WorldWideScience

Sample records for chlorophenol derivatives promoted

  1. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  2. Formation of polychlorinated dibenzodioxins, benzenes and phenols from thermal degradation of 2-chlorophenol promoted by CuCl2

    Energy Technology Data Exchange (ETDEWEB)

    Visez, N.; Baillet, C.; Sawerysyn, J.P. [Lille-1 Univ. (France). Physicochimie des Processus de Combustion et de l' Atmosphere - UMR-CNRS

    2004-09-15

    processes of PCDD/Fs from chlorophenols as precursors. These investigations have shown that other organic byproducts, potentially toxic, could also be formed with PCDD/Fs. Born et al. have studied the formation of PCDD/Fs from isomers of monochlorophenol on model and real fly ashes using a fixed bed reactor. The reaction products observed were carbon monoxide, carbon dioxide, 2,4- dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol, PCDDs, monobenzofuran, polychlorodiphenylethers, polychlorobenzenes, methylene chloride and tetrachloroethylene. By investigating the PCDD/Fs formation from ortho-chlorinated phenols and copper chloride, Ryu and Mulholland have identified the following products: chlorophenols, chlorobenzenes, PCDD/Fs, tetrachloroethylene and benzoquinones Hell et al. have studied the reaction of 2,4,6-trichlorophenol on real and model fly ash using a fixed bed reactor. They have observed that polychlorobenzenes formation was favored when time and temperature were increased. This work is aimed at highlighting the organic compounds formed by thermal degradation of 2-chlorophenol (2CP) promoted by copper chloride using sealed tubes as closed reactors. It is clear that this experimental method is unrealistic when compared to conditions of industrial processes. However, it enables us to use residence times (from minutes to hours) long enough to get more informations on reactions pathways responsible for PCCD/Fs formation and degradation which would be difficult to obtain from experiments with much smaller residence times.

  3. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    Science.gov (United States)

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  4. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  5. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated.Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  6. Enzymatically mediated incorporation of 2-chlorophenol 4-chlorophenol into humic acids

    DEFF Research Database (Denmark)

    Lassen, P.; Randall, A.; Jørgensen, O.;

    1994-01-01

    A possible route to chlorinated humic substances in the environment, is an indirect chlorination of humic material by enzymatically mediated incorporation of low molecular weight organo-chlorine compounds into the humic skeleton. The enzymatically mediated incorporation of 2-chlorophenol and 4-ch......-chlorophenol into humic acids by Horseradish Peroxidase is reported. The incorporation is accompanied by a significant polymerization of the chlorophenols. The stability of the chlorinated humic acids as well as the environmental implication are discussed....

  7. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  8. Enhancement of 4-chlorophenol biodegradation using glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tarighian, Alireza; Hill, Gordon; Headley, John [Division of Environmental Engineering, University of Saskatchewan, 105 Maintenance Road, S7N 5C5, Saskatoon, SK (Canada); Pedras, Soledad [Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9, Saskatoon, SK (Canada)

    2003-03-01

    Toxic, xenobiotic chemicals present challenging problems for the environment since they are normally resistant to biodegradation. Sometimes it is possible to induce biodegradation activity by the use of growth cosubstrates. In this study, pure solutions and binary mixtures of glucose, phenol and 4-chlorophenol have been metabolized in batch cultures by a pure strain of Pseudomonas putida. Following a lag period during which slow growth and low production of biomass occurred, phenol was metabolized according to the Monod model. Glucose was also metabolized according to the Monod model but exponential growth commenced immediately after inoculation with no noticeable lag phase. Biokinetic behavior for growth on a mixture of phenol and glucose paralleled the behavior on individual substrates with simultaneous consumption of both substrates. 4-chlorophenol was not consumed as a sole substrate by Pseudomonas putida but was consumed as a cometabolite with either glucose or phenol acting as the primary growth cosubstrate. Surprisingly, glucose was found to be the superior growth cosubstrate, suggesting that inexpensive sugars can be used to enhance the biodegradation of chlorophenol-contaminated sites. Glucose and the excreted metabolic products of the biodegradation process, including a bright yellow pigment, demonstrated negligible toxicity towards Artemia salina, unlike the phenol and 4-chlorophenol substrates. (orig.)

  9. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.

    Science.gov (United States)

    Bódalo, Antonio; Bastida, Josefa; Máximo, M Fuensanta; Montiel, M Claudia; Gómez, María; Murcia, M Dolores

    2008-10-01

    Horseradish peroxidase (HRP) and soybean peroxidase (SBP) were covalently immobilized onto aldehyde glass through their amine groups. The activity yield and the protein content for the immobilized SBP were higher than for the immobilized HRP. When free and immobilized peroxidases were tested for their ability to remove 4-chlorophenol from aqueous solutions, the removal percentages were higher with immobilized HRP than with free HRP, whereas immobilized SBP needs more enzyme to reach the same conversion than free enzyme. In the present paper the two immobilized derivatives are compared. It was found that at an immobilized enzyme concentration in the reactor of 15 mg l(-1), SBP removed 5% more of 4-chlorophenol than HRP, and that a shorter treatment was necessary. Since immobilized SBP was less susceptible to inactivation than HRP and provided higher 4-chlorophenol elimination, this derivative was chosen for further inactivation studies. The protective effect of the immobilization against the enzyme inactivation by hydrogen peroxide was demonstrated.

  10. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    Science.gov (United States)

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  11. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong [College of Chemistry and chemical engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Chang, Qing, E-mail: changqinghust@163.com [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-01-30

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO{sub 2} nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO{sub 2} nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO{sub 2} to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO{sub 2} nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO{sub 2}, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO{sub 2} P25.

  12. Biodegradation of Complex Bacteria on Phenolic Derivatives in River Water

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; ZHE SUN

    2009-01-01

    Objective To isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal microbes and co-metabolic degradation of mixed chlorophenols in river water. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water. Results The complex bacteria were identified as Mycopiana, Alcaligenes, Pseudvmonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied. Conclusion The complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.

  13. Catalytic wet Air Oxidation of o-Chlorophenol in Wastewater

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翬

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatment of o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence of catalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removed by wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperature of 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited high catalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCr was removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had better catalytic activity for the degradation of o-chlorophenol in wastewater.

  14. Sorption of chlorophenols onto fruit cuticles and potato periderm

    Institute of Scientific and Technical Information of China (English)

    Yungui Li; Yingqing Deng; Baoliang Chen

    2012-01-01

    To better understand the interaction mechanisms of plant surfaces with polar organic compounds,sorption of 4-chlorophenol,2,4-dichlorophenol,and 2,4,6-trichlorophenol by fruit cuticles (i.e.,tomato,apple,and pepper),and potato tuber periderm were investigated.The roles of cuticular components (waxes,cutin,cutan and sugar) on sorption of chlorophenols are quantitatively compared.Cutin and waxes govern the sorption capacity of bulk apple cuticle by hydrophobic interactions.Potato periderm with highest sugar content exhibits the lowest sorption capability for the chlorophenols.With the increase of hydrophobicity (i.e.,Kow ) of sorbate,the relative contribution of lipophilic components (wax,cutin and cutan) on total sorption increases,however,the ratios of Koc to Kow decreases due to increasing ionization degree of sorbates.

  15. The mechanism and pathway of the ozonation of 4-chlorophenol in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    PI; Yunzheng

    2006-01-01

    The removal efficiency of 4-chlorophenol by ozonation was studied, and the reaction mechanism and characteristic of ozonation of 4-chlorophenol were investigated. Ozone and hydroxyl radicals are two strong oxidants during the process of ozonation. The experimental results showed that when there was no scavenger to inhibit OH· radicals, an intermediate product, hydrogen peroxide was formed during the ozonation of 4-chlorophenol. Hydrogen peroxide reacted with ozone at neutral pH and produced hydroxyl radicals. Ozone at the dosage of 113 mg/L could remove 20 mg/L4-chlorophenol and 39% TOC. With the complete inhibition of hydroxyl radicals, molecular ozone could effectively destroy 4-chlorophenol to form 4-quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 4-chlorophenol by ozone and O3/OH· were proposed in this study. Ozonation is an effective method for reducing 4-chlorophenol,and has potential to practical application.

  16. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution.

    Science.gov (United States)

    Zhu, Jie; Chen, Ye-Fei; Dong, Wen-Bo; Pan, Xun-Xi; Hou, Hui-Qi

    2003-01-01

    The reaction mechanism of 3-chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3-chlorophenol aqueous solutions have been saturated with air or N2 previously. Under alkaline condition, the reaction of OH radical with 3-chlorophenol produces 3-chlorinated phenoxyl radical, with the absorption peaks at 400 nm and 417 nm. Under neutral condition, the reaction of OH radical with 3-chlorophenol produces OH-adduct with the maximal absorption at about 340 nm. And in acid solution, the reaction of H with 3-chlorophenol produces H-adduct with the maximal absorption at about 320 nm. 3-chlorophenol is compared with 4-and 2-chlorophenols from the free radical pathways. The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.

  17. Reaction mechanism of 3-chlorophenol with OH, H in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The reaction mechanism of 3-chlorophenol with OH, H inaqueous solution was studied by transient technology. The3-chlorophenol aqueous solutions have been saturated with air or N2previously. Under alkaline condition, the reaction of OH radicalwith 3-chlorophenol produces 3-chlorinated phenoxyl radical, withthe absorption peaks at 400 nm and 417 nm. Under neutral condition,the reaction of OH radical with 3-chlorophenol produces OH-adductwith the maximal absorption at about 340 nm. And in acid solution,the reaction of H with 3-chlorophenol produces H-adduct with themaximal absorption at about 320 nm. 3-chlorophenol is compared with4- and 2-chlorophenols from the free radical pathways. The resultsshow that the positions of chlorine on the aromatic ring stronglyinfluence the dehalogenation and degradation process.

  18. 2-chlorophenol oxidation kinetic by photo-assisted Fenton process

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Experimental data are presented to test and validate a kinetic model for the oxidation of 2-chlorophenol wastewater by photo-assistedFenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2-chlorophenol was removedafter 90-minute reaction time with H2 O2 of 25 % CODcr in while in UV/H2 O2 system only 16.8% 2-chlorophenol was removed after one hourtreatment. The optimal pH in this reaction occurred between pH 3.0 and pH 4.0. The reaction kinetics for photo-assisted Fenton processexperimented in this research was investigated. Kinetic models were proposed for the treatment of 2-chlorophenol wastewater. The reaction wasfound to follow the 2nd order. The equations of reaction kinetics are as follows: - dt/d[RH]= KRH [ RH] [ H2O2 ]0exp(-KH2O2t); -dt/d[CODcr]= KCODCr[CODCr][ H2O2 ]0exp( - K't). The prediction of the models was found to be in a good agreement with experimentalresults, thus confirming the proposed reaction mechanism.

  19. Methanization of 2 chlorophenol (2CP) in presence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, L. M.; Cuervo-Lopez, F. M.; Ramirez, F.

    2009-07-01

    Chlorophenols, very toxic organic compounds, are widely distributed in soils and water. These substances are related to cellular damage as they have mutagenic and carcinogenic characteristics. Aromatic compounds have been eliminated from wastewater under methanogenic conditions; however, in most of the cases the elimination rates are low and some toxic intermediates might be accumulated. (Author)

  20. Optimization of Fenton pretreatment for 2-chlorophenol solution

    Institute of Scientific and Technical Information of China (English)

    贺仲兵; 刘云国; 肖玉

    2013-01-01

    Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.

  1. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  2. Artificial promoter libraries for selected organisms and promoters derived from such libraries

    DEFF Research Database (Denmark)

    1998-01-01

    An artificial promoter library for a selected organism or group of organisms is constructed as a mixture of double stranded DNA fragments, the sense strands of which comprise at least two consensus sequences of efficient promoters from said organism or group of organisms, or parts thereof...... imparting a specific regulatory feature, such as activation by a change in the growth conditions, to the promoters of the library. Further, they may have a sequence comprising one or more recognition sites for restriction endonucleases added to one of or both their ends. The selected organism or group...... in eukaryotes said consensus sequences should comprise a TATA box and at least one upstream activation sequence (UAS). Such artificial promoter libraries can be used i.a. for optimizing the expression of specific genes in various selected organisms....

  3. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  4. QSBR Study on the Anaerobic Biodegradation of Chlorophenols

    Institute of Scientific and Technical Information of China (English)

    YANG Da-Sen; DAI You-Zhi; LI Jian-Hua; ZHU Fei

    2006-01-01

    18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE), while decrease with the increase of molecular connectivity index (1XV), relative molecular mass (Mw) and electronic energy (EE).

  5. In vitro and in silico investigations of the binding interactions between chlorophenols and trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Qing, E-mail: wyqing76@126.com [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province (China); Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Tan, Chun-Yun [Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Zhuang, Shu-Lin [Institute of Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058 (China); Zhai, Peng-Zhan; Cui, Yun; Zhou, Qiu-Hua; Zhang, Hong-Mei [Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China); Fei, Zhenghao [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province (China); Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province (China)

    2014-08-15

    Graphical abstract: - Highlights: • Binding interactions of five chlorophenols with trypsin were investigated. • The number of chlorine atoms of chlorophenols partly affected the binding ability of them to trypsin. • Noncovalent interactions stabilized the trypsin–chlorophenols complexes. • There was the one main binding site of trypsin for chlorophenols. - Abstract: Being the first-degree toxic pollutants, chlorophenols (CP) have potential carcinogenic and mutagenic activity and toxicity. Since there still lacks studies on molecular interactions of chlorophenols with trypsin, one major binding target of many exogenous environmental pollutants, the binding interactions between five chlorophenols, 2-CP, 2,6-DCP, 2,4,6-TCP, 2,4,6-TCP, 2,3,4,6-TCP and PCP and trypsin were characterized by the combination of multispectroscopic techniques and molecular modeling. The chlorophenols bind at the one main site of trypsin and the binding induces the changes of microenvironment and global conformations of trypsin. Different number of chloride atoms significantly affects the binding and the binding constants K{sub A} ranks as K{sub A} (2-CP) < K{sub A} (2,6-DCP) ≈ K{sub A} (2,4,6-TCP) < K{sub A} (2,3,4,6-TCP) < K{sub A} (PCP). These chlorophenols interacts with trypsin mainly through hydrophobic interactions and via hydrogen bonding interactions and aromatic–aromatic π–π stacking interaction. Our results offer insights into the binding mechanism of chlorophenols with trypsin and provide important information for possible toxicity risk of chlorophenols to human health.

  6. Schwann cells originating from skin-derived precursors promote peripheral nerve regeneration in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Xiaocheng Lu; Jianghai Chen; Zhenbing Chen

    2014-01-01

    Artiifcial guidance channels containing Schwann cells can promote the regeneration of injured peripheral nerve over long distances. However, primary Schwann cells are not suitable for autotransplantation. Under speciifc conditions, skin-derived progenitors can be induced to dif-ferentiate into Schwann cells. Therefore, adult rat dorsal skin (dermis)-derived progenitors were isolated and induced to differentiate with DMEM/F12 containing B27, neuregulin 1, and for-skolin. Immunolfuorescence staining and reverse transcription polymerase chain reaction (RT-PCR) conifrmed that the resultant cells were indeed Schwann cells. Artiifcial guidance channels containing skin-derived progenitors, Schwann cells originating from skin-derived progenitors, or primary Schwann cells were used to bridge 5 mm sciatic nerve defects. Schwann cells originating from skin-derived progenitors signiifcantly promoted sciatic nerve axonal regeneration. The sig-niifcant recovery of injured rat sciatic nerve function after the transplantation of Schwann cells originating from skin-derived progenitors was conifrmed by electromyogram. The therapeutic effect of Schwann cells originating from skin-derived progenitors was better than that of skin-de-rived progenitors. These findings indicate that Schwann cells originating from skin-derived precursors can promote peripheral nerve regeneration in rats.

  7. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  8. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  9. Fe salts as catalyst for the wet oxidation of o-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    XU Xin-hua; HE Ping; JIN Jian; HAO Zhi-wei

    2005-01-01

    Catalytic wet air oxidation (CWAO) of o-chlorophenol in wastewater was studied in a stainless steel autoclave using four different Fe catalysts in the temperature range of 100-200 ℃. Experimental results showed that high rate of o-chlorophenol and CODcr (Chemical Oxygen Demand, mg/L) removal by CWAO was obtained at relatively low temperature and pressure. The catalysts Fe2(SO4)3, FeSO4, Fe2O3 and FeCl3 all exhibited high catalytic activity. More than 93.7% of the initial CODCr and nearly100% of o-chlorophenol were removed at 150 ℃ after 150 min with FeSO4 as catalyst. The CWAO of o-chlorophenol was found to be pseudo-first order reaction with respect to o-chlorophenol, with activation energy of 75.56 k J/mol in the temperature range of100-175 ℃.

  10. Porcine cholecyst–derived scaffold promotes full-thickness wound healing in rabbit

    Directory of Open Access Journals (Sweden)

    Deepa Revi

    2013-12-01

    Full Text Available Graft-assisted healing is an important strategy for treating full-thickness skin wounds. This study evaluated the properties of porcine cholecyst–derived scaffold and its use for treating full-thickness skin wound in rabbit. The physical properties of cholecyst-derived scaffold were congenial for skin-graft application. Compared to a commercially available skin-graft substitute made of porcine small intestinal submucosa, the cholecyst-derived scaffold was rich in natural biomolecules like elastin and glycosaminoglycans. When used as a xenograft, it promoted healing with excess cell proliferation at early phases and acceptable collagen deposition in the later remodelling phases.

  11. Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol

    Science.gov (United States)

    Bakardjieva, Snejana; Stengl, Vaclav; Subrt, Jan; Houskova, Vendula; Kalenda, Petr

    2007-05-01

    The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200 1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.

  12. Detection of Chlorophenolic Compounds in Bleaching Effluents of Chemical Pulps

    Institute of Scientific and Technical Information of China (English)

    Chhaya Sharma; S.Mohanty; S.Kumar; N.J.Rao; li qian

    2008-01-01

    Laboratory bleaching effluents from the chlorination and caustic extraction stages of mixed wood kraft pulp processing have been analysed both qualitatively and quantitatively for various chlorophenolics by using GC.A number of chlorinated derivaties of phenols,catechols,guaiacols and syringaldehydes have been detected and their concentrations are estimated.The results are compared with that of different agriculture residue / hardwood pulps,which were reported in literature.The concentrations of various compounds detected have also been compared with their reported 96LC50 values.

  13. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    Science.gov (United States)

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  14. Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: a review.

    Science.gov (United States)

    Du, Bin; Bian, Zhaoxiang; Xu, Baojun

    2014-02-01

    β-Glucans are natural cell wall polysaccharides found in yeast, fungi (including mushrooms), some bacteria, seaweeds and cereals. Natural β-glucans possess many health promotion effects on human health, such as anti-tumor, anti-diabetes, anti-infection, lowering blood cholesterol and immune-modulating properties. These effects have been reviewed previously. However, skin health promotion of β-glucan derived from cereals and microorganisms has received little attention. This review focuses on antioxidant activity, anti-wrinkle activity, anti-ultraviolet light, wound healing, and moisturizing effect and skin permeation absorption of β-glucan. Furthermore, applications of β-glucan in cosmetics are also discussed.

  15. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.

  16. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  17. Oxidation of phenol and chlorophenols on platinized titanium anodes in an acidic medium

    Science.gov (United States)

    Mokbel, Saleh Mohammed; Kolosov, E. N.; Mikhalenko, I. I.

    2016-06-01

    A comparative study of oxidation of phenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol on Pt/Ti and Ce,Pt/Ti electrocatalysts is performed via cyclic voltammetry. It is shown that the surface morphology and roughness of the anode do not change after modification with cerium. The formal kinetic orders of electrooxidation of all compounds are found to be less than one. It is shown that the β temperature coefficients of the rate of oxidation of chlorophenols grow by 10 to 50% when the Ce,Pt/Ti anode is used at a substrate concentration of 1 mM. A tenfold increase in concentration reduces the effect of cerium additive, except for 3-chlorophenol: the latter exhibits a 250% increase in the β value, compared to the Pt/Ti anode.

  18. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    Science.gov (United States)

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  19. Reductive Dechlorination of p-Chlorophenol by Nanoscale Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe0 under different conditions.Methods Nanoscale Fe0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM).Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate,whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover,the stability and durability of nanoscale Fe0 was evaluated through batch studies over extended periods of time.Conclusion The nanoscale Fe0 can be used for sustainable treatment of contaminants in groundwater.

  20. Herbal plants and their derivatives as growth and health promoters in animal nutrition.

    Science.gov (United States)

    Hashemi, Seyed Reza; Davoodi, Homa

    2011-03-01

    The purpose of this review is to summarize the effectiveness, modes of action and commercial application of herbal plants and their derivatives as growth promoters for animal. Feed supplements are a group of feed ingredients that can cause a desired animal response in a non-nutrient role such as pH shift, growth, or metabolic modifier (Hutjens, 1991). Common feed additives used in animal diets include immunostimulators, antimicrobials, antioxidants, pH control agents and enzymes. Herbal plants, are a new class of growth promoters and in recent years this feed additives have gained extensive attention in the feed industry. They are a wide variety of herbs, spices, and products derived thereof, and are mainly essential oils. Although numerous reports have demonstrated antioxidative and antimicrobial and immune stimulation efficacy in vitro, respective experimental in vivo evidence is still quite limited. A limited number of experimental comparisons of herbal plants feed additives with antibiotics or organic acid have suggested similar effects on the animal gut microflora. Gut microflora has significant effects on host nutrition, health, and growth performance by interacting with nutrient utilization and the development of gut system of the host. In addition, some phytogenic compounds seem to promote intestinal mucus production. However, the future of using herbs in animal feeding will in great measure depend on the knowledge of chemical structure, their value and characteristics of practical herbs or their extract physiological needs and well-being of animal, and, above all on consumer's preferences and expectations.

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  2. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML.

  3. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells

    Science.gov (United States)

    Chen, Ting; Xie, Mei-Ying; Sun, Jia-Jie; Ye, Rui-Song; Cheng, Xiao; Sun, Rui-Ping; Wei, Li-Min; Li, Meng; Lin, De-Lin; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2016-01-01

    Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice’ villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R’ expression and significantly inhibited p53′ expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health. PMID:27646050

  4. An IPTG-inducible derivative of the fission yeast nmt promoter

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Nielsen, Olaf

    2015-01-01

    We here describe an IPTG-inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe. This expression system is a derivative of the Sz. pombe nmt promoter, which normally is strongly...... repressed by thiamine. With appropriate positioning of a lac operator site (lacO) downstream of the TATA-box, we show that gene expression from a chimeric nmt::lacO promoter can be regulated by the lac repressor up to two orders of magnitude in response to IPTG. The chimeric nmt::lacO promoter is rapidly...... induced and when GFP is used as a reporter; almost full induction is achieved 40min after the addition of IPTG. Like the wild-type nmt promoter, the chimeric nmt::lacO is repressed by thiamine. This allows expression in a short and defined window, e.g. the S-phase of a synchronized cell population...

  5. FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms

    Science.gov (United States)

    Li, Yan-Hua; Xie, Chong; Zhang, Yuan; Li, Xing; Zhang, Hai-fei; Wang, Qing; Chai, Zhi; Xiao, Bao-guo; Thome, Rodolfo; Zhang, Guang-Xian; Ma, Cun-gen

    2017-01-01

    FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4+ T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10+ CD4+ T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors. PMID:28112256

  6. Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO2 methane reforming

    Directory of Open Access Journals (Sweden)

    Dębek Radosław

    2017-01-01

    Full Text Available The catalytic activity in dry methane reforming of hydrotalcite-derived catalysts with ceria and/or nickel species introduced into hydrotalcite interlayer spaces was examined. The prepared materials were characterized (XRF, XRD, FT-IR, H2-TPR and N2 sorption and subsequently tested in CO2 methane reforming at 550 °C. The obtained results showed that the incorporation of nickel species between hydrotalcite layers resulted in active catalyst with no sign of carbon deposition. Additionally, a beneficial effect of ceria promotion was observed. Ceria-promoted sample exhibited higher activity, stability and selectivity towards DRM, which may be explained by the formation of small Ni crystallites and prevention of the formation of inactive NiAl2O4 spinel phase.

  7. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    Science.gov (United States)

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  8. A green approach to the production of 2-pyridone derivatives promoted by infrared irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F.; De la Cruz, F.; Lopez, J.; Pena, E.; Vazquez, M. A. [Universidad de Guanajuato, Dapartamento de Quimica, Noria Alta s/n, 36050 Guanajuato, Gto. (Mexico); Delgado, F. [IPN, Escuela Nacional de Ciencias Biologicas, Departamento de Quimica Organica, Prol. Carpio y Plan de Ayala s/n, 11340 Mexico D. F. (Mexico); Alcaraz, Y.; FRobles, J.; Martinez A, M., E-mail: mvazquez@ugto.mx [Universidad de Guanajuato, Departamento de Farmacia, Noria Alta s/n, 36050 Guanajuato, Gto. (Mexico)

    2014-10-01

    An alternative is presented by promoting a reaction with infrared irradiation to obtain different 4-aryl-3-cyano-5-ethoxycarbonyl-6-methyl-2-pyridone derivatives 9 a-k. The process was carried out with a green approach from the corresponding 4 H-pyrans, using mild reaction conditions and infrared irradiation as the energy source. In the first stage, the reaction produced 1,2,3,4-tetrahydropyridine-2-one derivatives 8 a-k, followed by an oxidative step to afford the target molecules in good yields. The structure of products 9 a-k was confirmed by Ft-IR, {sup 1}H NMR and {sup 13}C NMR spectroscopic techniques and X-ray diffraction. It was found that the efficiency of the reaction depends on the catalyst and the solvent, as well as on the aldehyde substituents. (Author)

  9. Promise of Retinoic Acid-Triazolyl Derivatives in Promoting Differentiation of Neuroblastoma Cells.

    Science.gov (United States)

    Lone, Ali Mohd; Dar, Nawab John; Hamid, Abid; Shah, Wajaht Amin; Ahmad, Muzamil; Bhat, Bilal A

    2016-01-20

    Retinoic acid induces differentiation in various types of cells including skeletal myoblasts and neuroblasts and maintains differentiation of epithelial cells. The present study demonstrates synthesis and screening of a library of retinoic acid-triazolyl derivatives for their differentiation potential on neuroblastoma cells. Click chemistry approach using copper(I)-catalyzed azide-alkyne cycloaddition was adopted for the preparation of these derivatives. The neurite outgrowth promoting potential of retinoic acid-triazolyl derivatives was studied on neuroblastoma cells. Morphological examination revealed that compounds 8a, 8e, 8f, and 8k, among the various derivatives screened, exhibited promising neurite-outgrowth inducing activity at a concentration of 10 μM compared to undifferentiated and retinoic acid treated cells. Further on, to confirm this differentiation potential of these compounds, neuroblastoma cells were probed for expression of neuronal markers such as NF-H and NeuN. The results revealed a marked increase in the NF-H and NeuN protein expression when treated with 8a, 8e, 8f, and 8k compared to undifferentiated and retinoic acid treated cells. Thus, these compounds could act as potential leads in inducing neuronal differentiation for future studies.

  10. Novel synergic combinatorial photoelectrochemical technology for degradation of trace of 2-chlorophenol in drinking water

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel combinatorial photoelectrochemical (CPE) technology with combination of ultraviolet (UV)- photolysis and direct current (DC) electrolysis is studied and discussed for drinking water purification. In the self-made compositive photo-electrolysis incorporate reactor, removal rate of the 2-chlorophenol as model environmental pollutants has been investigated experimentally in terms of applied voltage, pH value, flow velocity, temperature, and aeration conditions. A primary analysis of the combinatorial photoelectric synergic effect on the degradation of organic pollutants has been carried out. It is found that the best performance of CPE oxidation is achieved by the following conditions: DC voltage of 5.0 V combined with UV-254-raidation, near neutral of pH 8 with aeration of pure oxygen. The influences of circular velocity, temperature, and initial concentration of the pollutant are minor. Under the optimal conditions, removal ratio of 2-CP is higher than 50% in 30 min, and 100% removal ratio of 2-CP (5 × 10-6) can be reached and TOC removal ratio reached above 90% in 2.5 h. Complete mineralization is achieved eventually. It shows in our investigation that under the studied conditions the synergic effect of UV photolysis and DC electrolysis on the degradation of the model pollutant is remarkable and validated, which may be derived from the coexistence of mutual complementary mechanisms of photoelectrochemical action, and the radicals chain reactions resulted from photo activation and electrolysis excitation in the process of CPE oxidation.

  11. Deriving efficient policy portfolios promoting sustainable energy systems-Case studies applying Invert simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Kranzl, Lukas; Stadler, Michael; Huber, Claus; Haas, Reinhard [Energy Economics Group, Vienna University of Technology, Gusshausstrasse 28/29/373-2A, 1040 Vienna (Austria); Ragwitz, Mario; Brakhage, Anselm [Fraunhofer Institute for Systems and Innovation Research, Breslauer Strasse 48, D-76139 Karlsruhe (Germany); Gula, Adam; Figorski, Arkadiusz [Faculty of Fuels and Energy, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Krakow (Poland)

    2006-12-15

    Within recent years, energy policies have imposed a number of targets at European and national level for rational use of energy (RUE), renewable energy sources (RES) and related CO{sub 2} reductions. As a result, a wide variety of policy instruments is currently implemented and hence the question arises: how can these instruments be designed in a way to reach the maximum policy target with the minimum public money spent? The objective of this paper is to derive a methodology for obtaining efficient policy portfolios promoting sustainable energy systems depending on the policy target and show corresponding results from case studies in Austria, Germany and Poland. The investigations were carried out by application of Invert simulation tool, a computer model developed for simulating the impacts of various promotion schemes for renewable and efficient energy systems. With this tool, the CO{sub 2} reductions and related public expenses have been calculated for various policy mixes. In the building-related energy sector, it turned out that in all investigated regions support schemes for supply side measures are the most cost-efficient instruments. However, their potential is restricted and for achieving higher levels of CO{sub 2} reduction, promotion of demand side measures is indispensable. The paper shows that for a comprehensive comparison of policy portfolios, there are always two dimensions to be considered: efficiency and effectiveness. The more effective, i.e. the higher the implementation rate of a scheme, the more essential becomes the efficiency criteria. (author)

  12. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    Science.gov (United States)

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  13. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages

    Science.gov (United States)

    Wang, Limei; Palme, Veronika; Rotter, Susanne; Schilcher, Nicole; Cukaj, Malsor; Wang, Dongdong; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Dirsch, Verena M.; Atanasov, Atanas G.

    2017-01-01

    Scope Increased macrophage cholesterol efflux (ChE) is considered to have anti-atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP-1-derived macrophages, and mechanisms underlying this effect are explored. Methods and results Without affecting cell viability, piperine concentration-dependently enhances ChE in THP-1-derived macrophages from 25 to 100 μM. The expression level of the key cholesterol transporter protein ATP-binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE-mediating transporter proteins, ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR-B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half-life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain-mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. Conclusion Our findings suggest that piperine promotes ChE in THP-1-derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis. PMID:27862930

  14. Comparative study on electrochemical degradation of 4-chlorophenol by different Pd/C gas diffusion electrodes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pd/C catalyst used for the Pd/C gas diffusion cathodes was prepared by hydrogen reduction method and formaldehyde reduction method, and characterized by X-ray diffraction (XRD), transmission electrode microcopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques. The electrochemical degradation of 4-chlorophenol was investigated in the diaphragm electrolysis system, aerating firstly with hydrogen gas then with air, using three different kinds of gas diffusion cathode. The results indicated that the self-made Pd/C gas diffusion cathode can not only reductively dechlorinate 4-chlorophenols by aerating hydrogen gas, but also accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by aerating air. Therefore, the removal efficiency of 4-chlorophenol by using Pd/C gas diffusion cathode is better than that of the C/PTFE gas diffusion cathode (no catalyst). The catalytic activity of Pd/C catalyst prepared by hydrogen reduction method is higher than that prepared by formaldehyde reduction method. The stability of the Pd/C gas diffusion cathodes is good. Therefore, both the removal efficiency and the dechlorination degree of 4-chlorophenol reached about 100% after 60 min, and the removal efficiency of 4-chlorophenol in terms of chemical oxygen demand (COD) in the cathodic compartment reached 87.4% after 120 min.

  15. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  16. Astrocytes derived from glial-restricted precursors promote spinal cord repair

    Directory of Open Access Journals (Sweden)

    Mayer-Proschel Margot

    2006-04-01

    Full Text Available Abstract Background Transplantation of embryonic stem or neural progenitor cells is an attractive strategy for repair of the injured central nervous system. Transplantation of these cells alone to acute spinal cord injuries has not, however, resulted in robust axon regeneration beyond the sites of injury. This may be due to progenitors differentiating to cell types that support axon growth poorly and/or their inability to modify the inhibitory environment of adult central nervous system (CNS injuries. We reasoned therefore that pre-differentiation of embryonic neural precursors to astrocytes, which are thought to support axon growth in the injured immature CNS, would be more beneficial for CNS repair. Results Transplantation of astrocytes derived from embryonic glial-restricted precursors (GRPs promoted robust axon growth and restoration of locomotor function after acute transection injuries of the adult rat spinal cord. Transplantation of GRP-derived astrocytes (GDAs into dorsal column injuries promoted growth of over 60% of ascending dorsal column axons into the centers of the lesions, with 66% of these axons extending beyond the injury sites. Grid-walk analysis of GDA-transplanted rats with rubrospinal tract injuries revealed significant improvements in locomotor function. GDA transplantation also induced a striking realignment of injured tissue, suppressed initial scarring and rescued axotomized CNS neurons with cut axons from atrophy. In sharp contrast, undifferentiated GRPs failed to suppress scar formation or support axon growth and locomotor recovery. Conclusion Pre-differentiation of glial precursors into GDAs before transplantation into spinal cord injuries leads to significantly improved outcomes over precursor cell transplantation, providing both a novel strategy and a highly effective new cell type for repairing CNS injuries.

  17. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis.

    Science.gov (United States)

    Wang, Zhihui; Liu, Jin-Qing; Liu, Zhenzhen; Shen, Rulong; Zhang, Guoqiang; Xu, Jianping; Basu, Sujit; Feng, Youmei; Bai, Xue-Feng

    2013-03-01

    IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35-producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b(+)Gr1(+) myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag-specific CD8(+) T cell activation, differentiation, and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.

  18. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2014-06-25

    Tuning the material properties in order to control the cellular behavior is an important issue in tissue engineering. It is now well-established that the surface chemistry can affect cell adhesion, proliferation, and differentiation. In this study, plasma polymerization, which is an appealing method for surface modification, was employed to generate surfaces with different chemical compositions. Allylamine (AAm), acrylic acid (AAc), 1,7-octadiene (OD), and ethanol (ET) were used as precursors for plasma polymerization in order to generate thin films rich in amine (-NH2), carboxyl (-COOH), methyl (-CH3), and hydroxyl (-OH) functional groups, respectively. The surface chemistry was characterized by X-ray photoelectron spectroscopy (XPS), the wettability was determined by measuring the water contact angles (WCA) and the surface topography was imaged by atomic force microscopy (AFM). The effects of surface chemical compositions on the behavior of human adipose-derive stem cells (hASCs) were evaluated in vitro: Cell Count Kit-8 (CCK-8) analysis for cell proliferation, F-actin staining for cell morphology, alkaline phosphatase (ALP) activity analysis, and Alizarin Red S staining for osteogenic differentiation. The results show that AAm-based plasma-polymerized coatings can promote the attachment, spreading, and, in turn, proliferation of hASCs, as well as promote the osteogenic differentiation of hASCs, suggesting that plasma polymerization is an appealing method for the surface modification of scaffolds used in bone tissue engineering.

  19. Thalamus-derived molecules promote survival and dendritic growth of developing cortical neurons.

    Science.gov (United States)

    Sato, Haruka; Fukutani, Yuma; Yamamoto, Yuji; Tatara, Eiichi; Takemoto, Makoto; Shimamura, Kenji; Yamamoto, Nobuhiko

    2012-10-31

    The mammalian neocortex is composed of various types of neurons that reflect its laminar and area structures. It has been suggested that not only intrinsic but also afferent-derived extrinsic factors are involved in neuronal differentiation during development. However, the role and molecular mechanism of such extrinsic factors are almost unknown. Here, we attempted to identify molecules that are expressed in the thalamus and affect cortical cell development. First, thalamus-specific molecules were sought by comparing gene expression profiles of the developing rat thalamus and cortex using microarrays, and by constructing a thalamus-enriched subtraction cDNA library. A systematic screening by in situ hybridization showed that several genes encoding extracellular molecules were strongly expressed in sensory thalamic nuclei. Exogenous and endogenous protein localization further demonstrated that two extracellular molecules, Neuritin-1 (NRN1) and VGF, were transported to thalamic axon terminals. Application of NRN1 and VGF to dissociated cell culture promoted the dendritic growth. An organotypic slice culture experiment further showed that the number of primary dendrites in multipolar stellate neurons increased in response to NRN1 and VGF, whereas dendritic growth of pyramidal neurons was not promoted. These molecules also increased neuronal survival of multipolar neurons. Taken together, these results suggest that the thalamus-specific molecules NRN1 and VGF play an important role in the dendritic growth and survival of cortical neurons in a cell type-specific manner.

  20. Mesenchymal Stromal Cell-Derived PTX3 Promotes Wound Healing via Fibrin Remodeling.

    Science.gov (United States)

    Cappuzzello, Claudia; Doni, Andrea; Dander, Erica; Pasqualini, Fabio; Nebuloni, Manuela; Bottazzi, Barbara; Mantovani, Alberto; Biondi, Andrea; Garlanda, Cecilia; D'Amico, Giovanna

    2016-01-01

    Although mesenchymal stromal cells (MSCs) can promote wound healing in different clinical settings, the underlying mechanism of MSC-mediated tissue repair has yet to be determined. Because a nonredundant role of pentraxin 3 (PTX3) in tissue repair and remodeling has been recently described, here we sought to determine whether MSC-derived PTX3 might play a role in wound healing. Using a murine model of skin repair, we found that Ptx3-deficient (Ptx3(-/-)) MSCs delayed wound closure and reduced granulation tissue formation compared with wt MSCs. At day 2, confocal microscopy revealed a dramatic reduction in green fluorescent protein (GFP)-expressing Ptx3(-/-) MSCs recruited to the wound, where they appeared to be not only poorly organized in bundles but also scattered in the extracellular matrix. These findings were further confirmed by quantitative biochemical analysis of GFP content in wound extracts. Furthermore, Ptx3(-/-) MSC-treated skins displayed increased levels of fibrin and lower levels of D-dimer, suggesting delayed fibrin-rich matrix remodeling compared with control skins. Consistently, both pericellular fibrinolysis and migration through fibrin were found to be severely affected in Ptx3(-/-) MSCs. Overall, our findings identify an essential role of MSC-derived PTX3 in wound repair underscoring the beneficial potential of MSC-based therapy in the management of intractable wounds.

  1. Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wang, Jianlong [Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-11-30

    Pd/C catalyst was prepared by hydrogen reduction method and used for the Pd/C gas-diffusion electrode. It was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) techniques. The electrochemical degradation of 4-chlorophenol was investigated in a diaphragm electrolysis device, by two different feeding gas modes, using the Pd/C gas-diffusion electrode and the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion electrode as a cathode, respectively. The results indicated that Pd particles with an average size of 4.0 nm were highly dispersed in the activated carbon with an amorphous structure; Pd content on the surface of the Pd/C catalyst reached 1.3 at.%. Furthermore, feeding with hydrogen gas firstly and then with air was in favor of improving 4-chlorophenol removal efficiency. The Pd/C gas-diffusion cathode can not only reductively dechlorinate 4-chlorophenols by feeding hydrogen gas, but also accelerate the two-electron reduction of O{sub 2} to hydrogen peroxide (H{sub 2}O{sub 2}) by feeding air. Therefore, the removal efficiency of 4-chlorophenol by using the Pd/C gas-diffusion cathode was better than that of the C/PTFE gas-diffusion cathode. And both the removal efficiency and the dechlorination degree of 4-chlorophenol reached about 100% after 60 min, and the average removal efficiency of 4-chlorophenol in terms of chemical oxygen demand (COD) exceeded 70% after 120 min. The analysis of high-performance liquid chromatography (HPLC) identified that phenol was the dechlorination product, and hydroquinone, benzoquinone, maleic, fumaric, crylic, malonic, oxalic, acetic and formic acids were the main oxidation intermediates. A reaction pathway involving all these intermediates was proposed. (author)

  2. Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients

    Institute of Scientific and Technical Information of China (English)

    WANG Li-jia; BAI Yu; BAO Zhao-shi; CHEN Yan; YAN Zhuo-hong; ZHANG Wei; ZHANG Quan-geng

    2013-01-01

    Background Glioblastoma is the most common and lethal cancer of the central nervous system.Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies,but the effects of these methylation abnormalities on glioblastomas are still largely unclear.Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment.To better understand the relationship between CpG island methylation status and patient outcome,this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets.Methods We evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients.Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM.Survival curves were calculated according to the Kaplan-Meier method,and differences between curves were assessed using the log-rank test.Then,we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors.Results Microarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P<0.05).Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P <0.05).This abnormality is also confirmed in glioblastoma cell lines (U87 and U251).Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P=0.013).Conclusions Hypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients.TES might represent a valuable prognostic marker

  3. Methanization and mineralization of 2-chlorophenol by anaerobic digestion.

    Science.gov (United States)

    Beristain-Montiel, Lizeth; Gómez-Hernández, Jorge; Monroy-Hermosillo, Oscar; Cuervo-López, Flor de María; Ramírez-Vives, Florina

    2010-01-01

    The aim of this study is to contribute to the knowledge about 2-Chlorophenol (2CP) mineralization and methanization in batch culture. This work was focused on evaluating the effect of: (i) the use of sludge with different periods of previous contact to 2CP, (ii) the electron donor addition in stoichiometric relation with 2CP and (iii) the presence of different initial oxygen concentrations. When compared with the control, 50 and 80 days of previous contact to 2CP resulted in a lag phase reduction of 57% and an increase in 2CP specific consumption rate (q(2CP)) of 114%. These results were obtained with no addition of an external electron donor. When acetate was used as an electron donor its consumption resulted independently of 2CP consumption. No lag phase and increase of 46% in q(2CP) was observed when phenol was used as an electron donor. In the third part when sludge without previous contact to 2CP was used, it was found that consumption efficiency (E(2CP)) and q(2CP) values did not increase in the presence of different oxygen concentrations. However, at the highest oxygen concentration, CH(4) yield (Y(CH(4))(-C/2CP-C)) and phenol yield (Y(phenol-C/2CP-C)) values decreased, while CO(2) yield value (Y(CO(2))(-C/2CP-C)) increased with regard to the methanogenic control. The use of sludge previously exposed to both 2CP and O(2) resulted in an increase in q(2CP) of 73%. However, among the different oxygen concentrations, no significant difference in E(2CP) or q(2CP) values was observed when compared to the control without oxygen. Therefore, previous contact to 2CP resulted in being a key factor for improving 2CP mineralization and methanization in batch culture.

  4. Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Zhenjiu Zhu

    Full Text Available Prostaglandin E2 (PGE2 has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/- mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.

  5. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Xing-Yun Song

    Full Text Available BACKGROUND: The blood brain barrier (BBB and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF applied into the peripheral (PNS and central nervous system (CNS thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. METHODOLOGY/PRINCIPAL FINDINGS: The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. CONCLUSIONS/SIGNIFICANCE: Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.

