and otter (93 ng/kg) from the lower Columbia River approached toxicity thresholds for effects on reproduction in ranch mink.

  3. First evidence of epithelial transport in tardigrades: a comparative investigation of organic anion transport.

    Science.gov (United States)

    Halberg, Kenneth Agerlin; Møbjerg, Nadja

    2012-02-01

    We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 μmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.

  4. Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe3O4 nanocomposites.

    Science.gov (United States)

    Xu, Cancan; Liu, Rui; Chen, Lvjun; Tang, Jialu

    2016-10-01

    Ni/Fe-Fe3O4 nanocomposites were synthesized for dechlorination of 2,4-dichlorophenol (2,4-DCP). The effects of the Ni content in Ni/Fe-Fe3O4 nanocomposites, solution pH, and common dissolved ions on the dechlorination efficiency were investigated, in addition to the reusability of the nanocomposites. The results showed that increasing content of Ni in Ni/Fe-Fe3O4 nanocomposites, from 1 to 5wt.%, greatly increased the dechlorination efficiency; the Ni/Fe-Fe3O4 nanocomposites had much higher dechlorination efficiency than bare Ni/Fe nanoparticles. Ni content of 5wt.% and initial pH below 6.0 was found to be the optimal conditions for the catalytic dechlorination of 2,4-DCP. Both 2,4-DCP and the intermediate product 2-chlorophenol (2-CP) were completely removed, and the concentration of the final product phenol was close to the theoretical phenol production from complete dechlorination of 20mg/L of 2,4-DCP, after 3hr reaction at initial pH value of 6.0, 3g/L Ni/Fe-Fe3O4, 5wt.% Ni content in the composite, and temperature of 22°C. 2,4-DCP dechlorination was enhanced by Cl(-) and inhibited by NO3(-) and SO4(2-). The nanocomposites were easily separated from the solution by an applied magnetic field. When the catalyst was reused, the removal efficiency of 2,4-DCP was almost 100% for the first seven uses, and gradually decreased to 75% in cycles 8-10. Therefore, the Ni/Fe-Fe3O4 nanocomposites can be considered as a potentially effective tool for remediation of pollution by 2,4-DCP.

  5. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  6. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    Science.gov (United States)

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  7. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  8. Synthesis of flower-like Ag2O/BiOCOOH p-n heterojunction with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Li, Shijie; Xu, Kaibing; Hu, Shiwei; Jiang, Wei; Zhang, Junlei; Liu, Jianshe; Zhang, Lisha

    2017-03-01

    The development of efficient semiconductor heterojunction photocatalysts has drawn much attention. Herein, we have reported a kind of flower-like Ag2O/BiOCOOH p-n heterojunction as a novel and efficient visible-light-driven photocatalyst. The Ag2O/BiOCOOH heterojunctions have been successfully prepared via a solvothermal precipitation-deposition method. They consist of flower-like BiOCOOH microspheres (diameters: 1-2.5 μm) decorated with Ag2O nanoparticles (size: ∼14 nm). In addition, optical characterization reveals that they have broad visible-light photo-absorption. Importantly, under visible-light irradiation (λ > 400 nm), all Ag2O/BiOCOOH heterojunctions exhibit enhanced photocatalytic activity than pure BiOCOOH or Ag2O for the degradation of rhodamine B (RhB) dye and para-chlorophenol (4-CP). Especially, the Ag2O/BiOCOOH heterojunction with the Ag/Bi molar ratio of 0.2/1 shows the highest photocatalytic activity, which is even higher than the activity from the mechanical mixture (8 wt% Ag2O + 92 wt% BiOCOOH). This enhanced photocatalytic performance could be predominantly attributed to the efficient separation of photogenerated electron-hole pairs. The photogenerated holes (h+) and superoxide radical anions (rad O2-) have been found to be the main reactive species responsible for the photodegradation of RhB dye in aqueous solution. Therefore, the Ag2O/BiOCOOH p-n heterojunction has great potential to be used as a kind of efficient visible-light-driven photocatalyst.

  9. Development of the IR laser pyrolysis for the synthesis of iron-doped TiO 2 nanoparticles: Structural properties and photoactivity

    Science.gov (United States)

    Alexandrescu, R.; Morjan, I.; Scarisoreanu, M.; Birjega, R.; Fleaca, C.; Soare, I.; Gavrila, L.; Ciupina, V.; Kylberg, W.; Figgemeier, E.

    2010-03-01

    The preparation of TiO 2-based nanoparticles of closely controlled sizes and purity gives rise to considerable interest in the frame of environmental applications, e.g. in photocatalysis. When nanoparticles instead of their bulk counterpart are used the synthesis method plays a fundamental role in defining specific structural properties. Between the different gas-phase synthesis techniques, the CO 2 laser pyrolysis is a versatile method allowing for the preparation of nanostructures of various chemical compositions. Here we demonstrate that pure and Fe-doped TiO 2 nanoparticles with rather low Fe concentration may be prepared by applying the sensitized IR laser pyrolysis to a gas mixtures containing titanium tetrachloride, air and iron pentacarbonyl (vapors). The structures of TiO 2-based particles were systematically investigated by X-ray diffraction, transmission electron microscopy, high-resolution electron microscopy, selected area electron diffraction and X-ray Photoelectron Spectroscopy. Depending on the synthesis parameters, the nanoparticle system contains mixtures of anatase and rutile, with a preponderance of the anatase phase. Higher rutile proportion was found in the iron-doped samples. Mean particle diameters of around 14 nm and 12 nm were estimated for undoped and doped anatase titania, respectively. From UV-Vis diffuse reflectance spectra, higher absorbance and red shifted absorption were evidenced at higher amount of doped iron. Preliminary evaluation tests of the UV photoactivity of samples were performed by using the scanning electrochemical microscopy for determining the evolution of the oxygen consumption in the presence of IV-chlorophenol. They show that the undoped nano titania samples perform better than the reference P25 Degussa sample. A drop of the nano-titania photoactivity as a consequence of Fe doping was observed. Possible reasons of this effect are tentatively discussed.

  10. Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Sánchez-Barragán, Dámaso; Pozo-Ayuso, Diego F; Castaño-Álvarez, Mario

    2012-09-01

    A second generation of a battery-powered portable electrophoresis instrument for the use of ME with electrochemical detection was developed. As the first-generation, the main unit of the instrument (150 mm × 165 mm × 95 mm) consists of four-outputs high-voltage power supply (HVPS) with maximum voltage of 3 KV and acquisition system (bipotentiostat) containing 2-channels for dual electrochemical detection. A new reusable microfluidic platform was designed in order to incorporate the microchips with the portable instrument. In this case, the platform is integrated to the main unit of the instrument so that it is not necessary to have any external cable for the interconnection of both parts, making the use of the complete system easier. The new platform contains all the electrical connections for the HVPS and bipotentiostat, as well as fluidic ports for driving the solutions. The microfluidic electrophoresis instrument is controlled by means of a user-friendly interface from a computer. The possibility of wireless connection (Bluetooth®) allows the use of the instrument without any external cable improving the portability. Therefore, the second generation brings a more compact and integrated electrophoresis instrument for "in situ" applications using microfluidic chips in an easy way. The performance of the electrophoresis system was initially evaluated using single- and dual-channel SU-8/Pyrex microchips with different models of integrated electrodes including microelectrodes and interdigitated arrays. The method was tested in different analytical applications such as separation of neurotransmitters, chlorophenols, purine derivatives, vitamins, polyphenolic acids, and flavones.

  11. Modelling the environmental degradation of water contaminants. Kinetics and mechanism of the riboflavin-sensitised-photooxidation of phenolic compounds.