  6. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  7. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    Science.gov (United States)

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  8. Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization

    Directory of Open Access Journals (Sweden)

    Elisabeth Aurstad Riksen

    2014-05-01

    Full Text Available Enamel matrix derivative (EMD has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel, and the dentinogenic markers dentin sialophosphoprotein (DSSP and dentin matrix acidic phosphoprotein 1 (DMP1, as well as the osteogenic markers osteocalcin (OC, BGLAP and collagen type 1 (COL1A1. Whereas, only EMD had effect on alkaline phosphatase (ALP mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6, interleukin-8 (IL-8, and monocyte chemoattractant proteins (MCP-1 in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.

  9. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  10. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment.

    Science.gov (United States)

    Kim, Yong Sook; Jeong, Hye-Yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R; Ahn, Youngkeun

    2016-08-11

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI.

  11. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R; Threadgill, David W; Sahin, Ugur; Neurath, Markus F

    2013-04-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

  12. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J.; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R.; Threadgill, David W.; Sahin, Ugur; Neurath, Markus F.

    2013-01-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms. PMID:23549083

  13. Toxic effects of pollutants on the Mineralization of 4-chlorophenol and Benzoate in methanogenic river sediment

    NARCIS (Netherlands)

    van Beelen P; van Vlaardingen PLA

    1993-01-01

    The toxic effects of pollutants on the mineralization of 2 mug/l [U-14C] 4-chlorophenol and benzoate were studied in microcosms with methanogenic sediment from the Rhine river. In contrast with studies using a high substrate concentration no lag time was observed and the half-lives for 4-chlorophen

  14. Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland.

    Science.gov (United States)

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya

    2013-01-01

    This study evaluates the treatment efficiency of horizontal subsurface flow (HSSF) constructed wetland for the removal of AOX (adsorbable organic halides) and chlorophenolics from pulp and paper mill wastewater. The dimensions of HSSF constructed wetland were 3.5 m in length, 1.5 m in width, and 0.28 m in depth, with surface area of 5.25 m2. The HSSF constructed wetland unit was planted with an ornamental plant species, Canna indica. Under hydraulic retention time (HRT) of 5.9 days, the average AOX removal was 89.1%, and 67% to 100% removal of chlorophenolics from pulp and paper mill wastewater was achieved. The complete removal of 2,3-dichlorophenol, 3,4-dichlorophenol, 2,3,5-trichlorophenol, 2,4,6-trichlorophenol, 3,5-dichlorocatechol, 3,6-dichlorocatechol, and 4,5,6-trichloroguaiacol was observed. Some of the chlorophenolics were found to accumulate in the plant biomass and soil. The evapotranspiration rate varied from 6.7 to 12.7 mm day(-1) during the experimental period. The mass balance of chlorophenolics was also studied in constructed wetland system.

  15. Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils.

    Science.gov (United States)

    McLellan, Iain; Hursthouse, Andrew; Morrison, Calum; Varela, Adélia; Pereira, Cristina Silva

    2014-02-01

    A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.

  16. Structural and antimicrobial studies of coordination compounds of VO(II, Co(II, Ni(II and Cu(II with some Schiff bases involving 2-amino-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A. P. MISHRA

    2009-05-01

    Full Text Available Complexes of tailor-made ligands with life essential metal ions may be an emerging area to answer the problem of multi-drug resistance (MDR. The coordination complexes of VO(II, Co(II, Ni(II and Cu(II with the Schiff bases derived from 2-hydroxyacetophenone/2-chlorobenzaldehyde with 2-ami¬no-4-chlorophenol were synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, ESR, FAB mass, thermal and magnetic susceptibility measurements. The FAB mass and thermal data show degradation of the complexes. The ligand A (2-hydroxyacetophenone-2amino-4-chlorophenol behaved as tridentate and ligand B (2-chlorobenzylidene-2-amino-4-chlorophenol as bidentate, coordinating through O and N donors. The complexes [VO(A(H2O]×xH2O, [M(A(H2On]×xH2O for Co and Ni, [Cu(A(H2O] and [VO(B2]×xH2O, [M(B2(H2On] for Co and Cu and [Ni(B2] exhibited coordination numbers 4, 5 or 6. X-ray powder diffraction data (a = 11.00417 Å, b = 11.706081 Å and c = 54.46780 Å showed that [Cu(CACP2(H2O2], complex 8, crystallized in the orthorhombic system. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff base and their [M(B2(H2O2] complexes (Co(II, complex 6 and Cu(II, complex 8, indicated that the metal complexes exhibited a higher or lower antimicrobial activity than 2-chlorobenzylidene-2-amino-4-chlorophenol as the free ligand (B.

  17. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes.

    Science.gov (United States)

    Ding, Han; Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2016-05-01

    The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi-Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between logKow and logKd suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π-π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84mg/g, from 19 to 65mg/g and from 17 to 65mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pKa of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.

  18. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lifeng, E-mail: yinlifeng@gmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Bao, Yueping, E-mail: baoyueping@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. Black-Right-Pointing-Pointer The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. Black-Right-Pointing-Pointer Ni{sup 0} acts as an indirect reductant and catalyst in dechlorination reaction. Black-Right-Pointing-Pointer The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni{sup 0} and Cu{sup 0} particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni{sup 0} acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni{sup 0} to Cu{sup 0} was also proposed based on hydrogen spillover. The inhibition on the release of Ni{sup 2+} by adding natural organic matters and adjusting pH was investigated.

  19. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.

    Science.gov (United States)

    Parker, Katherine H; Horn, Lucas A; Ostrand-Rosenberg, Suzanne

    2016-09-01

    Myeloid-derived suppressor cells are immune-suppressive cells that are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. As myeloid-derived suppressor cells inhibit anti-tumor immunity and promote tumor progression, we are determining how their viability is regulated. Previous studies have established that the damage-associated molecular pattern molecule high-mobility group box protein 1 drives myeloid-derived suppressor cell accumulation and suppressive potency and is ubiquitously present in the tumor microenvironment. As high-mobility group box protein 1 also facilitates tumor cell survival by inducing autophagy, we sought to determine if high-mobility group box protein 1 regulates myeloid-derived suppressor cell survival through induction of autophagy. Inhibition of autophagy increased the quantity of apoptotic myeloid-derived suppressor cells, demonstrating that autophagy extends the survival and increases the viability of myeloid-derived suppressor cells. Inhibition of high-mobility group box protein 1 similarly increased the level of apoptotic myeloid-derived suppressor cells and reduced myeloid-derived suppressor cell autophagy, demonstrating that in addition to inducing the accumulation of myeloid-derived suppressor cells, high-mobility group box protein 1 sustains myeloid-derived suppressor cell viability. Circulating myeloid-derived suppressor cells have a default autophagic phenotype, and tumor-infiltrating myeloid-derived suppressor cells are more autophagic, consistent with the concept that inflammatory and hypoxic conditions within the microenvironment of solid tumors contribute to tumor progression by enhancing immune-suppressive myeloid-derived suppressor cells. Overall, these results demonstrate that in addition to previously recognized protumor effects, high-mobility group box protein 1 contributes to tumor progression by increasing myeloid-derived suppressor cell viability by

  20. Obesity does not promote tumorigenesis of localized patient-derived prostate cancer xenografts

    Science.gov (United States)

    Ascui, Natasha; Frydenberg, Mark; Risbridger, Gail P.; Taylor, Renea A.; Watt, Matthew J.

    2016-01-01

    There are established epidemiological links between obesity and the severity of prostate cancer. We directly tested this relationship by assessing tumorigenicity of patient-derived xenografts (PDXs) of moderate-grade localized prostate cancer in lean and obese severe combined immunodeficiency (SCID) mice. Mice were rendered obese and insulin resistant by high-fat feeding for 6 weeks prior to transplantation, and PDXs were assessed 10 weeks thereafter. Histological analysis of PDX grafts showed no differences in tumor pathology, prostate-specific antigen, androgen receptor and homeobox protein Nkx-3.1 expression, or proliferation index in lean versus obese mice. Whilst systemic obesity per se did not promote prostate tumorigenicity, we next asked whether the peri-prostatic adipose tissue (PPAT), which covers the prostate anteriorly, plays a role in prostate tumorigenesis. In vitro studies in a cellularized co-culture model of stromal and epithelial cells demonstrated that factors secreted from human PPAT are pro-tumorigenic. Accordingly, we recapitulated the prostate-PPAT spatial relationship by co-grafting human PPAT with prostate cancer in PDX grafts. PDX tissues were harvested 10 weeks after grafting, and histological analysis revealed no evidence of enhanced tumorigenesis with PPAT compared to prostate cancer grafts alone. Altogether, these data demonstrate that prostate cancer tumorigenicity is not accelerated in the setting of diet-induced obesity or in the presence of human PPAT, prompting the need for further work to define the at-risk populations of obesity-driven tumorigenesis and the biological factors linking obesity, adipose tissue and prostate cancer pathogenesis. PMID:27351281

  1. Hypoxia Promotes Osteogenesis of Human Placental-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Gu, Qiaoli; Gu, Yanzheng; Shi, Qin; Yang, Huilin

    2016-01-01

    Placental-derived mesenchymal stem cells (pMSCs) are promising candidates for regenerative medicine because they possess high proliferative capacity and multi-differentiation potential. Human pMSCs are residing in an environment with low oxygen tension in the body. Heme oxygenase-1 (HO-1) is known to participate in the regulation of MSC differentiation. The present study aimed to investigate the impact of hypoxia on the osteogenic differentiation of human pMSCs, and to elucidate the role of HO-1 in the osteogenic differentiation of hypoxic pMSCs. Human pMSCs were cultured under normoxia (21% O2) or hypoxia (5% O2) for 3 days. We found that hypoxia maintained the morphology and immunophenotype of human pMSCs. The expression of stemness markers Oct4, Nanog, and Sox2 was increased under hypoxia. After a 5-day hypoxic culture, the proliferation ability of pMSCs was increased, which might be correlated with the increased expression of stem cell factor. During osteogenic induction, hypoxia increased the expression of osteogenic genes including osteopontin, osteocalcin, and alkaline phosphatase (ALP). Moreover, hypoxia increased the mineralization and ALP levels of human pMSCs as evidenced by Alizarin Red staining and ALP staining. Upregulation of HO-1 by cobalt-protoporphyrin treatment increased the osteogenic differentiation of pMSCs under hypoxia, while inhibition of HO-1 by Zn-protoporphyrin reduced the osteogenic differentiation of hypoxic pMSCs. Taken together, our data suggest that hypoxia can promote the osteogenic differentiation of human pMSCs. Upregulation of HO-1 can further increase the osteogenesis of human pMSCs under hypoxia. Our findings will highlight the therapeutic potential of MSCs in the tissue engineering of bones.

  2. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells.

    Science.gov (United States)

    Bertagnolo, Valeria; Benedusi, Mascia; Brugnoli, Federica; Lanuti, Paola; Marchisio, Marco; Querzoli, Patrizia; Capitani, Silvano

    2007-08-01

    Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies.

  3. Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells.

    Science.gov (United States)

    Koike, Eiko; Takano, Hirohisa; Inoue, Ken-Ichiro; Yanagisawa, Rie; Kobayashi, Takahiro

    2008-09-01

    Particulate matter including carbon black (CB) nanoparticles can enhance antigen-related inflammation and immunoglobulin production in vivo. Dendritic cells (DC) as antigen-presenting cells (APC) are the most capable inducers of immune responses. The present study was designed to determine whether CB nanoparticles affect the maturation/activation and function of DC in vitro. DC were differentiated from bone marrow (BM) cells of BALB/c mice by culture with granulocyte macrophage colony stimulating factor (GM-CSF). At day 8 of culture, BM-derived DC (BMDC) were exposed to CB nanoparticles with a diameter of 14nm or 56nm for 24h. The expression of major histocompatibility complex (MHC) class II, DEC205, CD80, and CD86 (maturation/activation markers of BMDC) was measured by flow cytometry. BMDC function was evaluated by an allogeneic mixed lymphocyte reaction (MLR) assay. CB nanoparticles significantly increased the expression of DEC205 and CD86 in BMDC and tended to increase MHC class II and CD80 expression; however, a size-dependent effect was not observed. On the other hand, BMDC-mediated MLR was significantly enhanced by the CB nanoparticles and the enhancement was greater by 14nm CB nanoparticles than by 56nm CB nanoparticles. Taken together, CB nanoparticles can promote the maturation/activation and function of BMDC, which could be related to their effects on allergic diseases and/or responses. In addition, BMDC-mediated MLR might be useful assay for in vitro screening for adjuvant activity of environmental toxicants.

  4. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  5. A Novel Moderate Constitutive Promoter Derived from Poplar (Populus tomentosa Carrière

    Directory of Open Access Journals (Sweden)

    Xin-Min An

    2013-03-01

    Full Text Available A novel sequence that functions as a promoter element for moderate constitutive expression of transgenes, designated as the PtMCP promoter, was isolated from the woody perennial Populus tomentosa. The PtMCP promoter was fused to the GUS reporter gene to characterize its expression pattern in different species. In stable Arabidopsis transformants, transcripts of the GUS reporter gene could be detected by RT-PCR in the root, stem, leaf, flower and silique. Further histochemical and fluorometric GUS activity assays demonstrated that the promoter could direct transgene expression in all tissues and organs, including roots, stems, rosette leaves, cauline leaves and flowers of seedlings and maturing plants. Its constitutive expression pattern was similar to that of the CaMV35S promoter, but the level of GUS activity was significantly lower than in CaMV35S promoter::GUS plants. We also characterized the promoter through transient expression in transgenic tobacco and observed similar expression patterns. Histochemical GUS staining and quantitative analysis detected GUS activity in all tissues and organs of tobacco, including roots, stems, leaves, flower buds and flowers, but GUS activity in PtMCP promoter::GUS plants was significantly lower than in CaMV35S promoter::GUS plants. Our results suggested that the PtMCP promoter from poplar is a constitutive promoter with moderate activity and that its function is presumably conserved in different species. Therefore, the PtMCP promoter may provide a practical choice to direct moderate level constitutive expression of transgenes and could be a valuable new tool in plant genetic engineering.

  6. A novel baculovirus-derived promoter with high activity in the baculovirus expression system

    Directory of Open Access Journals (Sweden)

    María Martínez-Solís

    2016-06-01

    Full Text Available The baculovirus expression vector system (BEVS has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV. Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV vector system in different insect cell lines (Sf21, Se301, and Hi5 and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS.

  7. 2-Chlorophenol Removal of Aqueous Solution Using Advanced Oxidation Processes Resulting from Iron/ Persulfate and Ultra Violet/ Persulfate

    Directory of Open Access Journals (Sweden)

    Shokufeh Astereki

    2016-06-01

    Full Text Available Background: Advanced oxidation processes are used to remove toxic aromatic compounds with low biodegradability, such as 2-chlorophenol. This study investigated the use of sulfate (SO4- and persulfate (S2O82- radicals, as one of the advanced oxidation methods, to remove 2- chlorophenol from aquatic solutions. Methods: This experimental and pilot-scale study was carried out using two chemical batch reactors; one of the reactors equipped with UV lamps and the other was on the hot plate. In iron/ persulfate (Fe/S2O82- and ultra violet/ persulfate (UV/S2O82- processes different parameters were investigated. Results: Iron, UV, the initial pH of the solution, persulfate concentration have considerable effects on the elimination of 2-chlorophenol in both processes. In both processes, the maximum elimination occurred in acidic conditions. The elimination efficiency was increased by increasing the concentration of 2-chlorophenol and UV intensity, and also by decreasing the concentration of persulfate and iron. Accordingly, in iron/ persulfate and ultra violet/ persulfate processes 2-chlorophenol was eliminated with 99.96% and 99.58% efficiencies, respectively. Conclusion: Sulfate radicals produced from activated persulfate ions with hot-Fe ion and UV radiation have significant impact on the removal of 2-chlorophenol. Therefore, the processes of Fe/S2O82- and UV/S2O82- can be regarded as good choices for industrial wastewater treatment plants operators in the future.

  8. DEVELOPMENT OF HIGH ACTIVITY, COAL DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    1998-12-31

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, the following has been accomplished: (1) A MS-TGA (mass spectrometric-thermogravimetric analysis) apparatus, which is one of the primary instruments that will be used in these studies, has been refurbished and modified to meet the requirements of this project. A NO{sub x} chemiluminescence analyzer (ThermoElectron, Model 10) has been added to the instrument to monitor NO{sub x} concentrations in the feed and product streams. Computer control and data acquisition system has been updated and modified to accommodate the requirements of the specific types of experiments planned. The diffusion pumps used to maintain vacuum for the mass spectrometer system have been replaced with turbomolecular pumps (Varian 300 HT). (2) A packed bed reactor/gas flow system has been assembled for performing reactivity studies. This system employs a Kin-Tek gas calibration/mixing system for varying NO and CO concentrations in the feed gas to the packed bed, a NO{sub x} chemiluminescence analyzer (ThermoElectron, Model 10), and a quadrupole mass spectrometer (Dycor). This system is required for steady-state reactivity studies, as well as mechanistic studies on the effects of NO and CO in the gas phase on intermediate oxygen surface complex populations on the carbon substrates. (3) Work has continued on the application of contrast matching, small angle neutron scattering to the characterization and development of char porosity. Contrast matching with perdeuterated toluene has

  9. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  10. Novel iron metal matrix composite reinforced by quartz sand for the effective dechlorination of aqueous 2-chlorophenol.

    Science.gov (United States)

    Zhang, Yunfei; Yang, Bo; Han, Yanni; Jiang, Chaojin; Wu, Deli; Fan, Jinhong; Ma, Luming

    2016-03-01

    In this work, we tested a novel iron metal matrix composite (MMC) synthesized by mechanically introducing quartz sand (SiO2) into an iron matrix (denoted as SiO2-Fe MMC). The pseudo-first-order reaction rate constant of the SiO2-Fe MMC (initial pH 5.0) for 20 mg/L of 2-chlorophenol (2-CP) was 0.051 × 10(-3) L/m(2)/min, which was even higher than that of some reported Pd/Fe bimetals. This extraordinary high activity was promoted by the quick iron dissolution rate, which was caused by the formation of Fe-C internal electrolysis from carbonization of process control agent (PCA) and the active reinforcement/metal interfaces during the milling process. In addition, pH has slight effect on the dechlorination rate. The SiO2-Fe MMC retained relatively stable activity, still achieving 71% removal efficiency for 2-CP after six consecutive cycles. The decrease in dechlorination efficiency can be attributed to the rapid consumption of Fe(0). A dechlorination mechanism using the SiO2-Fe MMC was proposed by a direct electron transfer from Fe(0) to 2-CP at the quartz sand/iron interface.

  11. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  12. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  13. Mathematical Model of In-situ Ozonation for the Remediation of 2-Chlorophenol Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    张晖; 宋孟浩; 黄金宝

    2003-01-01

    A microscopic diffusion-reaction model was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface.The sequential strategy was employed to obtain the numerical solution of the model using finite difference method. A non-uniform grid of discretization points was employed to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the model. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100 ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical model fitted data well during most time of the experiment.

  14. One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Tai Ye; Shi Yan Lu; Qin Qin Hu; Xin Jiang; Guo Fen Wei; Jing Jing Wang; Jian Quan Lu

    2011-01-01

    A simple one-bath strategy has been developed to synthesize a novel CdTe@SiO2@MIP (molecularly imprinted and silica-functionalized CdTe quantum dots, MISFQDs), in which a silica shell was coated on the surface of CdTe quantum dots (CdTe@SiO2 QDs) and then a polymer for selective recognition of 4-chlorophenol (4-CP) was constructed on the surface of CdTe@SiO2 QDs using mercaptoacetic acid as stabilizer, 3-aminopropyl-trimethoxysilane (APTES) as functional monomers and tetraethoxysilane (TEOS) as crosslink agent. The structures of CdTe@SiO2@MIP were analyzed by ultraviolet-visible absorption, Fluorescence, FT-IR spectrum and powder X-ray diffraction. The application and characterization of the CdTe@SiO2@MIP were investigated by experiments. All results indicated that the CdTe@SiO2@MIP can selectively recognize 4-chlorophenol.

  15. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Radwa A. Elsalamony

    2017-02-01

    Full Text Available Ru doped titania was prepared by the impregnation method and examined for the photocatalytic degradation of 2-chlorophenol at ambient conditions. Ru/TiO2 photocatalysts with metal loadings of 0.2, 0.4, 0.6 and 0.8 wt% were prepared and characterized using TEM, XRD, FTIR, SBET and EDX analyses. The degradation of 2-chlorophenol (2-CP in the aqueous phase was investigated under irradiation at 254 nm, employing either photodegradation in the presence of titania, Ru doped titania or photolysis, to compare the efficiency of these photoinduced advanced oxidation techniques. Photocatalysis under visible irradiation was also investigated. The removal efficiency arrived at 50% using 0.2% Ru/TiO2 catalyst.

  16. P-chlorophenol wastewater treatment by microwave-enhanced catalytic wet peroxide oxidation.

    Science.gov (United States)

    Zhao, Guohua; Lv, Baoying; Jin, Yan; Li, Dongming

    2010-02-01

    A microwave-enhanced catalytic wet peroxide oxidation (MW-CWPO) technology was investigated to treat a high concentration of p-chlorophenol wastewater under a mild condition. The MW-CWPO experiments were carried out in a microwave autoclave using copper(II) oxide (CuO)-loaded active carbon as a catalyst. The p-chlorophenol was directly ring-opened within 5 minutes at 343 K and 0.3 MPa and then mineralized to carbon dioxide and water. More than 90% of the total organic carbon was removed within 15 minutes. The reaction activation energy (Ea) of hydrogen peroxide (H2O2) decomposition was decreased from 47.7 to 43.1 kJ/mol under microwave irradiation. The H2O2 catalytic decomposition was fitted to a second-order reaction under microwave irradiation, while it followed a first-order reaction without microwave irradiation. The experimental results indicate that the MW-CWPO method has significant potential applications for a high concentration of p-chlorophenol wastewater.

  17. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  18. Degradation of 4-chlorophenol in aqueous solution by γ-radiation and ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    HU; Jun; WANG; Jianlong; CHEN; Rong

    2006-01-01

    The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP mineralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min(1, 4-chlorophenol at concentration of 10 mg·L(1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min(1, which was 2.4 times higher than the sum of radiation (0.0294 min(1) and ozonation (0.0137 min(1). It revealed that the combination of radiation and ozonation resulted in synergistic effect, which can remarkably increase the degradation efficiency of 4-CP.

  19. Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon.

    Science.gov (United States)

    Yang, Bin; Liu, Yunpeng; Li, Zhongjian; Lei, Lecheng; Zhou, Jie; Zhang, Xingwang

    2016-01-01

    Preferential removal of pentachlorophenol (PCP) from chlorophenols-containing wastewater has been attracted more attentions in wastewater treatment, since it is one of the most toxic pollutants. The adsorbent of N-doped ordered mesoporous carbon (M-OMC) with high BET surface area of 1901 m(2)/g, large pore volume of 1.64 cm(3)/g and uniform pore size of 3.45 nm has been successfully synthesized via evaporation-induced self-assembly (EISA) method. The effects of solution pH, pore structure of adsorbent and their surface chemical properties on PCP adsorption by M-OMC were investigated in comparison with ordered mesoporous carbon (OMC), and much higher PCP adsorption capacities of M-OMC were obtained. The significantly preferential adsorption of PCP was achieved in the treatment of tri-component wastewater including PCP, p-chlorophenol (CP) and 2.4.6-trichlorophenol (TCP), and its adsorption process well fitted the pseudo-second-order kinetics model and the Langmuir isotherm. The initial sorption rate of PCP was 103.5 μmol/(g/min), which was 2.97 times of TCP. It may be attributed to the intensification of π-π interaction between PCP and M-OMC with the nitrogen functional groups. Therefore, M-OMC is promising for removal of PCP in the adsorption pretreatment of chlorophenols-containing wastewater.

  20. Prediction of Environmental Properties for Chlorophenols with Posetic Quantitative Super-Structure/Property Relationships (QSSPR

    Directory of Open Access Journals (Sweden)

    Douglas J. Kleinc

    2006-09-01

    Full Text Available Due to their widespread use in bactericides, insecticides, herbicides, andfungicides, chlorophenols represent an important source of soil contaminants. Theenvironmental fate of these chemicals depends on their physico-chemical properties. In theabsence of experimental values for these physico-chemical properties, one can use predictedvalues computed with quantitative structure-property relationships (QSPR. As analternative to correlations to molecular structure we have studied the super-structure of areaction network, thereby developing three new QSSPR models (poset-average, cluster-expansion, and splinoid poset that can be applied to chemical compounds which can behierarchically ordered into a reaction network. In the present work we illustrate these posetQSSPR models for the correlation of the octanol/water partition coefficient (log Kow and thesoil sorption coefficient (log KOC of chlorophenols. Excellent results are obtained for allQSSPR poset models to yield: log Kow, r = 0.991, s = 0.107, with the cluster-expansionQSSPR; and log KOC, r = 0.938, s = 0.259, with the spline QSSPR. Thus, the poset QSSPRmodels predict environmentally important properties of chlorophenols.

  1. Synthesis of Pd nanoparticles decorated with graphene and their application in electrocatalytic degradation of 4-chlorophenol.

    Science.gov (United States)

    Bian, Zhao-Yong; Bian, Yu; Wang, Hui; Ding, Ai-Zhong

    2014-09-01

    Pd/graphene catalysts were prepared in situ from graphite oxide and palladium salts by the hydrogen-reduction method and were then used for the construction of Pd/graphene gas-diffusion electrodes (GDE). The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential pulse voltammetry (DPV) techniques. In the Pd/graphene catalysts, Pd particles, with an average size of 3.6 nm and an amorphous structure, were highly dispersed in the graphene. The Pd/graphene catalysts accelerated the two-electron reduction of O2 to H2O2 by feeding air, which favors the production of hydroxyl radicals (HO*). In the electrolytic system, HO* was determined in the reaction mixture by the electron spin resonance spectrum (ESR). The dechlorination degree of 4-chlorophenol reached approximately 90.5% after 80 min, and the removal efficiency and the average removal efficiency of 4-chlorophenol, in terms of total organic carbon (TOC) after 120 min, reached approximately 93.3% and 85.1%, respectively. Furthermore, based on the analysis of electrolysis intermediates by high performance liquid chromatography (HPLC) and ion chromatography (IC), a reaction scheme was proposed for the Pd/grapheme GDE catalytic degradation of 4-chlorophenol.

  2. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Jie Du; Xiaoqing Gao; Li Deng; Nengbin Chang; Huailin Xiong; Yu Zheng

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro-tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su-pernatant were signiifcantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes-enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen-chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.

  3. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    Science.gov (United States)

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  4. Zirconyl chloride promoted highly efficient solid phase synthesis of amide derivatives

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An efficient solid phase route for the synthesis of amide derivatives by the reaction of carboxylic acids with urea in the presence of catalytic amount of zirconyl chloride under microwave irradiation conditions was described. In this way, a range of interesting amide derivatives was obtained in good to excellent yields. The catalyst was recycled with fresh reactants and it gave almost similar results without significant loss of activity up to the third run.

  5. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Li YANG; Ta Yuan CHANG; Bo Liang LI; Jin Bo YANG; Jia CHEN; Guang Yao YU; Pei ZHOU; Lei LEI; Zhen Zhen WANG; Catherine CY CHANG; XinYing YANG

    2004-01-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study,with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP- 1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-l-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP- 1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner.Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex,which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  6. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    Science.gov (United States)

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.

  7. Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model.

    Science.gov (United States)

    Lui, Pauline Po Yee; Kong, Siu Kai; Lau, Pui Man; Wong, Yin Mei; Lee, Yuk Wa; Tan, Chunlai; Wong, On Tik

    2014-11-01

    The medium- to long-term healing effect and infiltration of inflammatory cells, after transplantation of allogeneic tendon-derived stem cell (TDSC) to the rat patellar tendon window wound, were examined. Allogeneic patellar TDSCs derived from a green fluorescent protein rat were used. The outcome of tendon healing and the infiltration of inflammatory cells were examined by histology and immunohistochemistry up to week 16 postinjury. The fate of the transplanted cells was examined by ex vivo fluorescent imaging and immunohistochemistry. Our results showed that the transplantation of allogeneic TDSCs promoted tendon healing with no increased risk of ectopic chondro-ossification up to week 16. A low infiltration of T cells, ED1 macrophages, ED2 macrophages, and mast cells in the window wound was obtained. The transplanted TDSCs were found in the window wound at week 1 and 2, but were absent after week 4 postinjury. In conclusion, allogeneic TDSCs promoted tendon repair in the medium to long term and exhibited weak immunoreactions and anti-inflammatory effects in the hosts after transplantation in a rat model. There was no increased risk of ectopic chondro-ossification after TDSC transplantation. The decrease in the number of transplanted cells with time suggested that allogeneic TDSCs did not promote tendon repair through direct differentiation.

  8. Autophagy activator promotes neuronal differentiation of adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Yanhui Lu; Xiaodong Yuan; Qiaoyu Sun; Ya Ou

    2013-01-01

    Preliminary research from our group found altered autophagy intensity during adipose-derived stromal cell differentiation into neuronal-like cells, and that this change was associated with morphological changes in differentiated cells. This study aimed to verify the role of rapamycin, an autophagy activator, in the process of adipose-derived stromal cell differentiation into neuronal-like cells. Immunohistochemical staining showed that expression of neuron-specific enolase and neurofilament-200 were gradually upregulated in adipose-derived stromal cells after 5 mM β-mercaptoethanol induction, and the differentiation rate gradually increased with induction time. Using transmission electron microscopy, induced cells were shown to exhibit cytoplasmic autophagosomes, with bilayer membranes, and autolysosomes. After rapamycin (200μg/L) induction for 1 hour, adipose-derived stromal cells began to extend long processes, similar to the morphology of neuronal-like cells, while untreated cells did not exhibit similar morphologies until 3 hours after induction. Moreover, the differentiation rate was significantly increased after rapamycin treatment. Compared with untreated cells, expression of LC3, an autophagy protein, was also significantly upregulated. Positive LC3 expression tended to concentrate at cell nuclei with increasing induction times. Our experimental findings indicate that autophagy can significantly increase the speed of adipose-derived stromal cell differentiation into neuronal-like cells.

  9. The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells.

    Directory of Open Access Journals (Sweden)

    Aniya Larbi

    Full Text Available Human embryonic stem cells (hESCs can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+CD45RA(+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.

  10. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    Science.gov (United States)

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  11. Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    JIANG,Zhao-Qin; LU,Jun; ZHOU,Min-Feng; JI,Shun-Jun

    2004-01-01

    @@ In recent years, much attention has been directed towards the syntheses of 1,4-dihydropyridyl compounds due to the fact that 1,4-dihydropyridyl compounds possess a variety of biological activities.[1] In view of the importance of polyhydroquinoline derivatives, many classical methods for the synthesis of polyhydroquinoline derivatives were reported[2] by conventional heating and refluxing approaches in the presence of organic solvent. These methods, however, involve long reaction time, harsh reaction conditions, the use of a large quantity of organic solvent and unsatisfactory yields. Therefore,improvements in such syntheses have been sought continuously.

  12. [Present status of research in bone marrow-derived mesenchymal stem cells for promoting the healing of diabetic ulcer].

    Science.gov (United States)

    Zheng, Shu-Juan; Jia, Chi-Yu

    2012-08-01

    The delayed healing of diabetic ulcer has been haunting the surgeons and researchers for a long time. Although we have been researching and exploring the effective therapies for many years, the progress has been limited. Bone marrow-derived mesenchymal stem cells (BMSCs) have gradually won worldwide attention for their characteristics of differentiating into tissue repair cells and secreting multiple cytokines as well as growth factors. In recent years, the role of BMSCs in the treatment of diabetic ulcer has been drawing more and more attention. This article reviewed the advancement in the research of BMSCs in promoting the healing of diabetic ulcer. Through a discussion of the treatment of diabetic ulcer, the related research in BMSCs, as well as its role in diabetic ulcer treatment, the mechanism of BMSCs in promoting healing of diabetic ulcers is discussed. We expect through further research, unified criteria for the quality of BMSCs, application approach and dosage of BMSCs could be established.

  13. An Efficient Solid Acid Promoted Synthesis of Quinoxaline Derivatives at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    AHMAD,Shaabani; ALI,Maleki

    2007-01-01

    Quinoxaline derivatives have been synthesized in a very short time with excellent yields by the condensation of 1,2-diamines with aliphatic or aromatic 1,2-dicarbonyl compounds or benzilmonoxime in the presence of silica sul-furic acid as a very inexpensive solid acid catalyst at room temperature. The recovery and reuse of the catalyst are also satisfactory.

  14. Synthesis of new 2-aminocarbohydrate-1,4-naphthoquinone derivatives promoted by ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Caroline F.J.; Jordao, Alessandro K.; Ferreira, Vitor F.; Souza, Maria C.B.V. de; Cunha, Anna C., E-mail: annac@vm.uff.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Resende, Jackson A.L.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Quimica Inorganica. Lab. Regional de Difracao de Raios X

    2011-07-01

    In this report we describe the ultrasound-accelerated synthesis of new naphthoquinone derivatives 6a-f and 7a-c, which possess an aminocarbohydrate chain at the C-2 position of the quinone ring. This novel type of 1,4-naphthoquinone derivative has been synthesized under mild conditions by the reaction of 1,4-naphthoquinone (8a) or methoxylapachol (8b) with different aminocarbohydrates 9a-d. Characterization of all substances was confirmed by one- and two-dimensional nuclear magnetic resonance (NMR) techniques ({sup 1}H, {sup 13}C-APT, cosy-1H vs. 1H and HETCOR {sup 1}J{sub CH}) and by high-resolution electrospray ionization mass spectrometry (HR ESI MS). (author)

  15. Synthesis of Polymerizable Cyclodextrin Derivatives for Use in Adhesion-Promoting Monomer Formulations

    Directory of Open Access Journals (Sweden)

    Bowen, Rafael L.

    2009-01-01

    Full Text Available The synthesis of the cyclodextrin derivatives reported herein was assisted by extensive literature research together with structure-property relationships derived from three-dimensional molecular modeling. These studies led to the hypothesis that many of the 21 hydroxyl groups on beta-cyclodextrin molecules could be derivatized to form a closely related family of analogous chemical compounds containing both polymerizable groups and hydrophilic ionizable ligand (substrate-binding groups, each attached via hydrolytically-stable ether-linkages. The vinylbenzylether polymerizable groups should readily homopolymerize and also copolymerize with methacrylates. This could be highly useful for dental applications because substantially all contemporary dental resins and composites are based on methacrylate monomers. Due to hydrophilic ligands and residual hydroxyl groups, these cyclodextrin derivatives should penetrate hydrated layers of dentin and enamel to interact with collagen and tooth mineral. Analyses indicated that the diverse reaction products resulting from the method of synthesis reported herein should comprise a family of copolymerizable molecules that collectively contain about 30 different combinations of vinylbenzyl and hexanoate groups on the various molecules, with up to approximately seven of such groups combined on some of the molecules. Although the hypothesis was supported, and adhesive bonding to dentin is expected to be significantly improved by the use of these polymerizable cyclodextrin derivatives, other efforts are planned for improved synthetic methods to ensure that each of the reaction-product molecules will contain at least one copolymerizable moiety. The long-term objective is to enable stronger and more durable attachments of densely cross-linked polymers to hydrated hydrophilic substrates. Capabilities for bonding of hydrolytically stable polymers to dental and perhaps other hydrous biological tissues could provide

  16. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  17. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  18. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  19. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Science.gov (United States)

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  20. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Martin, Rebecca K; Saleem, Sheinei J; Folgosa, Lauren; Zellner, Hannah B; Damle, Sheela R; Nguyen, Giang-Kim T; Ryan, John J; Bear, Harry D; Irani, Anne-Marie; Conrad, Daniel H

    2014-07-01

    It has been shown recently that MCs are required for differential regulation of the immune response by granulocytic versus monocytic MDSCs. Granulocytic MDSCs promoted parasite clearance, whereas monocytic MDSCs enhanced tumor progression; both activities were abrogated in MC-deficient mice. Herein, we demonstrate that the lack of MCs also influences MDSC trafficking. Preferential trafficking to the liver was not seen in MC-deficient mice. In addition, evidence that the MC mediator histamine was important in MDSC trafficking and activation is also shown. MDSCs express HR1-3. Blockade of these receptors by HR1 or HR2 antagonists reversed the histamine enhancement of MDSC survival and proliferation observed in cell culture. In addition, histamine differentially influenced Arg1 and iNOS gene expression in MDSCs and greatly enhanced IL-4 and IL-13 message, especially in granulocytic MDSCs. Evidence that histamine influenced activity seen in vitro translated to in vivo when HR1 and HR2 antagonists blocked the effect of MDSCs on parasite expulsion and tumor metastasis. All of these data support the MDSC-mediated promotion of Th2 immunity, leading to the suggestion that allergic-prone individuals would have elevated MDSC levels. This was directly demonstrated by looking at the relative MDSC levels in allergic versus control patients. Monocytic MDSCs trended higher, whereas granulocytic MDSCs were increased significantly in allergic patients. Taken together, our studies indicate that MCs and MC-released histamine are critical for MDSC-mediated immune regulation, and this interaction should be taken into consideration for therapeutic interventions that target MDSCs.

  1. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    Science.gov (United States)

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  2. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  3. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  4. Evaluation of removal efficiency of 2-chlorophenol in aquatic environments by modified fly ash

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Background: Chlorophenols are classified as priority toxic pollutants. These acidic organic compounds present a serious potential hazard for human health and aquatic life. Chlorophenols accumulate in water, soil and air due to high stability, and impart an unpleasant taste and odor to drinking water and can exert negative effects on different biological processes. Among the different methods of removal, adsorption process by low price adsorbents, such as fly ash (FA is common. Therefore, in this study, the effects of oxidation of FA as modified adsorbent were investigated when the adsorption of 2-chlorophenol (2-CP was increased. Methods: This experimental study was conducted from March to September of 2013. FA obtained from Zarand power plant (located in Kerman province was oxidized with potassium permanganate. Effective factors on the oxidation of FA, such as temperature, oxidation time and concentrations of oxidizers were optimized. Raw sewage of Zarand coal washing plant was tested under optimal conditions. All tests were carried out according to the standard methods book for the examination of water and wastewater. Results: Optimal condition for the preparation of oxidized FA was obtained at 70°C, 1 hour, and 1 mM of potassium permanganate concentration. The absorber obtained was able to remove 96.22% of 2-CP under optimized conditions (pH=3, 2 hours, adsorbent dose 0.8 g and room temperature. The removal efficiency of the real wastewater under optimal conditions was 82.1%. Conclusion: Oxidized FA can be used for the removal of this pollutant from industry wastewater due to its high efficiency of removal in real wastewater, it is easy and inexpensive to prepare and could modify the sorbent.

  5. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes.

    Science.gov (United States)

    Nakagawa, Yosuke; Nakamura, Sou; Nakajima, Masahiro; Endo, Hiroshi; Dohda, Takeaki; Takayama, Naoya; Nakauchi, Hiromitsu; Arai, Fumihito; Fukuda, Toshio; Eto, Koji

    2013-08-01

    Induced pluripotent stem cell (iPSC) technology enables us to investigate various potential iPSC-based therapies. Although the safety of iPSC derivation has not been completely validated, anucleate cells, such as platelets or erythrocytes, derived from iPSCs are promising targets. However, the efficiency of in vitro platelet generation from megakaryocytes (MKs) under static culture conditions is lower than is seen in vivo. In this study, we demonstrate the proof of concept by a two-dimensional flow culture system that enabled us to increase platelet yield from human embryonic stem cell or iPSC-derived MKs using a biomimetic artificial blood vessel system. The bioreactor was composed of biodegradable scaffolds with ordered arrays of pores made to mimic in vivo bone marrow through salt leaching. Within the system, two flows in different directions in which the angle between the directions of flow is 60 degrees but not 90 degrees contributed to suitable pressure and shear stress applied to MKs to promote platelet generation. Generated platelets derived from human embryonic stem cells or human induced pluripotent stem cells through the bioreactor with a 60-degree angle revealed intact integrin αIIbβ3 activation after agonist stimulation. Collectively, our findings indicate that two flows in different directions of two-dimensional flow culture may be a feasible system for in vitro generation of platelets from pluripotent stem cells (i.e., iPSC-derived MKs) in numbers sufficient for transfusion therapy.

  6. Synthesis, characterization and application of an inorgano organic material: -chlorophenol anchored onto zirconium tungstate

    Indian Academy of Sciences (India)

    Beena Pandit; Uma Chudasama

    2001-06-01

    Tetravalent metal acid (TMA) salt zirconium tungstate (ZW) has been synthesized, followed by its derivatization using para-chlorophenol (CP). The resulting compound is abbreviated as ZWCP. ZWCP has been characterized for elemental analysis, spectral analysis (FTIR), X-ray analysis and thermal analysis (TGA). Its chemical stability has been assessed in various mineral acids, bases and organic solvents. Ion exchange capacity (IEC) has been determined and distribution behaviour towards several metal ions in different electrolyte solutions with varying concentrations has been studied and a few binary separations achieved.

  7. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process.

  8. An experimental study on astrocytes promoting production of neural stem cells derived from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-feng; FANG Feng; FU Jin-rong; DONG Yong-sui; YE Du-yun; SHU Sai-nan; ZHEN Hong; LI Ge

    2005-01-01

    Background The production of neural stem cells (NSCs) derived from embryonic stem (ES) cells was usually very low according to previous studies, which was a major obstacle for meeting the needs of clinical application. This study aimed at investigating whether astrocytes could promote production of NSCs derived from ES cells in vitro.Methods Mouse ES cells line-D3 was used to differentiate into NSCs with astrocytes as inducing stromal cells by means of three-stage differentiation procedure. Another group without astrocytes served as control. The totipotency of ES cells was identified by observation of cells' morphology and formation of teratoma in severe combined immunodeficiency disease (SCID) mice. The quantity and purity of NSCs derived from ES cells were analyzed using clonogenic assay, immunohistochemical staining and flow cytometry assay. The plasticity of NSCs was detected by differentiating test. Octamer-binding transcription factor 4 (Oct-4) and nestin, the specific marker genes of ES cells and NSCs respectively, were detected continuously using reverse transcription-polymerase chain reaction (RT-PCR) method to monitor the process of cell differentiation. Results The ES cells of D3 line could maintain the ability of differentiating into cellular derivations of all three primary germ layers after continuous passage culture. At the end of two-stage of inducing process, 23.2±3.5 neurospheres per plate formed in astrocyte-induced group and only 0.8±0.3 per plate in the control group (clonogenic assay, P<0.01), and the ratio of nestin positive cells was (50.2±2.8)% in astrocyte-induced group and only (1.4±0.5)% in the control group (flow cytometry, P<0.01). With the induction undergoing, the expression of Oct-4 gradually decreased and then disappeared, while the expression of nestin was increased step by step, and the ratio of nestin positive cells was up to 91.4% by the three-stage differentiation. The nestin positive cells could be further induced into

  9. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke.

    Science.gov (United States)

    Cook, Douglas J; Nguyen, Cynthia; Chun, Hyun N; L Llorente, Irene; Chiu, Abraham S; Machnicki, Michal; Zarembinski, Thomas I; Carmichael, S Thomas

    2017-03-01

    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.

  10. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  11. Chloroquine and its derivatives exacerbate B19V-associated anemia by promoting viral replication.