    Science.gov (United States)

    Haggi, Ernesto; Bertolotti, Sonia; García, Norman A

    2004-06-01

    The aerobic visible-light-photosensitised irradiation of methanolic solutions of either of the phenolic-type contaminants model compounds (ArOH) p-phenylphenol (PP), p-nitrophenol (NP) and phenol (Ph), and for two additional phenolic derivatives, namely p-chlorophenol (ClP) and p-methoxyphenol (MeOP), used in some experiments, was carried out. Employing the natural pigment riboflavin (Rf) as a sensitiser, the degradation of both the ArOH and the very sensitiser was observed. A complex mechanism, common for all the ArOH studied, operates. It involves superoxide radical anion (O2-*) and singlet molecular oxygen (O2(1delta(g)) reactions. Maintaining Rf in sensitising concentrations levels (approximately 0.02 mM), the mechanism is highly dependent on the concentration of the ArOH. Kinetic experiments of oxygen and substrate consumption, static fluorescence, laser flash photolysis and time-resolved phosophorescence detection of O2(1delta(g)) demonstrate that at ArOH concentrations in the order of 10 mM, no chemical transformation occurs due to the complete quenching of Rf singlet excited state. When ArOH is present in concentrations in the order of mM or lower, O2-* is generated from the corresponding Rf radical anion, which is produced by electron transfer reaction from the ArOH to triplet excited Rf. The determined reaction rate constants for this step show a fairly good correlation with the electron-donor capabilities for Ph, PP, NP, ClP and MeOP. In this context, the main oxidative species is O2-*, since O2(1delta(g)) is quenched in an exclusive physical fashion by the ArOH. The production of O2-* regenerates Rf impeding the total degradation of the sensitiser. This kinetic scheme could partially model the fate of ArOH in aquatic media containing natural photosensitisers, under environmental conditions.

  12. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  13. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates.

    Science.gov (United States)

    Osborne, Robert L; Coggins, Michael K; Raner, Gregory M; Walla, Mike; Dawson, John H

    2009-05-26

    The enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species. A significant amount of heterolytic cleavage of the O-O bond of cumene hydroperoxide, consistent with transient formation of a Compound I [Fe(IV)O/porphyrin pi-cation radical] species, is observed upon its reaction with ferric DHP. In addition, a more stable high-valent Fe(IV)O-containing DHP intermediate [Compound II (Cpd II) or Compound ES] is characterized by UV-visible absorption and magnetic circular dichroism spectroscopy. Spectral similarities are seen between this intermediate and horse heart myoglobin Cpd II. It is also shown in single-turnover experiments that the DHP Fe(IV)O intermediate is an active oxidant in halophenol oxidative dehalogenation. Furthermore, reaction of DHP with 4-chlorophenol leads to a dimeric product. The results presented herein are consistent with a normal peroxidase order of addition of the oxidant cosubstrate (H(2)O(2)) followed by organic substrate (TCP) and indicate that the enzymatic mechanism of DHP-catalyzed oxidative halophenol dehalogenation involves two consecutive one-electron steps with a dissociable radical intermediate.

  14. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.

    Science.gov (United States)

    Xie, Jie; Meng, Wenna; Wu, Deyi; Zhang, Zhenjia; Kong, Hainan

    2012-09-15

    The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK(a)) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na(6)Al(6)Si(10)O(32)·12H(2)O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [100] and 2.8 Å × 4.8 Å [101]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k(ow) value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the positively charged "head" of surfactant additionally functions.

  15. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide.

    Science.gov (United States)

    Li, Qianqian; Li, Liewu; Su, Guijin; Huang, Xinchen; Zhao, Yanhui; Li, Binke; Miao, Xue; Zheng, Minghui

    2016-11-01

    Chlorophenols are structurally similar to PCDD/Fs and have been considered as highly potential precursors for PCDD/Fs formation. The suppressing effects of PCDD/F formation from pentachlorophenol (PCP) were investigated on various mass ratios of CaO and urea. The total concentration of 2,3,7,8-PCDD/Fs, mostly dominated by OCDD, was determined to be 48.58-10186ng/mg in inhibitor-reaction systems, being much lower than that in blank reaction system (75654ng/mg). Interestingly, compared with pure CaO and urea reaction system, the concentration and TEQ of formed 2,3,7,8-PCDD/Fs in mixed urea/CaO reaction system were lower, especially with 5-20% urea reaction systems being respectively at decrease by 96.5-99.4% and 99.2-99.7%. The suppression efficiency of TEQ in 5-20% urea reaction systems could be always approximately 100% under 250-350°C. These results suggested that mixed inhibitors, especially 5-20% urea inhibitors, have a synergetic inhibition effect for PCDD/Fs formation from PCP. Mixed inhibitor generated several intermediates, involving CO2, H2O, NH3, Ca(OH)2, CaCO3, HNCO, biuret and ammelide. The complex between PCP and Ca, N-doped species, lower chlorinated phenols and benzenediol, and organic acids were also determined. Synergetic inhibition mechanism may be attributed to accelerated facilitation of acid-base reaction and N doping. The decomposition of PCP itself also contributes to prevent PCDD/Fs formation.

  16. 新型环己烯酮衍生物的合成%Synthesis of A Novel Cyclohexanedione Derivative

    Institute of Scientific and Technical Information of China (English)

    王玉婷; 王现全; 张苈; 涂红; 李凯; 尹振东; 陈和举; 欧阳贵平

    2016-01-01

    根据活性基团拼接原理,以烯草酮为先导化合物,通过修饰其肟醚位,引入具有除草活性的环苯草酮肟醚结构,设计并合成了一个新型的环己烯酮衍生物(7)。以对氯苯酚为原料,经取代、还原、卤代、肟醚化、水解等5步反应制得O-[2-(4-氯苯氧基)丙基]-羟胺盐酸盐(5);5与5-[2-(乙硫基)丙基]-3-羟基-2-丙酰基-2-环己烯-1-酮反应合成了7,其结构经1 H NMR,13 C NMR, IR, ESI-MS和元素分析表征。%Herbicidal activity structure of profoxydim oxime-ether was introduced by modifying the ox-ime-ether structure of clethodim , according to the active-group combination principle .O-[2-(4-chloro-phenoxy)propyl]-hydroxylamine hydrochloride(5)was obtained by substitution, reduction, halogena-tion, oxime etherification and hydrolysis , using p-chlorophenol as starting materials .A novel cyclohex-anediones derivative was designed and synthesized by the reaction of 5 with 5-[2-( ethylthio) proplyl]-3-hydroxy-2-propionyl-2-cyclohexen-1-one.The structure was characterized by 1 H NMR, 13 C NMR, IR, ESI-MS and elemental analysis .

  17. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  18. Comparative Study of Carbon Materials Synthesized “Greenly” for 2-CP Removal

    Science.gov (United States)

    Ma, Ying; Lu, Nan; Lu, Ying; Guan, Jiu-Nian; Qu, Jiao; Liu, Hai-Yang; Cong, Qiao; Yuan, Xing

    2016-07-01

    Carbon nanotubes (CNTs), graphene (GA) and carbon nanospheres (CNSs) were prepared respectively using grass (Festucaarundinace) as the sole carbon resource by solvothermal method and characterized as adsorbent and photocatalyst for 2-chlorophenol (2-CP) removal in water. With H2O2/HNO3/H2SO4, the CNTs were firstly produced from grass (Festucaarundinace) at 300 °C by hydrolysis and oxidization, the CNTs were secondly opened to form the GA by oxidization at 400 °C, and the GA was lastly rolled-up to form the CNSs by oxidization at 500 °C. All adsorption equilibration of the CNTs, GA, and CNSs for 2-CP were achieved within 120 min, and 60.35%, 20.12%, and 76.22% of 2-CP (5 mg L‑1, pH = 6.3) were adsorbed, respectively. Furthermore, the high removal rates of 2-CP were about 88.23%, 92.90%, and 79.64% by the CNTs, GA, and CNSs, after 120 min adsorption and 160 min irradiation. On the basis of these results, the CNSs were suitable for removal 2-CP as adsorbent, and the GA was suitable as photocatalyst. The photooxidation of 2-CP was mainly initiated by O2·‑ or ·OH which was generated from the combine with simulated sunlight and the CNTs or GA, respectively. However, the CNTs was not suitable for removal 2-CP owing to the increasing toxicity.

  19. In Silico Approach to Support that p-Nitrophenol Monooxygenase from Arthrobacter sp. Strain JS443 Catalyzes the Initial Two Sequential Monooxygenations.