    Directory of Open Access Journals (Sweden)

    Claudia Bönsch

    Full Text Available BACKGROUND: An unexpectedly high seroprevalence and pathogenic potential of human parvovirus B19 (B19V have been observed in certain malaria-endemic countries in parallel with local use of chloroquine (CQ as first-line treatment for malaria. The aims of this study were to assess the effect of CQ and other common antimalarial drugs on B19V infection in vitro and the possible epidemiological consequences for children from Papua New Guinea (PNG. METHODOLOGY/PRINCIPAL FINDINGS: Viral RNA, DNA and proteins were analyzed in different cell types following infection with B19V in the presence of a range of antimalarial drugs. Relationships between B19V infection status, prior 4-aminoquinoline use and anemia were assessed in 200 PNG children <10 years of age participating in a case-control study of severe infections. In CQ-treated cells, the synthesis of viral RNA, DNA and proteins was significantly higher and occurred earlier than in control cells. CQ facilitates B19V infection by minimizing intracellular degradation of incoming particles. Only amodiaquine amongst other antimalarial drugs had a similar effect. B19V IgM seropositivity was more frequent in 111 children with severe anemia (hemoglobin <50 g/L than in 89 healthy controls (15.3% vs 3.4%; P = 0.008. In children who were either B19V IgM or PCR positive, 4-aminoquinoline use was associated with a significantly lower admission hemoglobin concentration. CONCLUSIONS/SIGNIFICANCE: Our data strongly suggest that 4-aminoquinoline drugs and their metabolites exacerbate B19V-associated anemia by promoting B19V replication. Consideration should be given for choosing a non-4-aminoquinoline drug to partner artemisinin compounds in combination antimalarial therapy.

  12. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  13. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD

    Science.gov (United States)

    S. Sonnet, Davis; N. O’Leary, Monique; A. Gutierrez, Mark; M. Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P. Mitchell, Kylie; J. Lopez, Antonio; Vockley, Jerry; K. Kennedy, Brian; Ramanathan, Arvind

    2016-01-01

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production. PMID:27373929

  14. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  15. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells.

    Science.gov (United States)

    Rui, Yun Feng; Lui, Pauline Po Yee; Ni, Ming; Chan, Lai Shan; Lee, Yuk Wa; Chan, Kai Ming

    2011-03-01

    This study aimed to investigate the effect of repetitive tensile loading on the expression of BMP-2 and the effect of BMP-2 on the osteogenic differentiation of tendon-derived stem cells (TDSCs) in vitro. Repetitive stretching was applied to TDSCs isolated from rat patellar tendon at 0%, 4%, and 8%, 0.5 Hz. The expression of BMP-2 was detected by Western blotting and qPCR. To study the osteogenic effects of BMP-2 on TDSCs, BMP-2 was added to the TDSC monolayer for the detection of ALP activity and calcium nodule formation in a separate experiment. TDSCs adhered, proliferated, and aligned along the direction of externally applied tensile force while they were randomly oriented in the control group. Western blotting showed increased expression of BMP-2 in 4% and 8% stretching groups but not in the control group. Up-regulation of BMP-2 mRNA was also observed in the 4% stretching group. BMP-2 increased the osteogenic differentiation of TDSCs as indicated by higher ALP cytochemical staining, ALP activity, and calcium nodule formation. Repetitive tensile loading increased the expression of BMP-2 and addition of BMP-2 enhanced osteogenic differentiation of TDSCs. Activation of BMP-2 expression in TDSCs during tendon overuse might provide a possible explanation of ectopic calcification in calcifying tendinopathy.

  16. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function

    Directory of Open Access Journals (Sweden)

    Eunyoung Chun

    2015-07-01

    Full Text Available Our study reveals a non-canonical role for CCL2 in modulating non-macrophage, myeloid-derived suppressor cells (MDSCs and shaping a tumor-permissive microenvironment during colon cancer development. We found that intratumoral CCL2 levels increased in patients with colitis-associated colorectal cancer (CRC, adenocarcinomas, and adenomas. Deletion of CCL2 blocked progression from dysplasia to adenocarcinoma and reduced the number of colonic MDSCs in a spontaneous mouse model of colitis-associated CRC. In a transplantable mouse model of adenocarcinoma and an APC-driven adenoma model, CCL2 fostered MDSC accumulation in evolving colonic tumors and enhanced polymorphonuclear (PMN-MDSC immunosuppressive features. Mechanistically, CCL2 regulated T cell suppression of PMN-MDSCs in a STAT3-mediated manner. Furthermore, CCL2 neutralization decreased tumor numbers and MDSC accumulation and function. Collectively, our experiments support that perturbing CCL2 and targeting MDSCs may afford therapeutic opportunities for colon cancer interception and prevention.

  17. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    Science.gov (United States)

    Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery. PMID:27703850

  18. Cerebrospinal fluid derived from progressive multiple sclerosis patients promotes neuronal and oligodendroglial differentiation of human neural precursor cells in vitro.

    Science.gov (United States)

    Cristofanilli, M; Cymring, B; Lu, A; Rosenthal, H; Sadiq, S A

    2013-10-10

    In the adult CNS, tissue-specific germinal niches, such as the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus, contain multipotent neural precursor cells (NPCs) with the capacity to self-renew and differentiate into functional brain cells (i.e. neurons, astrocytes or oligodendrocytes). Due to their intrinsic plasticity, NPCs can be considered an essential part of the cellular mechanism(s) by which the CNS tries to repair itself after an injury. In inflammatory CNS disorders, such as multiple sclerosis (MS), neurogenesis and gliogenesis occur as part of an 'intrinsic' self-repair process. However, full and long-lasting repair in progressive MS is not achieved. Recent data suggest that endogenous NPCs, while trying to repair the damaged CNS in MS, may become the target of the disease itself. It is possible that factors produced during MS, like CNS-infiltrating blood-borne inflammatory mononuclear cells, reactive CNS-resident cells, and humoral mediators, can alter the physiological properties of NPCs, ultimately impairing their ability to promote neural regeneration. Here, we investigate the effect of cerebrospinal fluid (CSF) derived from primary progressive (PPMS) and secondary progressive (SPMS) MS patients (CSF-MS) on the survival, proliferation, and differentiation of commercially available human embryonic-derived NPCs named ENStem-A. We found that PPMS derived CSF markedly reduced the proliferation of ENStem-A and increased their differentiation toward neuronal and oligodendroglial cells, compared to control CSF. Similar but less striking results were seen when ENstem-A were treated with SPMS derived CSF. Our findings suggest that in both SPMS and PPMS the CNS milieu, as determined by extrapolation from CSF findings, may stimulate the endogenous pool of NPCs to differentiate into neurons and oligodendrocytes.

  19. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland.

    Science.gov (United States)

    O'Bryan, Katharine E; Prober, Suzanne Mary; Lunt, Ian D; Eldridge, David J

    2009-04-01

    The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis-Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses

  20. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  1. An alkylphenol mix promotes seminoma derived cell proliferation through an ERalpha36-mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Hussein Ajj

    Full Text Available Long chain alkylphenols are man-made compounds still present in industrial and agricultural processes. Their main use is domestic and they are widespread in household products, cleansers and cosmetics, leading to a global environmental and human contamination. These molecules are known to exert estrogen-like activities through binding to classical estrogen receptors. In vitro, they can also interact with the G-protein coupled estrogen receptor. Testicular germ cell tumor etiology and progression are proposed to be stimulated by lifelong estrogeno-mimetic exposure. We studied the transduction signaling pathways through which an alkyphenol mixture triggers testicular cancer cell proliferation in vitro and in vivo. Proliferation assays were monitored after exposure to a realistic mixture of 4-tert-octylphenol and 4-nonylphenol of either TCam-2 seminoma derived cells, NT2/D1 embryonal carcinoma cells or testis tumor in xenografted nude mice. Specific pharmacological inhibitors and gene-silencing strategies were used in TCam-2 cells in order to demonstrate that the alkylphenol mix triggers CREB-phosphorylation through a rapid, ERα36-PI3kinase non genomic pathway. Microarray analysis of the mixture target genes revealed that this pathway can modulate the expression of the DNA-methyltransferase-3 (Dnmt3 gene family which is involved in DNA methylation control. Our results highlight a key role for ERα36 in alkylphenol non genomic signaling in testicular germ cell tumors. Hence, ERα36-dependent control of the epigenetic status opens the way for the understanding of the link between endocrine disruptor exposure and the burden of hormone sensitive cancers.

  2. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  3. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Science.gov (United States)

    Grade, Sofia; Weng, Yuan C; Snapyan, Marina; Kriz, Jasna; Malva, João O; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  4. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Directory of Open Access Journals (Sweden)

    Sofia Grade

    Full Text Available Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS. The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF, a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  5. Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells.

    Science.gov (United States)

    Nakanishi, Masaya; Niidome, Tetsuhiro; Matsuda, Satoru; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2007-02-01

    Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. It has been recognized that astrocytes promote neurogenic differentiation of NSPCs, suggesting the importance of cell-cell interactions between glial cells and NSPCs. Recent studies have demonstrated that microglia, one type of glial cells, play an important role in neurogenesis. However, little is known about how activated microglia control the proliferation and differentiation of NSPCs. In this study, we investigated the possibility that microglia-derived soluble factors regulate the behaviour of NSPCs. To this end, NSPCs and microglial cultures were obtained from rat embryonic day 16 subventricular zone (SVZ) and rat postnatal 1 day cortex, respectively, and the conditioned medium from microglia was prepared. Microglial-conditioned medium had no significant effect on the proliferation of NSPCs. In contrast, it increased the percentage of cells positive for a marker of astrocytes, glial fibrillary acidic protein (GFAP) during differentiation. The induction of astrocytic differentiation by microglial-conditioned medium was reduced by the inhibition of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, microglia-derived interleukin (IL)-6 and leukaemia inhibitory factor (LIF) were identified as essential molecules for this astrocytic differentiation using neutralizing antibodies and recombinant cytokines. Our results suggest that microglia as well as astrocytes contribute to the integrity of the local environment of NSPCs, and at least IL-6 and LIF released by activated microglia promote astrocytic differentiation of NSPCs via the activation of the JAK/STAT and MAPK pathways.

  6. Estrogen Promotes the Development of Mouse Cumulus Cells in Coordination with Oocyte-Derived GDF9 and BMP15

    Science.gov (United States)

    Sugiura, Koji; Su, You-Qiang; Li, Qinglei; Wigglesworth, Karen; Matzuk, Martin M.; Eppig, John J.

    2010-01-01

    The differentiation and function of cumulus cells depend upon oocyte-derived paracrine factors, but studies on the estrogen receptor knockout mice suggested that estrogen also participates in these processes. This study investigates the possible coordination of estrogen and oocytes in the development and function of cumulus cells using cumulus expansion and the expression of transcripts required for expansion as functional endpoints. Preantral granulosa cell-oocyte complexes developed in vitro with 17β-estradiol (E2) exhibited increased levels of cumulus expansion and Has2 transcripts, encoding hyaluronan synthase 2, compared with those developed without E2. Moreover, cumulus cell-oocyte complexes (COCs) isolated from antral follicles and maintained in culture without E2 exhibited reduced cumulus expansion and Has2 mRNA levels compared with freshly isolated COCs. Exogenous E2, provided during the maintenance culture, alleviated these deficiencies. However, when oocytes were removed from COCs, E2 supplementation did not maintain competence to undergo expansion; the presence in culture of either fully grown oocytes or recombinant growth differentiation factor 9 (GDF9) was required. Recombinant bone morphogenetic protein 15, but not fibroblast growth factor 8, augmented the GDF9 effect. Oocytes or GDF9 suppressed cumulus cell levels of Nrip1 transcripts encoding nuclear receptor-interacting protein 1, a potential inhibitor of estrogen receptor signals. Therefore, E2 and oocyte-derived paracrine factors GDF9 and bone morphogenetic protein 15 coordinate to promote the development of cumulus cells and maintain their competence to undergo expansion. Furthermore, suppression of Nrip1 expression in cumulus cells by oocyte may be one mechanism mediating cross talk between oocyte and E2 signals that promotes follicular development. PMID:21047911

  7. ROCK Inhibition Promotes Attachment, Proliferation, and Wound Closure in Human Embryonic Stem Cell–Derived Retinal Pigmented Epithelium

    Science.gov (United States)

    Croze, Roxanne H.; Thi, William J.; Clegg, Dennis O.

    2016-01-01

    Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies. PMID:27917311

  8. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes.

    Science.gov (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire

    2016-08-15

    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  9. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    Directory of Open Access Journals (Sweden)

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  10. Solar efficiency of a new deposited titania photocatalyst. Chlorophenol, pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, Chantal; Disdier, Jean; Maldonado, Manuel I.; Herrmann, Jean-Marie [Laboratoire D' Application de la Chimie a l' Environnement LACE (UMR 5634), Universite Claude Bernard Lyon I, Bat Jules Raulin, 69622 Villeurbanne Cedex (France); Monnet, Christine; Dussaud, Joseph [AHLSTROM Research and Services, ZI de l' Abbaye, 38780 Pont-Eveque (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2003-11-10

    A specially designed titania photocatalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photocatalytic support, with Millennium PC500 anatase. At the same time, a new solar photoreactor (STEP) was designed based on the multi-step cascade falling-film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Several types of reactants were treated: 4-chlorophenol as a model organic pollutant; formetanate, a widely used pesticide in horticulture; a mixture of pesticides used in vineyards; and indigo carmine (IC) and Congo red (CR), which are complex multifunctional dye molecules. Each reaction was performed simultaneously in a solar CPC slurry photoreactor and in the STEP photoreactor under identical solar exposure to better evaluate and validate the results obtained. The STEP solar reactor was found to be as efficient as the CPC for 4-chlorophenol and formetanate total degradation. In contrast, both dyes required longer treatment in STEP experiments. This new system, in which the final tedious filtration can actually be avoided, constitutes a good alternative to slurries.

  11. Kinetics and Mechanism of Dechlorination of o-Chlorophenol by Nanoscale Pd/Fe

    Institute of Scientific and Technical Information of China (English)

    WEI Jian-jun; XU Xin-hua; LIU Yong

    2004-01-01

    Nanoscale Pd/Fe bimetallic particles were synthesized with an efficient method to dechlorinate o-chlorophenol. The nanoscale Pd/Fe particles were determined by transmission electron microscopy and BET specific surface area analysis. Most of the particles are in the size range of 20-100 nm. The BET specific surface area of synthesized nanoscale Pd/Fe particles is 12.4 m2/g. In contrast, a commercially available fine iron powder(<100 mesh) has a specific surface area of 0.49 m2/g. Batch studies demonstrated that the nanoscale particles can effectively dechlorinate o-chlorophenol. The dechlorination reaction takes place on the surface of synthesized nanoscale Pd/Fe bimetallic particles in a pseudo-first order reaction. The surface-area-normalized rate coefficients(kSA) are comparable to those reported in the literature for chlorinated ethenes. The observed reaction rate constants(kobs) are dominated by the mass fraction of Pd and the mass concentration of the nanoscale Pd/Fe particles.

  12. Absence of polychlorinated dibenzodioxins and dibenzofurans after lactoperoxidase-catalyzed transformation of chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, L.G.; Swanson, S.E.

    1987-06-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) have been detected in many species and environments their bioresistance and toxicity being of great concern. PCDDs and PCDFs, or the predioxins and -furans, are formed from chlorophenols (CPs) by burning and pyrolysis by arcing and by photolysis. PCDDs and PCDFs have also been found in emissions from automobiles, municipal waste incinerators, and nickel and copper smelting. Peroxidases (POs), a group of heme-proteins, are found in many organs and organisms. They are exceptional enzymes because of low substrate specificity and multiple reaction mechanisms. This enzyme-catalyzed free radical reaction resembles reactions in pyrolysis, arcing, and photolysis. Halogenated phenols are among the peroxidase substrates, and phenolic substrates have been found to yield dibenzodioxin- and dibenzofuran like products. The question then arose whether CP's in peroxidase-mediated reactions could yield chlorinated dibenzodioxins and dibenzofurans. Since no-one has yet reported a biological formation of PCDDs and PCDFs the authors have analyzed the rpdoct mixture from the lactoperoxidase-catalyzed oxidation of some chlorophenols.

  13. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.

    Science.gov (United States)

    Hole, Paul S; Zabkiewicz, Joanna; Munje, Chinmay; Newton, Zarabeth; Pearn, Lorna; White, Paul; Marquez, Nuria; Hills, Robert K; Burnett, Alan K; Tonks, Alex; Darley, Richard L

    2013-11-07

    Excessive production of reactive oxygen species (ROS) is frequently observed in cancer and is known to strongly influence hematopoietic cell function. Here we report that extracellular ROS production is strongly elevated (mean >10-fold) in >60% of acute myeloid leukemia (AML) patients and that this increase is attributable to constitutive activation of nicotinamide adenine dinucleotide phosphate oxidases (NOX). In contrast, overproduction of mitochondrial ROS was rarely observed. Elevated ROS was found to be associated with lowered glutathione levels and depletion of antioxidant defense proteins. We also show for the first time that the levels of ROS generated were able to strongly promote the proliferation of AML cell lines, primary AML blasts, and, to a lesser extent, normal CD34(+) cells, and that the response to ROS is limited by the activation of the oxidative stress pathway mediated though p38(MAPK). Consistent with this, we observed that p38(MAPK) responses were attenuated in patients expressing high levels of ROS. These data show that overproduction of NOX-derived ROS can promote the proliferation of AML blasts and that they also develop mechanisms to suppress the stress signaling that would normally limit this response. Together these adaptations would be predicted to confer a competitive advantage to the leukemic clone.

  14. InCl3·4H2O Promoted Green Preparation of Xanthenedione Derivatives in Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    HU Xue-yuan; ZHANG Xin-ying; FAN Xue-sen; WANG Jian-ji

    2004-01-01

    Xanthenediones derivatives have attracted considerable interests in recent times because they constitute a structural unit in a number of natural products1 and have been used as versatile synthons due to the inherent reactivity of the inbuilt pyran ring2. The conventional syntheses of xanthenediones were acid or base catalyzed condensation of appropriate active methylene carbonyl compounds with aldehydes3. However, many of these procedures involved longer reaction times,low yields and side reactions of aldehydes. In recent years, room temperature ionic liquids (RTILs) have been used as novel green reaction media4. Considering that InCl3 is an efficient Lewis acid catalyst used in promoting many organic reactions, especially in several condensation processes, we herein wish to report a very simple and green method for the preparation of poly-hydrogenated xanthenediones through InCl3·4H2O promoted cascade reaction of aldehydes and 5,5-dimethyl-l,3-cyclohexanedione in ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The preparative process presented here is operationally simple, environmentally benign and has the advantage of enhanced atom utilization. Furthermore, the solvent and the catalyst used can be recovered easily and reused efficiently.

  15. Endogenous oils derived from human adipocytes are potent adjuvants that promote IL-1α-dependent inflammation.

    Science.gov (United States)

    Tynan, Graham A; Hearnden, Claire H; Oleszycka, Ewa; Lyons, Claire L; Coutts, Graham; O'Connell, Jean; Corrigan, Michelle A; Lynch, Lydia; Campbell, Matthew; Callanan, John J; Mok, Kenneth H; Geoghegan, Justin; O'Farrelly, Cliona; Allan, Stuart M; Roche, Helen M; O'Shea, Donal B; Lavelle, Ed C

    2014-06-01

    Obesity is characterized by chronic inflammation associated with neutrophil and M1 macrophage infiltration into white adipose tissue. However, the mechanisms underlying this process remain largely unknown. Based on the ability of oil-based adjuvants to induce immune responses, we hypothesized that endogenous oils derived from necrotic adipocytes may function as an immunological "danger signal." Here we show that endogenous oils of human origin are potent adjuvants, enhancing antibody responses to a level comparable to Freund's incomplete adjuvant. The endogenous oils were capable of promoting interleukin (IL)-1α-dependent recruitment of neutrophils and M1-like macrophages, while simultaneously diminishing M2-like macrophages. We found that endogenous oils from subcutaneous and omental adipocytes, and from healthy and unhealthy obese individuals, promoted comparable inflammatory responses. Furthermore, we also confirmed that white adipocytes in visceral fat of metabolically unhealthy obese (MUO) individuals are significantly larger than those in metabolically healthy obese individuals. Since adipocyte size is positively correlated with adipocyte death, we propose that endogenous oils have a higher propensity to be released from hypertrophied visceral fat in MUO individuals and that this is the key factor in driving inflammation. In summary, this study shows that adipocytes contain a potent oil adjuvant which drives IL-1α-dependent proinflammatory responses in vivo.

  16. Conophylline Promotes the Proliferation of Immortalized Mesenchymal Stem Cells Derived from Fetal Porcine Pancreas (iPMSCs)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-ru; HUA Jin-lian; LI Dan; CAO Hui; L Xiao; CHU Yuan-kui; BAI Yao-fu; JIN Ya-ping; PENG Sha; DOU Zhong-ying

    2013-01-01

    Conophylline, is a bis (indole) alkaloid consisting of two pentacyclic aspidosperma skeletons, isolated from Tabernaemontana divaricata, which has been found to induce b-cell differentiation in rat pancreatic acinar carcinoma cells and in cultured rat pancreatic tissue. However, the precise role of conophylline in the growth and survival of immortalized pancreatic mesenchymal stem cells (iPMSCs) derived from fetal porcine pancreas were not understood at present. To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effects of conophylline on iPMSCs. We found that conophylline can robustly stimulate iPMSCs proliferation, even promote their potential differentiation into islet-like clusters analyzed by cell counting, morphology, RT-PCR and real-time PCR, Western blotting, glucose-stimulated insulin release and insulin content analysis. The effects of conophylline were inhibited by LY294002, which is the inhibitor of the PI3K pathway. These results suggest that conophylline plays a key role in the regulation of cell mass proliferation, maintenance of the undifferentiated state of iPMSCs and also promotes iPMSCs differentiated into insulin-producing cells.

  17. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans.

  18. Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds.

    Science.gov (United States)

    Herouy, Y; Mellios, P; Bandemir, E; Stetter, C; Dichmann, S; Idzko, M; Hofmann, C; Vanscheidt, W; Schopf, E; Norgauer, J

    2000-11-01

    Healing of venous leg ulcers depends on the adhesive interaction and formation of new vascular cells. Angiogenesis on the surface of angiogenic blood vessels requires the vascular integrin alphavbeta3 also known as the vitronectin receptor. Autologous platelet-derived wound healing factor (autologous PDWHF) has been described to regulate the wound healing process by forming granulation tissue in the early healing phase. Here we analysed the influence of autologous PDWHF on the expression of the alphavbeta3 integrin in tissue specimen of venous leg ulcers in comparison with placebo treated controls by using reverse transcriptase-polymerase chain reaction and immunohistochemistry. Our investigations provide evidence that mRNA and protein expression of alphavbeta3 were significantly increased in healing venous leg ulcers after 96 h treatment (pgranulation tissue. Placebo controlled patients displayed no altered expression of the alphavbeta3 integrin in biopsy specimen. These findings suggest that topical autologous platelet-derived wound healing factor influences the process of angiogenesis/revascularization via alphavbeta3 integrin-expression hereby promoting granulation tissue formation in healing leg ulcers.

  19. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  20. Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo.

    Science.gov (United States)

    Fu, Yubing; Wang, Ting; Xiu, Lei; Shi, Xiaojie; Bian, Ziyao; Zhang, Yongli; Ruhan, A; Wang, Xiao

    2016-02-01

    Our lab previously found that levamisole (LMS) as an adjuvant enhanced the efficacy of vaccine against infectious pathogens. However, the cellular and molecular mechanisms remain to be defined. In this study, we showed that BALB/c bone marrow-derived DC stimulated with LMS resulted in enhanced cell-surface expression of CD80, CD86, CD40 and MHC class II, as well as enhanced production of IL-12p70, TNF-α and IL-1β. Interestingly, the LMS activated DCs were able to stimulate CD4(+) T cell proliferation and facilitated Th1 differentiation by increasing the secretion of IFN-γ in an allogeneic mixed leukocyte reaction. Furthermore, to confirm the in vitro data, we investigated the effect of LMS on antigen-specific antibody and cytokine production in BALB/c mice. Immunization with LMS plus OVA showed that anti-OVA IgG2a and IFN-γ were increased significantly compared with OVA alone in BALB/c mice. In conclusion, our results suggested that murine bone marrow-derived DC, played a crucial role in the effect of LMS on the induction of Th1 responses, which probably was due to its ability to promote DC maturation and secrete proinflammatory cytokines.

  1. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2

    Science.gov (United States)

    Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-01-01

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  2. Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells.

    Science.gov (United States)

    Ou, Lingling; Shi, Ying; Dong, Wenqi; Liu, Chunming; Schmidt, Thomas J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Fan, Daping; Ai, Walden

    2015-05-01

    Pressure ulcers (PUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Myeloid-derived suppressor cells (MDSCs) accumulate as a result of inflammation and promote cutaneous wound healing by mechanisms that are not fully understood. Recently, MDSCs have been shown to differentiate into fibrocytes, which serve as emerging effector cells that enhance cell proliferation in wound healing. We postulate that in wound healing MDSCs not only execute their immunosuppressive function to regulate inflammation but also stimulate cell proliferation once they differentiate into fibrocytes. In the current study, by using full-thickness and PU mouse models, we found that Kruppel-like factor 4 (KLF4) deficiency resulted in decreased accumulation of MDSCs and fibrocytes, and wound healing was significantly delayed. Conversely, KLF4 activation by the plant-derived product Mexicanin I increased the number of MDSCs and fibrocytes and accelerated the wound healing. Collectively, our study revealed a previously unreported function of MDSCs in cutaneous wound healing and identified Mexicanin I as a potential agent to accelerate PU wound healing.

  3. Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2014-03-01

    Full Text Available The platelet-derived growth factor-D (PDGF-D was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001, and high level of PDGF-D was correlated with late stage (p = 0.003, deep myometrium invasion (p < 0.001 and lympha vascular space invasion (p = 0.006. In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we

  4. Usefulness of a PARAFAC decomposition in the fiber selection procedure to determine chlorophenols by means SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Rocio; Ortiz, M.C. [University of Burgos, Department of Chemistry, Faculty of Sciences, Burgos (Spain); Sarabia, Luis A. [University of Burgos, Department of Mathematics and Computation, Faculty of Sciences, Burgos (Spain)

    2012-05-15

    In this work, a procedure based on solid-phase microextraction and gas chromatography coupled with mass spectrometry is proposed to determine chlorophenols in water without derivatization. The following chlorophenols are studied: 2,4-dichlorophenol; 2,4,6-trichlorophenol; 2,3,4,6-tetrachlorophenol and pentachlorophenol. Three kinds of SPME fibers, polyacrylate, polydimethylsiloxane, and polydimethylsiloxane/divinylbenzene are compared to identify the most suitable one for the extraction process on the basis of two criteria: (a) to select the equilibrium time studying the kinetics of the extraction, and (b) to obtain the best values of the figures of merit. In both cases, a three-way PARAllel FACtor analysis decomposition is used. For the first step, the three-way experimental data are arranged as follows: if I extraction times are considered, the tensor of data, X, of dimensions I x J x K is generated by concatenating the I matrices formed by the abundances of the J m/z ions recorded in K elution times around the retention time for each chlorophenol. The second-order property of PARAFAC (or PARAFAC2) assesses the unequivocal identification of each chlorophenol, as consequence, the loadings in the first mode estimated by the PARAFAC decomposition are the kinetic profile. For the second step, a calibration based on a PARAFAC decomposition is used for each fiber. The best figures of merit were obtained with PDMS/DVB fiber. The values of decision limit, CC{alpha}, achieved are between 0.29 and 0.67 {mu}g L{sup -1} for the four chlorophenols. The accuracy (trueness and precision) of the procedure was assessed. This procedure has been applied to river water samples. (orig.)

  5. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo.

    Science.gov (United States)

    Talbott, Jason F; Cao, Qilin; Bertram, James; Nkansah, Michael; Benton, Richard L; Lavik, Erin; Whittemore, Scott R

    2007-03-01

    Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that, although CNTF has a potent survival and differentiation promoting effect in vitro on OPCs isolated from the adult spinal cord, CNTF administration in vivo is not sufficient to promote oligodendrocyte remyelination in the glial-depleted environment of unilateral ethidium bromide (EB) lesions.

  6. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  7. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum.

    Science.gov (United States)

    Korhonen, H; Pihlanto, A

    2007-01-01

    Milk proteins are known to exert a wide range of nutritional, functional and biological activities. Apart from being a balanced source of valuable amino acids, milk proteins contribute to the consistency and sensory properties of various dairy products. Furthermore, many milk proteins possess specific biological properties which make them potential ingredients of health-promoting foods. These properties are attributed to both native protein molecules and to physiologically active peptides encrypted in the protein molecules. Considerable progress has been made over the last twenty years in technologies aimed at separation, fractionation and isolation in a purified form of many interesting proteins occurring in bovine colostrum and milk. Industrial-scale methods have been developed for native whey proteins such as immunoglobulins, lactoferrin, lactoperoxidase, alpha-lactalbumin and beta-lactoglobulin. Their large-scale manufacture and commercial exploitation is still limited although validated research data about their physiological health benefits is rapidly accumulating. Promising product concepts and novel fields of use have emerged recently, and some of these molecules have already found commercial applications. The same applies to bioactive peptides derived from different milk proteins. Active peptides can be liberated during gastrointestinal digestion or milk fermentation with proteolytic enzymes. Such peptides may exert a number of physiological effects in vivo on the gastrointestinal, cardiovascular, endocrine, immune, nervous and other body systems. However, at present the industrial-scale production of such peptides is limited by a lack of suitable technologies. On the other hand, a number of bioactive peptides have been identified in fermented dairy products, and there are already a few commercial dairy products enriched with blood pressure-reducing milk protein peptides. There is a need to develop methods to optimise the activity of bioactive peptides in

  8. Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells

    Directory of Open Access Journals (Sweden)

    Kuśmierek Krzysztof

    2015-03-01

    Full Text Available The efficiency of walnut, pistachio and hazelnut shells to remove three monochlorophenols (2-CP, 3-CP and 4-CP from aqueous solutions has been investigated. To describe the kinetic data pseudo-first and pseudo-second order models were used. The kinetics data were fitted better into the pseudo-second order model with the coefficient of determination values greater than 0.99. The k2 values increased in the order 4-CP < 3-CP < 2-CP. Sorption was also analyzed as a function of solution concentration at equilibrium. The experimental data received were found to be well described by the Freundlich isotherm equation. Effectiveness of chlorophenols removal from water on the walnut, pistachio and hazelnut shells was comparable. Individual differences in sorption of monochlorophenols were also negligible.

  9. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.

  10. Degradation of 4-Chlorophenol Solution by Synergetic Effect of Dual-frequency Ultrasound with Fenton Reagent

    Institute of Scientific and Technical Information of China (English)

    赵德明; 徐新华; 雷乐成; 汪大翚

    2005-01-01

    4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound in conjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observed in this advanced oxidation process.Experimental results showed that ultrasonic intensity, saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturating gases (Ar, 02, air and N2), 4-CP degradation with Ar-saturated solution was the best. However, in the view of practical wastewater treatment, using oxygen as the saturating gas would be more economical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CP degradation rate.The 4-CP removal rate increased by around 126% within 15 rain treatment. The synergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviously observed.

  11. Oxidation of 4-Chlorophenol by Mesoporous Titania: Effect of Surface Morphological Characteristics

    Directory of Open Access Journals (Sweden)

    Osmín Avilés-García

    2014-01-01

    Full Text Available Mesoporous nanocrystalline anatase was prepared via EISA employing CTAB as structure directing agent. The drying rate was used as a key synthesis parameter to increase the average pore diameter. The resultant mesoporous crystalline phases exhibited specific surface areas between 55 and 150 m2 g−1, average unimodal pore sizes of about 3.4 to 5.6 nm, and average crystallite size of around 7 to 13 nm. These mesophases were used as photocatalysts for the degradation of 4-chlorophenol (4CP with UV light. Under the studied conditions, the mesoporous anatase degraded 100% 4CP. This was twice faster than Degussa P-25. 57% reduction of chemical oxygen demand (COD value was achieved.

  12. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    Science.gov (United States)

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  13. Peripheral blood-derived bovine dendritic cells promote IgG1-restricted B cell responses in vitro.

    Science.gov (United States)

    Bajer, Anna A; Garcia-Tapia, David; Jordan, Kimberly R; Haas, Karen M; Werling, Dirk; Howard, Chris J; Estes, D Mark

    2003-01-01

    Regulation of humoral responses involves multiple cell types including the requirements for cognate interactions between T and B cells to drive CD40-dependent responses to T-dependent antigens. A third cell type has also been shown to play an essential role, the dendritic cell (DC). We demonstrate that bovine peripheral blood-derived (PB)-DC are similar in function to features described for human interstitial DC including the production of signature type 2 cytokines [interleukin (IL)-13, IL-10]. PB-DC express moderate-to-high costimulatory molecule expression, and major histocompatibility complex class II is negative for CD14 expression and has low or no expression of CD11c. Consistent with the interstitial phenotype is the ability of PB-DC to influence B cell activation and differentiation via direct expression of CD40L and type 2 cytokines. Collectively, these results suggest that direct B cell-DC interactions may promote an immunoglobulin-isotype expression pattern consistent with type 2 responses, independent of direct T cell involvement.

  14. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer.

    Science.gov (United States)

    Xu, Qinhong; Wang, Zheng; Chen, Xin; Duan, Wanxing; Lei, Jianjun; Zong, Liang; Li, Xuqi; Sheng, Liang; Ma, Jiguang; Han, Liang; Li, Wei; Zhang, Lun; Guo, Kun; Ma, Zhenhua; Wu, Zheng; Wu, Erxi; Ma, Qingyong

    2015-03-10

    Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer.

  15. The Promoting Effect of the Extracellular Matrix Peptide TNIIIA2 Derived from Tenascin-C in Colon Cancer Cell Infiltration

    Science.gov (United States)

    Suzuki, Hideo; Sasada, Manabu; Kamiya, Sadahiro; Ito, Yuka; Watanabe, Hikaru; Okada, Yuko; Ishibashi, Kazuma; Iyoda, Takuya; Yanaka, Akinori; Fukai, Fumio

    2017-01-01

    The extracellular matrix (ECM) molecule tenascin C (TNC) is known to be highly expressed under various pathological conditions such as inflammation and cancer. It has been reported that the expression of TNC is correlated with the malignant potential of cancer. In our laboratory, it was found that the peptide derived from the alternative splicing domain A2 in TNC, termed TNIIIA2, has been shown to influence a variety of cellular processes, such as survival, proliferation, migration, and differentiation. In this study, we investigated the effect of TNC/TNIIIA2 on the invasion and metastasis of colon cancer cells, Colon26-M3.1, or PMF-Ko14, using an in vitro and in vivo experimental system. The degree of cell invasion was increased by the addition of TNC and TNIIIA2 in a dose-dependent manner. The invasion by TNC and TNIIIA2 were suppressed by an MMP inhibitor or TNIIIA2-blocking antibody. In an in vivo experiment, pulmonary metastasis was promoted conspicuously by the addition of TNIIIA2. In this study, we found that colon cancer cell invasion and metastasis was accelerated by TNC/TNIIIA2 via MMP induction. This result suggests the possibility of a new strategy targeting TNC/TNIIIA2 for colon cancer. PMID:28106752

  16. Adipose tissue-derived stem cells promote the reversion of non-alcoholic fatty liver disease: An in vivo study.

    Science.gov (United States)

    Liao, Naishun; Pan, Fan; Wang, Yingchao; Zheng, Youshi; Xu, Bo; Chen, Wenwei; Gao, Yunzhen; Cai, Zhixiong; Liu, Xiaolong; Liu, Jingfeng

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver injury and seriously affects human health. In the present study, we aimed to investigate whether adipose tissue-derived stem cell (ADSC) transplantation in combination with dietary modification was capable of reversing the progression of NAFLD. After establishing a rat model of NAFLD by feeding them a high-fat diet (HFD), ADSCs were transplanted via the portal vein into rats with HFD-induced NAFLD, and simultaneously fed a modified diet. Thereafter, gross liver morphology, the hepatosomatic (HSI) index and indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were evaluated. Subsequently, the serum levels of total cholesterol (TC), triglycerides (TGs) and fatty acids (FAs) were also assayed. Furthermore, H&E and oil red O staining were used to confirm the pathological effects of NAFLD in the rat livers. Although dietary modification alone caused liver function to recover, ADSC transplantation in combination with dietary modification further decreased the HSI index, the serum levels of ALT, TBIL, TC, TGs, FAs, reduced lipid accumulation to normal levels, and reversed the hepatic pathological changes in the rat livers. Taken together, these findings suggest that ADSC transplantation assists in the reversion of NAFLD by improving liver function and promoting lipid metabolism, thereby exerting hepatoprotective effects. Thus, we suggest that ADSC transplantation is a promising, potential therapeutic strategy for NAFLD treatment.

  17. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  18. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    Science.gov (United States)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing.

  19. Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration.

    Science.gov (United States)

    Jung, Namhee; Park, Saeyoung; Choi, Yoonyoung; Park, Joo-Won; Hong, Young Bin; Park, Hyun Ho Choi; Yu, Yeonsil; Kwak, Geon; Kim, Han Su; Ryu, Kyung-Ha; Kim, Jae Kwang; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2016-11-09

    Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19, GFAP, MBP, NGFR, S100B, and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR, S100B, and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.

  20. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.

    Science.gov (United States)

    Geiger, Elisabeth; Hornek-Gausterer, Romana; Saçan, Melek Türker

    2016-07-01

    Organisms in the aquatic environment are exposed to a variety of substances of numerous chemical classes. The unintentional co-occurrence of pharmaceuticals and other contaminants of emerging concern may pose risk to non-target organisms. In this study, individual and binary mixture toxicity experiments of selected pharmaceuticals (ibuprofen and ciprofloxacin) and chlorophenols (2.4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP)) have been performed with freshwater algae Chlorella vulgaris. All experiments have been carried out according to the 96-h algal growth inhibition test OECD No. 201. Binary mixture tests were conducted using proportions of the respective IC50s in terms of toxic unit (TU). The mixture concentration-response curve was compared to predicted effects based on both the concentration addition (CA) and the independent action (IA) model. Additionally, the Combination Index (CI)-isobologram equation method was used to assess toxicological interactions of the binary mixtures. All substances individually tested had a significant effect on C. vulgaris population density and revealed IC50 values ciprofloxacin>3-CP>ibuprofen. Generally, it can be concluded from this study that toxic mixture effects of all tested chemicals to C. vulgaris are higher than the individual effect of each mixture component. It could be demonstrated that IC50 values of the tested mixtures predominately lead to additive effects. The CA model is appropriate to estimate mixture toxicity, while the IA model tends to underestimate the joint effect. The CI-isobologram equation method predicted the mixtures accurately and elicited synergism at low effect levels for the majority of tested combinations.

  1. Local viscosity and solvent relaxation experienced by rod-like fluorophores in AOT/4-chlorophenol/m-xylene organogels

    Science.gov (United States)

    Dandapat, Manika; Mandal, Debabrata

    2017-01-01

    Organogels prepared from AOT/4-chlorophenol/m-xylene are immobile in the macroscopic sense, with a well-characterized internal structure. However, the molecular level dynamics inside the gels is not too clear, although a very slow structural relaxation has been reported previously. Using a set of rod-like fluorophores, we find that the rotational mobility of a small guest molecule inside the gel can be extremely fast, indicating presence of sufficiently low-microviscosity domains. These domains consist of m-xylene solvent molecules trapped in the interstices of fiber bundles comprising columnar stacks of 4-chlorophenol surrounded by AOT molecules. However, interstitial trapping of m-xylene does retard its own dynamics, which explains the slow solvent relaxation inside the gels. Hence, the state of m-xylene in the organogel may be characterized as "bound", in contrast to the "free" state in neat m-xylene.

  2. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  3. Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    RUI Yun-feng; DU Lin; WANG You; WANG Yang; LUI Pauline po-yee; TANG Ting-ting; CHAN Kai-ming; DAI Ke-rong

    2010-01-01

    Background Synovium-derived stem cells (SDSCs) with higher chondrogenic potential are attracting considerable attention as a cell source for cartilage regeneration. We investigated the effect of bone morphogenetic protein 2 (BMP-2) on transforming growth factor beta3 (TGF-β3)-induced chondrogenesis of SDSCs isolated from human osteoarthritic synovium in a pellet culture system. Methods The clonogenicity, stem cell marker expression and multi-differentiation potential of isolated SDSCs were determined by colony forming unit assay, flow cytometry and specific staining including alizarin red S, Oil red O and alcian blue staining, respectively. SDSCs pellet was cultured in chondrogenic medium with or without TGF-β3 or/and BMP-2. At day 21, the diameter and the weight of the pellets were measured. Chondrogenic differentiation of SDSCs was evaluated by Safranin O staining, immunohistochemical staining of collagen type Ⅱ, sulfated glycosaminoglycan (sGAG) synthesis and mRNA expression of collagen type Ⅱ, aggrecan, SOX9, link-protein, collagen type X and BMP receptor Ⅱ. Results Cells isolated under the optimized culturing density (104/60 cm2) showed clonogenicity and multi-differentiation potential. These cells were positive (>99%) for CD44, CD90, CD105 and negative (<10%) for CD34 and CD71. SDSCs differentiated to a chondrocytic phenotype in chondrogenic medium containing TGF-β3 with or without BMP-2. Safranin O staining of the extracellular matrix was positive and the expression of collagen type Ⅱ was detected. Cell pellets treated with TGF-β3 and BMP-2 were larger in diameter and weight, produced more sGAGs, and expressed higher levels of collagen type Ⅱ and other chondrogenic markers, except COL10A1, than medium with TGF-β3 alone. Conclusions SDSCs could be isolated from human osteoarthritic synovium. Supplementation with BMP-2 significantly promoted the in vitro TGF-β3-induced chondrogenic differentiation of SDSCs.

  4. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  5. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed

    Directory of Open Access Journals (Sweden)

    Nelson Giovanny Rincón-Silva

    2015-01-01

    Full Text Available Activated carbons from shell eucalyptus (Eucalyptus globulus were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1 and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.

  6. Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare.

    Science.gov (United States)

    de Araujo, Brancilene Santos; Dec, Jerzy; Bollag, Jean Marc; Pletsch, Marcia

    2006-04-01

    Hairy root cultures of Daucus carota L., Ipomoea batatas L. and Solanum aviculare Forst were investigated for their susceptibility to the highly toxic pollutants phenol and chlorophenols and for the involvement of inherent peroxidases in the removal of phenols from liquid media. Roots of D. carota grew normally in medium containing 1000 micromol l(-1) of phenol, whilst normal growth of roots of I. batatas and S. aviculare was only possible at levels up to 500 micromol l(-1). In the presence of chlorophenols, normal root growth was possible only in concentrations not exceeding 50 micromol l(-1), except for I. batatas which was severely affected at all concentrations. Despite the reduction in biomass, the growth of S. aviculare cultures was sustained in medium containing up to 2000 micromol l(-1) of phenol or 2-chlorophenol, and up to 500 micromol l(-1) of 2,6-dichlorophenol. The amounts of phenol removed by the roots within 72 h of treatment were 72.7%, 90.7% and 98.6% of the initial concentration for D. carota, I. batatas and S. aviculare, respectively. For the removal of 2,6-dichlorophenol the values were, respectively, 83.0%, 57.7% and 73.1%. Phenols labelled with 14C were absorbed by the root tissues and condensed with highly polar cellular substances as well as being incorporated into the cell walls or membranes. The results suggest that S. aviculare, an ornamental plant, would be best suited for remediation trials under field conditions.

  7. Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification

    Science.gov (United States)

    Lin, Yen-Hui

    2016-12-01

    A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of 2-chlorophenol (2-CP) by attached and suspended biomass on activated carbon process was derived. The mechanisms in the model system included 2-CP adsorption by activated carbon, 2-CP mass transport diffusion in biofilm, and biodegradation by attached and suspended biomass. Batch kinetic tests were performed to determine surface diffusivity of 2-CP, adsorption parameters for 2-CP, and biokinetic parameters of biomass. Experiments were conducted using a biological activated carbon (BAC) reactor system with high recycled rate to approximate a completely mixed flow reactor for model verification. Concentration profiles of 2-CP by model predictions indicated that biofilm bioregenerated the activated carbon by lowering the 2-CP concentration at the biofilm-activated carbon interface as the biofilm grew thicker. The removal efficiency of 2-CP by biomass was approximately 98.5% when 2-CP concentration in the influent was around 190.5 mg L-1 at a steady-state condition. The concentration of suspended biomass reached up to about 25.3 mg L-1 while the thickness of attached biomass was estimated to be 636 μm at a steady-state condition by model prediction. The experimental results agree closely with the results of the model predictions.

  8. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors. Keywords: pigment epithelium-derived factor gene, nanoparticles based on PLGA derivative, gene delivery, systemic delivery, tumor

  9. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro.

    Science.gov (United States)

    Tan, Hui; Wang, Jun-Jie; Cheng, Shun-Feng; Ge, Wei; Sun, Yuan-Chao; Sun, Xiao-Feng; Sun, Rui; Li, Lan; Li, Bo; Shen, Wei

    2016-02-01

    Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.

  10. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  11. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  12. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.

  13. Zn(OTf)2 promoted rearrangement of 1,2-cyclopropanated sugars with amines: a convenient method for the synthesis of 3-polyhydroxyalkyl-substituted pyrrole derivatives.

    Science.gov (United States)

    Shen, Xudong; Xia, Jianhui; Liang, Peng; Ma, Xiaofeng; Jiao, Wei; Shao, Huawu

    2015-11-28

    A rearrangement reaction of 1,2-cyclopropanated sugars with alkylamines or arylamines promoted by Zn(OTf)2 is described. The method offers a series of 3-polyhydroxyalkyl-substituted pyrrole derivatives with multiple chiral centers in moderate to excellent yields. The epimerization is achieved by inverting the stereochemistry at the free hydroxyl group of the resulting pyrrole, which would give access to many more possible stereoisomers.

  14. Free radical-derived quinone methide mediates skin tumor promotion by butylated hydroxytoluene hydroperoxide: expanded role for electrophiles in multistage carcinogenesis.

    Science.gov (United States)

    Guyton, K Z; Bhan, P; Kuppusamy, P; Zweier, J L; Trush, M A; Kensler, T W

    1991-01-01

    Free radical derivatives of peroxides, hydroperoxides, and anthrones are thought to mediate tumor promotion by these compounds. Further, the promoting activity of phorbol esters is attributed, in part, to their ability to stimulate the cellular generation of oxygen radicals. A hydroperoxide metabolite of butylated hydroxytoluene, 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHTOOH), has previously been shown to be a tumor promoter in mouse skin. BHTOOH is extensively metabolized by murine keratinocytes to several radical species. The primary radical generated from BHTOOH is a phenoxyl radical that can disproportionate to form butylated hydroxytoluene quinone methide, a reactive electrophile. Since electrophilic species have not been previously postulated to mediate tumor promotion, the present study was undertaken to examine the role of this electrophile in the promoting activity of BHTOOH. The biological activities of two chemical analogs of BHTOOH, 4-trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH, were compared with that of the parent compound. 4-Trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH have a reduced ability or inability, respectively, to form a quinone methide; however, like the parent compound, they both generate a phenoxyl radical when incubated with keratinocyte cytosol. The potency of BHTOOH, 4-trideuteromethyl-BHTOOH, and 4-tert-butyl-BHTOOH as inducers of ornithine decarboxylase, a marker of tumor promotion, was commensurate with their capacity for generating butylated hydroxytoluene quinone methide. These initial results were confirmed in a two-stage tumor promotion protocol in female SENCAR mice. Together, these data indicate that a quinone methide is mediating tumor promotion by BHTOOH, providing direct evidence that an electrophilic intermediate can elicit this stage of carcinogenesis. PMID:1846971

  15. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma.

  16. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.

    Science.gov (United States)

    Kojima, Yoshihiro; Fukuta, Tadashi; Yamada, Takehisa; Onyango, Maurice S; Bernardo, Eileen C; Matsuda, Hitoki; Yagishita, Kohichi

    2005-01-01

    Wet oxidation of a 100 ppm aqueous solution of o-chlorophenol (o-CP) was performed in a lab-scale batch reactor using 3% Ru/TiO(2) catalyst at 373 and 413 K, and a partial oxygen pressure of 0.1 MPa. The experiments were conducted by varying the initial pH values of o-CP solution from pH 6.3 to 9.8 and 11.8. From the results, it was revealed that the catalytic decomposition of o-CP occurred most effectively at 413 K and at the initial pH of 9.8. Complete decomposition and dechlorination of o-CP were almost achieved within 1h, and about 85% of TOC was removed in 3.0 h. On the other hand, the catalytic wet oxidation of o-CP at a higher pH value of 11.8 was not effective in the removal of TOC. The incomplete removal of TOC at the initial pH of 11.8 is likely attributed to a low pK(a) of carboxylic acids formed during the wet oxidation of o-CP.

  17. Photocatalytic oxidation of 4-chlorophenol using thermosensitive zinc phthalocyanine copolymer under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel thermosensitive photocatalyst,P(NIPA-co-ZnMPc),has been prepared using zinc tetra(N-carbonylacrylic)aminophthalocya-nine(ZnMPc) to copolymerize with N-isopropylacrylamide(NIPA).The lower critical solution temperature(LCST) of P(NIPA-co-ZnMPc) measured by differential scanning calorimetry(DSC) was 33.5 °C.P(NIPA-co-ZnMPc) effectively catalyzes the oxidation of 4-chlorophenols(4-CP) using oxygen as oxidant under the visible light irradiation,and it has higher photocatalytic activity than ZnMPc under the same condition.The UV-vis spectra of them in aqueous solution indicate that the macromolecular chains in P(NIPA-co-ZnMPc) restrain the aggregation of ZnMPc availably,resulting in the enhanced photocatalytic performance.The results of photocatalytic oxidation at different temperatures show that P(NIPA-co-ZnMPc) presents the highest photocatalytic efficiency around the LCST,suggesting that the macromolecular structure of P(NIPA-co-ZnMPc) can directly influence their photocatalytic activity.The hydrodynamic radius of this copolymer at different temperatures implies the intermolecular hydrophobic aggregation around the LCST,which is advantageous for the enrichment and the photocatalytic oxidation of 4-CP.Due to the high stability of P(NIPA-co-ZnMPc),it can be cyclically used in homogeneous photocatalytic oxidation and heterogeneous separation.

  18. p-Chlorophenol adsorption on activated carbons with basic surface properties

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.

  19. Quantum Chemical and Kinetic Study on Polychlorinated Naphthalene Formation from 3-Chlorophenol Precursor.

    Science.gov (United States)

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu

    2015-08-31

    Polychlorinated naphthalenes (PCNs) are the smallest chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and are often called dioxin-like compounds. Chlorophenols (CPs) are important precursors of PCN formation. In this paper, mechanistic and kinetic studies on the homogeneous gas-phase formation mechanism of PCNs from 3-CP precursor were investigated theoretically by using the density functional theory (DFT) method and canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT). The reaction priority of different PCN formation pathways were disscussed. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600-1200 K. The mechanisms were compared with the experimental observation and our previous works on the PCN formation from 2-CP and 4-CP. This study shows that pathways ended with Cl elimination are favored over those ended with H elimination from the 3-CP precursor. The formation potential of MCN is larger than that of DCN. The chlorine substitution pattern of monochlorophenols has a significant effect on isomer patterns and formation potential of PCN products. The results can be input into the environmental PCN controlling and prediction models as detailed parameters, which can be used to confirm the formation routes of PCNs, reduce PCN emission and establish PCN controlling strategies.

  20. Parameter Identification of the 2-Chlorophenol Oxidation Model Using Improved Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Guang-zhou Chen

    2015-01-01

    Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.

  1. Mechanism and kinetics of 2-chlorophenol degradation in drinking water by photo-electrochemical synergic effect

    Institute of Scientific and Technical Information of China (English)

    SONG; Qiang; (宋; 强); QU; Jiuhui; (曲久辉)

    2003-01-01

    The synergic effect mechanism of photo-electrochemical oxidation is investigated in detail through reaction products and kinetics analysis in a photo-electric integral reactor with 2-chlorophenol (2-CP) as the model pollutant. A kinetics model is constructed for the combinatorial photo-electrochemical (CPE) degradation. A remarkable synergetic effect, which can significantly enhance the mineralization rate of the CPE process, is verified by the comparison of apparent kinetic constants. In the CPE process, complemental effects with multi-level and multi-pathway for pollutants degradation under our experimental conditions are speculated. It is proved that the degradation pathways are not only the simple summation of that of photolysis and electrolysis, but the formation of synergic effect through combination of several new acting approaches. The degradation efficiency is enhanced considerably by three factors, control of electrode poisoning by the UV irradiation, control of excitation and reaction trend of pollutants molecules by the UV irradiation, and control of activation effect and transfer trend by the oriented direct current (DC) electric field. An advanced oxidation system is set up through manifold of free radicals chain reactions in the CPE reactions, so that the aqueous organics can be mineralized fast and completely. It is proven by the kinetics analysis that the mineralization of organic pollutants is mainly attributed to the generation of very active hydroxyl radicals (OH@) in bulk solution from the CPE synergetic effect.

  2. Chemical degradation and toxicity reduction of 4-chlorophenol in different matrices by gamma-ray treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Wook; Shim, Seung-Bo [Division of Environmental Science and Ecological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Jung, Jinho, E-mail: jjung@korea.ac.k [Division of Environmental Science and Ecological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of)

    2011-03-15

    Gamma-ray treatment of 4-chlorophenol (4-CP) in different matrices was studied in terms of both chemical degradation and toxicity reduction. Degradation of 4-CP in a complex effluent matrix was less efficient than that in ultrapure water. This is most likely due to the consumption of reactive radicals by matrix components, such as dissolved organic matter in effluents. The matrix effect caused much more profound changes in toxicity. Gamma-ray treatment of 4-CP in ultrapure water abruptly increased acute toxicity toward Daphnia magna while slightly decreased toxicity of 4-CP in effluent. In the presence of ZrO{sub 2} catalyst, degradation of 4-CP as well as toxicity reduction was substantially improved mostly by adsorption of 4-CP onto the nanoparticles. It was found that benzoquinone, hydroquinone and 4-chlorocatechol were generated for ultrapure water sample while only 4-chlorocatechol was formed for effluent samples by gamma-ray treatment. As determined in this work, EC{sub 50} values of benzoquinone (0.46 {mu}M), hydroquinone (0.61 {mu}M) and chlorocatechol (8.87 {mu}M) were much lower than those of 4-CP (31.50 {mu}M), explaining different toxicity changes of 4-CP in different matrices by gamma-ray treatment. The observed toxicity of gamma-ray treated 4-CP was well correlated with the one calculated from individual toxicity based on EC{sub 50} value.

  3. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bilgili, M. Sinan [Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34349 Istanbul (Turkey)]. E-mail: mbilgili@yildiz.edu.tr

    2006-09-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318 K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson > Langmuir > Toth > Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o} were found as -4.17 (at 298 K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous.

  4. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite.

    Science.gov (United States)

    Koumanova, Bogdana; Peeva-Antova, P

    2002-03-29

    The adsorption of p-chlorophenol (p-CP) from aqueous solutions on bentonite and perlite was studied. These materials are available in large quantities in Bulgaria. Model solutions of various concentrations (1-50 mgdm(-3)) were shaken with certain amounts of adsorbent to determine the adsorption capacity of p-CP on bentonite and perlite as well. The influence of several individual variables (initial adsorbate concentration, adsorbent mass) on the rate of uptake of the studied compound on the adsorbent was determined by carrying out experiments at different contact times using the batch adsorber vessel designed according to the standard tank configuration. Rapid adsorption was observed 20-30 min after the beginning for every experiment. After that, the concentration of p-CP in the liquid phase remained constant. The adsorption equilibrium of p-CP on bentonite and perlite was described by the Langmuir and the Freundlich models. A higher adsorption capacity was observed for bentonite (10.63 mgg(-1)) compared to that for perlite (5.84 mgg(-1)).

  5. Adsorptive Removal of Para-chlorophenol Using Stratified Tapered Activated Carbon Column

    Institute of Scientific and Technical Information of China (English)

    M.EE Sze; G. McKay

    2012-01-01

    The feasibility of adsorptive removal of single component organic compound (para-chlorophenol) by Calgon Filtrasorb 400 (F400) carbon was investigated. The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon. Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons. The Bed Depth Service Time (BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables. When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested, the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics, in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.

  6. 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts.

    Science.gov (United States)

    Bustos-Ramírez, Karina; Barrera-Díaz, Carlos Eduardo; De Icaza-Herrera, Miguel; Martínez-Hernández, Ana Laura; Natividad-Rangel, Reyna; Velasco-Santos, Carlos

    2015-01-01

    Graphite and graphene oxides have been studied amply in the last decade, due to their diverse properties and possible applications. Recently, their functionality as photocatalytic materials in water splitting was reported. Research in these materials is increasing due to their band gap values around 1.8-4 eV, and therefore, these are comparable with other photocatalysts currently used in heterogeneous photocatalytic processes. Thus, this research reports the photocatalytic effectiveness of graphite oxide (GO) and graphene oxide (GEO) in the degradation of 4-chlorophenol (4-CP) in water. Under the conditions defined for this research, 92 and 97% of 4-CP were degraded with GO and GEO respectively, also 97% of total organic carbon was removed. In addition, by-products of 4-CP that produce a yellow solution obtained only using photolysis are eliminated by photocatalyst process with GO and GEO. The degradation of 4-CP was monitored by UV-Vis spectroscopy, High Performance Liquid Chromatography (HPLC) and Chemical Oxygen Demand (COD). Thus, photocatalytic activity to remove 4-CP from water employing GO and GEO without doping is successfully showed, and therefore, a new gate in research for these materials is opened.

  7. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite

    Directory of Open Access Journals (Sweden)

    Atul B. Lavand

    2015-09-01

    Full Text Available C/ZnO/CdS nanocomposite was synthesized using the microemulsion method. Nanocomposite synthesized in the present work was characterized using X-ray diffractometer (XRD, scanning electron microscope (SEM, energy dispersive X-ray spectroscopy (EDX transmission electron microscope (TEM, diffuse reflectance and photoluminescence (PL spectroscopy. TEM study shows that CdS nanoparticles are successfully anchored on the surface of C doped ZnO nanorods. UV–visible spectrum of C/ZnO/CdS nanocomposite shows a red shift. CdS nanoparticles work as photo sensitizers to expand the photo-response of C doped ZnO to the visible region. Photoluminescence (PL spectroscopy reveals evidence for interaction between C/ZnO and CdS. PL quenching observed for C/ZnO/CdS nanocomposite is attributed to improved charge separation properties, which increases its photocatalytic efficiency. C/ZnO/CdS nanocomposite exhibits exceptionally high photocatalytic activity for degradation of 4-chlorophenol (CP via Z-scheme mechanism. C/ZnO/CdS nanocomposite is a highly stable and reusable photocatalyst.

  8. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: isotherm, kinetic, and thermodynamic analysis.

    Science.gov (United States)

    Bilgili, M Sinan

    2006-09-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson>Langmuir>Toth>Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; DeltaG degrees, DeltaH degrees, and DeltaS degrees were found as -4.17 (at 298K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous.

  9. Removal of phenol and chlorophenols from water by coir pith carbon: equilibrium and rate studies.

    Science.gov (United States)

    Namasivayam, C; Kavitha, D

    2004-07-01

    Batch mode studies were conducted to study the removal of phenol, 2,4,6-Trichlorophenol (TCP) and Pentachlorophenol (PCP) from aqueous solution on coir pith carbon by adsorption process under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Kinetics of adsorption obeyed second order rate equation and the rate constant was found to be in the range 0.0098-0.0672, 0.0949-0.8801 and 0.172-0.305 g/mg/min for phenol, TCP and PCP respectively. Equilibrium adsorption data follow Langmuir isotherm for phenol and PCP and the adsorption capacities were found to be 48.3 mg and 3.7 mg/g, respectively. For TCP, adsorption followed Freundlich isotherm only. Acidic pH was favorable for the adsorption of all the chlorophenols. Studies on pH effect and desorption show that chemisorption seems to play a major rule in the adsorption process. The positive values of H0 24.99, 18.69, and 8.907 kJ/mol for phenol, TCP and PCP respectively, confirm the endothermic nature of adsorption.

  10. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Science.gov (United States)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui; Zhang, Lizhi

    2017-01-01

    In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  11. Catalytic Wet Air Oxidation of o-Chlorophenol in Wastewater%邻氯苯酚废水的催化湿式氧化处理

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翚

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatmentof o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence ofcatalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removedby wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperatureof 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited highcatalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCrwas removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had bettercatalytic activity for the degradation of o-chlorophenol in wastewater.

  12. Exosomes derived from SW480 colorectal cancer cells promote cell migration in HepG2 hepatocellular cancer cells via the mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Chiba, Mitsuru; Watanabe, Narumi; Watanabe, Miki; Sakamoto, Maki; Sato, Akika; Fujisaki, Mizuki; Kubota, Shiori; Monzen, Satoru; Maruyama, Atsushi; Nanashima, Naoki; Kashiwakura, Ikuo; Nakamura, Toshiya

    2016-01-01

    Exosomes are membrane-derived extracellular vesicles that have recently been recognized as important mediators of intercellular communication. In the present study, we investigated the effects of exosomes derived from SW480 colorectal cancer cells in recipient HepG2 hepatocellular cancer cells. We demonstrated that SW480-derived exosomes were taken up by the recipient HepG2 cells via dynamin-dependent endocytosis and were localized to the HepG2 lysosomes. In addition, SW480-derived exosomes induced the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 following their uptake into HepG2 cells. Of note, these changes occurred during the early phase after exosome treatment. Furthermore, SW480-derived exosomes promoted the migration of recipient HepG2 cells in a wound-healing assay, which was suppressed by pretreatment with U0126, an upstream inhibitor of ERK1/2. These results indicated that SW480-derived exosomes activated a classical mitogen-activated protein kinase pathway in recipient HepG2 cells via dynamin-dependent endocytosis and subsequently enhanced cell migration by ERK1/2 activation. Our results provide new insights into the regulation of cellular functions by exosomes.

  13. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  14. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei (China); Wang, Zhihua; Jiang, Yong [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Niu, Zhongying [Treatment center of oral diseases, The 306th Hospital of People' s Liberation Army, Beijing (China); Fu, Lei; Luo, Zhirong [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Cooper, Paul R.; Smith, Anthony J. [Oral Biology, School of Dentistry, University of Birmingham, B4 6NN (United Kingdom); He, Wenxi, E-mail: hewenxi@fmmu.edu.cn [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China)

    2015-03-15

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type I as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs. - Highlights: • NFIC promotes the proliferation of SCAPs in vitro. • NFIC promotes osteo/odontogenic differentiation of SCAPs in vitro. • Knockdown of NFIC inhibits odontogenic differentiation in SCAPs.

  15. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    Science.gov (United States)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone.

  16. In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring.

    Science.gov (United States)

    Liu, Jia; Niu, Junfeng; Yin, Lifeng; Jiang, Fan

    2011-11-21

    A biosensor based on Trametes versicolor laccase (Lac) was developed for the determination of phenolic compounds. The biosensor was prepared by in situ electrospinning of a mixture of polyvinyl alcohol (PVA), Lac, PEO-PPO-PEO (F108) and gold nanoparticles (Au NPs), where F108 was used as an enzyme stabilizing additive and Au NPs was used to enhance the conductivity of the biosensor. Laser confocal scanning microscopy and electrochemical impedance spectroscopy proved that the enzyme was successfully encapsulated into the electrospun nanofibers. Under the optimal conditions, the lowest detection limit was found to be 0.04 μM (S/N = 3) for 2,4-DCP and the highest detection limit was found to be 12.10 μM for 4-CP. The sensitivity of the biosensor obtained in the linear range for chlorophenols followed the sequence 2,4-dichlorophenol (2,4-DCP) > 2,4,6-trichlorophenol (2,4,6-TCP) > 4-chlorophenol (4-CP). The sensing performance for chlorophenols was attributed to the suitable electrochemical interface of PVA/F108/Au NPs/Lac, resulting from biocompatibility, a high surface area-to-volume ratio (10.42 m(2) g(-1)) and superior mechanical properties of the electrospun nanofibers. The biosensor exhibited good repeatabilities of 7.6%, 2.8% and 9.0% (R.S.D.) and reproducibilities of 14.9%, 10.4% and 13.7% (R.S.D.) for 4-CP, 2,4-DCP and 2,4,6-TCP, respectively. Lac retained 65.8% of its initial activity after a 30-day storage period.

  17. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    Science.gov (United States)

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer.

  18. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model.

    Science.gov (United States)

    Führmann, T; Tam, R Y; Ballarin, B; Coles, B; Elliott Donaghue, I; van der Kooy, D; Nagy, A; Tator, C H; Morshead, C M; Shoichet, M S

    2016-03-01

    Transplantation of pluripotent stem cells and their differentiated progeny has the potential to preserve or regenerate functional pathways and improve function after central nervous system injury. However, their utility has been hampered by poor survival and the potential to form tumors. Peptide-modified biomaterials influence cell adhesion, survival and differentiation in vitro, but their effectiveness in vivo remains uncertain. We synthesized a peptide-modified, minimally invasive, injectable hydrogel comprised of hyaluronan and methylcellulose to enhance the survival and differentiation of human induced pluripotent stem cell-derived oligodendrocyte progenitor cells. Cells were transplanted subacutely after a moderate clip compression rat spinal cord injury. The hydrogel, modified with the RGD peptide and platelet-derived growth factor (PDGF-A), promoted early survival and integration of grafted cells. However, prolific teratoma formation was evident when cells were transplanted in media at longer survival times, indicating that either this cell line or the way in which it was cultured is unsuitable for human use. Interestingly, teratoma formation was attenuated when cells were transplanted in the hydrogel, where most cells differentiated to a glial phenotype. Thus, this hydrogel promoted cell survival and integration, and attenuated teratoma formation by promoting cell differentiation.

  19. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  20. Target-derived cardiotrophin-1 and insulin-like growth factor-I promote neurite growth and survival of developing oculomotor neurons.

    Science.gov (United States)

    Rind, Howard B; von Bartheld, Christopher S

    2002-01-01

    Several trophic factors support the survival of developing motoneurons, but it is not known whether these factors act in a retrograde fashion from the motoneuron target muscle or are derived from other sources. Cardiotrophin-1 (CT-1) and the insulin-like growth factors (IGFs) are candidate target-derived motoneuron survival factors as both are expressed in muscle during naturally occurring motoneuron death and, applied systemically, support the survival of developing motoneurons. By using the embryonic chick oculomotor system, we show that CT-1 and IGF-I promote neurite outgrowth from E13-derived oculomotor explants and are retrogradely transported from muscle to nerve cell body in vivo, and injection of CT-1 or IGF-I into eye muscles increases motoneuron survival by 20 and 30%, respectively, as evidenced by calibrated stereological counting techniques. Pharmacological depletion of endogenous target-derived IGF-I in vivo reduces oculomotor neuron survival by up to 30% in a dose-dependent manner. These results significantly extend previous studies using systemic administration of trophic factors and are the first to demonstrate a target-derived retrograde mechanism of developing motoneuron survival factors.

  1. An Efficient One-pot Synthesis of Pyrazolone Derivatives Promoted by Acidic Ionic Liquid%An Efficient One-pot Synthesis of Pyrazolone Derivatives Promoted by Acidic Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    臧洪俊; 苏秋红; 郭松; 莫颖明; 程博闻

    2011-01-01

    A new class of pyrazolone derivatives has been isolated in good to excellent yields from the 2 : 1 condensation reaction between 3-methyl-1-phenyl-5-pyrazolone and arylaldehydes in the presence of ionic liquid [HMIM]HSO4. The compounds were characterised by their IR, NMR spectra, MS and elemental analyses. The important features of the methodology are a wide application range of substrates, higher yields and shorter reaction time.

  2. Fluorescence resonance energy transfer in AOT/4-chlorophenol/m-xylene organogels

    Energy Technology Data Exchange (ETDEWEB)

    Dandapat, Manika; Mandal, Debabrata, E-mail: dmandal.chemistry@gmail.com

    2015-06-15

    Fluorescence Resonance Energy Transfer (FRET) between donor coumarins (C102 and C153) and acceptor Rhodamine 6G were studied in AOT/4-chlorophenol/m-xylene organogels. The gel comprises a three-dimensional network of fiber bundles trapping the m-xylene solvent. Each fiber is an aggregate of several strands, and each strand consists of a central columnar stack of the phenols, surrounded by AOT headgroups. Our acceptor is ionic so that it was concentrated near the polar center of the strand, while the neutral donors were likely distributed over a wider region. With C153 as donor, clear evidence of FRET (time-constant~100 ps) was found, which indicated that the donor and acceptor may reside in neighboring strands within the same fiber. However, with C102 as donor, FRET probably occurred over an ultrashort, sub-picosecond time-scale suggesting that the donor and acceptor in this case resided in close vicinity. Thus, C102 tends to localize near the polar centre of the strands, compared to the more hydrophobic C153, which prefers to occupy the relatively non-polar peripheral regions of the strands and fibers. - Highlights: • FRET between coumarin donors and Rhodamine 6G acceptor studied in AOT organogels. • With Coumarin 153 donor, a ~100 ps FRET component detected in both donor and acceptor fluorescence. • With Coumarin 102 donor, FRET component too short to be detected with a time-resolution of ~70 ps. • The FRET rates reveal crucial differences in donor–acceptor distances for the two coumarin donors.

  3. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity.

    Science.gov (United States)

    Yang, Kun-Lin; Chang, Wen-Teng; Hung, Kuo-Chen; Li, Eric I C; Chuang, Chia-Chang

    2008-08-22

    Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.

  4. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  5. Synthesis of two mono-deoxy β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation mechanism

    Institute of Scientific and Technical Information of China (English)

    Su Long Xiao; De Min Zhou; Ming Yang; Fei Yu; Li He Zhang; Pierre Sina(y); Yong Min Zhang

    2012-01-01

    Diisobutylaluminium hydride (DIBAL-H) promotes secondary rim regioselective bis-de-O-methylation of permethylated β-cyclodextrin (β-CD) to give diol 2.To gain an insight into the mechanism of this remarkable regioselective behavior,two corresponding permethylated β-CDs with an alcohol function at either 2-or 3-position were synthesized in our previous study.As a step further to this work,the two compounds were subjected to deoxygenation reaction with tributyltin hydride in the present of 2,2'-azobisisobutyronitrile affording the corresponding 2-and 3-deoxy permethylated β-CD derivatives (19 and 16).The structures of these two compounds were characterized by 1D and 2D NMR and HRMS.Compounds 16 and 19 were unable to react with DIBAL-H which suggests that O-2A and O-3B are necessary for DIBAL-H promoted bis-de-O-methylation reaction of permethvlated β-CD.

  6. Stromal cell-derived factor-1α promotes angiogenesis in the peri-infarct region in adults with cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    凌莉

    2014-01-01

    Objective To investigate the possible effects of exogenous stromal cell-derived factor-1α(SDF-1α)on cell proliferation and angiogenesis in the ipsilateral thalamic ventroposterior nucleus(VPN)in adult rats with focal cortical infarction.Methods Thirty-six hypertensive rats with focal cortical infarction were divided randomly into the SDF-1αgroup,vehicle

  7. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  8. Zirconyl Chloride Promoted Highly Efficient Domino Synthesis of New 1, 2, 3, 4-Tetrahydroquinoline Derivatives in Water

    Institute of Scientific and Technical Information of China (English)

    Rahul R. NAGAWADE; Devanand B. SHINDE

    2006-01-01

    The tetrahydroquinoline moiety is a structural feature of many natural products. By using a domino reaction of aromatic amines and cyclic enol ethers catalyzed by zirconyl chloride in water, various tetrahydroquinoline derivatives were synthesized efficiently. Most cyclized products showed cis selectivity. The cis selectivity was tentatively rationalized due to chelation control in water.

  9. Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell.

    Science.gov (United States)

    Guan, Guoqing; Kaewpanha, Malinee; Hao, Xiaogang; Zhu, Ai-Min; Kasai, Yutaka; Kakuta, Seiji; Kusakabe, Katsuki; Abudula, Abuliti

    2013-07-01

    In order to understand the improvement effect of potassium (K) on the catalytic activity of iron-loaded calcined scallop shell (CS) for the steam reforming tar derived from biomass, various K precursors were applied for the catalyst preparation. It is found that pompom-like iron-based particles with a mesoporous structure were easily formed on the surface of calcined scallop shell (CS) when K2CO3 was used as K precursor while no such kind of microsphere was formed when other kinds of K precursors such as KOH and KNO3 were applied. The optimum K-loading amount for the preparation of this catalyst was investigated. Based on the experimental results obtained, a mechanism for the formation of these microspheres was proposed. This pompom-like potassium-promoted iron-based catalyst showed a better catalytic activity and reusability for the steam reforming of tar derived from lignin.

  10. NaHSO4-SiO2-Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    K. Ravi Kumar

    2013-01-01

    Full Text Available An efficient protocol has been developed for the preparation of a library of benzoxazole, benzimidazole, and benzothiazole derivatives from reactions of acyl chlorides with o-substituted aminoaromatics in the presence of catalytic amount of silica-supported sodium hydrogen sulphate under solvent-free conditions. Simple workup procedure, high yield, easy availability, reusability, and use of ecofriendly catalyst are some of the striking features of the present protocol.

  11. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  12. RICE SUCROSE SYNTHASE PROMOTER

    DEFF Research Database (Denmark)

    2000-01-01

    A promoter is described. The promoter comprises a nucleotide sequence corresponding to that shown as SEQ ID No. 1 or a variant, homologue or derivative thereof.......A promoter is described. The promoter comprises a nucleotide sequence corresponding to that shown as SEQ ID No. 1 or a variant, homologue or derivative thereof....

  13. A large dipole moment to promote gelation for 4-nitrophenylacrylonitrile derivatives with gelation-induced emission enhancement properties.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Zhang, Yuan; Chen, Peng; Li, Kechang; Liu, Baijun; Lu, Ran

    2014-09-28

    A series of 4-nitrophenylacrylonitrile and phenylacrylonitrile derivatives consisting of a carbazole moiety was synthesized. Some of these derivatives with longer alkyl chains and a nitro group could gelatinize some organic solvents, such as ethanol, n-butanol, ethyl acetate, and DMSO. By contrast, phenylacrylonitrile derivatives did not form gels in measured solvents. This result proved that the electron-withdrawing nitro moiety was important for gel formation because it conferred the molecules with large dipole moments, which enhanced the intermolecular interaction. Analyses by UV-vis absorption, X-ray diffraction, and scanning electron microscopy showed that the gelator molecules could self-assemble into one-dimensional nanofibers with layer packing, which further twisted into thicker fibers and formed three-dimensional networks in the gel phase. The single crystal structure of C4CNPA implied that the gelators might adopt an anti-parallel molecular stacking because of their larger ground-state dipole moment. Interestingly, the organogels had enhanced fluorescence relative to solutions at the same concentrations.

  14. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts

    Directory of Open Access Journals (Sweden)

    You Li

    2012-01-01

    Full Text Available Abstract Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467 involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs. Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.

  15. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs.

    Science.gov (United States)

    He, Mian; Qin, Hao; Poon, Terence C W; Sze, Siu-Ching; Ding, Xiaofan; Co, Ngai Na; Ngai, Sai-Ming; Chan, Ting-Fung; Wong, Nathalie

    2015-09-01

    Exosomes are increasingly recognized as important mediators of cell-cell communication in cancer progression through the horizontal transfer of RNAs and proteins to neighboring or distant cells. Hepatocellular carcinoma (HCC) is a highly malignant cancer, whose metastasis is largely influenced by the tumor microenvironment. The possible role of exosomes in the interactions between HCC tumor cell and its surrounding hepatic milieu are however largely unknown. In this study, we comprehensively characterized the exosomal RNA and proteome contents derived from three HCC cell lines (HKCI-C3, HKCI-8 and MHCC97L) and an immortalized hepatocyte line (MIHA) using Ion Torrent sequencing and mass spectrometry, respectively. RNA deep sequencing and proteomic analysis revealed exosomes derived from metastatic HCC cell lines carried a large number of protumorigenic RNAs and proteins, such as MET protooncogene, S100 family members and the caveolins. Of interest, we found that exosomes from motile HCC cell lines could significantly enhance the migratory and invasive abilities of non-motile MIHA cell. We further demonstrated that uptake of these shuttled molecules could trigger PI3K/AKT and MAPK signaling pathways in MIHA with increased secretion of active MMP-2 and MMP-9. Our study showed for the first time that HCC-derived exosomes could mobilize normal hepatocyte, which may have implication in facilitating the protrusive activity of HCC cells through liver parenchyma during the process of metastasis.

  16. Donor bone marrow-derived dendritic cells prolong corneal allograft survival and promote an intragraft immunoregulatory milieu.

    Science.gov (United States)

    O'Flynn, Lisa; Treacy, Oliver; Ryan, Aideen E; Morcos, Maurice; Cregg, Marese; Gerlach, Jared; Joshi, Lokesh; Nosov, Mikhail; Ritter, Thomas

    2013-11-01

    Investigations into cell therapies for application in organ transplantation have grown. Here, we describe the ex vivo generation of donor bone marrow-derived dendritic cells (BMDCs) and glucocorticoid-treated BMDCs with potent immunomodulatory properties for application in allogeneic transplantation. BMDCs were treated with dexamethasone (Dexa) to induce an immature, maturation-resistant phenotype. BMDC and Dexa BMDC phenotype, antigen presenting cell function, and immunomodulatory properties were fully characterized. Both populations display significant immunomodulatory properties, including, but not limited to, a significant increase in mRNA expression of programmed death-ligand 1 and indoleamine 2,3-dioxygenase. BMDCs and Dexa BMDCs display a profound impaired capacity to stimulate allogeneic lymphocytes. Moreover, in a fully MHC I/II mismatched rat corneal transplantation model, injection of donor-derived, untreated BMDC or Dexa BMDCs (1 × 10(6) cells, day -7) significantly prolonged corneal allograft survival without the need for additional immunosuppression. Although neovascularization was not reduced and evidence of donor-specific alloantibody response was detected, a significant reduction in allograft cellular infiltration combined with a significant increase in the ratio of intragraft FoxP3-expressing regulatory cells was observed. Our comprehensive analysis demonstrates the novel cellular therapeutic approach and significant effect of donor-derived, untreated BMDCs and Dexa BMDCs in preventing corneal allograft rejection.

  17. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Li; Haidong Zhang; Xuxu Zheng; Zhongyi Yin; Le Wei

    2011-01-01

    N-F-codoped TiO2 (NFTO) photocatalysts were synthesized by a simple sol-gel process with tetrabutyl titanate (Ti(OBu)4) as the precursor of TiO2 and ammonium fluoride (NH4F) as the source of N and F.The synthesized photocatalysts were investigated by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photodegradation reaction tests of 4-chlorophenol under visible light irradiation to understand the relationship between the structure of NFTO catalyst and corresponding photocatalytic activity.The crystal phase and particle size of catalysts were found to be largely affected by the calcination temperature.In addition,N-F-codoping could inhibit phase transition of TiO2 from anatase to rutile.The presence of N and F atoms in the lattice of TiO2 is responsible for the visible light catalytic activity.In UV-Vis DRS tests,the spectrum of NFTO exhibited red shift compared with Degussa P25 and the band gap was reduced to around 2.92 eV.Under optimal calcination temperature and dopant concentration conditions,the NFTO photocatalyst exhibited the highest activity in the photodegradation reaction tests of 4-chlorophenol under visible light irradiation with a degradation rate of 75.84%.Besides,the 5-recycle test showed that NFTO photocatalyst could be reused and its activity kept stable under visible light irradiation.

  18. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2015-10-01

    Full Text Available Polychlorinated naphthalenes (PCNs are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs and polychlorinated dibenzofurans (PCDFs in thermal and combustion procedures. Chlorophenols (CPs are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT with small curvature tunneling contribution (SCT method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential.

  19. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands.

    Science.gov (United States)

    Guo, Qian-Liang; Su, Hua-Fei; Wang, Ning; Liao, Sheng-Rong; Lu, Yu-Ting; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Huang, Zhi-Shu

    2017-04-21

    It has been shown that treatment of cancer cells with c-KIT G-quadruplex binding ligands can reduce their c-KIT expression levels thus inhibiting cell proliferation and inducing cell apoptosis. Herein, a series of new 7-substituted-5,6-dihydrobenzo[c]acridine derivatives were designed and synthesized. Subsequent biophysical evaluation demonstrated that the derivatives could effectively bind to and stabilize c-KIT G-quadruplex with good selectivity against duplex DNA. It was found that 12-N-methylated derivatives with a positive charge introduced at 12-position of 5,6-dihydrobenzo[c]acridine ring had similar binding affinity but lower stabilizing ability to c-KIT G-quadruplex DNA, compared with those of nonmethylated derivatives. Further molecular modeling studies showed possible binding modes of G-quadruplex with the ligands. RT-PCR assay and Western blot showed that compound 2b suppressed transcription and translation of c-KIT gene in K562 cells, which was consistent with the property of an effective G-quadruplex binding ligand targeting c-KIT oncogene promoter. Further biological evaluation showed that compound 2b could induce apoptosis through activation of the caspase-3 cascade pathway.

  20. Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Lili Xu; Peng Lin; Jing Cui

    2012-01-01

    Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time- and concentration-dependent manner.

  1. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yae Jin Yoon

    Full Text Available Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs, also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1 activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.

  2. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro.

    Science.gov (United States)

    Zhang, Jing; Wang, Zhihua; Jiang, Yong; Niu, Zhongying; Fu, Lei; Luo, Zhirong; Cooper, Paul R; Smith, Anthony J; He, Wenxi

    2015-03-15

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type I as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs.

  3. Novel P2 promoter-derived HNF4{alpha} isoforms with different N-terminus generated by alternate exon insertion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmin, E-mail: jmhuang@partners.org [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Levitsky, Lynne L. [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Rhoads, David B., E-mail: rhoads@helix.mgh.harvard.edu [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States)

    2009-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a critical transcription factor for pancreas and liver development and functions in islet {beta} cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4{alpha} variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4{alpha} variants designated HNF4{alpha}10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human = 222 nt, rodent = 136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4{alpha}10-{alpha}12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding {alpha}7-{alpha}9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4{alpha}10-{alpha}12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4{alpha} than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4{alpha} mutations and polymorphisms in genetic analyses of MODY1 and T2DM.

  4. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  5. ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells

    Science.gov (United States)

    Lee, Hyun-Joo; Kim, Si-Na; Jeon, Myung-Shin; Yi, TacGhee; Song, Sun U.

    2017-01-01

    Mesenchymal stem cells (MSCs) can modulate lymphocyte proliferation and function. One of the immunomodulatory functions of MSCs involves CD4+CD25+FoxP3+ regulatory T cells (Tregs), which negatively regulate inflammatory responses. MSC-mediated Treg induction is supposed to be regulated by mechanisms requiring both soluble and cell contact-dependent factors. Although the involvement of soluble factors has been revealed, the contact-dependent mechanisms in MSC-mediated Treg induction remain unclear. We attempted to identify molecule(s) other than secreted factors that are responsible for MSC-mediated Treg induction and to uncover the underlying mechanisms. Under in vitro Treg-inducing conditions, ICOSL expression in MSCs coincided with Treg induction in co-cultures of MSCs with CD4+ T cells. When cultured in a transwell plate, MSCs failed to induce Tregs. Neutralization or knockdown of ICOSL significantly reduced Tregs and their IL-10 release. ICOSL overexpression in MSCs promoted induction of functional Tregs. ICOSL-ICOS signaling promoted Treg differentiation from CD4+ T cells through activation of the phosphoinositide 3-kinase-Akt pathway. MSCs primed with Interleukin-1β significantly induced Tregs through ICOSL upregulation. We demonstrated that the Treg-inducing activity of MSCs is proportionate to their basal ICOSL expression. This study provides evidence that ICOSL expression in human MSCs plays an important role in contact-dependent regulation of MSC-mediated Treg induction. PMID:28290526

  6. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    Science.gov (United States)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  7. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.

  8. Trace analysis of chlorophenols in river water samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, M.; Ishii, Y.; Okanouchi, N.; Sakui, N.; Ito, R.; Inoue, K.; Nakazawa, H. [Hoshi Univ., Tokyo (Japan). Dept. of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Saito, K. [Saitama Institute of Public Health, Saitama (Japan). Dioxin Research Group

    2004-09-15

    Many analytical methods for the determination of chlorophenols in water samples have been reported including gas chromatography-mass spectrometry (GC-MS). However, GC-MS was initially used for the determination of phenol compounds even though derivatization was required. The derivatization leads to sharper peaks and hence to better separation and higher sensitivity for the phenols. However, the derivatization faces the risk of contamination and hence an overestimation of chlorophenols concentration. In order to overcome these problems, in situ derivatization has been developed, which involves the simple addition of a reagent to a liquid sample. Recently, a new sorptive extraction technique that uses a stir bar coated with polydimethylsiloxane (PDMS) was developed. The technique is known as stir bar sorptive extraction (SBSE). We already reported that determination of 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in river water4 and body fluid samples by using SBSE. In addition, SBSE with in situ derivatization has been successfully used in the determination of bisphenol A (BPA) in human body fluid samples6 and phenolic xenoestrogens in river water samples. The aim of this study is to determine trace amounts of chlorophenols in water samples by SBSE with in situ derivatization, followed by thermal desorption (TD)-GC-MS. The developed method was applied to determination of chlorophenols in river water samples.

  9. Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast

    Directory of Open Access Journals (Sweden)

    Dario Acampora

    2016-06-01

    Full Text Available Mouse embryonic stem cells (ESCs and the inner cell mass (ICM-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.

  10. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  11. Brain-derived Neurotrophic Factor Promotes Differentiation and Maturation of Adult-born Neurons Through GABAergic Transmission

    OpenAIRE

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L.; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type mice, but not from Bdnfklox/klox mice where the long 3′ untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated rele...

  12. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Brian G Rowan

    Full Text Available BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9, IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of

  13. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons.

    Science.gov (United States)

    Fang, Hung; Chartier, Joanne; Sodja, Caroline; Desbois, Angele; Ribecco-Lutkiewicz, Maria; Walker, P Roy; Sikorska, Marianna

    2003-07-18

    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.

  14. A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2012-08-01

    Full Text Available Successful implementation of ultrasound irradiation for the rapid synthesis of a novel series of 3-[1-(4-substituted-5-(aryldiazenylthiazol-2-ylhydrazonoethyl]-2H-chromen-2-ones 5ah, via reactions of 2-(1-(2-oxo-2H-chromen-3-ylethylidene thiosemicarbazide (2 and the hydrazonoyl halides 3(4, was demonstrated. Also, a new series of 5-arylidene-2-(2-(1-(2-oxo-2H-chromen-3-ylethylidenehydrazinylthiazol-4(5H-ones 10ad were synthesized from reaction of 2 with chloroacetic acid and different aldehydes. Moreover, reaction of 2-cyano-N'-(1-(2-oxo-2H-chromen-3-ylethylidene-acetohydrazide (12 with substituted benzaldehydes gave the respective arylidene derivatives 13ac under the conditions employed. The structures of the synthesized compounds were assigned based on elemental analyses and spectral data. Also, the cytototoxic activities of the thiazole derivative 5a was evaluated against HaCaT cells (human keratinocytes. It was found that compound 5a possess potent cytotoxic activity.