    Science.gov (United States)

    Kallubai, Monika; Amineni, Umamaheswari; Mallavarapu, Megharaj; Kadiyala, Venkateswarlu

    2015-06-01

    p-Nitrophenol (PNP), used primarily for manufacturing pesticides and dyes, has been recognized as a priority environmental pollutant. It is therefore important to reduce the input of this toxicant into the environment and to establish approaches for its removal from the contaminated sites. PNP monooxygenase, a novel enzyme from Gram-positive bacteria like Arthrobacter sp. and Bacillus sp., that comprises two components, a flavoprotein reductase and an oxygenase, catalyzes the initial two sequential monooxygenations to convert PNP to trihydroxybenzene. Accurate and reliable prediction of this enzyme-substrate interactions and binding affinity are of vital importance in understanding these catalytic mechanisms of the two sequential reactions. As crystal structure of the enzyme has not yet been published, we built a homology model for PNP monooxygenase using crystallized chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100 (3HWC) as the template. The model was assessed for its reliability using PROCHECK, ERRAT and ProSA. Molecular docking of the physiological substrates, PNP and 4-nitrocatechol (4-NC), was carried out using Glide v5.7 implemented in Maestro v9.2, and the binding energies were calculated to substantiate the prediction. Docking complexes formed by molecular level interactions of PNP monooxygenase-PNP/4-NC without or with the cofactors, FAD and NADH, showed good correlation with the established experimental evidence that the two-component PNP monooxygenase catalyzes both the hydroxylation of PNP and the oxidative release of nitrite from 4-NC in B. sphaericus JS905. Furthermore, molecular dynamics simulations performed for docking complexes using Desmond v3.0 showed stable nature of the interactions as well.

  20. PCDD/F in sewage sludges from two waste water treatment facilities in Rio de Janeiro State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza Pereira, M. de [Universidade Federal Fluminense, Niteroi (Brazil). Dept. de Geoquimica - Instituto de Quimica; Kuch, B. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Abt. Hydrochemie, Fakultaet fuer Bauingenieur- und Vermessungswesen

    2004-09-15

    In Brazil, up to now, there is no specific legislation regarding the maximum equivalent concentration levels of organochlorine compounds in especial polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) in sewage sludge/biocompost considered for agricultural use or final deposition in soils. Besides the great risk heavy metals pose to humans and environment, PCDD/PCDF are types of persistent environmental contaminants with enhanced toxicity and carcinogenic and bioaccumulating properties. To PCDD/F, the human exposure is primarily attributed to background contamination caused by diffuse contamination of these pollutants coming from different sources and subsequently biomagnification through the trophic chain. As alternative paths of the diffuse contamination with PCDD/F, the transport of these substances by air deposition, by residual waters from household, industrial processes as well as by laundry of products treated with contaminated chemicals and the microbial activity on chlorophenols are listed. Possible transference pathways of these compounds to humans would be both the uptake via contaminated crops and grazing livestock, coming from sludge-amended soils 11. Concerning PCDD/F, a tolerable daily intake (TDI) of 1-4 pg I-TEQ/kg/day is recommended, according to the WHO/EURO standard guidelines, which would be exceeded if a persons diet came solely from land treated with sewage sludge containing high concentrations of PCDD/F. This work shows the results of a first study about the heavy metal, PCDD/PCDF content of sewage sludge coming from both an urban and a semi-agricultural area in the State of Rio de Janeiro, Brazil in comparison to results found in the region of Baden-Wuerttenberg, south Germany. The potential toxicity and probably sources related to these contaminants in Brazilian sewage sludge was also investigated.

  1. Direct in situ activation of Ag{sup 0} nanoparticles in synthesis of Ag/TiO{sub 2} and its photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, N.F. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Efendi, J. [Department of Chemistry, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang, West Sumatera (Indonesia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia); Jusoh, R.; Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F.M. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Suendo, V. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia)

    2015-05-30

    Graphical abstract: - Highlights: • Ag{sup 0} loaded on TiO{sub 2} was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO{sub 2} demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag{sup 0} and oxygen vacancies trapped electrons to enhance e–H{sup +} separation. • Substitution of Ag in the TiO{sub 2} structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag{sup 0}) were successfully activated using a direct in situ electrochemical method before being supported on TiO{sub 2}. Catalytic testing showed that 5 wt% Ag–TiO{sub 2} gave the highest photodegradation (94%) of 50 mg L{sup −1} 2-chlorophenol (2-CP) at pH 5 using 0.375 g L{sup −1} catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO{sub 2} only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag{sup 0} and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H{sup +}) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs.

  2. Multiplexed paper test strip for quantitative bacterial detection.

    Science.gov (United States)

    Hossain, S M Zakir; Ozimok, Cory; Sicard, Clémence; Aguirre, Sergio D; Ali, M Monsur; Li, Yingfu; Brennan, John D

    2012-06-01

    Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase (B-GAL) or β-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-D: -glucuronide sodium salt (XG), chlorophenol red β-galactopyranoside (CPRG) or both and FeCl(3) were entrapped using sol-gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl(3) zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.

  3. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.

    Science.gov (United States)

    Acero, Juan L; Piriou, Philippe; von Gunten, Urs

    2005-08-01

    Halophenols are often reported as off-flavor causing compounds responsible for medicinal taste and odor episodes in drinking water. To better understand and minimize the formation of 2-bromophenol and 2,6-dibromophenol which have low odor threshold concentrations (OTCs, 30 and 0.5 ng/L, respectively) a kinetic data base for the chlorination and bromination of phenols was established by combination of kinetic measurements and data from literature. Second-order rate constants for the reactions of chloro- and bromophenols with chlorine and bromine were determined over a wide pH range. The second-order rate constants for bromination of phenols are about three orders of magnitude higher than for chlorination. A quantitative structure activity relationship (QSAR) showed a good comparability of second-order rate constants from this study with those published previously for different phenol derivatives. The quantification of product distribution of the formed halophenols demonstrated that chlorine or bromine attack in ortho position is favored with respect to the para position. A kinetic model was formulated allowing us to investigate the influence of chlorine dose and some water quality parameters such as the concentration of phenol, ammonia, bromide and the pH on the product distribution of halophenols. The kinetic model can be applied to optimize drinking water chlorination with respect to phenol-born taste and odor problems. In general, high chlorine doses lead to low concentrations of intermediate odorous chlorophenols and bromophenols. An increase in the ammonia or phenol concentration leads to a higher consumption of HOCl and therefore greater final concentration of intermediate bromophenols. The presence of higher bromide than phenol concentration also facilitates the rapid bromination pathway which leads to further bromination of 2,6-dibromophenol to higher brominated phenols. Laboratory-scale experiments on taste and odor formation due to the chlorination of

  4. [Hodgkin's disease and occupation].

    Science.gov (United States)

    Franco, G; Fonte, R

    1984-01-01

    In order to discuss the hypothesized existence of occupational risk factors in the etiology of Hodgkin's disease (HD), the available literature data are reviewed. The occupations most often considered to be at increased risk of the disease are woodworking, school teaching, hospital occupations and occupations entailing exposure to chemicals. The association between HD and employment in wood industry suggest that exposure to unknown occupational factors may play a role as etiologic agent in this disease. A number of chemical substances that are regularly used may be suspected as causative factors. There are many discrepancies among the results of the studies on the association between school teaching and HD. To date no certain conclusion may be drawn from the presented data. However it has been suggested that the reported excess risk for HD among teachers may be explicable by social class gradient for the disease. The existence of risk factors other than viral may explain the excess risk among physicians and nurses. Because of the characteristics of some highly reactive chemicals their etiologic role may not be underestimated. An association between HD and occupations entailing exposure to various chemicals (organic solvents, benzene, phenoxy acids, chlorophenols) was shown; however no definitive conclusion may be drawn. There are increasing findings that point out the importance of the association between some occupations and development of HD. In spite of the evidence of a link between exposure to various chemicals and HD, there is a clear need to evaluate dose-response relationship between specific type and amount of chemicals and the disease, in order to provide some of the answer we need about the etiology of HD.