  15. The Escherichia coli-Derived Thymosin β4 Concatemer Promotes Cell Proliferation and Healing Wound in Mice

    Directory of Open Access Journals (Sweden)

    Xiaolei Wang

    2013-01-01

    Full Text Available Thymosin β4 (Tβ4 is one of the most promising thymosins for future clinical applications, and it is anticipated that commercial demand for Tβ4 will increase. In order to develop a new approach to produce recombinant Tβ4, a 168 bp DNA (termed Tβ4 was designed based on the Tβ4 protein sequence and used to express a 4 × Tβ4 concatemer (four tandem copies of Tβ4, termed 4 × Tβ4 together with a histidine tag (6 × His in E. coli (strain BL21. SDS-PAGE and western blot analysis were used to confirm that a recombinant 4 × Tβ4 protein of the expected size (30.87 kDa was produced following the induction of the bacterial cultures with isopropyl β-D-thiogalactoside (IPTG. The E. coli-derived 4 × Tβ4 was purified by Ni-NTA resin, and its activities were examined with regard to both stimulating proliferation of the mice spleen cells in vitro and in vivo wound healing. The results demonstrate that these activities of the E. coli-derived recombinant 4 × Tβ4 were similar or even better than existing commercially obtained Tβ4. This production strategy therefore represents a potentially valuable approach for future commercial production of recombinant Tβ4.

  16. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability

    Science.gov (United States)

    Myers, Katie N.; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J.; Howard, Anna E.; Beveridge, Ryan D.; Maslen, Sarah; Skehel, J. Mark; Collis, Spencer J.

    2016-01-01

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions. PMID:27739501

  17. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  18. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    Science.gov (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  19. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong; Wang, Yifan; Wang, Xiaodong; Li, Mengting; Han, Fei; Ju, Luyu; Zhang, Ge; Shi, Li; Li, Kai; Wang, Bingfeng [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-05-30

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (K{sub A}) of 0.07 × 10{sup 4} L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system.

  20. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model

    Directory of Open Access Journals (Sweden)

    Li X

    2016-06-01

    Full Text Available Xin Li,1 Wei Zheng,2 Hongying Bai,1 Jin Wang,3 Ruili Wei,1 Hongtao Wen,3 Hanbing Ning3 1Department of Neurology, 2Department of Nursing, The Second Affiliated Hospital of Zhengzhou University, 3Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Previous studies have shown the beneficial effects of adipose-derived stem cells (ADSCs transplantation in stroke. However, the molecular mechanism by which transplanted ADSCs promote nerve healing is not yet elucidated. In order to make clear the molecular mechanism for the neuroprotective effects of ADSCs and investigate roles of the BDNF–TrkB signaling in neuroprotection of ADSCs, we, therefore, examined the neurological function, brain water content, and the protein expression in middle cerebral artery occlusion (MCAO rats with or without ADSCs transplantation. ADSCs were transplanted intravenously into rats at 30 minutes after MCAO. K252a, an inhibitor of TrkB, was administered into rats by intraventricular and brain stereotaxic injection. Modified neurological severity score tests were performed to measure behavioral outcomes. The results showed that ADSCs significantly alleviated neurological deficits and reduced brain water content in MCAO rats. The protein expression levels of BDNF and TrkB significantly increased in the cortex of MCAO rats with ADSCs treatment. However, K252a administration reversed the ADSCs-induced elevation of BDNF, TrkB, and Bcl-2 and reduction of Bax protein in MCAO rats. ADSCs promote BDNF expression via the TrkB signaling and improve functional neurological recovery in stroke rats. Keywords: stroke, adipose tissue-derived stem cells, brain-derived neurotrophic factor, TrkB

  1. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    Science.gov (United States)

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.

  2. Seco-limonoid derived from Raputia heptaphylla promotes the control of cutaneous leishmaniasis in hamsters (Mesocricetus auratus).

    Science.gov (United States)

    Granados-Falla, Diana; Gomez-Galindo, Angela; Daza, Alejandro; Robledo, Sara; Coy-Barrera, Carlos; Cuca, Luis; Delgado, Gabriela

    2016-03-01

    The rational search of novel bioactive molecules against pathogens with immunomodulatory activity is presently one of the most significant approaches to discover and design new therapeutic agents for effective control of infectious diseases, such as the infection caused by Leishmania parasites. In the present study, we evaluated the therapeutic efficacy of the recently characterized immunomodulatory compound 11α,19β-dihydroxy-7-acetoxy-7-deoxoichangin, a seco-limonoid derived from the bark of Raputia heptaphylla (Pittier) using: (1) peritoneal macrophages and (2) Mesocricetus auratus hamsters infected with Leishmania (V.) panamensis and Leishmania (L.) amazonensis. We observed the ability of this seco-limonoid to induce the effective control of the parasite either in vitro [determining an effective concentration 50 (EC50) of 59 µ m at the infection model] and in vivo (inducing clinical improvement or even cure in infected animals treated compared with the groups of animals treated with vehicle solution or meglumine antimoniate).

  3. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury.

  4. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis

    Science.gov (United States)

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang

    2017-01-01

    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on

  5. Human umbilical cord-derived endothelial progenitor cells promote growth cytokines-mediated neorevascularization in rat myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    HU Cheng-heng; LI Zhi-ming; DU Zhi-min; ZHANG Ai-xia; YANG Da-ya; WU Gui-fu

    2009-01-01

    Background Cell-based vascular therapies of endothelial progenitor cells (EPCs) mediated neovascularization is still a novel but promising approach for the treatment of ischemic disease. The present study was designed to investigate the therapeutic potentials of human umbilical cord blood-derived EPCs (hUCB-EPCs) in rat with acute myocardial infarction.Methods Human umbilical cord blood (hUCB) mononuclear cells were isolated using density gradient centrifugation from the fresh human umbilical cord in healthy delivery woman, and cultured in M199 medium for 7 days. The EPCs were identified by double-positive staining with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholorate-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and fluorescein isothiocyanate-conjugated Ulex europaeus lectin (FITC-UEA-I). The rat acute myocardial infarction model was established by the ligation of the left anterior descending artery. The hUCB-EPCs were intramyocardially injected into the peri-infarct area. Four weeks later, left ventricular function was assessed by a pressure-volume catheter. The average capillary density (CAD) was evaluated by anti-VⅢ immunohistochemistry staining to reflect the development of neovascularization at the peri-infarct area. The graft cells were identified by double immunofluorescence staining with human nuclear antigen (HNA) and CD31 antibody,representing human origin of EPCs and vascular endothelium, respectively. Expressions of cytokines, proliferating cell nuclear angigen (PCNA), platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor (VEGF) were detected to investigate the underlying mechanisms of cell differentiation and revascularization.Results The donor EPCs were detectable and integrated into the host myocardium as confirmed by double-positive immunofluorescence staining with HNA and CD31. And the anti-VⅢ staining demonstrated a higher degree of microvessel formation in EPCs transplanted

  6. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor.

    Science.gov (United States)

    DaSilva, John; Gioeli, Daniel; Weber, Michael J; Parsons, Sarah J

    2009-09-15

    During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers. A common feature of the most aggressive hormone-refractory prostate cancers is the accumulation of cells with neuroendocrine characteristics that produce paracrine factors and may provide a novel mechanism for the regulation of AR during advanced stages of the disease. In this study, we show that neuroendocrine-derived parathyroid hormone-related protein (PTHrP)-mediated signaling through the epidermal growth factor receptor (EGFR) and Src pathways contributes to the phenotype of advanced prostate cancer by reducing AR protein turnover. PTHrP-induced accumulation of AR depended on the activity of Src and EGFR and consequent phosphorylation of the AR on Tyr(534). PTHrP-induced tyrosine phosphorylation of AR resulted in reduced AR ubiquitination and interaction with the ubiquitin ligase COOH terminus of Hsp70-interacting protein. These events result in increased accumulation of AR and thus enhanced growth of prostate cancer cells at low levels of androgen.

  7. Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors

    Science.gov (United States)

    Serrano-Lotina, A.; Rodríguez, L.; Muñoz, G.; Daza, L.

    Hydrotalcite-like precursors have been synthesized in order to study the influence of lanthanum on the structure and the properties of the precursors, as well as on the catalytic activity and stability of their derived catalyst on biogas reforming. From XRD, and TPO characterization, we confirmed that hydrotalcite-like precursors where obtained. After calcination at 750 °C, Mg(Ni,Al)O solid solution was detected. High surface areas have been obtained finding the highest surface area on the catalyst without lanthanum. TPR experiments were performed in order to study the reducibility of the catalysts. One reduction peak was found in the catalyst without lanthanum while two peaks were observed in the catalysts with lanthanum. A reduction peak at 900 °C was observed over the sample without Ni and La. Catalytic tests, at 700 °C with a feed of CH 4:CO 2 1:1, were performed after appropriate reduction during 50 h. While a decrease on catalytic activity was observed with the addition and the increase of La content, an enhancement in the stability was observed. No sign of deactivation of the catalyst and no carbon deposition were found on the catalysts doped with lanthanum.

  8. Long-term ferrocyanide application via deicing salts promotes the establishment of Actinomycetales assimilating ferrocyanide-derived carbon in soil.

    Science.gov (United States)

    Gschwendtner, Silvia; Mansfeldt, Tim; Kublik, Susanne; Touliari, Evangelia; Buegger, Franz; Schloter, Michael

    2016-07-01

    Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with (13) C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating (13) C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source.

  9. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures.

    Science.gov (United States)

    Baptista, Sofia; Bento, Ana Rita; Gonçalves, Joana; Bernardino, Liliana; Summavielle, Teresa; Lobo, Andrea; Fontes-Ribeiro, Carlos; Malva, João O; Agasse, Fabienne; Silva, Ana P

    2012-06-01

    Methamphetamine (METH) is a psychostimulant drug of abuse that causes severe brain damage. However, the mechanisms responsible for these effects are poorly understood, particularly regarding the impact of METH on hippocampal neurogenesis. Moreover, neuropeptide Y (NPY) is known to be neuroprotective under several pathological conditions. Here, we investigated the effect of METH on dentate gyrus (DG) neurogenesis, regarding cell death, proliferation and differentiation, as well as the role of NPY by itself and against METH-induced toxicity. DG-derived neurosphere cultures were used to evaluate the effect of METH or NPY on cell death, proliferation or neuronal differentiation. Moreover, the role of NPY and its receptors (Y(1), Y(2) and Y(5)) was investigated under conditions of METH-induced DG cell death. METH-induced cell death by both apoptosis and necrosis at concentrations above 10 nM, without affecting cell proliferation. Furthermore, at a non-toxic concentration (1 nM), METH decreased neuronal differentiation. NPY's protective effect was mainly due to the reduction of glutamate release, and it also increased DG cell proliferation and neuronal differentiation via Y(1) receptors. In addition, while the activation of Y(1) or Y(2) receptors was able to prevent METH-induced cell death, the Y(1) subtype alone was responsible for blocking the decrease in neuronal differentiation induced by the drug. Taken together, METH negatively affects DG cell viability and neurogenesis, and NPY is revealed to be a promising protective tool against the deleterious effects of METH on hippocampal neurogenesis.

  10. Agmatine promotes expression of brain-derived neurotrophic factor in brainstem facial nucleus in the rat facial nerve injury model

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Wenlong Luo

    2008-01-01

    BACKGROUND: Studies have shown that agmatine can reduce inhibition of neuronal regeneration by increasing cyclic adenosine monophosphate and brain-derived neurotrophic factor (BDNF) in the hippocampus of morphine-dependent rats. The hypothesis that agmatine exerts similar effects on facial nerve injury deserves further analysis.OBJECTIVE: To study the effects of peritoneal agmatine injection on BDNF levels in the rat brainstem after facial nerve injury.DESIGN, TIME AND SETTING: A controlled animal experiment was performed at the Department of Otolaryngology-Head and Neck Surgery at the Second Affiliated Hospital, Chongqing University of Medical Sciences (Chongqing, China), between October and December in 2007.MATERIALS: Twenty-four male Sprague-Dawley rats were randomly divided into a control, a lesion, and an agmatine treatment group, with eight rats in each group. Bilateral facial nerve anastomosis was induced in the lesion and agmatine treatment groups, while the control group remained untreated. A rat BDNF Enzyme-linked immunosorbent assay kit was used to measure BDNF levels in the brainstem facial nucleus.METHODS: Starting on the day of lesion, the agmatine group received a peritoneal injection of 100 mg/kg agmatine, once per day, for a week, whereas rats in the lesion group received saline injections.MAIN OUTCOME MEASURES: BDNF levels in the brainstem containing facial nucleus were measured by ELISA.RESULTS: Twenty-four rats were included in the final analysis without any loss. Two weeks after lesion, BDNF levels were significantly higher in the lesion group than in the control group (P<0.01). A significant increase was noted in the agmatine group compared to the lesion group (P<0.01).CONCLUSION: Agmatine can substantially increase BDNF levels in the rat brainstem after facial nerve injury.

  11. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Khanabdali, Ramin; Saadat, Anbarieh; Fazilah, Maizatul; Bazli, Khairul Fidaa' Khairul; Qazi, Rida-e-Maria; Khalid, Ramla Sana; Hasan Adli, Durriyyah Sharifah; Moghadamtousi, Soheil Zorofchian; Naeem, Nadia; Khan, Irfan; Salim, Asmat; Shamsuddin, ShamsulAzlin Ahmad; Mohan, Gokula

    2016-01-01

    Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.

  12. Tendon Derived Stem Cells Promote Platelet-Rich Plasma Healing in Collagenase-Induced Rat Achilles Tendinopathy

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-12-01

    Full Text Available Background/Aims: Tendon injuries are common, difficult to cure and usually healed with fibrosis and scar tissue. The aim of this study was to evaluate tendon derived stem cells (TDSCs and platelet rich plasma (PRP in the treatment of collagenase induced Achilles tendinopathy in rat. Methods: Four and 8 weeks (n=18 after TDSCs, PRP, PRP with TDSC or PBS (control injection into collagenase or saline (sham injected rat Achilles tendon, tendon tissue was harvested and tendon quality was evaluated by histology and biomechanical testing. TDSCs were cultured and treated by 10% PRP, and the FAK/ERK1/2 signaling pathway and tenocyte-related genes were detected by western blot analysis. Results: Compared to the control, PRP treatment resulted in better healing of injured tendons with improved histological outcomes and biomechanical functions. The addition of TDSCs to PRP treatment significantly enhanced the effects of PRP treatment alone. TDSC injection alone had little effect on tendon healing. PRP and PRP with TDSC treatments of collagenase induced tendon injuries also increased the mRNA and protein expression of tenocyte-related genes (type I collagen, SCX, Tenascin C and activated the focal adhesion kinase (FAK and extracellular-regulated kinase (ERK 1/2 signaling pathways. Treatment of TDSCs in vitro with 10% PRP significantly increased the phosphorylation levels of FAK and ERK1/2 and the protein levels of tenocyte-related genes (Col I, SCX and Tenascin C. Inhibition of the FAK and ERK1/2 signaling pathways abolished the effect of PRP. Conclusion: This study concludes that PRP combined with TDSCs is potentially effective for the treatment of tendinopathy. The PRP induced, FAK and ERK1/2 dependent activation of tenocyte related genes in TDSCs in vitro suggests that the beneficial healing effect of the PRP with TDSC combination might occur by means of an improved TDSC differentiation toward the tenocyte lineage. Thus, a PRP with TDSC combination

  13. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  14. Antigen-pulsed bone marrow-derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine Mycoplasma pneumonia.

    Science.gov (United States)

    Dobbs, Nicole A; Zhou, Xia; Pulse, Mark; Hodge, Lisa M; Schoeb, Trenton R; Simecka, Jerry W

    2014-08-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but they have exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, whereas Th2 responses contribute to immunopathology. The purpose of the present study was to evaluate the capacity of cytokine-differentiated dendritic cell (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma Ag-pulsed bone marrow-derived DCs could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with Ag-pulsed DCs resulted in enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with Ag-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with Ag-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either Ag-pulsed bone marrow-derived DCs or pulmonary DCs were shown to be IL-13(+) Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DCs most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination.

  15. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  16. Human breast adipose‑derived stem cells: characterization and differentiation into mammary gland‑like epithelial cells promoted by autologous activated platelet‑rich plasma.

    Science.gov (United States)

    Cui, Shi-En; Li, Hong-Mian; Liu, Da-Lie; Nan, Hua; Xu, Kun-Ming; Zhao, Pei-Ran; Liang, Shuang-Wu

    2014-08-01

    Human adipose‑derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell‑based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland‑like epithelial cells (MGECs) was developed using activated autologous platelet‑rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.

  17. The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalcite/clay composite.

    Science.gov (United States)

    Zhou, Shiwei; Gu, Chuantao; Qian, Zhenying; Xu, Jinguang; Xia, Chuanhai

    2011-05-15

    Liquid phase catalytic oxidation of chlorophenols (CPs) was carried out over Cu-Al hydrotalcite/clay composite at ambient temperature and pressure using hydrogen peroxide as oxidant. The results showed that the catalyst had high catalytic activity, with complete oxidation of 4-CP within 40 min at 40 °C. The content and position of chlorine on the aromatic ring had significantly different effects on the oxidation rate of CPs, with the rate sequence of phenol > monochlorophenol (MCP) > dichlorophenol (DCP) > trichlorophenol (TCP), 3-CP > 2-CP > 4-CP, and 3,5-DCP > 3,4-DCP > 2,5-DCP > 2,4-DCP > 2,6-DCP. This was ascribed to the interactions among σ-electron withdrawing conductive effect, π-electron donating conjugative effect, and steric hindrance effect of chlorine. It was evidenced that the catalytic peroxide oxidation of CPs in the first step was selective and rate-limiting, where chlorinated 1,4-benzoquinones formed.

  18. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, R.; Kothari, D. C. [Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Patel, N.; Miotello, A. [Dipartimento di Fisica, Universita degli Studi di Trento, I-38123 Povo ( Trento) (Italy)

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  19. Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors.

    Science.gov (United States)

    Murcia, M D; Gómez, M; Bastida, J; Hidalgo, A M; Montiel, M C; Ortega, S

    2014-08-01

    A continuous tank reactor was used to remove 4-chlorophenol from aqueous solutions, using immobilized soybean peroxidase and hydrogen peroxide. The influence of operational variables (enzyme and substrate concentrations and spatial time) on the removal efficiency was studied. By using the kinetic law and the intrinsic kinetic parameters obtained in a previous work with a discontinuous tank reactor, the mass-balance differential equations of the transient state reactor model were solved and the theoretical conversion values were calculated. Several experimental series were used to obtain the values of the remaining model parameters by numerical calculation and using an error minimization algorithm. The model was checked by comparing the results obtained in some experiments (not used for the determination of the parameters) and the theoretical ones. The good concordance between the experimental and calculated conversion values confirmed that the design model can be used to predict the transient behaviour of the reactor.

  20. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.

    Science.gov (United States)

    Yamada, Hiromi; Ito, Daisuke; Oki, Yoshinao; Kitagawa, Masato; Matsumoto, Taro; Watari, Tosihiro; Kano, Koichiro

    2014-11-14

    Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n=22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.

  1. Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway

    Science.gov (United States)

    Zhu, Chengxing; Yu, Jiong; Pan, Qiaoling; Yang, Jinfeng; Hao, Guangshu; Wang, Yingjie; Li, Lanjuan; Cao, Hongcui

    2016-01-01

    Human placenta-derived mesenchymal stem cells (hPMSCs) reside in a physiologically low-oxygen microenvironment. Hypoxia influences a variety of stem cell cellular activities, frequently involving hypoxia-inducible factor-2 alpha (HIF-2α). This research showed that hPMSCs cultured in hypoxic conditions (5% O2) exhibited a more naïve morphology and had a higher proliferative capability and higher HIF-2α expression than hPMSCs cultured in normoxic conditions (21% O2). Similar to the hypoxic cultures, hPMSCs over-expressing HIF-2α showed higher proliferative potential and higher expression of CCND1 (CyclinD1), MYC (c-Myc), POU5F1 (Oct4) and the components of the MAPK/ERK pathway. In contrast, these genes were down-regulated in the HIF-2α-silenced hPMSCs. After adding the MAPK/ERK inhibitor PD0325901, cell growth and the expression of CCND1 and MYC were inhibited. Furthermore, the chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA) showed that HIF-2α bound to the MAPK3 (ERK1) promoter, indicative of its direct regulation of MAPK/ERK components at the transcriptional level during hPMSC expansion. Taken together, our results suggest that HIF-2α facilitated the preservation of hPMSC stemness and promoted their proliferation by regulating CCND1 and MYC through the MAPK/ERK signaling pathway. PMID:27765951

  2. Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2016-01-01

    Full Text Available Human amnion-derived mesenchymal stem cells (HAMSCs are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU. Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2 signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency.

  3. Oxo iron(IV) as an oxidative active intermediate of p-chlorophenol in the Fenton reaction: a DFT study.

    Science.gov (United States)

    Mignon, Pierre; Pera-Titus, Marc; Chermette, Henry

    2012-03-21

    Debate continues over which active species plays the role of oxidative agent during the Fenton reaction-the HO˙ radical or oxo iron [Fe(IV)O](2+). In this context, the present study investigates the oxidation of p-chlorophenol by [Fe(IV)O(H(2)O)(5)](2+) using DFT calculations, within gas-phase and micro-solvated models, in order to explore the possible role of oxo iron as a reactant. The results show that the chlorine atom substitution of p-chlorophenol by oxo iron is a highly stabilising step (ΔH = -83 kcal mol(-1)) with a free energy barrier of 5.8 kcal mol(-1) in the micro-solvated model. This illustrates the high oxidising power of the [Fe(IV)O(H(2)O)(5)](2+) complex. On the other hand, the breaking of the Fe-O bond, leading to the formation of hydroquinone, is observed to be the rate-determining step of the reaction. The rather large free energy barrier corresponding to this bond cleavage amounts to 10.2 and 9.3 kcal mol(-1) in the gas-phase and micro-solvated models, respectively. Elsewhere, the lifetime of the HO˙ radical has previously been shown to be extremely small. These facts, combined with observations of oxo iron under certain experimental conditions, suggest that oxo iron is a highly plausible oxidative species of the reaction. In addition, a trigonal bipyramidal iron complex, coordinated either by hydroxyl groups and/or by water molecules, has been found in all described mechanisms. This structure appears to be a stable intermediate; and to our knowledge, it has not been characterised by previous studies.

  4. Comparison of dissociation mechanism between collisionally activated dissociation and charge inversion using alkali metal targets for chlorophenol isomers

    Science.gov (United States)

    Hayakawa, Shigeo; Kawamura, Yoshiaki; Takahashi, Yutaka

    2005-11-01

    Chlorinated aromatic compounds are well-known environmental pollutants whose toxicities depend dramatically on the chlorine substitution pattern, making differentiation of chlorophenol isomers important for environmental analysis. Collisionally activated dissociation (CAD) spectra and charge inversion spectra of ortho-, meta-, and para-chlorophenols (ClC6H4OH) and their partially deuterated forms (ClC6H4OD) were measured using alkali metal targets. The peaks associated with C6H4O+ and C5H5Cl+ ions observed in the CAD spectra result from the loss of HCl and CO fragments, respectively, after the re-arrangement of the hydroxyl hydrogen atom. The peaks associated with C6H4OH- and ClC6H4O- ions observed in the charge inversion spectra result from Cl loss and from hydroxyl bond dissociation, respectively. Isomeric differentiation is possible based on the clear differences observed in the relative intensities of these pairs of peaks. Although the intensities of the peaks associated with C6H4O+ relative to those of C5H5Cl+ in the CAD spectra are independent of the target species, the intensities of the peaks associated with C6H4OH- relative to those of ClC6H4O- in the charge inversion spectra are target dependent. The isomeric dependence of the positive ion distribution patterns in the CAD spectra is proposed to be due to the differences in the rate of the hydrogen atom re-arrangement process. In contrast, the isomeric dependence of the negative ion distribution patterns in the charge inversion spectra is attributed to differences in the bond strength involved in the direct dissociation process in the neutral intermediate species.

  5. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats.

    Science.gov (United States)

    Ohta, Yuki; Takenaga, Mitsuko; Tokura, Yukie; Hamaguchi, Akemi; Matsumoto, Taro; Kano, Koichiro; Mugishima, Hideo; Okano, Hideyuki; Igarashi, Rie

    2008-01-01

    Transplantation of mature adipocyte-derived cells (dedifferentiated fat cells) led to marked functional recovery from spinal cord injury (SCI)-induced motor dysfunction in rats. When mature adipocytes were isolated from rat adipose tissue and grown in ceiling culture, transformation into fibroblast-like cells without lipid droplets occurred. These fibroblast-like cells, termed dedifferentiated fat cells (DFAT), could proliferate and could also differentiate back into adipocytes. DFAT expressed neural markers such as nestin, betaIII tubulin, and GFAP. Allografting of DFAT into SCI-induced rats led to significant recovery from hindlimb dysfunction. Grafted cells were detected at the injection site, and some of these cells expressed betaIII tubulin. DFAT expressed neurotrophic factors such as BDNF and GDNF prior to transplantation, and grafted cells were also positive for these factors. Therefore, these neurotrophic factors derived from grafted DFAT might have contributed to the promotion of functional recovery. These findings also suggest that mature adipocytes could become a new source for cell replacement therapy to treat central nervous system disorders.

  6. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-09-01

    Full Text Available Hongyu Sun,1,* Yongchao Mou,2,* Yi Li,3,* Xia Li,4,* Zi Chen,2 Kayla Duval,2 Zhu Huang,1 Ruiwu Dai,1 Lijun Tang,1 Fuzhou Tian1 1Department of General Surgery, Chengdu Military General Hospital, Chengdu, People’s Republic of China; 2Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; 3Department of Cardiology, The General Hospital of Chinese People’s Armed Police Forces, Beijing, People’s Republic of China; 4Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac

  7. Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway

    Directory of Open Access Journals (Sweden)

    Cong Jianping

    2009-12-01

    Full Text Available Abstract Background Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells. Methods We constructed a plasmid encoding α1,2-fucosyltransferase (α1,2-FT gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after α-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K inhibitor treatment. Results Our results showed that the levels of α1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of α-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of α1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002. Conclusions Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.

  8. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Dandan Lv; Ha-Jeong Kim; Robert A Kurt; Wen Bu; Yi Li; Xiaojing Ma

    2013-01-01

    CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals.CCL5 expression correlates with advanced human breast cancer.However,its functional significance and mode of action have not been established.Here,we show that CCL5-deficient mice are resistant to highly aggressive,triple-negative mammary tumor growth.Hematopoietic CCL5 is dominant in this phenotype.The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+,myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells.These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors.Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors.CCL5 also helps maintain the immunosuppressive capacity of human MDSCs.Our study uncovers a novel,chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors.The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche.Because of the apparent dispensable nature of this molecule in normal physiology,CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.

  9. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Kim Yoon-Keun

    2009-11-01

    Full Text Available Abstract Background Various cancer cells, including those of colorectal cancer (CRC, release microvesicles (exosomes into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  10. CHLOROPHENOL DEGRADATION BY ELECTROCATALYSIS COMBINED WITH UV RADIATION%电催化与紫外光辐射降解氯酚

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 叶倩; 周明华; 丛燕青

    2002-01-01

    @@ Chlorinated organic compounds, especially chlorophenols are well-known water priority pollutant family due to their toxicity and potential health hazard. As biological treatment processes for the degradation of chlorinated phenols have not been effective, various technologies and processes such as activated carbon adsorption[1], chemical oxidation[2], have been conventionally attempted for phenolic waster treatment. Recently, advanced oxidation processes (AOPs) have attracted a great deal of attention for treatment of phenolic wastewater, among these chemical oxidation ultraviolet (UV) oxidation system[3], anodic oxidation and indirect electro-oxidation have been widely studied[4]. Though a number of researchers worked on the degradation of chlorophenol by UV radiation or electrochemical processes, there are few reports on both methods for organic wastewater treatment. If these two processes can operate in harmony, the degradation efficiency would be enhanced.

  11. Ecotoxicological evaluation of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol.

    Science.gov (United States)

    Davoren, M; Fogarty, A M

    2005-02-01

    The ecotoxicological effects of three biocidal agents frequently employed as active ingredients in phenolic-based disinfectants were evaluated using a test battery comprising of organisms representing three aquatic trophic levels. Phenolic-based disinfectants are commonly used by mushroom growers to disinfect spent mushroom compost. In general, the most sensitive assay used in this study was the Microtox test. In the case of the fish lethality assay, sodium o-benzyl-p-chlorophenol was found to be slightly more sensitive than the bacterial test system. The freshwater alga and invertebrate tests were also among the most sensitive test species employed. The active ingredient, sodium o-benzyl-p-chlorophenol (with the exception of the Microtox assay), was the most toxic chemical tested on each species. The majority of ecotoxicity data obtained in this research has not been previously reported and may therefore assist in the management and planning decisions regarding the application of pesticides and utilisation of SMC.

  12. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater.

    Science.gov (United States)

    Xia, Chuanhai; Liu, Ying; Zhou, Shiwei; Yang, Cuiyun; Liu, Sujing; Xu, Jie; Yu, Junbao; Chen, Jiping; Liang, Xinmiao

    2009-09-30

    Catalytic hydrotreating of chlorophenols was carried out in water with Pd/C at 25 degrees C under atmospheric pressure. 1.0% (w/w) monocholophenols was completely dechlorinated within 60 min. Phenol, cyclohexanone and cyclohexanol were formed. In contrast to the dechlorination of monochlorophenols, the hydrogenation reaction of polychlorinated phenols became difficult and reaction rates were strongly dependent upon the number of the chlorine atoms. The solvent property had a considerably important influence on the dechlorination reaction. Water as a solvent showed more advantages than organic solvents. It was much easier to be hydrodechlorinated for chlorophenols in aqueous solutions. However, the presence of THF, dioxane, DMSO or DMF in water was disadvantageous to the reaction and easily to cause Pd/C deactivation. Additionally, when different halogenated organic compounds were present in aqueous solution, the dehalogenation reaction was the competitive hydrogenation process.

  13. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  14. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Yoshiomi Kobayashi

    Full Text Available Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs for the repair of spinal cord injury (SCI in a non-human primate model. This study used a pre-evaluated "safe" hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus model of contusive SCI. SCI was induced at the fifth cervical level (C5, followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs. Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.

  15. Development and validation of a simple thin-layer chromatographic method for the analysis of p-chlorophenol in treated wastewater

    Directory of Open Access Journals (Sweden)

    Tešić Živoslav

    2012-01-01

    Full Text Available A thin-layer chromatographic method with densitometric detection was established for quantification of p-chlorophenol in waste water. Degradation efficiency of p-chlorophenol was monitored after each treatment of the wastewater samples. Degradation of p-chlorophenol was performed with advanced oxidation processes (AOPs, using UV, H2O2/UV, O3/H2O2/UV, O3 and O3/UV. Developed TLC procedure has been found to be simple, rapid and precise. The method was characterized by high sensitivity (limit of detection was 11 ng per band and limit of quantification 35 ng per band, linear range (from 75 to 500 ng per band, r = 0.9965, and high precision, accuracy (mean percentage recovery 98.6%, and specificity. Additionally, the efficiency of degradation was monitored using HPLC giving comparable results with RP TLC measurements. [Acknowledgement. This work was performed within the framework of the research project No. 172017 supported by the Ministry of Education and Science of Serbia.

  16. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    Science.gov (United States)

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  17. A promoter polymorphism in human interleukin-32 modulates its expression and influences the risk and the outcome of epithelial cell-derived thyroid carcinoma.

    Science.gov (United States)

    Plantinga, Theo S; Costantini, Irene; Heinhuis, Bas; Huijbers, Angelique; Semango, George; Kusters, Benno; Netea, Mihai G; Hermus, Ad R M M; Smit, Jan W A; Dinarello, Charles A; Joosten, Leo A B; Netea-Maier, Romana T

    2013-07-01

    Interleukin (IL)-32 is an intracellular proinflammatory mediator that strongly modulates the inflammatory reaction. Recent studies have suggested the involvement of IL-32 in the pathogenesis of malignancies. We aimed to assess whether a known germ-line polymorphism in the IL32 promoter modulates IL-32 expression, and whether it influences susceptibility and/or outcome of epithelial cell-derived thyroid carcinoma (TC). In this study, IL32 genotype was assessed in 139 TC patients and 138 healthy controls and was correlated with TC susceptibility and clinical outcome. Furthermore, IL-32 messenger RNA expression and protein were assessed in TC tissues and functional consequences of genetic variants of IL32 were studied in a model of human primary immune cells. Results demonstrate substantial IL-32 expression in TC tumor tissue. Lipopolysaccharide (LPS) stimulation of primary immune cells revealed 2-fold higher expression of IL-32γ, but not IL-32β, in cells homozygous for the ancient T allele. Furthermore, production of LPS-induced cytokines was increased in cells bearing this T allele. Genetic analysis revealed that the ancient T allele was overrepresented in TC patients with odds ratio (95% confidence interval) = 1.71 (1.06-2.75). In addition, the cumulative radioactive iodine (RAI) dose received after total thyroidectomy was significantly higher in TC patients bearing the ancient T allele. In conclusion, individuals bearing genetic variants of IL32 that lead to an increased IL-32γ gene expression and higher production of proinflammatory cytokines have higher risk for developing epithelial cell-derived TC. Subsequently, they require higher dosages of RAI to achieve successful tumor remission. These data suggest an important role of IL-32 in the pathogenesis of TC.

  18. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells

    Institute of Scientific and Technical Information of China (English)

    Ko Saito; Masahide Yoshikawa; Yukiteru Ouji; Kei Moriya; Mariko Nishiofuku; Shigehiko Ueda; Noriko Hayashi; Shigeaki Ishizaka; Hiroshi Fukui

    2006-01-01

    AIM:To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.METHODS:Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLCassisted differentiation, spontaneous differentiation,and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4,hepatocyte growth factor (HGF), oncostatin M (OSM),and dexamethasone.RESULTS:The mRNA expression of α-fetoprotein,albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes,was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Tmmunocytochemical analysis revealed an increased ratio of ALS-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.CONCLUSION:MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.

  19. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells.

    Science.gov (United States)

    Gao, Liyang; Zhao, Mingyan; Ye, Wei; Huang, Jinzhi; Chu, Jiaqi; Yan, Shouquan; Wang, Chaojun; Zeng, Rong

    2016-08-01

    The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.

  20. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury.

    Science.gov (United States)

    Zhang, Yu; Gu, Zuchao; Qiu, Guixing; Song, Yueming

    2013-11-01

    Spinal cord injury (SCI) is one of the most devastating injuries for patients. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor for the regeneration of the spinal neuraxial bundle, but GDNF would degrade rapidly if the protein was injected into the site of injury; thus, it cannot exert its fullest effects. Therefore, we introduced a delivery system of GDNF, poly(lactide-co-glycolic acid) (PLGA) delayed-release microspheres, in the current study and observed the effect of PLGA-GDNF and the combination of PLGA-GDNF and another 2 agents PLGA-chondroitinase ABC (ChABC) and PLGA-Nogo A antibody in the treatment of SCI rats. Our results showed that PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres could elevate the locomotor scores of SCI rats. The effect of PLGA-GDNF was much better than that of GDNF. The cortical somatosensory evoked potential was also improved by PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres. Our results suggest that PLGA delayed-release microsphere may be a useful and effective tool in delivering protein agents into the injury sites of patients with SCI. This novel combination therapy may provide a new idea in promoting the functional recovery of the damaged spinal cord.

  1. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.

    Science.gov (United States)

    Lee, Hong J; Lim, In J; Lee, Min C; Kim, Seung U

    2010-11-15

    Intracerebral hemorrhage (ICH) is a lethal stroke type; mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, so an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and promote functional recovery in rat ICH model, and others have shown that intracerebral infusion of brain-derived neurotrophic factor (BDNF) results in improved structural and functional outcome from cerebral ischemia. We postulated that human NSCs overexpressing BDNF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs and increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by injection of bacterial collagenase into striatum. The HB1.F3.BDNF (F3.BDNF) human NSC line produces sixfold higher amounts of BDNFF over the parental F3 cell line in vitro, induces behavioral improvement, and produces a threefold increase in cell survival at 2 weeks and 8 weeks posttransplantation. Brain transplantation of human NSCs overexpressing BDNF provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results indicate that the F3.BDNF human NSCs should be of great value as a cellular source for experimental studies involving cellular therapy for human neurological disorders, including ICH.

  2. rAAV-mediated delivery of brain-derived neurotrophic factor promotes neurite outgrowth and protects neurodegeneration in focal ischemic model.

    Science.gov (United States)

    Zhang, Jingyu; Yu, Zhigang; Yu, Zhiqiang; Yang, Zichao; Zhao, Hong; Liu, Luran; Zhao, Jiexu

    2011-06-20

    Stroke is one of the neurological diseases which lead to permanently neuronal damage after temporary or long-term occlusion of vessels or after heart attack. However, there are few efficient strategies to prevent or treat this kind of insult in clinical because the consequence is irreversible and could be long-lasting after the onset of stroke. Gene therapy especially using viral system has long been addressed to be of great potential to reduce the damage. Here, we generated recombinant adeno-associated virus (rAAV) carrying brain-derived neurotrophic factor (BDNF) gene. Cells infected with rAAV-BDNF could be able to produce functional BDNF which promoted neurite outgrowth and protected neurons from apoptosis induced by serum deprivation. Further more, single injection of rAAV showed neuroprotection against cell death in focal ischemic model. These results showed that rAAV-mediated gene delivery is functional, which shed light to the future application of viral system-based gene therapy in clinical.

  3. Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair.

    Science.gov (United States)

    Jaerve, Anne; Schira, Jessica; Müller, Hans Werner

    2012-10-01

    Transplanted stem cells provide beneficial effects on regeneration/recovery after spinal cord injury (SCI) by the release of growth-promoting factors, increased tissue preservation, and provision of a permissive environment for axon regeneration. A rise in chemokine stromal cell-derived factor 1 (SDF-1/CXCL12) expression levels in central nervous system (CNS) injury sites has been shown to play a central role in recruiting transplanted stem cells. Although technically more challenging, it has been shown that after SCI few endogenous stem cells are recruited via SDF-1/CXCR4 signaling. Evidence is accumulating that increasing SDF-1 levels at the injury site (e.g., by exogenous application or transfection methods) further enhances stem cell recruitment. Moreover, SDF-1 might, in addition to migration, also influence survival, proliferation, differentiation, and cytokine secretion of stem cells. Here, we discuss the experimental data available on the role of SDF-1 in stem and progenitor cell biology following CNS injury and suggest strategies for how manipulation of the SDF-1 system could facilitate stem cell-based therapeutic approaches in SCI. In addition, we discuss challenges such as how to circumvent off-target effects in order to facilitate the transfer of SDF-1 to the clinic.

  4. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    Directory of Open Access Journals (Sweden)

    Felipe S. Pessoto

    2015-01-01

    Full Text Available A series of thiosemicarbazone (TSC p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics.

  5. The Chinese herbal formula Tongluo Jiunao promotes expression of brain-derived neurotrophic factor/tropomyosin-related kinase B pathways in a rat model of ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Peiman Alesheikh; Yangyang Yan; Huiling Tang; Pengtao Li; Wei Zhang; Yanshu Pan; Arezou Mashoufi; Liyun Zhao; Runjun Wang; Bo Di

    2011-01-01

    The neurotrophin-Trk receptor pathway is an intrinsic pathway to relieve damage to the central nervous system. The present study observed the effects of Tongluo Jiunao (TLJN), which comprises Panax Notoginseng and Gardenia Jasminoides, on expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in a rat model of focal cerebral ischemic injury. Xue Sai Tong (XST), comprising Panax Notoginseng, served as the positive control. Mechanisms of neuroprotection were analyzed following TLJN injection. Following establishment of the middle cerebral artery occlusion models, TLJN and XST were intraperitoneally injected, and 2, 3, 5-triphenyltetrazolium chloride staining results revealed that TLJN injection reduced infarct volume, suggesting that TLJN exerted a neuroprotective effect. Enzyme-linked immunosorbent assay results showed that TLJN elevated BDNF and growth associated protein-43 expression in ischemic brain tissues, as well as serum BDNF levels. Reverse-transcription polymerase chain reaction and western blot results showed that TLJN injection did not affect TrkB expression in the ischemic brain tissues of rats. These results suggested that TLJN injection reduced damage to ischemic brain tissues and increased BDNF expression. In addition, TLJN injection resulted in better promoting effects on neurotrophic factor expression compared with XST.

  6. Pathogenic prion protein fragment (PrP106–126) promotes human immunodeficiency virus type-1 infection in peripheral blood monocyte-derived macrophages

    Science.gov (United States)

    Bacot, Silvia M.; Feldman, Gerald M.; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    Transfusion of blood and blood products contaminated with the pathogenic form of prion protein Prpsc, thought to be the causative agent of variant a Creutzfeldt–Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106–126, a synthetic domain of PrPsc that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106–126 showed large cell clusters indicative of cellular activation. Tyrosine kinase inhibitor STI-571, protein kinase C inhibitor K252B, and cyclin-dependent kinase inhibitor olomoucine attenuated PrP106–126-induced altered MDM functions. These findings delineate a previously undefined functional role of PrP106–126-mediated host cell response in promoting HIV-1 pathogenesis. PMID:25589240

  7. A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER.

    Science.gov (United States)

    Rossetti, Luigi; D'Isa, Giuliana; Mauriello, Clementina; Varra, Michela; De Santis, Pasquale; Mayol, Luciano; Savino, Maria

    2007-08-01

    The promoter of human telomerase reverse transcriptase (hTERT) gene, in the region from -1000 to +1, contains two homopurine-homopyrimidine sequences (-835/-814 and -108/-90), that can be considered as potential targets to triple helix forming oligonucleotides (TFOs) for applying antigene strategy. We have chosen the sequence (-108/-90) on the basis of its unfavorable chromatin organization, evaluated by theoretical nucleosome positioning and nuclease hypersensitive sites mapping. On this sequence, anti-parallel triplex with satisfactory thermodynamic stability is formed by two TFOs, having different lengths. Triplex stability is significantly increased by specific interactions with the perylene derivative N,N'-bis[3,3'-(dimethylamino) propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER). Since DAPER is a symmetric molecule, the induced Circular Dichroism (CD) spectra in the range 400-600 nm allows us to obtain information on drug binding to triplex and duplex DNA. The drug-induced ellipticity is significantly higher in the case of triplex with respect to duplex and, surprisingly, it increases at decreasing of DNA. A model is proposed where self-stacked DAPER binds to triplex or to duplex narrow grooves.

  8. Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via lncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway.

    Science.gov (United States)

    Shi, Sirong; Peng, Qiang; Shao, Xiaoru; Xie, Jing; Lin, Shiyu; Zhang, Tao; Li, Qianshun; Li, Xiaolong; Lin, Yunfeng

    2016-08-03

    Self-assembled tetrahedral DNA nanostructures (TDNs) with precise sizes have been extensively applied in various fields owing to their exceptional mechanical rigidity, structural stability, and modification versatility. In addition, TDNs can be internalized by mammalian cells and remain mainly intact within the cytoplasm by escaping degradation by nucleases. Here, we studied the effects of TDNs on cell migration and the underlying molecular mechanisms. TDNs remarkably enhanced the migration of rat adipose-derived stem cells and down-regulated the long noncoding RNA (lncRNA) XLOC 010623 to activate the mRNA expression of Tiam1 and Rac1. Furthermore, TDNs highly up-regulated the mRNA and protein expression of RHOA, ROCK2, and VCL. These results indicate that TDNs suppressed the transcription of lncRNA XLOC 010623 and activated the TIAM1/RAC1 and RHOA/ROCK2 signaling pathways to promote cell migration. On the basis of these findings, TDNs show a high potential for application in tissue repair and regenerative medicine as a functional three-dimensional DNA nanomaterial.

  9. Reductive Cyclodimerization of α,β-Unsaturated Ketones Promoted by AlCl3/Sm System: A Facile Synthesis of 2-Aroyl-1,3,4-triaryl Cyclopentanol Derivatives

    Institute of Scientific and Technical Information of China (English)

    FAN,Xue-Sen; ZHANG,Yong-Min

    2001-01-01

    Promoted by AlCl3/Sm bimetallic system, α, β-unsaturated ketones underwent reductive cyclodimerization to afford cy clopentanol derivatives under mild conditions. The reaction is stereocontrolled and regioselective over the competitive car bon-carbon double bond reduction.

  10. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

    Directory of Open Access Journals (Sweden)

    Wu S

    2014-12-01

    control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MBSDF-1 destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair. Keywords: mesenchymal stem cell, ultrasound, microbubbles, homing, stromal cell-derived factor-1, diabetic nephropathy

  11. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.

    Science.gov (United States)

    Fan, Jinhong; Wang, Hongwu; Ma, Luming

    2016-08-01

    The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe(0)-Al(0) significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Fe(II)(ox)0] and [Fe(II)(ox)2 (2-)]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe(2+) and Al(3+), their fate, and the activation mechanisms of O2 reduction. The degradation pathway of 4-CP in ox-enhanced Fe(0)-Al(0)/O2 may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al(0)-Fe(0)-O2 process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe(0)-Al(0)/O2 system for the oxidative degradation of aqueous organic pollutants.

  12. Rapid, one-pot derivatization and distillation of chlorophenols from solid samples with their on-line enrichment.

    Science.gov (United States)

    Ganeshjeevan, R; Chandrasekar, Raghavan; Kadigachalam, Parasuraman; Radhakrishnan, Ganga

    2007-01-26

    A microwave-assisted steam distillation (MASD) sample preparation technique for extracting chlorophenols from solid samples was studied. This open vessel microwave system based study developed as an integrated method since it has incorporated extractive distillation, derivatization and on-line enrichment. Gas chromatography (GC) with electron-capture detection was used for the analysis. The study involved optimization of MASD parameters and on-line enrichments using spiked solid samples. MASD achieved recoveries for spiked soil samples in the range of 94-101% within 20min with a collection of only 20ml distillate facilitating on-line enrichment. Some real samples were analyzed that included soil, wood, leather, textiles, dyes and certified reference materials of soil and wood samples. Limit of detection values of 12ng/g for pentachlorophenol and 194ng/g for monochlorophenol were found. Recoveries of 96.6% in the case of soil certified reference material (CRM) with RSD 2.7% and 80.6% in the case of wood CRM with RSD 3.3% were observed in this study. MASD studied found to produce very clean extracts in comparison to reference techniques.

  13. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater.

  14. Sol-Gel Synthesis and Characterizations of CoMoO4 Nanoparticles: An Efficient Photocatalytic Degradation of 4-Chlorophenol.

    Science.gov (United States)

    Umapathy, V; Neeraja, P

    2016-03-01

    Cobalt molybdate CoMoO4 nanoparticles (NPs) were successfully synthesized using cobalt nitrate, ammonium molybdate, citric acid and ethyl cellulose by a simple sol-gel method. Structural, morphological, optical and magnetic properties of the obtained powder were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, high resolution scanning electron microscope (HR-SEM), energy dispersive X-ray (EDX), UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results indicated that the resultant powder was pure single phase crystalline with monoclinic structure. FT-IR spectra indicate the type of bonds between metals and oxygen. HR-SEM images shows that the morphology of the powder consist with well defined nanoparticles (NPs) structure. VSM results showed antiferromagnetic behavior. Photo-catalytic activity of CoMoO4 nanoparticles (NPs) was performed. The addition of TiO2 catalyst enhanced the photo-catalytic activity of CoMoO4 nanoparticles (NPs). The catalysts CoMoO4, Ti02 and mixed oxide catalyst CoMoO4-TiO2 nano- composites (NCs) were tested for the photo-catalytic degradation (PCD) of 4-chlorophenol (4-CP). It was found that the PCD efficiency of CoMoO4-TiO2 NCs was higher (97.5%) than that of pure CoMoO4 (88.0%) and TiO2 (94.0%) catalysts.

  15. Comparison of reactors for oxygen-sensitive reactions: reductive dechlorination of chlorophenols by vitamin b(12s).

    Science.gov (United States)

    Smith, M H; Woods, S L

    1994-11-01

    Serum bottles are frequently used for studies of reductive dechlorination by vitamin B(12), but reducing conditions can be maintained only for several days. This time period is inadequate for evaluating the reductive dechlorination of some slow-reacting aromatic compounds. Sealed glass ampoules maintain reducing conditions for many months, but this method has the disadvantage of disallowing subsampling of the reaction mixture. A glass serum tube was modified for these experiments which not only maintained anoxic conditions for several days but also allowed subsamples to be removed during experiments. The modification was a restriction placed in the middle of the tube by heating in a flame, creating two chambers separated by a narrow neck. The lower chamber contained the oxygen-sensitive reaction mixture. The upper chamber, sealed with a septum and screw cap, was purged with purified nitrogen or argon introduced and vented through fused silica capillaries. Reductive dechlorination of chlorophenols by vitamin B(12) reduced with Ti(III) citrate was monitored in all three reactor types. Sealed ampoules maintained reducing conditions for up to 12 months. The two-chambered reactor maintained reducing conditions longer than the serum vials when frequent samples were taken.

  16. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1.

    Science.gov (United States)

    Wang, Qing; Li, Yi; Li, Jing; Wang, Yuming; Wang, Chao; Wang, Peifang

    2015-01-01

    This study investigated the kinetics of phenol and 4-chlorophenol (4-CP) biodegradation by a cold-adapted bacteria, Pseudomonas putida LY1, isolated from Songhua River sediment. The results showed that P. putida LY1 cannot grow on 4-CP as a sole carbon source. P. putida LY1 had the potential to cometabolic biodegrade phenol and 4-CP in a wide range of temperature (varying from 5 to 35 °C) with the optimal temperature around 25 °C. Mixture of phenol and 4-CP were completely removed at two 4-CP concentrations (15 and 40 mg/L) over a wide range of phenol (20-400 mg/L) concentrations, whereby the ratio of 4-CP/biomass (S 2/X) was lower than 0.03. The kinetic models of cometabolic biodegradation of phenol and 4-CP were proposed, considering the growth and nongrowth substrate inhibition. These models successfully simulate the processes of cometabolic degradation of phenol and 4-CP.

  17. Simultaneous 4-chlorophenol and nitrogen removal in moving bed sequencing batch reactors packed with polyurethane foam cubes of various sizes.

    Science.gov (United States)

    Lim, Jun-Wei; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-02-01

    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.

  18. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    Science.gov (United States)

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions.

  19. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    Science.gov (United States)

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  20. Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Kashif Naeem; Feng Ouyang

    2013-01-01

    The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2)under UV irradiation was examined.The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency.Among the three supports,namely activated carbon (AC),silica (SiO2) and zeolite (ZSM-5),all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone.The optimum concentration was found to be 50 mg for all supporting materials.The efficiency order of the three supports was as follows:AC > ZSM-5 > SiO2,respectively.Whilst,the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%,respectively,within 120 min photocatalysis in the presence of optimal amount of AC.The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.

  1. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Zhang, Zhiqiang; Zhong, Fohua; Zhang, Jiao

    2011-02-28

    A continuously stirred hydrogen-based membrane biofilm reactor (MBfR) with polyvinyl chloride (PVC) hollow fiber membrane was investigated for removing 2-chlorophenol (2-CP) from contaminated drinking water. The bioreactor startup was achieved by acclimating the microorganisms from a denitrifying and sulfate-reducing MBfR to the drinking water contaminated by 2-CP. The effects of some major factors, including 2-CP loading, H(2) pressure, nitrate loading, and sulfate loading, on the removal of 2-CP by the MBfR were systematically investigated. Although the effluent 2-CP concentration increased with its increasing influent loading, the removing efficiency of 2-CP by the MBfR could be up to 94.7% under a high influent loading (25.71 mg/L d). The removing efficiency of 2-CP by the MBfR could be improved by higher H(2) pressure, and lower influent nitrate concentration and sulfate concentration. A high H(2) pressure can assure enough available H(2) as the electron donor for 2-CP degradation. The competition in the electron donor made nitrate and sulfate inhibit the degradation of 2-CP in the MBfR. The electron flux analyses indicated that the degradation of 2-CP only accounted for a small part of electron flux, and the autohydrogenotrophic bacteria in the MBfR were highly efficient for the 2-CP removal.

  2. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

    Science.gov (United States)

    Mang, Cameron S; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2013-12-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  3. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats.

    Science.gov (United States)

    Wu, Shengzheng; Li, Lu; Wang, Gong; Shen, Weiwei; Xu, Yali; Liu, Zheng; Zhuo, Zhongxiong; Xia, Hongmei; Gao, Yunhua; Tan, Kaibin

    2014-01-01

    Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MB(SDF-1)) via covalent conjugation. The characterization and bioactivity of MB(SDF-1) were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MB(SDF-1). The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MB(SDF-1) remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MB(SDF-1) destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.

  4. Endothelin-1, an ulcer inducer, promotes gastric ulcer healing via mobilizing gastric myofibroblasts and stimulates production of stroma-derived factors.

    Science.gov (United States)

    Nishida, Tsutomu; Tsuji, Shingo; Kimura, Arata; Tsujii, Masahiko; Ishii, Syuji; Yoshio, Toshiyuki; Shinzaki, Shinichiro; Egawa, Satoshi; Irie, Takanobu; Yasumaru, Masakazu; Iijima, Hideki; Murata, Hiroaki; Kawano, Sunao; Hayashi, Norio

    2006-05-01

    Endothelin (ET)-1 is a potent inducer of peptic ulcers. The roles of ET-1 in ulcer healing, however, have remained unclear, and these were investigated in mice. Gastric ulcers were induced in mice by serosal application of acetic acid. Three days later, mice were given a neutralizing ET-1 antibody or nonimmunized serum. The ulcer size, amount of fibrosis and myofibroblasts, and localization of ET-1 and ET(A/B) receptors were analyzed. To elucidate the mechanisms underlying the effects of ET-1, we examined the proliferation, migration, and release of growth and angiogenic factors in gastric myofibroblasts with or without ET-1. The expression of prepro-ET-1 (an ET-1 precursor) and ET-converting enzyme-1 was examined in gastric myofibroblasts using RT-PCR. Immunoneutralization of ET-1 delayed gastric ulcer healing. The areas of fibrosis and myofibroblasts were smaller in the anti-ET-1 antibody group than in the control. ET-1 was expressed in the gastric epithelium, myofibroblasts, and other cell types. ET(A) receptors, but not ET(B) receptors, were present in myofibroblasts. ET-1 increased proliferation and migration of gastric myofibroblasts. ET-1 stimulated the release of hepatocyte growth factor, VEGF, PGE(2), and IL-6 from gastric myofibroblasts. mRNA for prepro-ET-1 and ET-converting enzyme-1 was also expressed. ET-1 promotes the accumulation of gastric myofibroblasts and collagen fibrils at gastric ulcers. ET-1 also stimulates migration and proliferation of gastric myofibroblasts and enhances the release of growth factors, angiogenic factors, and PGE(2). Thus ET-1 has important roles not only in ulcer formation but also in ulcer healing via mobilizing myofibroblasts and inducing production of stroma-derived factors.

  5. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    Science.gov (United States)

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.

  6. Stromal Cell-Derived Growth Factor-1 Alpha-Elastin Like Peptide Fusion Protein Promotes Cell Migration and Revascularization of Experimental Wounds in Diabetic Mice

    Science.gov (United States)

    Yeboah, Agnes; Maguire, Tim; Schloss, Rene; Berthiaume, Francois; Yarmush, Martin L.

    2017-01-01

    Objective: In previous work, we demonstrated the development of a novel fusion protein containing stromal cell-derived growth factor-1 alpha juxtaposed to an elastin-like peptide (SDF1-ELP), which has similar bioactivity, but is more stable in elastase than SDF1. Herein, we compare the ability of a single topical application of SDF1-ELP to that of SDF1 in healing 1 × 1 cm excisional wounds in diabetic mice. Approach: Human Leukemia-60 cells were used to demonstrate the chemotactic potential of SDF1-ELP versus SDF1 in vitro. Human umbilical vascular endothelial cells were used to demonstrate the angiogenic potential of SDF1-ELP versus SDF1 in vitro. The bioactivity of SDF1-ELP versus SDF1 after incubation in ex-vivo diabetic wound fluid was compared. The in-vivo effectiveness of SDF1-ELP versus SDF1 was compared in diabetic mice wound model by monitoring for the number of CD31+ cells in harvested wound tissues. Results: SDF1-ELP promotes the migration of cells and induces vascularization similar to SDF1 in vitro. SDF1-ELP is more stable in wound fluids compared to SDF1. In vivo, SDF1-ELP induced a higher number of vascular endothelial cells (CD31+ cells) compared to SDF1 and other controls, suggesting increased vascularization. Innovation: While growth factors have been shown to improve wound healing, this strategy is largely ineffective in chronic wounds. In this work, we show that SDF1-ELP is a promising agent for the treatment of chronic skin wounds. Conclusion: The superior in vivo performance and stability of SDF1-ELP makes it a promising agent for the treatment of chronic skin wounds. PMID:28116224

  7. 2-氯酚在超临界水-NaOH体系中的脱氯特性%Dechlorination characteristics of o-chlorophenol in supercritical water-sodium hydroxide system

    Institute of Scientific and Technical Information of China (English)

    孙治荣; 马林; 韩延波

    2012-01-01

    The dechlorination characteristics of o-chlorophenol in supercritical water-sodium hydroxide system were studied.The conversion of o-chlorophenol,the yield of chloride ion and the dechlorination selectivity were investigated in the presence of sodium hydroxide.Results indicated that sodium hydroxide could significantly improve the conversion of o-chlorophenol,the yield of chloride ion and the dechlorination selectivity.The conversion of o-chlorophenol was improved with the increase of the additive amount of sodium hydroxide.o-chlorophenol conversed completely at residence time of 27 s under the conditions of 460 ℃,25 MPa,and the molar ratio of sodium hydroxide to o-chlorophenol of 1 to 1.%研究了2-氯酚在超临界水-NaOH体系中的脱氯特性,考察了NaOH添加对2-氯酚转化率、Cl-生成率、脱氯选择性等的影响。实验结果表明,NaOH的添加能够显著提高2-氯酚的转化率、Cl-的生成率和脱氯选择性。2-氯酚的转化率随着NaOH添加量的增大而增大,460℃、25 MPa条件下,NaOH添加量与2-氯酚的摩尔比为1∶1时,停留时间27 s时可实现2-氯酚的完全转化。

  8. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  9. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles.

  10. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanlin [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Fan, Guangyin, E-mail: fanguangyin@cwnu.edu.cn [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Wang, Chenyu [Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 (United States)

    2014-06-01

    Graphical abstract: The Rh nanoparticles/reduced graphene oxide (Rh NPs/RGO) nanocatalyst synthesized by a solvothermal technique showed high activity and stability for the hydrodechlorination of 4-chlorophenol under mild conditions. - Highlights: • Rh/RGO was synthesized through a one-pot polyol reduction of GO and RhCl{sub 3}. • Complete HDC of 4-chlorophenol was obtained in aqueous phase without any additive. • The Rh/RGO exhibited an excellent catalytic performance for HDC reaction. - Abstract: Reduced graphene oxide (RGO) supported rhodium nanoparticles (Rh-NPs/RGO) was synthesized through one-pot polyol co-reduction of graphene oxide (GO) and rhodium chloride. The catalytic property of Rh-NPs/RGO was investigated for the aqueous phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP). A complete conversion of 4-CP into high valued products of cyclohexanone (selectivity: 23.2%) and cyclohexanol (selectivity: 76.8%) was successfully achieved at 303 K and balloon hydrogen pressure in a short reaction time of 50 min when 1.5 g/L of 4-CP was introduced. By comparing with Rh-NPs deposited on the other supports, Rh-NPs/RGO delivered the highest initial rate (111.4 mmol/g{sub Rh} min) for 4-CP HDC reaction under the identical conditions. The substantial catalytic activity of Rh-NPs/RGO can be ascribed to the small and uniform particle size of Rh (average particle size was 1.7 ± 0.14 nm) on the surface of the RGO sheets and an electron-deficient state of Rh in the catalyst as a result of the strong interaction between the active sites and the surface function groups of RGO.

  11. Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Aghakhani, Ali; Baghernejad, Masoud; Akbarinejad, Alireza [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2012-02-24

    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200 nm for polyamide nanofibers with a homogeneous and porous surface structure. The extraction efficiency of new coating was investigated for headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Effect of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength and polyamide amount were investigated and optimized. In order to improve the chromatographic behavior of phenolic compounds, all the analytes were derivatized prior to the extraction process using basic acetic anhydride. The detection limits of the method under optimized conditions were in the range of 2-10 ng L{sup -1}. The relative standard deviations (RSD) (n = 3) at the concentration level of 1.7-6.7 ng mL{sup -1} were obtained between 1 and 7.4%. The calibration curves of chlorophenols showed linearity in the range of 27-1330 ng L{sup -1} for phenol and monochlorophenols and 7-1000 ng L{sup -1} for dichloro and trichlorophenols. Also, the proposed method was successfully applied to the extraction of phenol and chlorophenols from real water samples and relative recoveries were between 84 and 98% for all the selected analytes except for 2,4,6 tricholophenol which was between 72 and 74%.

  12. Photocatalytic Degradation of 2-Chlorophenol Using Ag-Doped TiO2 Nanofibers and a Near-UV Light-Emitting Diode System

    OpenAIRE

    Ju-Young Park; In-Hwa Lee

    2014-01-01

    This report investigated the photocatalytic degradation of 2-chlorophenol using TiO2 nanofibers and Ag-doped TiO2 nanofibers, synthesized using the sol-gel and electrospinning techniques, and an ultraviolet light-emitting diode (UV-LED) system as a UV light source. The crystallite size of the Ag-doped TiO2 nanofibers was smaller than that of the TiO2 nanofibers, because silver retrained phase transformation not only controls the phase transformation but also inhibits the growth of anatase cry...

  13. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in leather.

    Science.gov (United States)

    de Souza Silveira, Cristine D; Martendal, Edmar; Soldi, Valdir; Carasek, Eduardo

    2012-02-01

    This paper proposes a new analytical procedure based on the headspace solid-phase microextraction (HS-SPME) technique and gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) for the determination of 16 phenols extracted from leather samples. The optimized conditions for the HS-SPME were obtained through two experimental designs - a two-level fractional factorial design followed by a central composite design - using the commercial SPME fiber polyacrylate 85 μm (PA). The best extraction conditions were as follows: 200 μL of derivatizing agent (acetic anhydride), 20 mL of saturated aqueous NaCl solution and extraction time and temperature of 50 min and 75°C, respectively. All optimized conditions were obtained with fixed leather sample mass (250 mg), vial volume (40 mL) and phosphate buffer pH (12) and concentration (50 mmol/L). Detection limits ranging from 0.03 to 0.20 ng/g, and relative standard deviation (RSD) lower than 10.23% (n=6) for a concentration of 800 ng/g (chlorophenols) and 1325 ng/g (2-phenylphenol) in the splitless mode were obtained. The recovery was studied at three concentration levels by adding different amounts of phenols to the leather sample and excellent recoveries ranging from 90.0 to 107.2% were obtained. The validated method was shown to be suitable for the quantification of phenols in leather samples, as it is simple, relatively fast and sensitive.

  14. Solar photocatalytic degradation of chlorophenols mixture (4-CP and 2,4-DCP): Mechanism and kinetic modelling.

    Science.gov (United States)

    Abeish, Abdulbasit M; Ang, Ha Ming; Znad, Hussein

    2015-01-01

    The solar-photocatalytic degradation mechanisms and kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) using TiO2 have been investigated both individually and combined. The individual solar-photocatalytic degradation of both phenolic compounds showed that the reaction rates follow pseudo-first-order reaction. During the individual photocatalytic degradation of both 4-CP and 2,4-DCP under the same condition of TiO2 (0.5 g L(-1)) and light intensities (1000 mW cm(-2)) different intermediates were detected, three compounds associated with 4-CP (hydroquinone (HQ), phenol (Ph) and 4-chlorocatechol (4-cCat)) and two compounds associated with 2,4-DCP (4-CP and Ph). The photocatalytic degradation of the combined mixture (4-CP and 2,4-DCP) was also investigated at the same conditions and different 2,4-DCP initial concentrations. The results showed that the degradation rate of 4-CP decreases when the 2,4-DCP concentration increases. Furthermore, the intermediates detected were similar to that found in the individual degradation but with high Ph concentration. Therefore, a possible reaction mechanism for degradation of this combined mixture was proposed. Moreover, a modified Langmuir-Hinshelwood (L-H) kinetic model considering all detected intermediates was developed. A good agreement between experimental and estimated results was achieved. This model can be useful for scaling-up purposes more accurately as its considering the intermediates formed, which has a significant effect on degrading the main pollutants (4-CP and 2,4-DCP).

  15. Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: statistical modeling and optimization using RSM

    Science.gov (United States)

    Leong, Kwok-Yii; See, Sylvia; Lim, Jun-Wei; Bashir, Mohammed J. K.; Ng, Choon-Aun; Tham, Leony

    2016-02-01

    Results of the interaction of process variables and the consequential mixture of phenolic compounds adsorption study are expected to shed brighter light on the wastewater treatment applications. Accordingly, the aims of this research are to model and optimize the process variables which impinged on the simultaneous adsorption of phenol and 4-chlorophenol (4-CP) in the binary solution by spherical activated carbon (SAC). Batch assessments were designed using response surface methodology software. The process variables, namely SAC dosage and pH were varied over the 1.50-3.50 g/L and 4.00-9.00 g/L ranges, respectively, were experimented. The analysis of variance results showed the significant models could precisely predict the percentage removals of phenol and 4-CP, indicating models reliability. The interaction of process variables was inconspicuous for the case of phenol adsorption. However, increasing the pH would deteriorate the 4-CP adsorption which was partially offset by raising the SAC dosage. Considering the environmental benefits, optimization taken place at the SAC dosage and pH of 3.50 g/L and 7.60 g/L, respectively, was selected. By employing the optimized conditions of SAC dosage of 3.50 g/L at pH 7.60 for the adsorption process, the predicted phenol and 4-CP removal percentages were found to be 85.4 % (73.1 mg/g) and 96.2 % (82.6 mg/g), respectively, which were in agreement with the experimental runs.

  16. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong, E-mail: zhangjd@mail.hust.edu.cn

    2015-06-15

    Highlights: • Pd and reduced graphene oxide are deposited on foam-Ni via electrodeposition. • Pd particles supported on RGO possess large active surface area. • Pd/RGO/foam-Ni shows high electrocatalytic activity for dechlorination of 4-CP. • 100% 4-CP can be removed on Pd/RGO/foam-Ni under optimum ECH conditions. - Abstract: A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na{sub 2}SO{sub 4} concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol{sup −1}. Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  17. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples.

    Science.gov (United States)

    Ho, Hsin-Pin; Lee, Ren-Jye; Lee, Maw-Rong

    2008-12-12

    A simple, economical and very effective method is demonstrated for simultaneous determination of 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol, in aqueous samples, by using purge-assisted headspace solid-phase microextraction (PA/HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). In the new method, purging the sample enhances the removal of the trace chlorophenols without derivatization from the matrices to the headspace. Extraction parameters including extraction temperature, purge gas flow rate and extraction time were systematically investigated. Under optimal conditions, the relative standard deviations (RSDs) were 4-11% at 50 pg/mL and 5-14% at 5 pg/mL, respectively. The recoveries were in the range of 83-114%. Detection limits were determined at the fg level. These results indicate that PA/HS-SPME provides a significant contribution to highly efficient extraction of semi-volatile CPs, especially for pentachlorophenol, which has the smallest Henry's constant and large octanol-water partitioning coefficient. In addition, the proposed method was successfully applied to the analysis of chlorophenols in landfill leachate. New perspectives are opened for headspace extraction of relatively low vapor pressure compounds in complex matrices.

  18. Influence of Phases Content on Pt/TiO2, Pd/TiO2 Catalysts for Degradation of 4-Chlorophenol at Room Temperature

    Directory of Open Access Journals (Sweden)

    D. S. García-Zaleta

    2016-01-01

    Full Text Available Different Pt/TiO2 and Pd/TiO2 catalysts were prepared by sol-gel method. The influence of different amounts of noble metals (1–5 mol-% present on the microstructure as well as the photocatalytic property under 4-chlorophenol degradation was evaluated. The anatase phase was favored at low Pt content; however, the apparition of new phases after 3 mol-% (PtO suggests a saturation lattice considering our solubility limit at 1 mol-%. Similar trend was observed when Pd was added to the TiO2 lattice. The as-prepared catalysts were deeply characterized by X-ray diffraction (XRD with the Rietveld Method, Raman spectroscopy, high resolution scanning electron microscopy (HRSEM, scanning transmission electron microscopy (STEM, Brunauer-Emmett-Teller (BET adsorption analysis, and X-Ray photoelectron spectroscopy (XPS. Unit-cell parameter of TiO2 phases varied from 30 to 93 vol-% depending on the amount of Pt or Pd added to the composite. HRTEM and HRSEM identified the phases in the catalysts and confirmed the nanometric size and morphology of the catalysts. An improvement in removal efficiency of 4-chlorophenol was obtained in all the specimens compared with the commercial Degussa P25, which can be explained in terms of phase composition and modification of the band gap.

  19. Suitability of dispersive liquid-liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry.

    Science.gov (United States)

    Saraji, Mohammad; Ghambari, Hoda

    2015-10-01

    Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.

  20. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: laboratory and model assessment of the degradation kinetics, and comparison with field data.

    Science.gov (United States)

    Sur, Babita; De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with OH. NCP has a polychromatic photolysis quantum yield Φ(NCP)=(1.27±0.22)·10(-5), a rate constant with OH k(NCP,)(OH)=(1.09±0.09)·10(10) M(-1) s(-1), a rate constant with (1)O(2)k(NCP,1O2)=(2.15±0.38)·10(7) M(-1) s(-1), a rate constant with the triplet state of anthraquinone-2-sulphonate k(NCP,3AQ2S*)=(5.90±0.43)·10(8) M(-1) s(-1), and is poorly reactive toward CO(3)(-). The k(NCP,3AQ2S*) value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhône delta (Southern France).

  1. Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: Kinetics, intermediates, phytotoxicity and acute toxicity

    Institute of Scientific and Technical Information of China (English)

    Kais Elghniji; Olfa Hentati; Najwa Mlaik; Ayman Mahfoudh; Mohamed Ksibi

    2012-01-01

    A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route.The effects of phosphorus content and calcination temperature on the crystalline structure,grain growth,surface area,and the photocatalytic activity of P-modified TiO2 were investigated.The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900℃.Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5500 prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500℃ had an apparent rate constant equal to 0.0075 min-1,which is superior to the performance of a commercial photocatalyst Degussa P25 Kapp =0.0045 min-1 and of unmodified TiO2(TP(0)500)Kapp =0.0022 min-1.From HPLC analyses,various hydroxylated intermediates formed during oxidation had been identified,including hydroquinone(HQ),benzoquinone(BQ)and(4CC)4-chlorocatechol as main products.Phytotoxicity was assessed before and after irradiation against seed germination of tomato(Lycopersicon esculentum)whereas acute toxicity was assessed by using Folsomia candida as the test organism.Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished.

  2. Caracterización del proceso de adsorción de 3-cloro fenol desde solución acuosa sobre carbon activado por calorimetria de inmersión Characterization of 3-chlorophenol adsorption process from aqueous solution on activated carbon by immersion calorimetry

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2009-01-01

    Full Text Available The immersion enthalpy of activated carbon in 3-chlorophenol solutions, of 100 mg L-1, is determined at different pH values between 3 and 11 with results between 37.6 and 21.2 J g-1. The 3-chlorophenol adsorbed quantities on the activated carbon during the calorimetric experience, are between 1.13 and 2.19 mg g-1, for different pH values of the solution. The 3-chlorophenol adsorbed quantity and the immersion enthalpy decrease by increasing of the pH solution, while increasing the adsorbed quantity increases the immersion enthalpy value.

  3. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF CHLOROPHENOL COMPOUNDS IN THE WATER ENVIRONMENT%水环境中氯酚污染物的高效液相色谱分析

    Institute of Scientific and Technical Information of China (English)

    庄惠生; 王琼娥; 阮国洪

    2003-01-01

    The determination of 2-chlorophenol, 24-dichlorophenol, 2,3,4-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol in the water environment was studied by the high performance liquid chromatography with solid phase extraction in this paper.

  4. Gamma radiation-induced catalytic degradation of 4-chlorophenol using SiO{sub 2}, TiO{sub 2}, and Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Juarez, J.C. [Instituto Tecnologico de Toluca, Instituto Tecnologico Av. ExRancho la Virgen, Metepec, Mexico C.P. 52140 (Mexico); Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. Mexico D.F. 11801 (Mexico); Jimenez-Becerril, J. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. Mexico D.F. 11801 (Mexico)]. E-mail: jjb@nuclear.inin.mx

    2006-07-15

    To study radiocatalytic processes, solutions of 4-chlorophenol (4-CP) were irradiated with gamma radiation, and results indicate that degradation of 4-CP is increased when commercial SiO{sub 2,} TiO{sub 2}, or Al{sub 2}O{sub 3} is added.

  5. Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities

    Science.gov (United States)

    El-Faham, Ayman; Soliman, Saied M.; Ghabbour, Hazem A.; Elnakady, Yasser A.; Mohaya, Talal A.; Siddiqui, Mohammed R. H.; Albericio, Fernando

    2016-12-01

    Novel series of s-triazine-Schiff base derivatives were synthesized employing ultrasonic irradiation and characterized by NMR (1H and 13C), FT-IR, and elemental analysis. The use of ultrasonic irradiation has allowed the preparation of the target products with better yields in shorter reaction time and excellent purities compared to the conventional heating. X-ray single crystal diffraction experiments verified the molecular structure of four from the new prepared s-triaizne-Schiff base derivatives. The molecular structures of the studied compounds are computerized using DFT/B3LYP method. The effects of substituent at the triazine and phenyl ring on the electronic and spectroscopic properties of the studied compounds were also investigated. The natural atomic charges showed that pipridino-s-triazine derivatives are richer in electrons than those having morpholino derivatives. The anti-proliferative effects for the prepared compounds were tested against three different cancer cell lines.

  6. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells.

    Directory of Open Access Journals (Sweden)

    Kazumasa Nakamura

    Full Text Available BACKGROUND: The hedgehog (Hh pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC. Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity. CONCLUSIONS/SIGNIFICANCE: We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial

  7. A promoter polymorphism in human interleukin-32 modulates its expression and influences the risk and the outcome of epithelial cell-derived thyroid carcinoma

    NARCIS (Netherlands)

    Plantinga, T.S.; Costantini, I.; Heinhuis, B.; Huijbers, A.; Semango, G.; Kusters, B.; Netea, M.G.; Hermus, A.R.M.M.; Smit, J.W.A.; Dinarello, C.A.; Joosten, L.A.B.; Netea-Maier, R.T.

    2013-01-01

    Interleukin (IL)-32 is an intracellular proinflammatory mediator that strongly modulates the inflammatory reaction. Recent studies have suggested the involvement of IL-32 in the pathogenesis of malignancies. We aimed to assess whether a known germ-line polymorphism in the IL32 promoter modulates IL-

  8. Bactericidal activities of health-promoting,food-derived powders against the foodborne pathogens Escherichia coli,listeria monocytogenes, salmonella enterica,and staphylococcus aureus

    Science.gov (United States)

    We evaluated the relative bactericidal activities of 10 presumed health-promoting food-based powders (nutraceuticals) and for comparison, several selected known components of such powders against the following foodborne pathogens: Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes...

  9. Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces.

    Science.gov (United States)

    Caley, Matthew P; King, Helen; Shah, Neel; Wang, Kai; Rodriguez-Teja, Mercedes; Gronau, Julian H; Waxman, Jonathan; Sturge, Justin

    2016-02-01

    The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded 'amoeboid-like' mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar 'mesenchymal-like' mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.

  10. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes.

    Science.gov (United States)

    Charbord, Jérémie; Poydenot, Pauline; Bonnefond, Caroline; Feyeux, Maxime; Casagrande, Fabrice; Brinon, Benjamin; Francelle, Laetitia; Aurégan, Gwenaelle; Guillermier, Martine; Cailleret, Michel; Viegas, Pedro; Nicoleau, Camille; Martinat, Cécile; Brouillet, Emmanuel; Cattaneo, Elena; Peschanski, Marc; Lechuga, Marc; Perrier, Anselme L

    2013-09-01

    Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease.

  11. 非均相光Fenton降解4-氯酚的研究%Degradation efficiency of 4-chlorophenol via heterogeneous photo-Fenton

    Institute of Scientific and Technical Information of China (English)

    王维明; 张冉; 王树涛; 刘婷; 尤宏

    2013-01-01

    制备了以Al2O3/TiO2为载体的负载型铁氧化物催化剂,对催化剂进行SEM、XRD、UV-vis-DRS和XPS分析,考察H2O2投加量、催化剂投加量、4-氯酚初始质量浓度对4-氯酚处理效果的影响,分析了非均相光Fenton体系的氧化机理.结果表明,所制备的负载型铁氧化物催化剂为α-FeOOH与γ-Fe2O3的混合物,其表面存在较多的颗粒和孔穴,吸附性强,具有很高的催化活性.H2O2、铁氧化物催化剂、紫外灯之间存在协同作用,所构成的非均相光Fenton体系对4-氯酚具有良好的去除效果.其反应机理为表面催化,催化剂表面的Fe(Ⅲ)在光照的作用下被还原为Fe(Ⅱ).在催化剂投加量为1 g/L,H2O2浓度为7.84mmol/L时,对4-氯酚的降解效果达到最佳,反应进行30 min后4-氯酚的去除率大于99%,反应1h矿化度可达91.4%.%This paper aims to introduce our preparation of catalysts loaded on Al2O3/TiO2 and the heterogeneous photo-Fenton reaction system we have established for the study of the degradation efficiency of the 4-chlorophenol. The catalysts we have prepared are characterized by SEM, XRD, by means of which we have investigated the effect of H2O2 dosage, along with the catalyst dosage and initial concentration of the 4-chlorophenol on 4-chlorophenol degradation needed. In addition, we have also done experiments to explore the oxidation mechanism of heterogeneous photo-Fenton system. The results of our research show that the ingredients of iron oxidate catalysts loaded on Al2O3/TiO2 were the mixture of α- FeOOH and γ - Fe2O3; and, as compared with Al2O3/TiO2 carrier, it has been found that there exist more surface particles and cavity on the catalyst surface, whose specific surface area proves to be wider for its adsorption, and, therefore, helps to enhance their catalytic activity. The heterogeneous photo-Fenton system we have established proves to be highly effective for degrading 4-chlorophenol. Furthermore, we have worked out the

  12. Ultrasound-Promoted Greener Synthesis of Novel Trifurcate 3-Substituted-chroman-2,4-dione Derivatives and Their Drug-Likeness Evaluation

    Directory of Open Access Journals (Sweden)

    Yu Xue

    2012-11-01

    Full Text Available An efficient and convenient approach for one-pot synthesis of 3-substituted chroman-2,4-diones via a three-component reaction of aromatic aldehydes, 4-hydroxy- coumarins and diverse pyrazolone derivatives was described. The combinatorial synthesis for this methodology was achieved by applying ultrasound irradiation in the absence of activator while making use of water as green solvent. Additionally, novel chroman-2,4-dione derivatives attached to an edaravone moiety represent an exploitable source of brand new anticancer agents. In comparison with conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and atom efficiency are prominent features of this sonocatalyzed procedure.

  13. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    OpenAIRE

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.; Boyd, Lara A.

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategie...

  14. A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention

    DEFF Research Database (Denmark)

    Secher, T; Novitskaia, V; Berezin, V

    2006-01-01

    with the fibroblast growth factor receptor (FGFR). A 15-amino-acid long peptide, the FG loop (FGL) peptide, that is derived from the second F3 module of NCAM has been found to activate FGFR1. We here report that the FGL peptide, when administered intranasally to newborn rats, accelerated early postnatal development...

  15. An Efficient Synthesis of Functionalized 3-(α-amidobenzyl-4-hydroxycoumarin Derivatives by ZnO Nanoparticles Promoted Condensation Reaction Between Aromatic Aldehyde, 4-hydroxycoumarin, and Amides

    Directory of Open Access Journals (Sweden)

    Hossein Anaraki-Ardakani

    2015-09-01

    Full Text Available An efficient and green protocol for the synthesis of 3-(α-amidobenzyl-4-hydroxycoumarin derivatives by one pot, three component coupling reaction of aromatic aldehyde, 4-hydroxycoumarin, and amides has been developed using ZnO nanoparticles (NPs as the catalyst. The procedure is formed in high yields, short reaction time and an environmentally friendly specificity.

  16. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  17. Signaling of glial cell line-derived neurotrophic factor and its receptor GFRα1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease.

    Science.gov (United States)

    Lei, Zhinian; Jiang, Yu; Li, Tao; Zhu, Jianbao; Zeng, Shuilin

    2011-09-01

    Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 have been implicated in the survival of ventral midbrain dopaminergic (DA) neurons, but the molecular mechanisms bywhich GDNF generates DA neurons in grafted midbrain-derived neural stem cells (mNSCs) are not understood. Midbrain-derived neural stem cells isolated from rat embryonic mesencephalon (embryonic day 12) were treated with GDNF or in combination with GFRα1 small interfering RNA. Reverse transcription-polymerase chain reaction, Western blot, and immunocytochemistry were used totest the expression of the orphan nuclear receptor Nurr1 and thetranscription factor Pitx3 and newborn tyrosine hydroxylase (TH)-positive cells. Treatment of mNSCs with GDNF increased mNSCs' sphere diameter, reduced expression of caspase 3, and increased expression of Bcl-2. Glial cell line-derived neurotrophic factor-treated mNSCs enhanced Nurr1 and Pitx3 expression and the fraction of TH-, TH/Pitx3-, and TH/Nurr1-positive cells in culture. Grafted GDNF-treated mNSCs significantly decreased apomorphine-induced rotation behavior in 6-hydroxydopamine-lesioned rats. Glialcell line-derived neurotrophic factor-treated mNSCs showed increased numbers of TH/Pitx3- and TH/Nurr1-postivie cells. The effect elicited by GDNF was inhibited by small interfering RNA-mediated knockdown of GFRα1. Our data demonstrate the contribution of GDNF to DA neuron development and may also elucidate pathogenetic mechanisms in Parkinson disease and contribute to the development of novel therapies for the disorder.

  18. Aqueous solubilities of phenol derivatives by conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Achard, C.; Jaoui, M.; Schwing, M.; Rogalski, M. [Univ. de Metz (France). Lab. de Thermodynamique et d`Analyse Chimique

    1996-05-01

    The aqueous solubilities of five chlorophenols and three nitrophenols were measured by conductimetry at temperatures between 15 and 48C. The solubilities of 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, 2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol were studied. Automatic conductivity measurements allow the determination of the solute concentration and, hence, the determination of the solubility. Emulsion formation can also be followed. Results obtained are in good agreement with literature values.

  19. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.

    Science.gov (United States)

    Odagi, Minami; Furukori, Kota; Yamamoto, Yoshiharu; Sato, Makoto; Iida, Keisuke; Yamanaka, Masahiro; Nagasawa, Kazuo

    2015-02-11

    The mechanism of asymmetric α-hydroxylation of tetralone-derived β-ketoesters with guanidine-bisurea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP) was examined by means of DFT calculations to understand the origin of the stereocontrol in the reaction. The identified transition-state model was utilized to design an enantioselective synthesis of β- or γ-substituted tetralones by catalytic oxidative kinetic resolution reaction of tetralone-derived β-ketoesters. This kinetic resolution reaction proceeded with high selectivity, and selectivity factors (s value) of up to 99 were obtained. The potential utility of this oxidative kinetic resolution method for synthesis of natural products was confirmed by applying it to achieve an enantioselective synthesis of (+)-linoxepin (13) from β-substituted tetralone rac-7 in only six steps.

  20. A new magnetically recoverable catalyst promoting the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions

    Science.gov (United States)

    Taheri, Narges; Heidarizadeh, Fariba; Kiasat, Alireza

    2017-04-01

    In the current study, 1,4-dihydropyridine and polyhydroquinoline derivatives were efficiently synthesized under solvent-less conditions with a magnetic catalyst containing novel acidic ionic liquid functionalized silica modified Fe3O4 nanoparticles through a four component combination of β-ketoester, aldehydes and ammonium acetate (1, 2, 2). Several approaches have been reported for synthesizing these derivatives, while each of these approaches have some weaknesses including long time of reaction, excess of volatile organic solvent, low efficiency, costly reagents, complex operation, high temperatures, production of a number of side products, and difficult catalyst recovery. The simple operation, short time of reaction (5-30 min) and the high efficiency (80-94%) are the special advantages of this technique. The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. Different methods such as FT-IR, SEM, EDX, TGA-DTA, and VSM were used to confirm and characterize the catalyst.

  1. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia.

    Science.gov (United States)

    Liu, Wei-Qi; Zhang, Yin-Zhuang; Wu, Yan; Zhang, Jie-Jie; Li, Tin-Bo; Jiang, Tian; Xiong, Xiao-Ming; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun

    2015-11-27

    Myeloperoxidase (MPO)-derived product hypochlorous acid (HOCl) is able to induce cellular senescence and MPO is also expressed in endothelial cells besides the well-recognized immune cells. This study aims to clarify the association of endothelium-derived MPO with endothelial senescence in hyperlipidemia. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids, endothelium-derived MPO expression, endothelial senescence and endothelial dysfunction concomitant with a reduction in glycogen synthase kinase 3 beta (GSK-3β) activity and phosphorylated β-catenin (p-β-catenin) level as well as an increase in β-catenin and p53 levels within the endothelium. Next, human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low density lipoprotein (ox-LDL, 100 μg/ml) for 24 h to establish a senescent cell model in vitro. Consistent with the finding in vivo, ox-LDL-induced MPO expression and HUVECs senescence, accompanied by a decrease in GSK-3β activity and p-β-catenin level as well as an increase in HOCl content, β-catenin and p53 levels; these phenomena were attenuated by MPO inhibitor. Replacement of ox-LDL with HOCl could also induce HUVECs senescence and activate the β-catenin/p53 pathway. Based on these observations, we conclude that endothelium-derived MPO is upregulated in hyperlipidemic rats, which may contribute to the accelerated vascular endothelial senescence through a mechanism involving the β-catenin/p53 pathway.

  2. Ultrasound promoted and SiO2/CCl3COOH mediated synthesis of 2-aryl-1-arylmethyl-1-benzimidazole derivatives in aqueous media: An eco-friendly approach

    Indian Academy of Sciences (India)

    Brajesh Kumar; Kumari Smita; Brajendra Kumar; Luis Cumbal

    2014-11-01

    Ultrasonic irradiation is an efficient and innocuous technique of reagent activation for synthesizing organic compounds. First one-pot synthesis of 2-aryl-1-arylmethyl-1H- benzimidazole derivatives from o- phenylenediamine and an aromatic aldehyde in the presence of silica gel supported trichloroacetic acid (SiTCA) was carried out with excellent yields at 50°C by sonication. This method provided several advantages such as green solvent, inexpensive catalyst, simple experimental methodology, shorter reaction time and higher yield.

  3. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  4. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks.