  5. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3).

  6. Interactions between urinary 4-tert-octylphenol levels and metabolism enzyme gene variants on idiopathic male infertility.

    Directory of Open Access Journals (Sweden)

    Yufeng Qin

    Full Text Available Octylphenol (OP and Trichlorophenol (TCP act as endocrine disruptors and have effects on male reproductive function. We studied the interactions between 4-tert-Octylphenol (4-t-OP, 4-n- Octylphenol (4-n-OP, 2,3,4-Trichlorophenol (2,3,4-TCP, 2,4,5-Trichlorophenol (2,4,5-TCP urinary exposure levels and polymorphisms in selected xenobiotic metabolism enzyme genes among 589 idiopathic male infertile patients and 396 controls in a Han-Chinese population. Ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS was used to measure alkylphenols and chlorophenols in urine. Polymorphisms were genotyped using the SNPstream platform and the Taqman method. Among four phenols that were detected, we found that only exposure to 4-t-OP increased the risk of male infertility (P(trend = 1.70×10(-7. The strongest interaction was between 4-t-OP and rs4918758 in CYP2C9 (P(inter = 6.05×10(-7. It presented a significant monotonic increase in risk estimates for male infertility with increasing 4-t-OP exposure levels among men with TC/CC genotype (low level compared with non-exposed, odds ratio (OR = 2.26, 95% confidence intervals (CI = 1.06, 4.83; high level compared with non-exposed, OR = 9.22, 95% CI = 2.78, 30.59, but no associations observed among men with TT genotype. We also found interactions between 4-t-OP and rs4986894 in CYP2C19, and between rs1048943 in CYP1A1, on male infertile risk (P(inter = 8.09×10(-7, P(inter = 3.73×10(-4, respectively.We observed notable interactions between 4-t-OP exposure and metabolism enzyme gene polymorphisms on idiopathic infertility in Han-Chinese men.

  7. Fenton-like oxidation of azo dye using mesoporous Fe/TiO2 prepared by microwave-assisted hydrothermal process

    Directory of Open Access Journals (Sweden)

    Nešić Jelena

    2014-01-01

    Full Text Available Fe-doped TiO2 photocatalysts with different content of Fe (0.5, 1.6, 3.4 and 6.4% were synthesized by the microwave-hydrothermal method and characterized by XRD, N2 physisorption at 77 K and DRS. The characterization showed that Fe ions are highly dispersed in the TiO2 lattice. It was found that all the synthesized catalysts had the mesoporous structure and Fe doping increased BET surface areas. The UV-Vis study showed that the absorption spectra shifted to a longer wavelength (red shift with an increase in the dopant concentration. The photocatalytic activity of the samples was evaluated by the decolorization of textile dye Reactive Blue 52 (RB in aqueous solutions under sun-like radiation in the presence of H2O2 (heterogeneous photo-Fenton process. The photocatalyst with 3.4% Fe was found to be the most efficient with H2O2. The effect of the initial pH of the dye solution was assessed and dissolution of iron ions was studied, as a function of pH value. It was concluded that decolorization is more favorable in acidic pH and when pH >4, the releasing of Fe ions in solution was negligible. Photocatalytic degradation of 4-chlorophenol (4-CP was investigated under the optimal conditions and proved that our catalyst was capable to degrade colorless pollutants. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172035

  8. The levels of polychlorinated biphenyls in 1,4-dichlorobenzene mothballs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenbin; Zheng, Minghui; Xing, Ying; Wang, Dongshen; Zhao, Xingru; Gao, Lirong [Chinese Academy of Sciences, Beijing (China). Key laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences

    2004-09-15

    The chemical 1,4-dichlorobenzene (p-DCB), also called paramoth, is one of the chemicals commonly used to make mothballs. For the more than 20 years, p-DCB has been used principally (35-55% of all uses) as a space deodorant for toilets and refuse containers, and as a fumigant for control of moths, molds, and mildews. The process of production of p-DCB currently used by industry is direct chlorination of benzene or chlorobenzene in the presence of a Friedel-Crafts catalyst (typically FeCl{sub 3}), and the pure products of p-DCB are obtained by distillation and crystallization from the mixture of polychlorinated benzenes. This process is similar to that of production of PCBs which were manufactured commercially by the progressive chlorination of biphenyl in the presence of a suitable catalyst, e.g., iron chloride. However, few studies on the formation of PCBs from chlorobenzenes have been published. Buser reported significant quantities of PCDFs and a small amount of PCDDs, PCBs, and chlorophenols were formed in the pyrolysis of chlorobenzenes at 620 C. Peng-Yan Liu et al. revealed that lower chlorinated benzenes produce more PCBs than higher ones. Nevertheless, prior to this study, no reports on PCBs in p-DCB and the restriction of PCBs in p-DCB products have been found. In this paper, the occurrence and distribution of dioxin-like PCBs and total PCBs in some commercial p-DCB mothballs are investigated. Except of the toxic of p-DCB, the low concentration of PCBs in p-DCB mothballs should not be negligible.

  9. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.

  10. Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis.

    Science.gov (United States)

    Michael, Robin Jude Vimal; Sambandam, Balaji; Muthukumar, Thangavelu; Umapathy, Manickam J; Manoharan, Periakaruppan T

    2014-05-14

    Silver doped zinc oxide nanoparticles are synthesized by a solution combustion method. The samples characterized by a variety of spectroscopic and other techniques clearly reveal the presence of silver nanoparticles as well as silver clusters. The silver in the two forms was identified by careful deconvolution of X-ray photoelectron spectral results. Their formation was also confirmed by the presence of plasmons, the concentration and energy of which increase on increasing silver input, indicating the presence of perpendicular excitons since aggregates of clusters are known to shift the plasmon resonances depending on their topologies. Further confirmation of clusters came from EPR (electron paramagnetic resonance), HRSEM (high resolution scanning electron microscopy) and HRTEM (high resolution transmission electron microscopy); direct proof for clusters came from matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectral measurements. The antimicrobial activity of the silver doped zinc oxide polymer nanocomposites as biomedical devices are measured by zone of inhibition. Also, samples coated on paper disk with acacia binder are evaluated by a disk diffusion method. While pure zinc oxide does not show any antimicrobial property, the activity of silver-doped zinc oxide is comparable to that of commercial antibiotics and found to be related to nanoparticulate silver. Similarly, the microbial adherence to the surface of polymer nanocomposite which mimics a biomedical device also was influenced by nanoparticles of silver. The photocatalytic water treatment was carried out using silver carrying nanoparticles with Rhodamine-B and 4-chlorophenol as model pollutants. The increased photocatalytic activity of silver containing zinc oxide as compared to pure zinc oxide nanoparticles is attributed to the synergistic display of the properties of silver nanoparticles and clusters in zinc oxide. This activity depends upon the dispersion of silver

  11. Dioxin exposure in contaminated sawmill area: the use of molar teeth and bone of bank vole (Clethrionomys glareolus) and field vole (Microtus agrestis) as biomarkers.

    Science.gov (United States)

    Murtomaa, Mari; Tervaniemi, Olli-Matti; Parviainen, Juha; Ruokojärvi, Päivi; Tuukkanen, Juha; Viluksela, Matti

    2007-06-01

    Developmental disorders of teeth are among the most sensitive targets of polychlorinated dibenzo-p-dioxin and -furan (PCDD/F) exposure. In rats, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces dose-dependently the size of molars, most severely the third lower molars. Dioxins also have effects on developing bone, including altered bone mineral density as well as reduced bending breaking force and stiffness. The aim of this study was to evaluate the use of the third lower molar and long bones as biomarkers of PCDD/F exposure in two wild vole species, the bank vole (Clethrionomys glareolus) and the field vole (Microtus agrestis) collected from a PCDD/F contaminated former sawmill area. Survey of soil and biota of the sawmill area indicated a PCDD/F contamination with a congener profile characteristic for the chlorophenol wood preservative Ky-5. The PCDD/F concentration in the bank vole was notably higher than in the field vole. The third molar of the bank vole was significantly smaller in dioxin-exposed animals compared to control group, while there was no difference between these two groups in the field vole. No significant alterations were observed in bone density and strength in either species except for reduced bending strength of the femur neck in bank vole males exposed to dioxins. Even though the bone changes are among the sensitive endpoints of dioxin-exposure, high variability due to age, size and gender limits their use as biomarkers of wildlife exposure. In conclusion, the size of molar teeth seems to be a sensitive and robust biomarker for PCDD/F exposure in wild bank vole populations and thus worth of further studies.

  12. Subchronic metabolic effects and toxicity of a simulated pulp mill effluent on juvenile lake trout, Salmo trutta m. lacustris

    Energy Technology Data Exchange (ETDEWEB)

    Oikari, A.; Linstroem-Seppae, P.Ku.; Kukkonen, J.

    1988-12-01

    Juvenile lake trout (Salmo trutta m. lacustris) were exposed for 7 weeks to 0.05X and 0.2X 96-hr LC50 concentrations of simulated bleached kraft pulp mill effluent (KME - Sa + CP). A sulfate soap preparation, composed mainly of resin and fatty acids, with added chlorophenols (CP, tri-, tetra-, and penta-CP) was used as the toxicant mixture. Concentrations of free CP in plasma and free and conjugated CP in bile were proportional to their concentrations in the water. The greatest total gradient between bile and water CP was 5.2 X 10(4) for pentachlorophenol. The activity of a liver polysubstrate monooxygenase (PSMO) system, assayed with three model substrates, increased 40 to 67% due to KME - Sa + CP. However, the increase was not directly dependent on the exposure concentration. In contrast to PSMO, activities of conjugating enzymes (p-nitrophenol UDP-glucuronosyl and glutathione transferases) were decreased in the liver. Increased concentration of glutathione was noted in the liver and kidney. In addition, a small (9%) but significant decrease in blood hemoglobin concentration was observed at the higher exposure concentration. Although growth rate of lake trout was markedly decreased due to KME - Sa + CP, hydromineral balance and carbohydrate metabolism in fish were unaffected, indicating possible physiological compensation. On the other hand, lethality tests with lake trout preexposed to KME - Sa + CP at 0.2 X LC50 revealed decreased tolerance, whereas at the lower exposure concentration it was unchanged. We therefore conclude that various physiological adjustments in trout during subchronic exposures were not adaptive in terms of short-term tolerance.

  13. Proposed occupational exposure limit for 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Leung, H.W.; Murray, F.J.; Paustenbach, D.J.

    1988-09-01

    One contaminant produced unintentionally during the manufacture of chlorophenols and phenoxy herbicides is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The resulting TCDD-containing wastes have been detected at many hazardous waste sites which in recent years have been in the process of remediation. Concerns about worker exposure to TCDD-contaminated soil (dust) during remediation of hazardous waste sites have produced a need for an occupational exposure limit (OEL) for TCDD. The animal toxicology data and human experience with TCDD are reviewed, and an occupational exposure limit for TCDD is proposed. The animal data support risk estimations which are based on TCDD as a nongenotoxic carcinogen. Studies on human populations have failed to demonstrate clearly any significant long-term health effects at levels to which humans have been exposed. The data indicate that an 8-hr time-weighted average limit of 2 ng/m3 is appropriate, and the associated risk would be consistent with other carcinogens at their corresponding OELs. A preliminary OEL of 0.2 ng/m3 (200 pg/m3) is recommended, however, in light of other sources of exposure because of TCDD's ubiquitousness in the environment, its unclear mechanism of action, and its rather long biological half-life in humans. This limit provides an ample margin of safety to prevent chloracne following repeated, acute exposure, and it addresses those chronic effects of TCDD observed in animal studies as well as those observed after accidental human exposure. The resulting body burden caused by chronic exposure to TCDD at the proposed OEL is examined. Its toxicological significance is compared with human tissue data and with other similarly persistent chemicals. 74 references.

  14. Influence of iron and copper oxides on polychlorinated diphenyl ether formation in heterogeneous reactions.

    Science.gov (United States)

    Liu, Wenxia; Shen, Lianfeng; Zhang, Fawen; Liu, Wenbin; Zheng, Minghui; Yang, Xitian

    2013-08-01

    Polychlorinated diphenyl ether (PCDE) has attracted great attention recently as an important type of environmental pollutant. The influence of iron and copper oxides on formation of PCDEs was investigated using laboratory-scale flow reactors under air and under nitrogen at 350 °C, a temperature corresponding to the post-combustion zone of a municipal solid waste incinerator. The results show that the 2,2',3,4,4',5,5',6-otachlorodiphenyl ether (OCDE) formed from the condensation of pentachlorophenol (PCP) and 1,2,4,5-tetrachlorobenzene (Cl4Bz) is the predominant congener formed on the SiO2/Fe2O3 surface with and without oxygen. This indicated that HCl elimination between PCP and 1,2,4,5-Cl4Bz molecules formed 2,2',3,4,4',5,5',6-OCDE in the presence of Fe2O3. On the other hand, decachlorodiphenyl ether, nonachlorodiphenyl ether, and OCDE were the dominant products on the SiO2/CuO surface without oxygen, although the 2,2',3,4,4',5,5',6-OCDE was the dominant product on the SiO2/CuO surface with oxygen. Therefore, the presence of Fe2O3 and CuO influences the formation and homologue distribution of PCDEs, which shifted towards the lower chlorinated species. Fe2O3 can promote both the condensation and dechlorination reaction without oxygen. On the contrary, with oxygen, Fe2O3 suppresses the condensation of chlorobenzene and chlorophenol to form PCDEs and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). CuO can increase the formation of lower chlorinated PCDEs and PCDDs without oxygen. In conclusion, the different fly ash components have a major influence on PCDE emissions.

  15. Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles: synthesis, characterisation and application to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Malinga, S. P., E-mail: sitholespr@yahoo.com; Arotiba, O. A. [University of Johannesburg, Department of Applied Chemistry (South Africa); Krause, R. W. M. [Rhodes University, Department of Chemistry (South Africa); Mapolie, S. F. [University of Stellenbosch, Department of Chemistry and Polymer Science (South Africa); Diallo, M. S. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) (Korea, Republic of); Mamba, B. B., E-mail: bmamba@uj.ac.za [University of Johannesburg, Department of Applied Chemistry (South Africa)

    2013-06-15

    This study describes the preparation, characterization and evaluation of new composite membranes with embedded dendrimer hosts and Fe/Ni nanoparticles. These new reactive membranes consist of films of cyclodextrin-poly(propyleneimine) dendrimers ({beta}-CD-PPI) that are deposited onto commercial polysulfone microporous supports and crosslinked with trimesoyl chloride (TMC). The membranes were subsequently loaded with Fe/Ni nanoparticles and evaluated as separation/reactive media in aqueous solutions using 2,4,6-trichlorophenol as model pollutant. The morphology and physicochemical properties of the composite membranes were characterised using high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy and measurements of contact angle, water intake, porosity and water permeability. The sorption capacity and catalytic activity of the membranes were evaluated using ion chromatography, atmospheric pressure chemical ionisation-mass spectrometry and UV-Vis spectroscopy (UV-Vis). The sizes of the embedded Fe/Ni nanoparticles in the membranes ranged from 40 to 66 nm as confirmed by HR-TEM. The reaction rates for the dechlorination of 2,4,6-trichlorophenol ranged from 0.00148 to 0.00250 min{sup -1}. In all cases, we found that the reaction by-products consisted of chloride ions and mixtures of compounds including phenol (m/z = 93), 2,4-dichlorophenol (m/z = 163) and 4-chlorophenol (m/z = 128). The overall results of this study suggest that {beta}-CD-PPI dendrimers are promising building blocks for the synthesis of composite and reactive membranes for the efficient removal of chlorinated organic pollutants from water.

  16. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    Science.gov (United States)

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry.

  17. Sequential Process Combination of Photocatalytic Oxidation and Dark Reduction for the Removal of Organic Pollutants and Cr(VI) using Ag/TiO2.

    Science.gov (United States)

    Choi, Yeoseon; Koo, Min Seok; Bokare, Alok D; Kim, Dong-Hyo; Bahnemann, Detlef W; Choi, Wonyong

    2017-03-09

    We investigated a sequential photocatalysis-dark reaction, wherein organic pollutants were degraded on Ag/TiO2 under UV irradiation and the dark reduction of hexavalent chromium (Cr(VI)) was subsequently followed. The photocatalytic oxidation of 4-chlorophenol (4-CP), a test organic substrate, induced the generation of degradation intermediates and the storage of electrons in Ag/TiO2 which were then utilized for reducing Cr(VI) in the post-irradiation period. The dark reduction efficiency of Cr(VI) was much higher with Ag/TiO2 (87%), compared with bare TiO2 (27%) and Pt/TiO2 (22%). The Cr(VI) removal by Ag/TiO2 (87%) was contributed by adsorption (31%), chemical reduction by intermediates of 4-CP degradation (26%), and reduction by electrons stored in Ag (30%). When formic acid, humic acid or ethanol was used as an alternative organic substrate, the electron storage effect was also observed. The post-irradiation removal of Cr(VI) on Ag/TiO2 continued for hours, which is consistent with the observation that a residual potential persisted on the Ag/TiO2 electrode in the dark whereas little residual potential was observed on bare TiO2 and Pt/TiO2 electrodes. The stored electrons in Ag/TiO2 and their transfer to Cr(VI) were also indicated by the UV-visible absorption spectral change. Moreover, the electrons stored in the pre-irradiated Ag/TiO2 reacted with O2 with showing a sign of low-level OH radical generation in the dark period.

  18. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani.

    Science.gov (United States)

    Ouf, S A; abdel-Hady, N F

    1999-01-01

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. At such dose, most of the dyes were accelerators while the higher doses were inhibitory to seed germination. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. In seeds irradiated for 1 or 3 min, chlorophyll a formation was less affected than chlorophyll b formation. In seeds irradiated for 10 min, both the chlorophyll contents were decreased especially in the presence of some applied dyes. On the other hand, there was an increase in carotenoid content of soybean leaves when the laser dose increased. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani. The disease incidence differed somewhat when the irradiated seeds were pretreated with dyes. The reduction in disease incidence was accompanied by accumulation of high proline and phenol levels in the infected root tissues of soybean, suggesting that these compounds have a certain role in the prevention of disease development.

  19. Photocatalytic applications of paper-like poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Ramasundaram, Subramaniyan; Son, Aseom; Seid, Mingizem Gashaw; Shim, Sujin; Lee, Sang Hyup; Chung, Yun Chul [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14 gil,Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Changha [Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology, Ulsan 698-805 (Korea, Republic of); Lee, Jaesang [School of Civil, Environmental, and Architectural Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Hong, Seok Won, E-mail: swhong@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14 gil,Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Energy and Environmental Engineering, Korea University of Science and Technology, Hwarangno 14 gil,Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2015-03-21

    Highlights: • A PVDF–TiO{sub 2} photocatalyst was fabricated by electrospinning and electrospraying. • The TiO{sub 2} nanoparticles mainly formed clusters on the PVDF nanofiber mat surface. • The photo-degradation of aqueous organic pollutants was efficiently achieved. • The hybrid photocatalysts were robust, reusable, and stable in aqueous solution. - Abstract: A paper-like photocatalyst was fabricated by electrospraying an N,N′-dimethylformamide (DMF) dispersion of titanium dioxide (TiO{sub 2}) nanoparticles (NPs) on a poly(vinylidene fluoride) nanofiber (PVDF NF) mat prepared by electrospinning. Morphological studies revealed that the TiO{sub 2} NPs uniformly deposited as clusters on the surface of the PVDF NF mat. The immobilized amount of TiO{sub 2} was found to be 2.08, 2.44, 3.80, and 4.73 mg per 45 cm{sup 2} of PVDF–TiO{sub 2} hybrids for the electrospraying of 10, 20, 40, and 60 ml of TiO{sub 2}–DMF, respectively. The hybrid photocatalysts were effective in degrading bisphenol A (BPA), 4-chlorophenol (4-CP), and cimetidine (CMT), which dissolved in both deionized water and secondary wastewater effluents, with activity being proportional to the quantity of TiO{sub 2} NPs immobilized. For the highest loading amount of TiO{sub 2}, BPA, 4-CP, and CMT degraded completely within 100, 100, and 40 min of UV irradiation, respectively. Stable photo-oxidation of CMT was maintained through 10 repeated cycles. During these cycles, it was confirmed that there was no loss of TiO{sub 2} NPs by inductively coupled plasma optical emission spectrometry. Our results suggest that effective and stable PVDF–TiO{sub 2} hybrid photocatalysts can be fabricated on a large scale by combining electrospinning and electrospraying techniques.

  20. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    Science.gov (United States)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  1. Development and Evaluation of a Nanoemulsion Containing Ursolic Acid: a Promising Trypanocidal Agent : Nanoemulsion with Ursolic Acid Against T. cruzi.

    Science.gov (United States)

    Vargas de Oliveira, Erika Cristina; Carneiro, Zumira Aparecida; de Albuquerque, Sérgio; Marchetti, Juliana Maldonado

    2017-02-21

    Over a hundred years after the discovery of Chagas disease, this ailment continues to affect thousands of people. For more than 40 years, only two drugs have been available to treat it. Ursolic acid is a naturally occurring terpene that has shown a good trypanocidal action. However, the hydrophobicity of this compound presents a challenge for the development of proper delivery systems. Nanostructured systems are a prominent in delivering lipophilic drugs. Thus, a nanoemulsion containing ursolic acid was developed and had its trypanocidal activity and cytotoxicity evaluated. Pseudo-ternary phase diagrams and hydrophilic-lipophilic balance (HLB) system were used in the development. The system was stable throughout 90 days of testing, as evidenced by turbidimetry analysis and measurements of the droplet size (57.3 nm) and polydispersity index (0.24). Fourier transform infrared spectroscopy and mass spectrometry evidenced drug's integrity in the formulation. An in vitro dissolution profile showed 75% of ursolic acid release after 5 min from the nanoemulsion into the alkaline dissolution medium, while only 20% could be released from a physical mixture after 2 h. Trypanocidal activity and cytotoxicity were evaluated on the CL Brener strain and LLC-MK2 (monkey kidney) fibroblast by chlorophenol red-β-D-galactoside (CPRG) method. Biological studies showed that the developed formulation was nontoxic and effective against replicant forms of the parasite. A stable and efficient nanoemulsion could be developed to improve the delivery of a promising drug to treat a threatening illness such as Chagas disease.

  2. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system.

    Science.gov (United States)

    Gao, Zhensheng; Xie, Xueju; Ling, Yan; Muthukrishnan, Subbarat; Liang, George H

    2005-11-01

    A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.

  3. Microwave synthesis, spectral, thermal and antimicrobial studies of some Ni(II and Cu(II Schiff base complexes

    Directory of Open Access Journals (Sweden)

    A P Mishra

    2012-05-01

    Full Text Available Bidentate and tridentate (NO, (ONO Schiff bases have been synthesized by condensing methyl isobutyl ketone with 2-amino-4-chlorophenol and 2-hydroxy acetophenone with isonicotinic acid hydrazide. The 1:1 or 1:2 metal complexes have been prepared by interacting these Schiff bases with metal ions viz. Ni(II, Cu(II. These compounds have been synthesized by conventional as well as microwave methods and characterized by elemental analysis, FT-IR, UV-Vis, ESR, molar conductance, thermal analysis and X-ray diffraction. The complexes are colored and stable in air at room temperature. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. Crystal data of [Ni(HINH(H2O]Cl.3H2O complex a = b =13.9338Ǻ, c = 34.7975Ǻ, V = 6755.96Ǻ3, Z = 12, Dobs = 1.2421g/cm3, Dcal 1.2847g/cm3, reflect that this complex has crystallized in orthorhombic system. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  4. In situ loading of CuS nanoflowers on rutile TiO{sub 2} surface and their improved photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.Y.; Zhang, Y.Y. [College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning (China); Zhang, J., E-mail: jingzhang_dicp@live.cn [College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning (China); Shi, Y. [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Z., E-mail: lizhi@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Z.C.; Li, C. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)

    2016-05-01

    Graphical abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} (CuS/TiO{sub 2}) at low temperature. In photocatalytic degradation of MB or 4-CP, it is found that the surface modification with CuS can enhance the photocatalytic efficiency of TiO{sub 2}. The promotion of photocatalytic performance is mainly ascribed to the enhanced charge separation originating from the well-matched heterostructure between CuS and rutile TiO{sub 2}. - Highlights: • CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} at low temperature. • In the photo-degradation studies of MB and 4-CP, surface modification with CuS can enhance the photocatalytic efficiency of rutile TiO{sub 2}. • CuS/TiO{sub 2} composite materials show the good repeatability of the photocatalytic activity. • This work provides a facile method to design and fabricate the effective composites photocatalyst. - Abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} (CuS/TiO{sub 2}) at low temperature. CuS/TiO{sub 2} composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO{sub 2} samples. It is found that CuS/TiO{sub 2} photocatalyst, which CuS are loaded on the surface of rutile TiO{sub 2}, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO{sub 2} or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO{sub 2} by forming heterojunction between CuS and rutile TiO{sub 2}, which is confirmed by

  5. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.

    Science.gov (United States)

    Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek

    2011-03-21

    Nitrogen and sulfur co-doped TiO(2) nanosheets with exposed {001} facets (N-S-TiO(2)) were prepared by a simple mixing-calcination method using the hydrothermally prepared TiO(2) nanosheets powder as a precursor and thiourea as a dopant. The resulting samples were characterized by transmission electron microscope, X-ray diffraction, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-Vis absorption spectroscopy. The electronic properties of N,S co-doped TiO(2) were studied using the first-principle density functional theory (DFT). The photocatalytic activity of N-S-TiO(2) was evaluated by degradation of 4-chlorophenol (4-CP) aqueous solution under visible light irradiation. The production of hydroxyl radicals (˙OH) on the surface of visible-light-irradiated samples was detected by photoluminescence technique using terephthalic acid as a probe molecule. The results show that nitrogen and sulfur atoms were successfully incorporated into the lattice of TiO(2), which resulted in N-S-TiO(2) samples exhibiting stronger absorption in the UV-visible range with a red shift in the band gap transition. The first-principle DFT calculations further confirm that N and S co-dopants can induce the formation of new energy levels in the band gap, which is associated with the response of N-S-TiO(2) nanosheets to visible light irradiation. Surprisingly, pure TiO(2) nanosheets show the visible-light photocatalytic activity for the degradation of 4-CP mainly due to the substrate-surface complexation of TiO(2) and 4-CP, which results in extending absorption of titania to visible light region through ligand-to-titanium charge transfer. The N-S-TiO(2) samples studied exhibited an enhanced visible-light photocatalytic activity than pure TiO(2). Especially, the doped TiO(2) sample at the nominal weight ratio of thiourea to TiO(2) powder of 2 showed the highest photocatalytic activity, which was about twice greater than that of Degussa P25. The enhanced activity of

  6. Acid-Base Formalism Extended to Excited State for O-H···S Hydrogen Bonding Interaction.

    Science.gov (United States)

    Bhattacharyya, Surjendu; Roy, Ved Prakash; Wategaonkar, Sanjay

    2016-09-08

    Hydrogen bond can be regarded as an interaction between a base and a proton covalently bound to another base. In this context the strength of hydrogen bond scales with the proton affinity of the acceptor base and the pKa of the donor, i.e., it follows the acid-base formalism. This has been amply demonstrated in conventional hydrogen bonds. Is this also true for the unconventional hydrogen bonds involving lesser electronegative elements such as sulfur atom? In our previous work, we had established that the strength of O-H···S hydrogen bonding (HB) interaction scales with the proton affinity (PA) of the acceptor. In this work, we have investigated the other counterpart, i.e., the H-bonding interaction between the photoacids with different pKa values with a common base such as the H2O and H2S. The 1:1 complexes of five para substituted phenols p-aminophenol, p-cresol, p-fluorophenol, p-chlorophenol, and p-cyanophenol with H2O and H2S were investigated experimentally and computationally. The investigations were also extended to the excited states. The experimental observations of the spectral shifts in the O-H stretching frequency and the S1-S0 band origins were correlated with the pKa of the donors. Ab initio calculations at the MP2 and various dispersion corrected density functional levels of theory were performed to compute the dissociation energy (D0) of the complexes. The quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) method, natural bonding orbital (NBO) analysis, and natural decomposition analysis (NEDA) were carried out for further characterization of HB interaction. The O-H stretching frequency red shifts and the dissociation energies were found to be lower for the O-H···S hydrogen bonded systems compared to those for the O-H···O H-bound systems. Despite being dominated by the dispersion interaction the O-H···S interaction in the H2S complexes also conformed to the acid-base formalism, i.e., the D0 and the O-H red shift

  7. Enhanced electron transfer and silver-releasing suppression in Ag-AgBr/titanium-doped Al{sub 2}O{sub 3} suspensions with visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuefeng [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Chun, E-mail: huchun@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xuexiang; Peng, Tianwei [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Ag-AgBr was deposited onto mesoporous alumina (MA) and titanium-doped MA. Black-Right-Pointing-Pointer The Ag{sup +} release from the photocatalyst was inhibited by titanium-doped MA. Black-Right-Pointing-Pointer The dissolution of Ag{sup +} was related to the charge transfer and photocatalytic activity. Black-Right-Pointing-Pointer Some donors in tap water inhibited the Ag{sup +} release by trapping the h{sup +} on Ag NPs. Black-Right-Pointing-Pointer Ag-AgBr/MA-Ti1 was considered as a better catalyst for practical application. - Abstract: Ag-AgBr was deposited onto mesoporous alumina (MA) and titanium-doped MA by a deposition-precipitation method. The photocatalytic activity and the dissolution of Ag{sup +} from different catalysts were investigated during the photodegradation of 2-chlorophenol (2-CP) and phenol in ultrapure water and tap water with visible-light irradiation. With the increase in doped titanium, the Ag{sup +} dissolution decreased with a decrease in the photocatalytic activity. Ag-AgBr/MA-Ti1 was considered the better catalyst for practical applications because its Ag{sup +} dissolution was minimal (0.4 mg L{sup -1} in ultrapure water and 5 {mu}g L{sup -1} in tap water), although its photoactivity was slightly less than that of Ag-AgBr/MA. The dissolution of Ag{sup +} was related to a charge-transfer process based on the study of cyclic voltammetry analyses under a variety of experimental conditions. The results suggested that several types of anions in the water, including CO{sub 3}{sup 2-}, SO{sub 4}{sup 2-}, and Cl{sup -}, could act as electron donors that trap the photogenerated holes on Ag nanoparticles to facilitate electron circulation; this would decrease the release of Ag{sup +}. Our studies indicated that the catalyst had a higher activity and stability in water purification.

  8. SPE-HPLC法测定水中的酚类化合物

    Institute of Scientific and Technical Information of China (English)

    刘晓武

    2015-01-01

    Phenol compounds especially chlorophenol and nitrophenol compounds in water were determined by SPE-HPLC method. The solid phase extraction (SPE)column was firstly activated by 4 mL methanol and 4 mL pure water, phenol compounds in the sample was absorbed by SPE column, eluted by acetonitrile, and then concentrated to 1 mL. The condition of the HPLC was as follows:pure water and acetonitrile was used as mobile phase and gradient eluted from 8:2 to 2:8, the velocity of flow was 1.0 mL/min. ODS-C18 was used to separate the phenol compounds, the wavelength of the VWD was 285 nm. The linearity of the standard curve was higher than 0.999 0, the detection limits of the phenol compounds was below the requiring of the standard for drinking water quality, the average spike recovery was 70%~90%.%建立了一种固相萃取—高效液相色谱法,测定水中的酚类化合物,特别是氯酚和硝基酚几种酚类化合物。吸附前使用4 mL甲醇和4 mL纯水活化固相萃取小柱(SPE),样品通过SPE时酚类化合物被吸附,后用乙腈洗脱,收集洗脱液浓缩至1 mL。以V 水∶V 乙腈为8∶2梯度淋洗,V 水∶V 乙腈为2∶8结束,流速1.0 mL/min,以ODS-C18分离酚类化合物,检测器波长为285 nm。实验结果表明,标准曲线线性关系均大于0.9990;检出限均小于《生活饮用水卫生标准》的要求;平均加标回收率在70%~90%之间。

  9. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jie; Meng, Wenna [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Wu, Deyi, E-mail: dywu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Zhang, Zhenjia; Kong, Hainan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Surfactant modified zeolite could greatly retain organic pollutants. Black-Right-Pointing-Pointer Uptake of organic compounds was due to the loaded surfactant. Black-Right-Pointing-Pointer k{sub ow} is crucial for the uptake of both ionizable and non-ionizable organic solutes. Black-Right-Pointing-Pointer pK{sub a} is another factor affecting adsorption process of ionizable organic pollutants. Black-Right-Pointing-Pointer Adsorption mechanisms of the two kinds of organic pollutants were proposed. - Abstract: The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK{sub a}) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na{sub 6}Al{sub 6}Si{sub 10}O{sub 32}{center_dot}12H{sub 2}O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Angstrom-Sign Multiplication-Sign 4.5 Angstrom-Sign [1 0 0] and 2.8 Angstrom-Sign Multiplication-Sign 4.8 Angstrom-Sign [1 0 1]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k{sub ow} value, suggesting that more hydrophobic organic contaminants are more easily retained

  10. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V{sub 2}O{sub 5} for the degradation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ismail, Iqbal M.I. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Salah, Numan [Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chandrasekaran, S. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qamar, M.Tariq [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Hameed, A., E-mail: afmuhammad@kau.edu.sa [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); National Centre for Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan)

    2015-04-09

    Highlights: • The interaction of UV photons of sunlight induces defects in V{sub 2}O{sub 5}. • The photon induced defects promotes the trapping and transfer of excited electrons. • The nature of the substituent at 2-position affects the degradation process. • The formation of the intermediates is influenced by the nature of substituents. • The released ions are subjected further transformation. - Abstract: Despite knowing the fact that vanadium pentoxide is slightly soluble in aqueous medium, its photocatalytic activity was evaluated for the degradation of phenol and its derivatives (2-hydroxyphenol, 2-chlorophenol, 2-aminophenol and 2-nitrophenol) in natural sunlight exposure. The prime objective of the study was to differentiate between the homogeneous and heterogeneous photocatalysis incurred by dissolved and undissolved V{sub 2}O{sub 5} in natural sunlight exposure. V{sub 2}O{sub 5} was synthesized by chemical precipitation procedure using Triton X-100 as morphology mediator and characterized by DRS, PLS, Raman, FESEM and XRD. A lower solubility of ∼5% per 100 ml of water at 23 °C was observed after calcination at 600 °C. The study revealed no contribution of the dissolved V{sub 2}O{sub 5} in the photocatalytic process. In sunlight exposure, V{sub 2}O{sub 5} powder exhibited substantial activity for the degradation, however, a low mineralization of phenolic substrates was observed. The initial low activity of V{sub 2}O{sub 5} followed by a sharp increase both in degradation and mineralization in complete spectrum sunlight exposure, was further investigated that revealed the decrease in the bandgap and the reduction in the particle size with the interaction of UV photons (<420 nm) as this effect was not observable in the exposure of visible region of sunlight. The role of the chemically different substituents attached to an aromatic ring at 2-positions and the secondary interaction of released ions during the degradation process with the reactive

  11. Adsorption of Phenol and Its Chlorine Derivatives on PILCS and Organo-PILCS

    Science.gov (United States)

    Tahani, A.; Karroua, M.; El Farissi, M.; Levitz, P.; van Damme, H.; Bergaya, F.; Margulies, L.

    1999-03-01

    Modification of smectite by highly charged inorganic polycations gives a type of materials called Pillared Clays (PILCS). These materials are also potential candidates for sorbents of compounds of agricultural interest , or of pollutants molecules in wastewater treatment. Modified PILCS by the cationic surfactant (BTDDMAC) or by its polar head, the benzyl trimethyl ammonium chloride (BTMAC), are used as sorbent supports for phenol and its chlorine derivatives, as pollutants molecules. The adsorption results of these organic molecules are compared to there adsorption on non treated PILCS. Generally, the organophilic nature of PILCS increases the adsorption of chlorophenols. The adsorption properties of phenol are considerably improved on BTMAC treated PILCS. La modification des smectites par les polycations inorganiques très fortement chargés donne des matériaux appelés argiles à piliers (PILCS). Ces matériaux sont potentiellement intéressants comme supports d'adsorption pour des molécules d'intérêt agronomique ou pour des molécules polluantes dans le cas du traitement des eaux usées. Les PILCS modifiés par un tensioactif cationique (BTDDMAC) ou par sa tête polaire, le chlorure de benzyl trimethyl ammonium (BTMAC) ont été utilisés comme supports d'adsorption du phénol et de ses dérivés chlorés. Les résultats d'adsorption de ces petites molécules organiques ont été comparés à leur adsorption sur des argiles à piliers non traitées (non organophiles). Globalement, la nature organophile des organo-PILCS accroit l'adsorption des chlorophénols. Les propriétés d'adsorption du phénol sont très nettement améliorées par le traitement des PILCS par le BTMAC.

  12. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  13. Studies on Transformation of SFL Gene into Rice%苦参凝集素蛋白基因转化水稻的研究

    Institute of Scientific and Technical Information of China (English)

    杜平平; 黄兴奇; 李定琴; 余腾琼; 程在全

    2012-01-01

    In order to increase rice resistance to blast with more exogenous genes,Sophora flavescens lectin (SFL) encoding lectin which can prohibit the growth of the blast fungus in vitro was introduced into rice cultivar ' Yunzijing41' by Agrobacterium-mediated transformation method. A lot of transgenic plants were selected by chlorophenol-red (CPR) assay and confirmed by PCR. Compared with non-transgenic rice,the transgenic plants showed high resistance to Piricularia oryzae Cav. SFL has broad-spectrum antimicrobial activity,so the transgenic rice may has good resistance to variety of pathogenic bacteria. This experiment was laid the foundation for researching on breeding of blast resistance in rice varieties and broaden the disease-resistant genetic and increase rice blast resistance gene in future.%以水稻杂交品种‘云资粳41号’为受体材料,通过农杆菌介导法将苦参凝集素蛋白基因(SFL)导入水稻细胞,采用氯酚红法和PCR检测外源基因是否整合到水稻基因组中.结果显示:外源基因成功转入水稻基因组,并获得一批转基因水稻植株;转基因植株叶片离体接种稻瘟病菌的检测结果显示,转基因植株与对照(非转基因植株)相比有明显的抗性,证明SFL基因在水稻中得到表达.研究表明,基于SFL基因所具备的广谱抗菌作用,可以预期所得转基因水稻植株很可能对水稻的多种病原菌具有良好的抗性,为选育新的抗稻瘟病水稻新品种以及拓宽栽培稻抗病遗传基础增加抗稻瘟病基因奠定了基础.

  14. Persistent organic compounds in food chains in Bavaria and Czechia. Pt. 1. Terrestrial systems; Persistente organische Verbindungen in Nahrungsketten von Bayern und Tschechien. T. 1. Terrestrische Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Kettrup, A.; Heinisch, E.

    1997-10-01

    In the paper presented here single presentations concerning the contamination of soil, vegetation and organs and tissues form animals and man with persistent organic substances (DDT and metabolites, isomers of hexachlorocyclohexane, hexachlorobenzene, cyclodiene insecticides, chlorophenols, light volatile organic compounds, PCDD/F, PAH and nitromusk compounds) from Bavaria, the Czech Republic and Brandenburg/Berlin and the former GDR, respectively, were assessed, summarized