    Science.gov (United States)

    Kiiski, Heikki; Aänismaa, Riikka; Tenhunen, Jyrki; Hagman, Sanna; Ylä-Outinen, Laura; Aho, Antti; Yli-Hankala, Arvi; Bendel, Stepani; Skottman, Heli; Narkilahti, Susanna

    2013-06-15

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC)-derived neural cells could be cultured in human cerebrospinal fluid (CSF) in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  5. Stereoselective synthesis of diazaspiro[5.5]undecane derivatives via base promoted [5+1] double Michael addition of N,N-dimethylbarbituric acid to diaryliedene acetones

    Directory of Open Access Journals (Sweden)

    Mohammad Shahidul Islam

    2017-01-01

    Full Text Available The nitrogen containing spiro-heterocycle is one of the privileged synthetic motif that constitutes various naturally occurring molecules and displays a broad range of pharmaceutical and biological activities. A new methodology was developed for the synthesis of 2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraones spiro-heterocyclic derivatives via cascade cyclization of [5+1] double Michael addition reaction of N,N-dimethylbarbituric acid with the derivatives of diaryldivinylketones in the presence of diethylamine at ambient temperature. The developed protocol is highly capable of furnishing diazaspiro[5.5]undecane derivatives 3a–m in excellent yields (up to 98%, from easily accessible symmetric and non-symmetric divinylketones 2a–m, containing aryl and heteroaryl substituents. The diazaspiro-heterocyclic structure was mainly elucidated by NMR and X-ray crystallographic techniques. The single-crystal X-ray studies revealed that, the cyclohexanone unit of spirocycles often prefers a chair conformation rather than twisted conformation. The intermolecular hydrogen bonding and CArH⋯π, π–π stacking interactions driving forces are mainly responsible for the crystal packing.

  6. The Removal of 4-Chlorophenol and Dichloroacetic Acid in Water Using Ti-, Zr- and Ti/Zr-Pillared Bentonites as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Houari

    2005-01-01

    Full Text Available Heterogeneous photocatalysis could be alternative remediation technology for water since it does not need the addition of any chemicals and it is suitable for treating low concentrations of pollutant. Although the TiO2 Degussa P 25 is most used photocatalyst its photonic efficiency still low and its recovery from water is considered as an awkward process. In this study the effect of zirconium addition to titanium was investigated. Ti/Zr-pillared montmorillonites have been prepared from natural bentonite and characterized by UV-Vis DRS and X-ray diffraction. The photocatalytic activities have been tested for the removal of 4-chlorophenol and dichloroacetic acid in water. The influence of preparation conditions and the calculation method, on these activities has been investigated. It was found that the photocatalytic activities increase by the addition of zirconium in pillorying process and the calculation by Microwaves (MW improves the photocatalytic activities

  7. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils.

  8. IFN-γ-producing CD4+ T cells promote generation of protective germinal center-derived IgM+ B cell memory against Salmonella Typhi.

    Science.gov (United States)

    Perez-Shibayama, Christian; Gil-Cruz, Cristina; Pastelin-Palacios, Rodolfo; Cervantes-Barragan, Luisa; Hisaki, Emiliano; Chai, Qian; Onder, Lucas; Scandella, Elke; Regen, Tommy; Waisman, Ari; Isibasi, Armando; Lopez-Macias, Constantino; Ludewig, Burkhard

    2014-06-01

    Abs play a significant role in protection against the intracellular bacterium Salmonella Typhi. In this article, we investigated how long-term protective IgM responses can be elicited by a S. Typhi outer-membrane protein C- and F-based subunit vaccine (porins). We found that repeated Ag exposure promoted a CD4(+) T cell-dependent germinal center reaction that generated mutated IgM-producing B cells and was accompanied by a strong expansion of IFN-γ-secreting T follicular helper cells. Genetic ablation of individual cytokine receptors revealed that both IFN-γ and IL-17 are required for optimal germinal center reactions and production of porin-specific memory IgM(+) B cells. However, more profound reduction of porin-specific IgM B cell responses in the absence of IFN-γR signaling indicated that this cytokine plays a dominant role. Importantly, mutated IgM mAbs against porins exhibited bactericidal capacity and efficiently augmented S. Typhi clearance. In conclusion, repeated vaccination with S. Typhi porins programs type I T follicular helper cell responses that contribute to the diversification of B cell memory and promote the generation of protective IgM Abs.

  9. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.

    Science.gov (United States)

    Salah, Numan; Hameed, A; Aslam, M; Babkair, Saeed S; Bahabri, F S

    2016-07-15

    Vanadium doped ZnO powders were used as precursors to deposit thin films of V(5+) incorporated ZnO nanoparticles on glass substrates by the pulsed laser deposition technique. The observed variations in Raman signals, visible region shift in the diffuse reflectance spectra along with a small shift in the (101) reflections of the X-ray diffraction (XRD) confirmed the insertion of V(5+) ions in ZnO lattice. No other additional reflection in the XRD results other than ZnO further endorsed the occupation of lattice positions by V entities rather than independent oxide formation. The asymmetric XPS peaks of Zn2p and V2p core levels confirmed the existence of both in the vicinity. The existence of minimal proportion of V(3+) along with V(5+) states varied the alteration of the oxidation states V in the synthetic route. The SEM images at various resolutions displayed the uniform distribution identical nanoparticles without the presence of additional phases in the deposited films. The SEM cross-section measurements revealed the uniform thickness of ∼90 nm of each film, whereas the surface studies of the films were performed by AFM. The as-synthesized films were tested for photocatalytic activity in sunlight illumination for the removal of 2-chlorophenol. The unique feature of the study was the estimation of the photocatalytic activity 20 ppm of 2-chlorophenol by exposing the low exposed area. The degradation of the substrate was measured by liquid phase UV-vis spectroscopy, whereas total organic carbon measurement revealed the mineralization of the substrate. The released Cl(-) ions were also measured by ion chromatography. The estimated flatband potentials and pHzpc values of the V doped materials, by Mott-Schottky analysis and zeta potential measurements respectively, were correlated with the photocatalytic activity. The kinetics of the photocatalytic degradation/mineralization process was estimated and results were correlated with the plausible mechanism.

  10. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors

    Directory of Open Access Journals (Sweden)

    Hatano Manabu

    2004-11-01

    Full Text Available Abstract Background A novel tyrosine kinase receptor EphA2 is expressed at high levels in advanced and metastatic cancers. We examined whether vaccinations with synthetic mouse EphA2 (mEphA2-derived peptides that serve as T cell epitopes could induce protective and therapeutic anti-tumor immunity. Methods C57BL/6 mice received subcutaneous (s.c. vaccinations with bone marrow-derived dendritic cells (DCs pulsed with synthetic peptides recognized by CD8+ (mEphA2671–679, mEphA2682–689 and CD4+ (mEphA230–44 T cells. Splenocytes (SPCs were harvested from primed mice to assess the induction of cytotoxic T lymphocyte (CTL responses against syngeneic glioma, sarcoma and melanoma cell lines. The ability of these vaccines to prevent or treat tumor (s.c. injected MCA205 sarcoma or B16 melanoma; i.v. injected B16-BL6 establishment/progression was then assessed. Results Immunization of C57BL/6 mice with mEphA2-derived peptides induced specific CTL responses in SPCs. Vaccination with mEPhA2 peptides, but not control ovalbumin (OVA peptides, prevented the establishment or prevented the growth of EphA2+ or EphA2-negative syngeneic tumors in both s.c. and lung metastasis models. Conclusions These data indicate that mEphA2 can serve as an attractive target against which to direct anti-tumor immunity. The ability of mEphA2 vaccines to impact EphA2-negative tumors such as the B16 melanoma may suggest that such beneficial immunity may be directed against alternative EphA2+ target cells, such as the tumor-associated vascular endothelial cells.

  11. Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo

    OpenAIRE

    Helgager, Jeffrey; Huang, Yang Zhong; McNamara, James O.

    2014-01-01

    The neurotrophin receptor, TrkB receptor tyrosine kinase, is critical to central nervous system (CNS) function in health and disease. Elucidating the ligands mediating TrkB activation in vivo will provide insights into its diverse roles in the CNS. The canonical ligand for TrkB is brain-derived neurotrophic factor (BDNF). A diversity of stimuli also can activate TrkB in the absence of BDNF, a mechanism termed transactivation. Zinc, a divalent cation packaged in synaptic vesicles along with gl...

  12. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael McLaughlin

    2016-01-01

    Full Text Available The administration of human adipose-derived stem cells (ASCs represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR. ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase and BMP-2 (4.7 ± 1.3-fold increase and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease and FGF-2 (33 ± 9.0-fold decrease. No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  13. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  14. Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis.

    Science.gov (United States)

    Oyoshi, Michiko K; He, Rui; Kanaoka, Yoshihide; ElKhal, Abdallah; Kawamoto, Seiji; Lewis, Christopher N; Austen, K Frank; Geha, Raif S

    2012-03-27

    Atopic dermatitis (AD) skin lesions exhibit epidermal and dermal thickening, eosinophil infiltration, and increased levels of the cysteinyl leukotriene (cys-LT) leukotriene C(4) (LTC(4)). Epicutaneous sensitization with ovalbumin of WT mice but not ΔdblGATA mice, the latter of which lack eosinophils, caused skin thickening, collagen deposition, and increased mRNA expression of the cys-LT generating enzyme LTC(4) synthase (LTC(4)S). Skin thickening and collagen deposition were significantly reduced in ovalbumin-sensitized skin of LTC(4)S-deficient and type 2 cys-LT receptor (CysLT(2)R)-deficient mice but not type 1 cys-LT receptor (CysLT(1)R)-deficient mice. Adoptive transfer of bone marrow-derived eosinophils from WT but not LTC(4)S-deficient mice restored skin thickening and collagen deposition in epicutaneous-sensitized skin of ΔdblGATA recipients. LTC(4) stimulation caused increased collagen synthesis by human skin fibroblasts, which was blocked by CysLT(2)R antagonism but not CysLT(1)R antagonism. Furthermore, LTC(4) stimulated skin fibroblasts to secrete factors that elicit keratinocyte proliferation. These findings establish a role for eosinophil-derived cys-LTs and the CysLT(2)R in the hyperkeratosis and fibrosis of allergic skin inflammation. Strategies that block eosinophil infiltration, cys-LT production, or the CysLT(2)R might be useful in the treatment of AD.

  15. A Two-Piece Derivative of a Group I Intron RNA as a Platform for Designing Self-Assembling RNA Templates to Promote Peptide Ligation

    Directory of Open Access Journals (Sweden)

    Takahiro Tanaka

    2012-01-01

    Full Text Available Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.

  16. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.

    Science.gov (United States)

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong

    2016-11-01

    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment.

  17. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.

    Science.gov (United States)

    Quan, Chunji; Cho, Moon Kyun; Shao, Yuan; Mianecki, Laurel E; Liao, Eric; Perry, Daniel; Quan, Taihao

    2015-12-01

    Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.

  18. NADPH Oxidase 4-Derived H2O2 Promotes Aberrant Retinal Neovascularization via Activation of VEGF Receptor 2 Pathway in Oxygen-Induced Retinopathy

    Directory of Open Access Journals (Sweden)

    Jingming Li

    2015-01-01

    Full Text Available NADPH oxidase 4 (Nox4 is a major isoform of NADPH oxidase in retinal endothelial cells. Our previous study suggests that upregulation of Nox4 in retinal endothelial cells contributes to retinal vascular leakage in diabetes. In the current study, we investigated the role and mechanism of Nox4 in regulation of retinal neovascularization (NV, a hallmark of proliferative diabetic retinopathy (PDR, using a mouse model of oxygen-induced retinopathy (OIR. Our results confirmed that Nox4 was expressed predominantly in retinal vasculature of mouse retina. Retinal expression of Nox4 was markedly increased in OIR, in parallel with enhanced phosphorylation of ERK. In human retinal microvascular endothelial cells (HRECs, overexpression of Nox4 by adenovirus significantly increased extracellular H2O2 generation, resulting in intensified VEGFR2 activation and exacerbated angiogenesis upon VEGF stimulation. In contrast, silencing Nox4 expression or scavenging H2O2 by polyethylene glycol- (PEG- conjugated catalase inhibited endothelial migration, tube formation, and VEGF-induced activation of VEGFR2 signaling. Importantly, knockdown of retinal Nox4 by adenovirus-delivered siRNA significantly reduced ERK activation and attenuated retinal NV formation in OIR. Taken together, our data indicate that Nox4 promotes retinal NV formation through H2O2/VEGFR2/ERK signaling pathway. Reducing retinal Nox4 expression may represent a promising therapeutic approach for neovascular retinal diseases such as PDR.

  19. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation.

    Science.gov (United States)

    Lee, Jung Ok; Kim, Nami; Lee, Hye Jeong; Lee, Yong Woo; Kim, Su Jin; Park, Sun Hwa; Kim, Hyeon Soo

    2016-01-05

    Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis.

  20. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    Science.gov (United States)

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  1. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Science.gov (United States)

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons.

  2. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p.

    Science.gov (United States)

    Li, Zheng; Jin, Chanyuan; Chen, Si; Zheng, Yunfei; Huang, Yiping; Jia, Lingfei; Ge, Wenshu; Zhou, Yongsheng

    2017-04-05

    lncRNAs are an emerging class of regulators involved in multiple biological processes. MEG3, an lncRNA, acts as a tumor suppressor, has been reported to be linked with osteogenic differentiation of MSCs. However, limited knowledge is available concerning the roles of MEG3 in the multilineage differentiation of hASCs. The current study demonstrated that MEG3 was downregulated during adipogenesis and upregulated during osteogenesis of hASCs. Further functional analysis showed that knockdown of MEG3 promoted adipogenic differentiation, whereas inhibited osteogenic differentiation of hASCs. Mechanically, MEG3 may execute its role via regulating miR-140-5p. Moreover, miR-140-5p was upregulated during adipogenesis and downregulated during osteogenesis in hASCs, which was negatively correlated with MEG3. In conclusion, MEG3 participated in the balance of adipogenic and osteogenic differentiation of hASCs, and the mechanism may be through regulating miR-140-5p.

  3. Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells

    Directory of Open Access Journals (Sweden)

    Jin Jiali

    2011-07-01

    Full Text Available Abstract Background Neural tissue has limited potential to self-renew after neurological damage. Cell therapy using BM-MSCs (bone marrow mesenchymal stromal cells seems like a promising approach for the treatment of neurological diseases. However, the neural differentiation of stem cells influenced by massive factors and interactions is not well studied at present. Results In this work, we isolated and identified MSCs from mouse bone marrow. Co-cultured with CART (0.4 nM for six days, BM-MSCs were differentiated into neuron-like cells by the observation of optical microscopy. Immunofluorescence demonstrated that the differentiated BM-MSCs expressed neural specific markers including MAP-2, Nestin, NeuN and GFAP. In addition, NeuN positive cells could co-localize with TH or ChAT by double-labled immunofluorescence and Nissl bodies were found in several differentiated cells by Nissl stain. Furthermore, BDNF and NGF were increased by CART using RT-PCR. Conclusion This study demonstrated that CART could promote the differentiation of BM-MSCs into neural cells through increasing neurofactors, including BNDF and NGF. Combined application of CART and BM-MSCs may be a promising cell-based therapy for neurological diseases.

  4. Soy promotes juvenile granulosa cell tumor development in mice and in the human granulosa cell tumor-derived COV434 cell line.

    Science.gov (United States)

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A

    2014-10-01

    Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development.

  5. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    Directory of Open Access Journals (Sweden)

    Allison L B Shapiro

    Full Text Available The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM, a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1 NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs through a SIRT1 and PPARγ pathway; 2 lipid potentiates the NAM-enhanced adipogenic response; and 3 the adipogenic response to NAM is associated with increased percent fat mass (%FM among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM/-lipid (200 μM oleate/palmitate mix, +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid. Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01, FABP4 protein (+57%, p <0.01, and intracellular lipid content (+51%, p <0.01. Lipid did not significantly increase either PPARγ protein (p = 0.98 or FABP4 protein content (p = 0.82. There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09. In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05 in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001. These are the first data to support that chronic NAM exposure

  6. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    Science.gov (United States)

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  7. Systemic administration of valproic acid and zonisamide promotes the survival and differentiation of induced pluripotent stem cell–derived dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Tatsuya eYoshikawa

    2013-02-01

    Full Text Available Cell replacement therapy using embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is a promising strategy for the treatment of neurologic diseases such as Parkinson’s disease (PD. However, a limiting factor for effective cell transplantation is the low survival rate of grafted cells, especially neurons. In this study, we modified the host environment and investigated whether the simultaneous administration of soluble factors can improve the survival and differentiation of murine iPSC-derived dopaminergic (DA neurons in host brains. With the goal of applying this technology in clinical settings in the near future, we selected drugs that were already approved for clinical use. The drugs included two commonly used anticonvulsants, valproic acid (VPA and zonisamide (ZNS, and estradiol (E2, also known as biologically active estrogen. Following neural induction of murine iPSCs, we collected neural progenitor cells by sorting PSA-NCAM+ cells, then treated the PSA-NCAM+ cells with drugs for four days. An immunofluorescence study revealed that 0.01 mM and 0.1 mM of VPA and 10 nM of E2 increased the percentage of tyrosine hydroxylase+ (TH: a DA neuron marker cells in vitro. Furthermore, 0.1 mM of VPA increased the percentage of TH+ cells that simultaneously express the midbrain markers FOXA2 and NURR1. Next, in order to determine the effects of the drugs in vivo, the iPSC-derived NPCs were transplanted into the striata of intact SD rats. The animals received intraperitoneal injections of one of the drugs for four weeks, then were subjected to an immunofluorescence study. VPA administration (150 mg/kg/daily increased the number of NeuN+ postmitotic neurons and TH+ DA neurons in the grafts. Furthermore, VPA (150 mg/kg/daily and ZNS (30 mg/kg/daily increased the number of TH+FOXA2+ midbrain DA neurons. These results suggest that the systemic administration of VPA and ZNS may improve the efficiency of cell replacement therapy using i

  8. Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats.

    Directory of Open Access Journals (Sweden)

    Amjad Shehadah

    Full Text Available BACKGROUND: Human Placenta-Derived Adherent Cells (PDAC® are a novel mesenchymal-like cell population derived from normal human placental tissue. PDA-001 is a clinical formulation of PDAC® developed for intravenous administration. In this study, we investigated the efficacy of PDA-001 treatment in a rat model of transient middle cerebral artery occlusion (MCAo in young adult (2-3 month old and older rats (10-12 months old. METHODS: To evaluate efficacy and determine the optimal number of transplanted cells, young adult Wistar rats were subjected to MCAo and treated 1 day post MCAo with 1×10(6, 4×10(6 or 8×10(6 PDA-001 cells (i.v., vehicle or cell control. 4×10(6 or 8×10(6 PDA-001 cells were also tested in older rats after MCAo. Treatment response was evaluated using a battery of functional outcome tests, consisting of adhesive-removal test, modified Neurological Severity Score (mNSS and foot-fault test. Young adult rats were sacrificed 56 days after MCAo, older rats were sacrificed 29 days after MCAo, and lesion volumes were measured using H&E. Immunohistochemical stainings for bromodeoxyuridine (BrdU and von Willebrand Factor (vWF, and synaptophysin were performed. RESULTS: In young adult rats, treatment with 4×10(6 PDA-001 cells significantly improved functional outcome after stroke (p<0.05. In older rats, significant functional improvement was observed with PDA-001 cell therapy in both of the 4×10(6 and 8×10(6 treatment groups. Functional benefits in young adult and older rats were associated with significant increases in the number of BrdU immunoreactive endothelial cells, vascular density and perimeter in the ischemic brain, as well as significantly increased synaptophysin expression in the ischemic border zone (p<0.05. CONCLUSION: PDA-001 treatment significantly improved functional outcome after stroke in both young adult and older rats. The neurorestorative effects induced by PDA-001 treatment may be related to increased

  9. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells.

    Science.gov (United States)

    Wang, Guo-Dong; Liu, Yi-Xun; Wang, Xiao; Zhang, Yong-Le; Zhang, Ya-Dong; Xue, Feng

    2017-01-13

    This study aims to explore the role of the SDF-1/CXCR4 axis in mediating BMSCs and SCI recovery. BMSCs were collected and SCI rat models were established. Wistar rats were assigned into the blank control, sham, SCI, SCI + BMSCs, SCI + BMSCs + SDF-1, SCI + BMSCs + AMD3100 (an inhibitor of SDF-1/CXCR4 axis) and SCI + BMSCs + SDF-1 + AMD3100 groups. Hind limb motor function was measured 7, 14, 21 and 28 days after operation. qRT-PCR, western blotting and ELISA was performed to determine the expressions of SDF-1, CXCR4, NGF, BDNF, GFAP and GAP-43, TNF-α, IL-1β, L-6 and IFN-γ. Hind limb motor function scores 7 days after the operation were reduced in the SCI rats of the blank control and sham groups. Hind limb function was found to be better in the SCI + BMSCs and SCI + BMSCs + SDF-1 groups than in the SCI, SCI + BMSCs + AMD3100 and SCI + BMSCs + SDF-1 + AMD3100 groups 14, 21 and 28 days after operation. Furthermore, the SCI group had lower SDF-1, CXCR4, NGF, BDNF and GAP-43 expressions but higher GFAP, TNF-α, IL-1β, IL-6 and IFN-γ than the blank control and sham groups 28 days after operation. While, the SCI + BMSCs, SCI + BMSCs + SDF-1 and SCI + BMSCs + SDF-1 + AMD3100 groups displayed opposite trends to the SCI and SCI + BMSCs + AMD3100 groups. In conclusion, SDF-1/CXCR4 axis promotes recovery after SCI by mediating BMSCs.

  10. Brain-derived neurotrophic factor enhances the basal rate of protein synthesis by increasing active eukaryotic elongation factor 2 levels and promoting translation elongation in cortical neurons.

    Science.gov (United States)

    Takei, Nobuyuki; Kawamura, Mihoko; Ishizuka, Yuta; Kakiya, Naomasa; Inamura, Naoko; Namba, Hisaaki; Nawa, Hiroyuki

    2009-09-25

    The constitutive and activity-dependent components of protein synthesis are both critical for neural function. Although the mechanisms controlling extracellularly induced protein synthesis are becoming clear, less is understood about the molecular networks that regulate the basal translation rate. Here we describe the effects of chronic treatment with various neurotrophic factors and cytokines on the basal rate of protein synthesis in primary cortical neurons. Among the examined factors, brain-derived neurotrophic factor (BDNF) showed the strongest effect. The rate of protein synthesis increased in the cortical tissues of BDNF transgenic mice, whereas it decreased in BDNF knock-out mice. BDNF specifically increased the level of the active, unphosphorylated form of eukaryotic elongation factor 2 (eEF2). The levels of active eEF2 increased and decreased in BDNF transgenic and BDNF knock-out mice, respectively. BDNF decreased kinase activity and increased phosphatase activity against eEF2 in vitro. Additionally, BDNF shortened the ribosomal transit time, an index of translation elongation. In agreement with these results, overexpression of eEF2 enhanced protein synthesis. Taken together, our results demonstrate that the increased level of active eEF2 induced by chronic BDNF stimulation enhances translational elongation processes and increases the total rate of protein synthesis in neurons.

  11. HIV-derived lentiviral particles promote T-cell independent activation and differentiation of naïve cognate conventional B2-cells in vitro.

    Science.gov (United States)

    Gardt, Oliver; Grewe, Bastian; Tippler, Bettina G; Überla, Klaus; Temchura, Vladimir V

    2013-10-17

    In animal models, lentiviral particles (LP) were shown to be promising HIV vaccine candidates. Since little is known about the direct impact of LP on antigen-specific B cells, we incorporated Hen Egg Lysozyme (HEL) into LP (HEL-LP) derived from HIV to study their effect on HEL-specific, B cell receptor-transgenic B-cells (HEL(+)B-cells) in vitro. We observed preferential binding of HEL-LP to HEL(+)B-cells and their efficient internalization. HEL-LP were able to effectively cross-link B-cell receptors as indicated by the loss of surface CD62L. In the absence of CD4(+) T-cells, other activation events induced by LP in cognate naïve B-cells included increased expression of activation and co-stimulatory molecules as well as an enhanced proliferative response. Additionally, the B-cell phenotype shifted toward a germinal center pattern with further differentiation into memory and IgG3- and IgA-producing cells. The observed CD4(+) T-cell independent activation and differentiation may be due to LP-induced expression of CD40L by a subset of cognate B-cells. Thus, even in the absence of CD4(+) T-cells LP provide strong direct activation signals to cognate naïve B-cells, which may contribute to the strong humoral immune responses observed after LP immunization.

  12. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  13. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model

    Science.gov (United States)

    Guo, Shang-Chun; Tao, Shi-Cong; Yin, Wen-Jing; Qi, Xin; Yuan, Ting; Zhang, Chang-Qing

    2017-01-01

    Chronic wounds have become an economic, social, and public health burden and need advanced treatment. Platelet-rich plasma (PRP) has been used extensively in treatment of chronic wounds because it contains an abundance of growth factors secreted by platelets. The exosomes derived from PRP (PRP-Exos) have been proven to encapsulate principal growth factors from platelets. This study is the first to show that these exosomes may exert the function of PRP. PRP-Exos can effectively induce proliferation and migration of endothelial cells and fibroblasts to improve angiogenesis and re-epithelialization in chronic wounds. We regulated YAP to verify the PRP-Exos-dependent effect on fibroblast proliferation and migration through YAP activation. In vivo, we observed the cutaneous healing process in chronic wounds treated with PRP-Exos in a diabetic rat model. We provide evidence of the probable molecular mechanisms underlying the PRP effect on healing of chronic ulcers and describe a promising resource of growth factors from exosomes without species restriction. PMID:28042318

  14. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    Science.gov (United States)

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  15. HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4.

    Science.gov (United States)

    Köstlin, Natascha; Ostermeir, Anna-Lena; Spring, Bärbel; Schwarz, Julian; Marmé, Alexander; Walter, Christina B; Poets, Christian F; Gille, Christian

    2017-02-01

    Establishing and maintaining maternal-fetal tolerance is essential for a successful pregnancy; failure of immunological adaptation to pregnancy leads to severe complications such as abortion or preterm delivery. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that suppress T-cell responses, expand during pregnancy and thus may play a role in tolerance induction. Human leucocyte antigen G (HLA-G) is a major histocompatibility complex (MHC) I molecule with immune-modulatory properties, which is expressed during pregnancy. Here, we investigated the impact of HLA-G on MDSCs accumulation and activation in pregnant women. We demonstrate that granulocytic MDSCs (GR-MDSCs) express receptors for HLA-G, namely immunoglobulin-like transcript (ILT) 2 and 4, and that ILT4-expression by GR-MDSCs is regulated during pregnancy. Stimulation with soluble HLA-G (sHLA-G) increased suppressive activity of GR-MDSCs, induced MDSCs from peripheral blood mononuclear cells (PBMCs) and led to phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and induction of indoleamine-2,3-dioxygenase (IDO) in myeloid cells. Effects of sHLA-G on MDSC accumulation were mediated through ILT4. These results suggest an interaction between MDSCs and HLA-G in humans as a potential mechanism for maintaining maternal-fetal tolerance. Modulating MDSC function during pregnancy via HLA-G might provide new opportunities for a therapeutic manipulation of immunological pregnancy complications.

  16. Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Lina Dahl

    Full Text Available The molecular mechanisms regulating the expansion of the hematopoietic system including hematopoietic stem cells (HSCs in the fetal liver during embryonic development are largely unknown. The LIM-homeobox gene Lhx2 is a candidate regulator of fetal hematopoiesis since it is expressed in the fetal liver and Lhx2(-/- mice die in utero due to severe anemia. Moreover, expression of Lhx2 in embryonic stem (ES cell-derived embryoid bodies (EBs can lead to the generation of HSC-like cell lines. To further define the role of this transcription factor in hematopoietic regulation, we generated ES cell lines that enabled tet-inducible expression of Lhx2. Using this approach we observed that Lhx2 expression synergises with specific signalling pathways, resulting in increased frequency of colony forming cells in developing EB cells. The increase in growth factor-responsive progenitor cells directly correlates to the efficiency in generating HSC-like cell lines, suggesting that Lhx2 expression induce self-renewal of a distinct multipotential hematopoietic progenitor cell in EBs. Signalling via the c-kit tyrosine kinase receptor and the gp130 signal transducer by IL-6 is necessary and sufficient for the Lhx2 induced self-renewal. While inducing self-renewal of multipotential progenitor cells, expression of Lhx2 inhibited proliferation of primitive erythroid precursor cells and interfered with early ES cell commitment, indicating striking lineage specificity of this effect.

  17. Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization.

    Science.gov (United States)

    Fermino, Marise L; Dylon, L Sebastian D; Cecílio, Nerry T; Santos, Sofia N; Toscano, Marta A; Dias-Baruffi, Marcelo; Roque-Barreira, Maria C; Rabinovich, Gabriel A; Bernardes, Emerson S

    2016-08-01

    Galectin-3, an endogenous glycan-binding protein, is abundantly expressed at sites of inflammation and immune cell activation. Although this lectin has been implicated in the control of T helper (Th) polarization, the mechanisms underlying this effect are not well understood. Here, we investigated the role of endogenous galectin-3 during the course of experimental Leishmania major infection using galectin-3-deficient (Lgals3(-/-)) mice in a BALB/c background and the involvement of Notch signaling pathway in this process. Lgals3(-/-) mice displayed an augmented, although mixed Th1/Th2 responses compared with wild-type (WT) mice. Concomitantly, lymph node and footpad lesion cells from infected Lgals3(-/-) mice showed enhanced levels of Notch signaling components (Notch-1, Jagged1, Jagged2 and Notch target gene Hes-1). Bone marrow-derived dendritic cells (BMDCs) from uninfected Lgals3(-/-) mice also displayed increased expression of the Notch ligands Delta-like-4 and Jagged1 and pro-inflammatory cytokines. In addition, activation of Notch signaling in BMDCs upon stimulation with Jagged1 was more pronounced in Lgals3(-/-) BMDCs compared to WT BMDCs; this condition resulted in increased production of IL-6 by Lgals3(-/-) BMDCs. Finally, addition of exogenous galectin-3 to Lgals3(-/-) BMDCs partially reverted the increased sensitivity to Jagged1 stimulation. Our results suggest that endogenous galectin-3 regulates Notch signaling activation in BMDCs and influences polarization of T helper responses, thus increasing susceptibility to L. major infection.

  18. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve.

    Science.gov (United States)

    Georgiou, Melanie; Golding, Jon P; Loughlin, Alison J; Kingham, Paul J; Phillips, James B

    2015-01-01

    Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the aligned collagen matrix supported and guided neurite extension in vitro. EngNT-dADSC sheets were rolled to form peripheral nerve repair constructs that were implanted within NeuraWrap conduits to bridge a 15 mm gap in rat sciatic nerve. After 8 weeks regeneration was assessed using immunofluorescence imaging and transmission electron microscopy and compared to empty conduit and nerve graft controls. The proportion of axons detected in the distal stump was 3.5 fold greater in constructs containing EngNT-dADSC than empty tube controls. Our novel combination of technologies that can organise autologous therapeutic cells within an artificial tissue construct provides a promising new cellular biomaterial for peripheral nerve repair.

  19. Simultaneous derivatization and extraction of chlorophenols in water samples with up-and-down shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography/mass spectrometric detection.

    Science.gov (United States)

    Wang, Ke-Deng; Chen, Pai-Shan; Huang, Shang-Da

    2014-03-01

    A new up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) for extraction and derivatization of five chlorophenols (4-chlorophenol, 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,6-trichloro-phenol, and pentachlorophenol) has been developed. The method requires minimal solvent usage. The relatively polar, water-soluble, and low-toxicity solvent 1-heptanol (12 μL) was selected as the extraction solvent and acetic anhydride (50 μL) as the derivatization reagent. With the use of an up-and-down shaker, the emulsification of aqueous samples was formed homogeneously and quickly. The derivatization and extraction of chlorophenols were completed simultaneously in 1 min. The common requirement of disperser solvent in DLLME could be avoided. After optimization, the linear range covered over two orders of magnitude, and the coefficient of determination (r (2)) was greater than 0.9981. The detection limit was from 0.05 to 0.2 μg L(-1), and the relative standard deviation was from 4.6 to 10.8 %. Real samples of river water and lake water had relative recoveries from 90.3 to 117.3 %. Other emulsification methods such as vortex-assisted, ultrasound-assisted, and manual shaking-enhanced ultrasound-assisted methods were also compared with the proposed UDSA-DLLME. The results revealed that UDSA-DLLME performed with higher extraction efficiency and precision compared with the other methods.

  20. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Institute of Scientific and Technical Information of China (English)

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  1. Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo.

    Science.gov (United States)

    Helgager, Jeffrey; Huang, Yang Zhong; Mcnamara, James O

    2014-12-01

    The neurotrophin receptor, TrkB receptor tyrosine kinase, is critical to central nervous system (CNS) function in health and disease. Elucidating the ligands mediating TrkB activation in vivo will provide insights into its diverse roles in the CNS. The canonical ligand for TrkB is brain-derived neurotrophic factor (BDNF). A diversity of stimuli also can activate TrkB in the absence of BDNF, a mechanism termed transactivation. Zinc, a divalent cation packaged in synaptic vesicles along with glutamate in axons of mammalian cortical neurons, can transactivate TrkB in neurons and heterologous cells in vitro. Yet the contributions of BDNF and zinc to TrkB activation in vivo are unknown. To address these questions, we conducted immunohistochemical (IHC) studies of the hippocampal mossy fiber axons and boutons using an antibody selective for pY816 of TrkB, a surrogate measure of TrkB activation. We found that conditional deletion of BDNF resulted in a reduction of pY816 in axons and synaptic boutons of hippocampal mossy fibers, thereby implicating BDNF in activation of TrkB in vivo. Unexpectedly, pY816 immunoreactivity was increased in axons but not synaptic boutons of mossy fibers in ZnT3 knockout mice that lack vesicular zinc. Marked increases of BDNF content were evident within the hippocampus of ZnT3 knockout mice and genetic elimination of BDNF reduced pY816 immunoreactivity in these mice, implicating BDNF in enhanced TrkB activation mediated by vesicular zinc depletion. These findings support the conclusion that BDNF but not vesicular zinc activates TrkB in hippocampal mossy fiber axons under physiological conditions.

  2. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    Science.gov (United States)

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-09

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  3. MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Ye Wang

    Full Text Available Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs. In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs.MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE, Tuj-1 (Neuron-specific class III beta-tubulin and glial fibrillary acidic protein (GFAP, as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro.MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff. cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation.MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases.

  4. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells.

    Science.gov (United States)

    Lisi, Antonella; Ledda, Mario; Rosola, Emanuela; Pozzi, Deleana; D'Emilia, Enrico; Giuliani, Livio; Foletti, Alberto; Modesti, Andrea; Morris, Stephen J; Grimaldi, Settimio

    2006-12-01

    The pituitary corticotrope-derived AtT20 D16V cell line responds to nerve growth factor (NGF) by extending neurite-like processes and differentiating into neurosecretory-like cells. The aim of this work is the study of the effect of extremely low frequency electromagnetic fields (ELF-EMF) at a frequency of 50 Hz on these differentiation activities. To establish whether exposure to the field could influence the molecular biology of the cells, they were exposed to a magnetic flux density of 2 milli-Tesla (mT). Intracellular calcium ([Ca2+]i) and intracellular pH (pHi) were monitored in single exposed AtT20 D16V cells using fluorophores Indo-1 and SNARF for [Ca2+]i and pHi, respectively. Single-cell fluorescence microscopy showed a statistically significant increase in [Ca2+]i followed by a drop in pHi in exposed cells. Both scanning electron microscopy (SEM) and transmission microscopy of exposed AtT20 D16V cells show morphological changes in plasma membrane compared to non-exposed cells; this modification was accompanied by a rearrangement in actin filament distribution and the emergence of properties typical of peptidergic neuronal cells-the appearance of secretory-like granules in the cytosol and the increase of synaptophysin in synaptic vesicles, changes typical of neurosecretory-like cells. Using a monoclonal antibody toward the neurofilament protein NF-200 gave additional evidence that exposed cells were in an early stage of differentiation compared to control. Pre-treatment with 0.3 microM nifedipine, which specifically blocks L-type Ca2+ channels, prevented NF-200 expression in AtT20 D16V exposed cells. The above findings demonstrate that exposure to 50 Hz ELF-EMF is responsible for the premature differentiation in AtT20 D 16 V cells.

  5. Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells.

    Directory of Open Access Journals (Sweden)

    Mitsuru Takaku

    Full Text Available BACKGROUND: Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1 plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG. We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival. METHODS AND RESULTS: Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival. CONCLUSION: We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells.

  6. Mixed Fibronectin-Derived Peptides Conjugated to a Chitosan Matrix Effectively Promotes Biological Activities through Integrins, α4β1, α5β1, αvβ3, and Syndecan

    Directory of Open Access Journals (Sweden)

    Hozumi Kentaro

    2016-11-01

    Full Text Available Mimicking the biological function of the extracellular matrix is an approach to developing cell adhesive biomaterials. The RGD peptide, derived from fibronectin (Fn, mainly binds to integrin αvβ3 and has been widely used as a cell adhesive peptide on various biomaterials. However, cell adhesion to Fn is thought to be mediated by several integrin subtypes and syndecans. In this study, we synthesized an RGD-containing peptide (FIB1 and four integrin α4β1-binding-related motif-containing peptides (LDV, IDAPS, KLDAPT, and PRARI and constructed peptide-chitosan matrices. The FIB1-chitosan matrix promoted human dermal fibroblast (HDF attachment, and the C-terminal elongated PRARI (ePRARI-C-conjugated chitosan matrix significantly promoted HDF attachment through integrin α4β1 and syndecan binding. Next, we constructed a mixed ePRARI-C- and FIB1-chitosan matrix to develop a Fn mimetic biomaterial. The mixed ePRARI-C/FIB1-chitosan matrix promoted significantly better cell attachment and neurite outgrowth compared to those of either ePRARI-C- or FIB1-chitosan matrices. HDF adhesion to the ePRARI-C/FIB1-chitosan matrix was mediated by integrin, α4β1, α5β1, and αvβ3, similar to HDF adhesion to Fn. These data suggest that an ePRARI-C/FIB1-chitosan matrix can be used as a tool to analyze the multiple functions of Fn and can serve as a Fn-mimetic biomaterial.

  7. Metazoan promoters

    DEFF Research Database (Denmark)

    Lenhard, Boris; Sandelin, Albin Gustav; Carninci, Piero

    2012-01-01

    Promoters are crucial for gene regulation. They vary greatly in terms of associated regulatory elements, sequence motifs, the choice of transcription start sites and other features. Several technologies that harness next-generation sequencing have enabled recent advances in identifying promoters...... and their features, helping researchers who are investigating functional categories of promoters and their modes of regulation. Additional features of promoters that are being characterized include types of histone modifications, nucleosome positioning, RNA polymerase pausing and novel small RNAs. In this Review, we...... discuss recent findings relating to metazoan promoters and how these findings are leading to a revised picture of what a gene promoter is and how it works....

  8. Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (NPCS)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qing; WANG Lian-Sheng

    2007-01-01

    20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G* and 6-311G* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-1gEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -1gEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.

  9. Photocatalytic Degradation of 2-Chlorophenol Using Ag-Doped TiO2 Nanofibers and a Near-UV Light-Emitting Diode System

    Directory of Open Access Journals (Sweden)

    Ju-Young Park

    2014-01-01

    Full Text Available This report investigated the photocatalytic degradation of 2-chlorophenol using TiO2 nanofibers and Ag-doped TiO2 nanofibers, synthesized using the sol-gel and electrospinning techniques, and an ultraviolet light-emitting diode (UV-LED system as a UV light source. The crystallite size of the Ag-doped TiO2 nanofibers was smaller than that of the TiO2 nanofibers, because silver retrained phase transformation not only controls the phase transformation but also inhibits the growth of anatase crystallites. The activation energies for the grain growth of the TiO2 nanofibers and the Ag-doped TiO2 nanofibers were estimated to be 20.84 and 27.01 kJ/mol, respectively. The photocatalytic degradation rate followed a pseudo-first-order equation. The rate constants (k of the TiO2 nanofibers and the Ag-doped TiO2 nanofibers were 0.056 and 0.144 min−1, respectively.

  10. Mechanistic Study of Visible-Light-Induced Photodegradation of 4-Chlorophenol by TiO2−xNx with Low Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Guangfeng Shang

    2012-01-01

    Full Text Available TiO2−x Nx powders with low N-doping concentrations (0.021<<0.049 were prepared by annealing commercial TiO2 (P-25 under an NH3 flow at 550°C. Regardless of UV or visible case, the photoactivities of the samples decreased as x increased, and TiO1.979N0.021 showed the highest activity for the 4-chlorophenol (4-CP decomposition under the visible-light irradiation. The visible-light response for N-doped TiO2 could arise from an N-induced midgap level, formed above the valence band (O 2p. Electron spin resonance (ESR measurements and the radical scavenger technologies gave the combined evidence that the active species (•OH and O2•− are responsible for the photodecomposition of 4-CP over TiO2−xNx under the visible irradiation. A possible photocatalytic mechanism was discussed in detail.

  11. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity.

    Science.gov (United States)

    Karci, Akin

    2014-03-01

    Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity?

  12. Photocatalytic degradation of p-chlorophenol by hybrid H₂O₂ and TiO₂ in aqueous suspensions under UV irradiation.

    Science.gov (United States)

    Nguyen, Anh Thu; Juang, Ruey-Shin

    2015-01-01

    In this study, TiO2 particles were used as photocatalysts for the degradation of aqueous p-chlorophenol (p-CP) under UV irradiation. The effect of TiO2 dose (0-3 g/L), initial p-CP concentration, H2O2 concentration (2-45 mM), solution pH (4.6-9.5), and UV light intensity on the degradation of p-CP were examined. Four oxidative degradation processes, which utilized UV alone (direct photolysis), H2O2/UV, TiO2/UV, and H2O2/TiO2/UV, were compared in a batch photoreactor with a 100-W high-pressure mercury lamp. The photodegradation of p-CP could be described by the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Moreover, the apparent degradation rate constants increased considerably from 3.5 × 10(-)(3) min(-)(1) (direct photolysis) to 19.9 × 10(-)(3) min(-)(1) (H2O2/TiO2/UV system).

  13. Two heterometallic-organic frameworks composed of iron(III)-salen-based ligands and d(10) metals: gas sorption and visible-light photocatalytic degradation of 2-chlorophenol.

    Science.gov (United States)

    Li, Jing; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2015-03-01

    Two examples of heterometallic-organic frameworks (HMOFs) composed of dicarboxyl-functionalized Fe(III)-salen complexes and d(10) metals (Zn, Cd), [Zn2(Fe-L)2(μ2-O)(H2O)2]⋅4 DMF⋅4 H2O (1) and [Cd2(Fe-L)2(μ2-O)(H2O)2]⋅2 DMF⋅H2O (2) (H4L = 1,2-cyclohexanediamino-N,N'-bis(3-methyl-5-carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2, each square-pyramidal Fe(III) atom is embedded in the [N2O2] pocket of an L(4-) anion, and these units are further bridged by a μ2-O anion to give an (Fe-L)2(μ2-O) dimer. The two carboxylate groups of each L(4-) anion bridge Zn(II) or Cd(II) atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2-chlorophenol (2-CP) under visible-light irradiation, which, to the best of our knowledge, is the first time that this has been observed for Fe(III)-salen-based HMOFs.

  14. Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5.

    Science.gov (United States)

    Liu, Dong; Liu, Zhen; Liu, Huaxiang; Li, Hao; Pan, Xinliang; Li, Zhenzhong

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) is critical for sensory neuron survival and is necessary for vesicular glutamate transporter 3 (VGLUT3) expression. Whether the transcription factors Etv4 and Etv5 are involved in these BDNF-induced effects remains unclear. In the present study, primary cultured dorsal root ganglion (DRG) neurons were used to test the link between BDNF and transcription factors Etv4 and Etv5 on VGLUT3 expression and neurite outgrowth. BDNF promoted the mRNA and protein expression of Etv4 and Etv5 in DRG neurons. These effects were blocked by extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor PD98059 but not phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or phospholipase C-γ (PLC-γ) inhibitor U73122. Etv4 siRNA and Etv5 siRNA effectively blocked the VGLUT3 expression and neurite elongation induced by BNDF. The overexpression of Etv4 or Etv5 potentiated the effects of BNDF-induced neurite elongation and growth-associated protein 43 (GAP-43), medium neurofilament (NF-M), and light neurofilament (NF-L) expression while these effects could be inhibited by Etv4 and Etv5 siRNA. These data imply that Etv4 and Etv5 are essential transcription factors in modulating BDNF/TrkB signaling-mediated VGLUT3 expression and neurite outgrowth. BDNF, through the ERK1/2 signaling pathway, activates Etv4 and Etv5 to initiate GAP-43 expression, promote neurofilament (NF) protein expression, induce neurite outgrowth, and mediate VGLUT3 expression for neuronal function improvement. The biological effects initiated by BDNF/TrkB signaling linked to E26 transformation-specific (ETS) transcription factors are important to elucidate neuronal differentiation, axonal regeneration, and repair in various pathological states.

  15. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  16. 突变株CTM2降解苯酚和4-氯酚的生物降解特性%Biodegradation of Phenol and 4-Chlorophenol by the Mutant Strain CTM 2

    Institute of Scientific and Technical Information of China (English)

    姜岩; 任南琪; 蔡徇; 吴迪; 乔丽艳; 林森

    2008-01-01

    The biodegradations of phenol and 4-chlorophenol(4-cp)were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis.The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg.L-1 within 59.5 h.In the dual.substrate biodegradation,both 2 to degrade phenol.In addition,the kinetic behaviors were described using the kinetic model proposed in this lab.

  17. 固定化对氯苯酚降解菌在生物流化床中的降解特性%Degradation characteristics of immobilized p-chlorophenol-degrading strain in bio-fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    丁成; 李朝霞; 许琦; 杨波

    2011-01-01

    A p-chlorophenol-degrading strain was encapsulated in alginate-chitosan-activate carbon powder microcapsules, and the degradation characteristics of immobilized p-chlorophenol-degrading strain under different conditions in bio-fluidized bed reactor were investigated by gas chromtography. Results indicated that the optimum conditions for the degradation were HRT of 72 h, ratio of the volume of microencapsulated inoculation (about 3.0 × 106cfu/mL in each microencapsulation) to the volume of wastewater of 10% , pH of 7, temperature of 30 ℃ with the initial concentration of p-chlorophenol of 120 mg/L. Both of immobilized strain and free strain were capable of degrading p-chlorophenol and the kinetics was found to correlate with the primary and secondly kinetic equation respectively. But the degradation efficiency of the immobilized strain was higher than the free strain significantly.%为了获得固定化对氯苯酚降解菌在生物流化床中的降解特性,用海藻酸钠-壳聚糖-活性炭微胶囊对实验室保存的对氯苯酚降解菌株进行固定化,在生物流化床中用固定化菌株在不同单因素实验条件下降解对氯苯酚废水,用气相色谱仪测定废水中对氯苯酚的降解率.结果表明,固定化对氯苯酚降解菌株处理污水的适宜条件为:HRT为72 h,微胶囊接种体积为废水体积的10%(其中微胶囊含菌量为3.0×106cfu/mL),降解pH值为7,降解温度为30℃,对氯苯酚初始浓度为120 mg/L.微胶囊固定化菌株与游离态菌株均可以降解对氯苯酚废水,但固定化菌株降解率优于游离态菌株,降解过程分别符合一级和二级动力学方程.

  18. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...... - an associate professorship was established with a focus on health promotion. Nevertheless, the concept of health promotion had been integrated with or mentioned in courses run prior to the new post. Subsequently, a wide spectrum of courses in health promotion was introduced, such as Empowerment for Child...

  19. 血小板衍生内皮细胞生长因子转染脂肪间充质干细胞促进移植脂肪血管化%Platelet-derived endothelial cell growth factor transfection of adipose-derived mesenchymal stem cells promotes vascularization of fat grafts

    Institute of Scientific and Technical Information of China (English)

    伞光; 宋佳

    2015-01-01

    BACKGROUND:Platelet-derived endothelial cel growth factor (PD-ECGF) can promote revascularization in fat transplantation. OBJECTIVE: To explore the dual effects of PD-ECGF and adipose-derived mesenchymal stem cels on the survival rate of fat grafts. METHODS:(1) Adipose-derived mesenchymal stem cels were isolated from the inguinal subcutaneous fat of New Zealand white rabbits, and then cultured. Passage 3 adipose-derived mesenchymal stem cels were divided into experimental group (Lenti-PD-ECGF-EGFP transfected adipose-derived mesenchymal stem cels), control group (Lenti-EGFP transfected adipose-derived mesenchymal stem cels) and blank group (adipose-derived mesenchymal stem cels with no transfection). (2) Lenti-PD-ECGF-EGFP transfected adipose-derived mesenchymal stem cels were cultured in DMEM complete medium, and then mixed with fat tissues as group A; adipose-derived mesenchymal stem cels with no transfection were cultured in DMEM complete medium and then mixed with fat tissues as group B; DMEM complete medium with no cels served as group C. Then, the grafts in groups A, B, C were respectively injected subcutaneously into the upper left, lower left and upper right parts of the rabbits’ black. RESULTS AND CONCLUSION:(1) In the experimental group, PD-ECGF mRNA and protein expressions were significantly higher than those in the control and blank groups (P < 0.05), and cel proliferation was also the fastest. (2) Graft weight and the number of capilaries were greater in group A than groups B and C. These findings indicate that PD-ECGF transfection of adipose-derived mesenchymal stem cels not only can continuously express the PD-ECGF protein, but also can promote the proliferation of adipose-derived mesenchymal stem cels.%背景:血小板衍生内皮细胞生长因子在脂肪移植中可促进血运重建。目的:探索血小板衍生内皮细胞生长因子和脂肪间充质干细胞的双重促进脂肪移植成活率的作用。

  20. Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer.

    Science.gov (United States)

    Dong, Jia; Fan, Hongtao; Sui, Dianpeng; Li, Liangchen; Sun, Ting

    2014-04-25

    For the first time, a diffusive gradients in thin films (DGT) device using molecularly imprinted polymer (MIP) as the binding agent and nylon membrane (NM) as the diffusive layer (NM-MIP-DGT) has been developed for sampling 4-chlorophenol (4-CP) in water. The MIP was prepared by precipitation polymerization with methacrylic acid as monomer and ethyleneglycoldimethacrylate as cross-linker. The diffusion coefficient of 4-CP through NM was obtained to be 0.788±0.040 μ cm(2) s(-1) by diffusion cell method. The ratio was 1.01±0.05 (mean±standard deviation) for the concentration of 4-CP sampled by NM-MIP-DGT and analyzed by HPLC method to the total concentration of 4-CP in the synthetic solution where free 4-CP species dominated. The results showed that NM-MIP-DGT could sample 4-CP in synthetic solution accurately. The performance of NM-MIP-DGT for sampling 4-CP was independent of pH in the range of 3-7 and ionic strength in the range of 0.0001-0.1 mol L(-1) NaCl solution. The concentration of free form of 4-CP sampled by NM-MIP-DGT decreased with the increasing concentration of dissolved organic carbon in different water samples due to the electrostatic interaction of natural organic compounds with 4-CP. 1.8 mg L(-1) of the free form of 4-CP was determined by HPLC which was sampled by NM-MIP-DGT in an intermediate untreated industrial effluent. The NM-MIP-DGT can be a potential passive tool for sampling the free form of 4-CP in water.

  1. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Su, Jie; Hu, Jian-Qiang; Wang, Qian; Dong, Chun-Ying; Pan, Sheng-Dong; Jin, Mi-Cong

    2016-08-12

    A planar graphene oxide-based magnetic ionic liquid nanomaterial (PGO-MILN) was synthesized. The prepared PGO-MILN was characterized by transmission electronmicroscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The results of adsorption experiments showed that the PGO-MILN had great adsorption capacity for 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on the adsorption experimental data, a sensitive magnetic method for determination of the five CPs in environmental water samples was developed by an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of main MSPE parameters including the solution pH, extraction time, desorption time, and volume of desorption solution on the extraction efficiencies had been investigated in detail. The recoveries ranged from 85.3 to 99.3% with correlation coefficients (r) higher than 0.9994 and the linear ranges were between 10 and 500ngL(-1). The limits of detection (LODs) and limits of quantification (LOQs) of the five CPs ranged from 0.2 to 2.6ngL(-1) and 0.6 to 8.7ngL(-1), respectively. The intra- and inter- day relative standard deviations (RSDs) were in the range from 0.6% to 7.4% and from 0.7% to 8.4%, respectively. It was confirmed that the PGO-MILN was a kind of highly effective MSPE materials used for enrichment of trace CPs in the environmental water.

  2. Application of a Zero-Valente Iron-Per Sulfate System to Treat Petrochemical Wastewater With High-Total Dissolved Solids Containing Para-Chlorophenol

    Directory of Open Access Journals (Sweden)

    Ahmadpour

    2016-02-01

    Full Text Available Background Zero-valent iron (ZVI can effectively activate persulfate (PS generating free sulfate radicals (SO4•–, thereby presenting a promising technology to degrade recalcitrant organic contaminants such as para-chlorophenol (PCP in wastewater. Objectives The current study aimed to examine the feasibility and application of ZVI/PS system through batch experiments to degrade PCP of petrochemical effluent, which its treatment is included in The United States environmental protection agency (USEPA priority pollutant list. Materials and Methods Effects of dosages of ZVI (0.056 - 2.8 g/L, ZVI to PS molar ratio (0.1 - 5.0, PS concentration (2.5 - 25.0 mM/L, pH = (3.0 - 11.0, contact time (5 - 240 minutes, and ZVI reusability (three cycles on PCP degradation were examined. Results The results showed that the PCP degradation increased with an increase in ZVI dosage from 0.056 to 1.4 g/L, an increase in persulfate concentration from 2.5 to 15.0 mM/L, and an increase in ZVI to PS molar ratio from 0.1 to 2.5. The optimal initial pH for PCP removal was 5.0 and the maximum removal efficiency of 70% was achieved within 120 minutes. Moreover, the ZVI catalyst was reused until the third cycle to activate the persulfate and degrade PCP. However, the degradation efficiency of PCP gradually decreased to 51.7% when the ZVI reuse time increased. Conclusions The results indicate that using ZVI/PS system is not an efficient enough method to treat petrochemical effluent, due to the complexity of petrochemical wastewater matrix and high- total dissolved solids (TDS content, as well.

  3. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Gisi, Michelle R; Xun, Luying

    2003-05-01

    Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH(2))-utilizing monooxygenase, and FADH(2) was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH(2) and retarded its rapid oxidation by O(2). A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH(2)-utilizing enzymes, which have homologues in the domains Bacteria and Archaea.

  4. The Experimental Study of Promoting Neovascularization from Adipose Tissues Derived Stem Cells Combinding with Fat Particles%脂肪干细胞复合脂肪颗粒促血管化的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘亚南; 范崇盛

    2014-01-01

    This paper disscussed the effect of promoting neovascularization from adipose tissues derived stem cells combining with fat particles .The experimental animals were selected from the same 12 nude ,each nude muse was marked with 3 points and injected into the subcutaneous stratum of the 12 nude mice .Results as the follows :General observation ,When drawn ,we can see a group of tissue blocks in injected subcutaneously of nude mice ,the sizes and shapes of adipose tissue were irregular .Microvessel density ,group A was higher than group B and group C ,and had significant statistically differences (P< 0 .01) ,group B was higher than group C ,and had significant statistically differences (P< 0 .01) . Comparison of survival (% ) ,Group A was higher than group B and group C ,and had significant statistically differences (P<0 .01) ,group B was higher than group C ,and had significant statistically differences (P<0 .01) .As a cellular scaffold ,fat particles can accelerate the vascularization of ADSCs and promote thesurvial and growth of transplanted ADSCs .%本研究探讨脂肪干细胞复合脂肪颗粒对裸鼠皮下血管化的影响。将12只裸鼠身上标记三个点,将三组试剂分别注射,分析结果如下:肉眼观察:取材时,裸鼠背部注射部皮下有一团状组织块,脂肪组织形状不规则,大小不一。微血管密度:A组明显高于B组、C组,且差异有统计学意义(P<0.01);B组明显高于C组,且差异有统计学意义(P<0.01)。存活率比较:A组明显高于B组、C组,且差异有统计学意义(P<0.01);B组明显高于C组,且差异有统计学意义(P<0.01)。脂肪颗粒作为生物支架可加速脂肪干细胞的促血管化作用,从而促进移植物的存活与生长。

  5. 氨基葡萄糖衍生物钌络合物催化苯乙酮氢化反应%Hydrogenation of Acetophenone Promoted by Ruthenium Complexes of Modified Glucosamine Derivatives

    Institute of Scientific and Technical Information of China (English)

    刘晓晶; 周宏勇; 刘兵; 李小娜; 宋沙沙; 李云庆; 王家喜

    2014-01-01

    The glucosamine acetal derivative L1 and sulfonamide derivatives L2-L4 were synthesized via the reaction of hydroxy and/or amine of glucosamine. The catalytic properties of the catalysts generated in situ from the reaction of Ru(Ⅱ) compounds with glucosamine based ligands were evaluated in the hydrogenation of acetophenone with i-PrOH as hydrogen source. The catalytic activity was enhanced by the introduction of or-ganic group into the glucosamine frame. The effects of reaction temperature, time, molar ratio of acetophenone to catalyst and base on the catalytic reaction of the hydrogenation of acetophenone promoted by the combination of RuCl2( PPh3 ) 3/L4 were explored. The turn over frequency( TOF) was up to 1232 h-1 at 413 K with n( cata-lyst):n(KOH):n(acetophenone)=1:10:5000. Among the bases used, the potassium isopropoxide was the best one to activate the precatalyst. The kinetic results revealed that the reaction was the first order respect to acetophenone, and the apparent activition energy was 37. 13 kJ/mol. The catalyst system of RuCl2(PPh3)3/L4 was stable in the hydrogenation of acetophenone. The plausible reaction mechanism was proposed.%基于D-氨基葡萄糖氨基及羟基的反应,制备了缩醛化氨基葡萄糖衍生物L1及磺酰胺基葡萄糖衍生物L2~L4.将其与Ru(Ⅱ)化合物原位组成催化体系,考察了该催化体系在苯乙酮氢化反应中的催化活性,结果表明,有机基团的引入提高了氨基葡萄糖参与氢化反应的催化活性.研究了反应温度、时间及碱的种类对RuCl2(PPh3)3/L4催化苯乙酮氢化反应的影响.动力学研究结果表明,催化反应对苯乙酮为一级反应,表观活化能为37.13 kJ/mol,并提出了可能的反应机理.

  6. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    Science.gov (United States)

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (pcells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (pcells that received only Control astro-CM (GPX⁺/GDNF⁻) (pcell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (pcells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both enhanced cell protection and diminished levels of activated caspase-3. Our data collectively indicate that GDNF is capable of inducing anti-oxidant activities of intra-cellular GPX-1 and that growth-promoting potential of GDNF and anti-oxidant properties of GPX-1 can, in concert, maximize survival of dopaminergic neurons.

  7. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    Science.gov (United States)

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  8. In vitro cytotoxicity assessment of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol using established fish cell lines.

    Science.gov (United States)

    Davoren, Maria; Fogarty, Andrew M

    2006-10-01

    The cytotoxicity of three biocidal agents frequently employed as active ingredients in phenolic-based disinfectants, were evaluated in three established fish cell lines (EPC, CHSE and RTG-2). Cell viability was assessed using two fluorescent indicator dyes, Alamar Blue for metabolism and neutral red for lysosomal activity. Total protein content was also quantified as a measure of cell detachment. In order to evaluate the sensitivity of the cell cultures, the results obtained were compared with toxicity data obtained from a previous study with the same three compounds and the in vivo lethality test with rainbow trout. Results from this study established that each of the three cell lines ranked the tested chemicals in the same order of toxicity as the in vivo test; however, the cell cultures were found to be an order of magnitude less sensitive than whole fish studies with the same compounds. The chemical sodium o-benzyl-p-chlorophenol was consistently ranked the most toxic of the tested compounds with each cell line and the endpoints employed. The rank order of toxicity was always sodium o-benzyl-p-chlorophenol > sodium p-tertiary amylphenol > sodium o-phenylphenol. The EPC cells were found to be the most sensitive cell line tested based on Alamar Blue IC(50) data, and the Alamar Blue assay was consistently found to be the most sensitive endpoint of the three cytotoxicity assays employed.

  9. 不同细胞促进脂肪移植存活的实验研究%Effects of different human adipose-derived cells in promoting human adipose tissue engraftment in nude mice

    Institute of Scientific and Technical Information of China (English)

    朱茗; 鲁峰; 高建华; 廖云君

    2012-01-01

    目的 探讨应用自人脂肪组织来源的不同细胞辅助脂肪移植,寻找促进移植物存活率的最佳种子细胞的有效方法,为干细胞进一步运用于临床提供实验依据.方法 从临床抽脂病人获取脂肪组织并提炼细胞,将0.3 ml待移植的脂肪颗粒分别与以下细胞进行混合处理:(1)低氧脂肪来源间充质干细胞(A组);(2)脂肪来源间充质干细胞(B组);(3)血管基质层细胞(SVFs)(C组);(4)加完全培养基的单纯脂肪颗粒为对照组(D组)脂肪颗粒与相应细胞混合后,注射移植于6只裸鼠背部皮下.术后3个月观察移植物情况,通过组织学、HE染色等方法进行分析.结果 A~D组湿重分别为(61.67±8.165)、(91.67±1.472)、(96.67±5.164)和(40.83±4.916)mg,A、B、C组脂肪存活率均高于D组(P<0.05),B、C两组之间比较差异无统计学意义(P>0.05)且都高于A组.A、B、C组血管密度均高于组D,且C组明显高于其他3组(P<0.05).A、B、C组存活脂肪细胞计数均高于D组,且B、C组最高(P<0.05),纤维组织计数均低于D组(P<0.05).结论 来源于人自体干细胞复合脂肪颗粒能够显著提高移植脂肪组织的成活率,其中血管基质层细胞及脂肪来源间充质干细胞移植脂肪的存活率最高.%Objective To explore the optimal seed cells derived from human adipose tissue for promoting the engraftment of transplanted adipose tissue in nude mice. Methods Human adipose tissue granules (0.3 ml) obtained from patients undergoing liposuction were mixed with hypoxic adipose-derived stem cells (ADCs, group A), ADCs (Group B), stromal vascular fraction (SVF) cells (group C), or pure adipose tissue granules in complete culture medium particles (group D). The mixtures were injected subcutaneously on the back of 6 nude mice, and the transplanted adipose tissues were harvested 3 months later to examine the engraftment using histological method and HE staining. Results The wet weights of the adipose

  10. Promoting Models

    Science.gov (United States)

    Li, Qin; Zhao, Yongxin; Wu, Xiaofeng; Liu, Si

    There can be multitudinous models specifying aspects of the same system. Each model has a bias towards one aspect. These models often override in specific aspects though they have different expressions. A specification written in one model can be refined by introducing additional information from other models. The paper proposes a concept of promoting models which is a methodology to obtain refinements with support from cooperating models. It refines a primary model by integrating the information from a secondary model. The promotion principle is not merely an academic point, but also a reliable and robust engineering technique which can be used to develop software and hardware systems. It can also check the consistency between two specifications from different models. A case of modeling a simple online shopping system with the cooperation of the guarded design model and CSP model illustrates the practicability of the promotion principle.

  11. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.

    Science.gov (United States)

    Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong

    2016-12-29

    The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm(3) and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm(3)) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm(3)). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm(3)) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm(3)). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm(3)) and PAHs (148.6-4986.5 μg/Nm(3)) were detected in the stack gases of MSWI

  12. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis.

    Science.gov (United States)

    McClure, Clara; Brudecki, Laura; Ferguson, Donald A; Yao, Zhi Q; Moorman, Jonathan P; McCall, Charles E; El Gazzar, Mohamed

    2014-09-01

    The sepsis initial hyperinflammatory reaction, if not treated early, shifts to a protracted state of immunosuppression that alters both innate and adaptive immunity and is associated with elevated mortality. Myeloid-derived suppressor cells (MDSCs) are myeloid progenitors and precursors that fail to differentiate into mature innate-immunity cells and are known for their potent immunosuppressive activities. We previously reported that murine MDSCs expand dramatically in the bone marrow during late sepsis, induced by cecal ligation and puncture, and demonstrated that they contribute to late-sepsis immunosuppression. However, the molecular mechanism responsible for generating these immature Gr1(+) CD11b(+) myeloid cells during sepsis remains unknown. We show here that sepsis generates a microRNA (miRNA) signature that expands MDSCs. We found that miRNA 21 (miR-21) and miR-181b expression is upregulated in early sepsis and sustained in late sepsis. Importantly, we found that simultaneous in vivo blockade of both miRNAs via antagomiR (a chemically modified miRNA inhibitor) injection after sepsis initiation decreased the bone marrow Gr1(+) CD11b(+) myeloid progenitors, improved bacterial clearance, and reduced late-sepsis mortality by 74%. Gr1(+) CD11b(+) cells isolated from mice injected with antagomiRs were able to differentiate ex vivo into macrophages and dendritic cells and produced smaller amounts of the immunosuppressive interleukin 10 (IL-10) and transforming growth factor β (TGF-β) after stimulation with bacterial lipopolysaccharide, suggesting that immature myeloid cells regained their maturation potential and have lost their immunosuppressive activity. In addition, we found that the protein level of transcription factor NFI-A, which plays a role in myeloid cell differentiation, was increased during sepsis and that antagomiR injection reduced its expression. Moreover, knockdown of NFI-A in the Gr1(+) CD11b(+) cells isolated from late-septic mice increased

  13. An Efficient and Green Synthesis of 5-Oxo-5,6,7,8-tetrahydro 4H-benzo-[b]-pyran Derivatives Promoted by InCl3·4H2O Under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xue Yuan HU; Xue Sen FAN; Xin Ying ZHANG; Gui Rong QU; Yan Zhen LI

    2005-01-01

    A rapid and facile preparation of benzo-[b]-pyran derivatives through condensation of chalcone and 5, 5-dimethyl-1,3-cyclohexandione under microwave irradiation in the presence of simplicity and environmental benignancy, this method may provide a useful alternative for the preparation of benzo-[b]-pyran derivatives.

  14. Hemoglobin derivatives

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003371.htm Hemoglobin derivatives To use the sharing features on this page, please enable JavaScript. Hemoglobin derivatives are altered forms of hemoglobin . Hemoglobin is ...

  15. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography.

    Science.gov (United States)

    Fan, Chen; Li, Nai; Cao, Xueli

    2015-05-01

    In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency.

  16. 2-氯酚污染土壤原位臭氧化修复的数学模型%Mathematical Model of In-situ Ozonation for the Remediation of 2-Chlorophenol Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    张晖; 宋孟浩; 黄金宝

    2003-01-01

    A microscopic diffusion-reaction model was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface.The sequential strategy was employed to obtain the numerical solution of the model using finite difference method. A non-uniform grid of discretization points was employed to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the model. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow time intervals. Compared the experimental data with the simulated values, it was found that the mathematical model fitted data well during most time of the experiment.

  17. Kinetics Studies On Polyphenoloxidase Catalize P-chlorophenol Oxidzing Reaction in onaqueous System%多酚氧化酶在非水相中催化对氯苯酚氧化反应的动力学研究

    Institute of Scientific and Technical Information of China (English)

    李华; 霍瑞贞

    2000-01-01

      In experiment,the polyphenoloxidase was extracted from mushroom by using acetone precipitating method threetimes. And then, it was immobilized by using the absorbentdeposition method with porous glass powder as carriers,It wasstudied to catalize p-chlorophenol oxidizing reaction inchloroform, complys with Michaelis-Menten dynamicmodel.And themoisture content in organic solvent directly affected thecatalytic activity of mushroom polyphenoloxidase. Theoptimum reaction condition for the catalyrtic oxidation of p-chlorophenol in chloroform was determined: pH:7, temperature:25°C, moisture content: 0.5%(v/v).The measured value of dynamic parameters was 29.45kJ. mol-1 for apparent activationenergy,1.058mol. L-1 for Michaelis-Menten kinetics and 9.074×10-2 min-1 for the maximum reaction rate.%  本文用丙酮沉淀法从蘑菇中提取多酚氧化酶,以多孔玻璃粉为载体,用吸附沉积法将酶固定,研究了该酶在氯仿介质中催化对氯苯酚氧化反应的机理遵循米氏(Michaelis-Menten)动力学方程;而且,在有机介质中含水率大小直接影响酶的催化活性.实验测得反应的最佳条件为pH=7.0,温度为25°C,含水率为0.5%(v/v);表观活化能Ea=29.54kJ . mol-1,米氏常数Km=1.058mol . dm-3,最大反应速率rmax=90.74×10-3min-1.

  18. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    Science.gov (United States)

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis.

  19. 硝氯粉和肝蛭净驱除绵羊肝片吸虫效果的对比试验%Effect of NOx Chlorophenol and Liver Fluke Net against Fasciola Hepatica in Sheep

    Institute of Scientific and Technical Information of China (English)

    才项吉

    2012-01-01

    应用硝氯粉和肝蛭净两种药物,采取口服投药方式,分不同剂量,在绵羊肝片吸虫驱虫方面做了对比试验。结果表明:硝氯粉按5mg/kg体重驱虫,肝片吸虫虫卵减少率96.85%;肝蛭净按12mg/kg体重驱虫,虫卵减少率96.74%:二者的驱虫效果差异不大,但在实际操作中,硝氯粉剂量稍大会出现中毒反应,剂量过小则效果不佳,硝氯粉剂量较难控制。建议养畜户在绵羊肝片吸虫驱虫时最好用肝蛭净。%Sheep were used to experiment on effect of NOx ehlorophenol and liver flukd net against Faseiola hepatica. The result showed that the reductive rate of eggs with NOx chlorophenol in dose of 3mg/kg. b w and 5mg/kg . b w were 75.18% and 96.80% ,respectively. The reduetive rate of eggs with liver fluke net in dose of 7mg/kg. b w and 12mg/kg were 67.2% and 100.0%, respectively. The liver fluke net was well than that of NOx chlorophenol for safe and effect.

  20. Health promoting outdoor environments

    DEFF Research Database (Denmark)

    Stigsdotter, Anna Ulrika Karlsson; Ekholm, Ola; Schipperijn, Jasper

    2010-01-01

    AIMS: To investigate the associations between green space and health, health-related quality of life and stress, respectively. METHODS: Data were derived from the 2005 Danish Health Interview Survey and are based on a region-stratified random sample of 21,832 adults. Data were collected via face-...... of life was found. Further, the results indicate awareness among Danes that green spaces may be of importance in managing stress and that green spaces may play an important role as health-promoting environments....

  1. Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner.

    Science.gov (United States)

    Ginn, Samantha L; Fleming, Jane; Rowe, Peter B; Alexander, Ian E

    2003-08-10

    In a previous study using an early-generation VSV-G-pseudotyped lentivirus vector encoding enhanced green fluorescent protein (EGFP) under the transcriptional control of a human cytomegalovirus (CMV) immediate-early promoter, we examined transduction efficiency in dissociated dorsal root ganglia (DRG) cultures. In cultures of murine origin, transgene expression was observed solely in the sensory neurons with the stromal cell population failing to show evidence of transduction. In contrast, efficient and sustained transduction of both sensory neurons and the stromal cell population was observed in cultures of human origin. Given the widespread use of murine models in preclinical gene therapy studies, in the current study we investigated the basis of this apparent neuron specificity of lentivirus-mediated transduction in murine DRG cultures. The interspecies differences persisted at high multiplicities of infection, and irrespective of whether lentiviral vector stocks were packaged in the presence or absence of human immunodeficiency virus type 1 (HIV-1) accessory proteins. Cell-type specificity of CMV promoter expression, tropism of the VSV-G envelope, and blocks to molecular transduction were also precluded as possible mechanisms, thereby implicating transcriptional repression of the internal heterologous promoter. This promoter interference effect was found to be mediated by cis-acting sequences upstream of the core promoter elements located in the U3 region of the proviral long terminal repeats (LTRs). Deletion of this region, as in late-generation self-inactivating (SIN) lentivirus vectors, relieves this effect. This provides a basis for reevaluating data produced using early-generation U3-bearing lentivirus vectors and for reconciling these with results obtained using more contemporary SIN lentivirus vectors carrying a U3 deletion.

  2. Financial Derivatives

    DEFF Research Database (Denmark)

    Wigan, Duncan

    2013-01-01

    Contemporary derivatives mark the development of capital and constitute a novel form of ownership. By reconfiguring the temporal, spatial and legal character of ownership derivatives present a substantive challenge to the tax collecting state. While fiscal systems are nationally bounded and inheren...... and inherently static, capital itself is unprecedentedly mobile, fluid and fungible. As such derivatives raise the specter of ‘financial weapons of mass destruction’....

  3. 超顺磁性氧化石墨烯复合材料固定辣根过氧化物酶催化去除氯酚%Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite

    Institute of Scientific and Technical Information of China (English)

    常青; 江国栋; 唐和清; 李娜; 黄佳; 吴来燕

    2015-01-01

    Magnetic Fe3O4nanoparticles were successfully deposited on graphene oxide sheets by ultra-sound-assisted coprecipitation. The nanoparticles were characterized using transmission electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy. The synthe-sized material was used as a support for the immobilization of horseradish peroxidase (HRP). The removals of 2-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol using the immobilized HRP were investigated. Batch degradation studies were used to determine the effects of the initial solu-tion pH values, reaction temperature, reaction time,H2O2and chlorophenol concentrations, and immobilized enzyme dosage on the removal of chlorophenols. The different numbers and positions of electron-withdrawing substituents affected the chlorophenol removal efficiency; the order of the removal efficiencies was 2-chlorophenol< 4-chlorophenol< 2,4-dichlorophenol. The oxidation products formed during chlorophenol degradation were identified using gas chromatography-mass spectrometry. The biochemical properties of the immobilized HRP were investigated; the results indicated that the storage stability and tolerance to changes in pH and temperature of the immobi-lized HRP were better than those of free HRP. The nanoparticles were recovered using an external magnetic field, and the immobilized HRP retained 66% of its initial activity for the first four cycles, showing that the immobilized HRP had moderate stability. These results suggest that the immobi-lized enzyme has potential application in wastewater treatment.%采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化

  4. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  5. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Guo, Zongjun; Wang, Lumin

    2012-07-25

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  6. Derivative Chameleons

    CERN Document Server

    Noller, Johannes

    2012-01-01

    We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field \\phi, but also of its derivatives via higher order co-ordinate invariants. Specifically we consider the first such non-trivial conformal factor A(\\phi,X), where X is the canonical kinetic term for \\phi. The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly this points us to the existence of a purely derivative chameleon protected by a shift symmetry for \\phi. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning...

  7. Derivative chameleons

    Science.gov (United States)

    Noller, Johannes

    2012-07-01

    We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field phi, but also of its derivatives via higher order co-ordinate invariants (such as ∂μphi∂μphi,squphi,...). Specifically we consider the first such non-trivial conformal factor A(phi,∂μphi∂μphi). The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly this points us to the existence of a purely derivative chameleon protected by a shift symmetry for phi → phi+c. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning, stable derivative models are in fact typically anti-chameleons that suppress the field's mass in dense environments. Furthermore we investigate modifications to the thin-shell regime and prove a no-go theorem for chameleon effects in non-conformal geometries of the disformal type.

  8. Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization.

    Science.gov (United States)

    Okada, Y; Tsuzuki, Y; Sato, H; Narimatsu, K; Hokari, R; Kurihara, C; Watanabe, C; Tomita, K; Komoto, S; Kawaguchi, A; Nagao, S; Miura, S

    2013-12-01

    Numerous reports have shown that a diet containing large amounts of trans fatty acids (TFAs) is a major risk factor for metabolic disorders. Although recent studies have shown that TFAs promote intestinal inflammation, the underlying mechanisms are unknown. In this study, we examined the effects of dietary fat containing TFAs on dextran sodium sulphate (DSS)-induced colitis. C57 BL/6 mice were fed a diet containing 1·3% TFAs (mainly C16:1, C18:1, C18:2, C20:1, C20:2 and C22:1), and then colitis was induced with 1·5% DSS. Colonic damage was assessed, and the mRNA levels of proinflammatory cytokines and major regulators of T cell differentiation were measured. The TFA diet reduced survival and exacerbated histological damage in mice administered DSS compared with those fed a TFA-free diet. The TFA diet significantly elevated interleukin (IL)-6, IL-12p40, IL-23p19 and retinoic acid-related orphan receptor (ROR)γt mRNA levels in the colons of DSS-treated animals. Moreover, IL-17A mRNA levels were elevated significantly by the TFA diet, with or without DSS treatment. We also examined the expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and peritoneal macrophages. These cells were exposed to TFAs (linoelaidic acid or elaidic acid) with or without LPS and the mRNA levels of various cytokines were measured. IL-23p19 mRNA levels were increased significantly by TFAs in the absence of LPS. Cytokine expression was also higher in LPS-stimulated cells exposed to TFAs than in unexposed LPS-stimulated cells. Collectively, our results suggest that TFAs exacerbate colonic inflammation by promoting Th17 polarization and by up-regulating the expression of proinflammatory cytokines in the inflamed colonic mucosa.

  9. Serum-free culture promotes rat adipose-derived stem cells differentiating into endothelial cells%无血清培养促进脂肪干细胞向血管内皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    郭峘杉; 颜玲

    2013-01-01

    BACKGROUND:There are few reports about the effect of serum-free culture on the differentiation of rat adipose-derived stem cel s into vascular endothelial cel s. OBJECTIVE:To investigate the isolation, serum-free culture of rat adipose-derived stem cel s differentiating into vascular endothelial cel s. METHODS:The rat adipose-derived stem cel s were isolated from male Sprague-Dawley rats and expanded to the third passage by enzymatic digestion-adherent explants method. In the experimental group, rat adipose-derived stem cel s were cultured in serum-free medium for 24 hours. In the control group, rat adipose-derived stem cel s were cultured in low-glucose Dulbecco’s modified Eagle’s medium containing 10%fetal bovine serum. After that, the cel s were cultured in inducing medium for 3 weeks to differentiate into vascular endothelial cel s. RESULTS AND CONCLUSION:The rat adipose-derived stem cel s grew as polygonal or fusiform-shaped adherent cel s when cultured in vitro, which could stably proliferate and passage. The rat adipose-derived stem cel s showed very low expression of CD31, a cel surface marker, after passages. After directional differentiations into vascular endothelial cel s, the cel s were pebble-shaped under the inverted microscope. Expression of CD31 was up-regulated, which was much higher in the experimental group than the control group. The induced cel s in the experimental group had stronger abilities than those in the control group to swal ow Dil-labeled acetylated low-density lipoprotein and form tube-like structures on the matrigel after differentiation into vascular endothelial cel s. So, rat adipose-derived stem cel s could be highly successful y induced to differentiate into vascular endothelial cel s in vitro after serum-free culture.%背景:无血清培养对大鼠脂肪干细胞向血管内皮细胞诱导分化影响的报道甚少。  目的:观察无血清培养大鼠脂肪干细胞后向血管内皮细胞诱导分化的情况

  10. Global Derivatives

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    ." - Steen Parsholt, Chairman and CEO, Aon Nordic Region. "Andersen has done a wonderful job of developing a comprehensive text that deals with risk management in global markets. I would recommend this book to any student or businessman who has a need to better understand the risks and risk management...... management practice. Of particular note is the global and integrated approach chosen in this book which should be of special interest to aspiring managers active in global and international markets." - Dr Jean-Pierre Zigrand, Lecturer in Finance, London School of Economics, UK. More than 90 per cent...... management situations. Its key features include: derivatives are introduced in a global market perspective; describes major derivative pricing models for practical use, extending these principles to valuation of real options; practical applications of derivative instruments are richly illustrated...

  11. Electricity derivatives

    CERN Document Server

    Aïd, René

    2015-01-01

    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  12. Interaction between TNF and BmooMP-Alpha-I, a Zinc Metalloprotease Derived from Bothrops moojeni Snake Venom, Promotes Direct Proteolysis of This Cytokine: Molecular Modeling and Docking at a Glance

    Science.gov (United States)

    Silva, Maraisa Cristina; Lopes Silva, Tamires; Silva, Murilo Vieira; Mota, Caroline Martins; Santiago, Fernanda Maria; Fonseca, Kelly Cortes; Oliveira, Fábio; Mineo, Tiago Wilson Patriarca; Mineo, José Roberto

    2016-01-01

    Tumor necrosis factor (TNF) is a major cytokine in inflammatory processes and its deregulation plays a pivotal role in several diseases. Here, we report that a zinc metalloprotease extracted from Bothrops moojeni venom (BmooMP-alpha-I) inhibits TNF directly by promoting its degradation. This inhibition was demonstrated by both in vitro and in vivo assays, using known TLR ligands. These findings are supported by molecular docking results, which reveal interaction between BmooMP-alpha-I and TNF. The major cluster of interaction between BmooMP-alpha-I and TNF was confirmed by the structural alignment presenting Ligand Root Mean Square Deviation LRMS = 1.05 Å and Interactive Root Mean Square Deviation IRMS = 1.01 Å, this result being compatible with an accurate complex. Additionally, we demonstrated that the effect of this metalloprotease on TNF is independent of cell cytotoxicity and it does not affect other TLR-triggered cytokines, such as IL-12. Together, these results indicate that this zinc metalloprotease is a potential tool to be further investigated for the treatment of inflammatory disorders involving TNF deregulation. PMID:27447669

  13. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    Science.gov (United States)

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  14. Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    Yue Wang; Yasushi Hasebe

    2011-01-01

    Tyrosinase (TYR) was covalently immobilized onto amino-functionalized carbon felt surface via glutaraldehyde-coupling under ultrasonic treatment for 10 min. The resulting TYR-immobilized carbon felt was used as a working electrode unit of bioelectrocatalytic flow-through detector for TYR substrates (catechol, p-chlorophenol (p-CP), p-cresol, phenol etc.). Cathodic peak currents based on the electroreducfion of enzymatically produced o-quinones were detected at -50 mV vs. Ag/AgC1. Compared with previous work in which TYR was immobilized onto amino-functionalized carbon felt for 16 hr without the ultrasonic treatment, we succeeded in (1) shortening the enzyme immobilization time from 16 hr to 10 min, (2) enhancing the sensitivity of p-CP, and (3) improving the operational stability of p-CP. The ultrasonic treatment during the TYR immobilization step would lead to certain changes in the structure of the immobilized TYR and the morphology of the immobilized TYR-layer on the carbon felt surface.

  15. Effects of organic modifiers in separation of chlorophenols by capillary zone electrophoresis%有机改性剂对氯代酚毛细管区带电泳分离的影响

    Institute of Scientific and Technical Information of China (English)

    刘学良; 苏立强; 王俊德; 商振华

    2001-01-01

    The effects of organic modifiers such as acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, formamide, methanol, nitromethane, and tetrahydrofuran on the electrophoretic separation of chlorophenols were investigated. The relative migration of these analytes depend upon the ability for them to form hydrogen bonds, suggesting that solvation spheres of modifier molecules around the analytes are important. Selectivities can be tuned by employing organic modifiers with different hydrogen bonding properties.%在分离19种氯代酚的过程中,考察了不同的有机添加剂对其毛细管区带电泳分离的影响,发现除了缓冲溶液的pH值外,缓冲溶液添加剂对氯代酚的电泳分离也有较大影响。这种影响与添加剂和氯代酚形成氢键的能力有关。

  16. 白假丝酵母PDY-07厌氧生物降解4-氯酚的研究%Biodegradation of 4-Chlorophenol by Candida albicans PDY-07 under Anaerobic Conditions

    Institute of Scientific and Technical Information of China (English)

    闻建平; 李红梅; 白静; 姜岩

    2006-01-01

    Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35 ℃, with an initial pH of 7.0-7.2 and a starting inoculum of 10% (by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300 mg·L-1 within 244h and that it had a high tolerance potential of up to 440 mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2-350 mg·L-1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.

  17. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction

    Science.gov (United States)

    Jaafar, N. F.; Jalil, A. A.; Triwahyono, S.

    2017-01-01

    Various weight loadings of Ag (1-10 wt.%) were introduced to mesoporous titania nanoparticles (MTN) via a direct in-situ electrochemical method. The catalysts were characterized by XRD, surface area analysis, FTIR, ESR, FESEM-EDX and TEM. Characterization results indicated that the introduction of Ag onto MTN decreased the particles size and band gap of the MTN while increasing the number of oxygen vacancies (OV) and Ti3+ site defects (TSD). The activity performance of Ag-MTN on photodegradation of 2-chlorophenol (2-CP) under visible light irradiation was in the following order: 5 wt% Ag-MTN> 1 wt% Ag-MTN > MTN > 10 wt% Ag-MTN, with degradation percentages of 97, 88, 80 and 63%, respectively. The synergistic effect between Ag0 and MTN seemed to play an important role in the system. The Ag0 acted as both an electron trap and a plasmonic sensitizer which suppressed the electron-hole recombination, while OV and TSD in the MTN accelerated the production of hydroxyl radicals for enhanced degradation of 2-CP. However, the formation of Ti-O-Ag in 10 wt% Ag-MTN was found to decrease the photoactivity due to the decrease in the formation of Ag0, TSD and OV as well as the increase in band gap energy. The photodegradation of 5 wt% Ag-MTN followed a pseudo-first-order Langmuir- Hinshelwood model and the catalyst was still stable after five cycles.

  18. A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC-ECD.

    Science.gov (United States)

    Farhadi, Khalil; Matin, Amir Abbas; Amanzadeh, Hatam; Biparva, Pourya; Tajik, Hossein; Farshid, Amir Abbas; Pirkharrati, Hossein

    2014-10-01

    This study presents a new technique, dispersive micro solid phase extraction (DMSPE) combined with headspace solid phase micro-extraction (HS-SPME) for extraction and determination of chlorophenols (CPs) in water and honey samples using a Gas Chromatography-Electron Capture Detector (GC-ECD). Zein nanoparticles were made by liquid-liquid dispersion and applied for the first time as the sorbent phase in DMSPE. In the proposed DMSPE-HS-SPME method, 1% w/v of ethanolic zein solution was added to an aqueous sample and then a dose of the in-situ generated zein nanoparticles was applied to a pre-concentration of target analytes. Thermal desorption of analytes was performed after the isolating sorbent phase, and then HS-SPME was applied for enrichment prior to introducing to gas chromatography. All the important parameters influencing efficiency of the extraction process such effects of salt, pH, sorbent concentration, temperature, sorbent solution volume in DMSPE procedure, extraction temperature, extraction time, desorption temperature and time in the HS-SPME procedure were investigated and optimized. Results showed that under optimum extraction conditions, detection limits (signal to noise ratio=3) were in the range of 0.08-0.6 ng mL(-1) and evaluations for relative standard deviations (RSDs %) were between 6.62% and 8.36%.

  19. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    Science.gov (United States)

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-08

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  20. Milk-derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells.

    Directory of Open Access Journals (Sweden)

    Subhadeep Chakrabarti

    Full Text Available Milk derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE. Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease.

  1. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B.

    Science.gov (United States)

    Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Park, Seung Min; Ahn, Ji Yun; Kim, Dong Won; Cho, Jun Hwi; Kim, Jong-Dai; Kim, Young-Myeong; Won, Moo-Ho; Kang, Il-Jun

    2016-04-01

    4-Hydroxy‑3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well‑known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4‑HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki‑67, doublecortin (DCX) immunohistochemistry and 5‑bromo‑2'‑deoxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4‑HBA groups, the number of Ki‑67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain‑derived neurotrophic factor (BDNF) and tropomyosin‑related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanilli