WorldWideScience

Sample records for chloromethane

  1. IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    Science.gov (United States)

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  2. Mechanistic aspects of the nucleophilic substitution of pectin. On the formation of chloromethane

    DEFF Research Database (Denmark)

    Sailaukhanuly, Yerbolat; Sárossy, Zsuzsa; Carlsen, Lars;

    2014-01-01

    Chloromethane, accounting for approximately 16% of the tropospheric chlorine, is mainly coming from natural sources. However anthropogenic activities, such as combustion of biomass may contribute significantly as well. The present study focuses on the thermal solid state reaction between pectin, an...... important constituent of biomass, and chloride ions as found in alkali metal chlorides. The formation of chloromethane is evident with the amount formed being linear with respect to chloride if pectin is in great excess. Thus the reaction is explained as a pseudo first order SN2 reaction between the...... chloride ion and the methyl ester moiety in pectin. It is suggested that the polymeric nature of pectin plays an active role by an enhanced transport of halides along the carbohydrate chain. Optimal reaction temperature is around 210 °C. At higher temperatures the yield of chloromethane decreases due to a...

  3. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    Directory of Open Access Journals (Sweden)

    Sandro Roselli

    Full Text Available Chloromethane (CH3Cl is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD, as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2. In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex, conversion of

  4. Theoretical Chemistry Study of the Hydrogen-bonded Interaction between Acylamine and Chloromethane Compounds

    Institute of Scientific and Technical Information of China (English)

    GE Qing-Yu; WANG Hai-Jun; CHEN Jian-Hua

    2005-01-01

    The hydrogen-bonded interaction between acylamine and chloromethane was studied using theoretical calculation methods. Looking the interaction system as a hydrogen-bonded complex, the geometric optimization of the interaction system was performed with HF and B3LYP methods at 6-311++G** level. Stable structures of these complexes were obtained. Binding energies and some other physical chemistry parameters of them were computed and compared. According to the calculation results, it can be identified that DMA (DMF or DEF) can form stable complex with chloromethane by the hydrogen-bonded interaction between them. The stable orders of these hydrogen-bonded complexes were obtained and described as: DMF-CHCl3>DMF-CH2Cl2>DMF-CH3Cl, DEF-CHCl3>DEF-CH2Cl2>DEF-CH3Cl, DMA-CHCl3>DMA-CH2Cl2>DMA-CH3Cl, respectively.

  5. Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins

    NARCIS (Netherlands)

    Ibanez, M.; Gamero, M.; Ruiz-Martinez, J.; Weckhuysen, B. M.; Aguayo, A. T.; Bilbao, J.; Castano, P.

    2016-01-01

    The deactivation pathways of a zeolite H-ZSM-5 catalyst containing bentonite and alpha-Al2O3 as binder material have been studied during the transformation of chloromethane into light olefins, which is considered as a possible step to valorize methane from natural gas. The reactions have been carrie

  6. Crystal Structure of 1-(N-Dichlorophosphoryl-N- cyclohexyl)-amino-1-dichlorophosphinyl-chloromethane

    Institute of Scientific and Technical Information of China (English)

    吴明书; 陈茹玉; 黄有

    2004-01-01

    The crystal and molecular structures of 1-(N-dichlorophosphoryl-N-cyclohexyl) amino-1-dichlorophosphinyl-chloromethane have been determined by X-ray diffraction. The crystal (C7H12Cl5NO2P2) is of orthorhombic, space group Pbca with a = 11.104(7), b = 11.290(6), c = 24.403(14) A, V = 3059(3) A3, Mr = 381.37, Z = 8, Dc = 1.656 g/cm3, μ = 1.146 mm-1, F(000) = 1536, the final R = 0.0391 and Rw = 0.0778 for 2657 observed reflections with I > 2σ(I). The crystallographic results of the title compound show that the N atom is not a conventionally sp3 hybridized tetrahedron but an sp2 hybridized triangular planar nitrogen.

  7. Catalytic conversion of chloromethane to methanol and dimethyl ether over two catalytic beds: a study of acid strength

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.R.; Leite, T.C.M.; Mota, C.J.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: cmota@iq.ufrj.br

    2010-07-15

    The catalytic hydrolysis of chloromethane to methanol and dimethyl ether (DME) was studied over metal-exchanged Beta and Mordenite zeolites, acidic MCM-22 and SAPO-5. The use of a second catalytic bed with HZSM-5 zeolite increased the selectivity to DME, due to methanol dehydration on the acid sites. The effect was more significant on catalysts presenting medium and weak acid site distribution, showing that dehydration of methanol to DME is accomplished over sites of higher acid strength. (author)

  8. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings.

    Science.gov (United States)

    Keppler, Frank; Harper, David B; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F; Hamilton, John T G

    2014-11-13

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ(2)H +800 to +1100‰, δ(13)C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ(2)H +1054 ± 626‰, δ(13)C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.

  9. Corrosion handbook - Corrosive agents and their interaction with materials; Vol. 8, Pt. A. Chlorinated hydrocarbons - Chloromethanes. 2. comp. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G. [DECHEMA e.V., Society for Chemical Engineering and Biotechnology, Frankfurt am Main (Germany); Schuetze, M. (eds.) [DECHEMA e.V., Society for Chemical Engineering and Biotechnology, Frankfurt am Main (Germany). Karl Winnacker Institute

    2007-07-01

    The objective of this volume is to offer a comprehensive and concise description of the behavior of the different materials in the contact with chloromethanes. Every chapter is a self-contained work that is subdivided according to four groups of materials: 1. Metallic materials; 2. Non-metallic inorganic materials; 3. Organic materials and plastics; and 4. Materials with special properties. These material groups are each subdivided according to their chemical formula, the metals are classed according to different alloy groups. Material recommendations are given for each of the four groups of materials.

  10. Investigation of chloromethane complexes of cryptophane‐A analogue with butoxy groups using 13C NMR in the solid state and solution along with single crystal X‐ray diffraction

    OpenAIRE

    Steiner, Emilie; Mathew, Renny; Zimmermann, Iwan; Brotin, Thierry; Edén, Mattias; Kowalewski, Jozef

    2015-01-01

    Host‐guest complexes between cryptophane‐A analogue with butoxy groups (cryptophane‐But) and chloromethanes (chloroform, dichloromethane) were investigated in the solid state by means of magic‐angle spinning 13C NMR spectroscopy. The separated local fields method with 13C‐1H dipolar recoupling was used to determine the residual dipolar coupling for the guest molecules encaged in the host cavity. In the case of chloroform guest, the residual dipolar interaction was estimated to be about 19 kHz...

  11. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules.

  12. Chloromethane Complexation by Cryptophanes : Host-Guest Chemistry Investigated by NMR and Quantum Chemical Calculations

    OpenAIRE

    Takacs, Zoltan

    2012-01-01

    Host–guest complexes are widely investigated because of their importance in many industrial applications. The investigation of their physico–chemical properties helps understanding the inclusion phenomenon. The hosts investigated in this work are cryptophane molecules possessing a hydrophobic cavity. They can encapsulate small organic guests such as halo–methanes (CH2Cl2, CHCl3). The encapsulation process was investigated from both the guest and the host point of view. With the help of Nuclea...

  13. NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups

    OpenAIRE

    Takacs, Z.; E. Steiner; Kowalewski, J.; Brotin, T

    2014-01-01

    Host–guest complexes between cryptophane-A as host and dichloromethane and chloroform as guests are investigated using 1H and 13C NMR spectroscopy. Moreover, a related cryptophane, with the methoxy groups replaced by butoxy units (cryptophane-But), and its complexes with the same guests were also studied. Variable temperature spectra showed effects of chemical exchange between the free and bound guests, as well as of conformational exchange of the host. The guest exchange was studied quantita...

  14. Host–guest complexes between cryptophane-C and chloromethanes revisited

    OpenAIRE

    Takacs, Z.; Soltesova, M; Kowalewski, J.; Lang, J.; Brotin, T; Dutasta, J-P

    2012-01-01

    Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH2CH2O linkers in an anti arrangement. Host–guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynami...

  15. RT3D Reaction Modules for Natural and Enhanced Attenuation of Chloroethanes, Chloroethenes, Chloromethanes, and Daughter Products

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.

    2006-07-25

    This document describes a suite of MNA/EA reaction modules that were developed for addressing complex chlorinated solvent reactions using RT3D. As an introduction, an overview of these MNA/EA reaction modules is presented, including discussions of similarities between reaction modules, the purpose of key reaction parameters, and important considerations for using the reaction modules. Subsequent sections provide the details of the reaction kinetics (conceptual model and equations), data input requirements, and example (batch reactor) results for each reaction module. This document does not discuss reaction module implementation or validation; such information will accompany the software in the form of release notes or a supplement to the RT3D manual.

  16. The salts of chloronium ions R-Cl(+)-R (R = CH3 or CH2Cl): formation, thermal stability, and interaction with chloromethanes.

    Science.gov (United States)

    Stoyanov, Evgenii S

    2016-05-14

    The interaction of CH3Cl/CD3Cl or CH2Cl2/CD2Cl2 with the carborane acid H(CHB11Cl11) (abbreviated as H{Cl11}) generates the salts of CH3-{Cl11} and CH2Cl-{Cl11} and their deuterio analogs, respectively, which are analogs of the salts of asymmetric chloronium cations. Next, salts of chloronium cations CH3-Cl(+)-CH3, ClCH2-Cl(+)-CH2Cl, and ClCH2-Cl(+)-CH3 and their deuterio analogs were obtained from the above compounds. The asymmetric ClCH2-Cl(+)-CH3 cation was found to be unstable, and at ambient temperature, slowly disproportionated into symmetric cations (CH3)2Cl(+) and (CH2Cl)2Cl(+). At a high temperature (150 °C), disproportionation was completed within 5 minutes, and the resulting cations further decomposed into CH3-{Cl11} and CH2Cl-{Cl11}. The molecular fragment ClCH2-(X) of the compounds (X = {Cl11}, -Cl(+)-CH2Cl, or -Cl(+)-CH3) is involved in exchange reactions with CH2Cl2 and CHCl3, converting into CH3-(X) with the formation of chloroform and CCl4, respectively. PMID:27104946

  17. Etude du puits bactérien pour les émissions végétales de chlorométhane

    OpenAIRE

    Farhan Ul Haque, Muhammad

    2013-01-01

    Chloromethane is the most abundant halocarbon in the environment, and responsible for substantial ozone destruction in the stratosphere. Sources and sinks of chloromethane are still poorly constrained. Although synthesized and used industrially, chloromethane is mainly produced naturally, with major emissions from vegetation and especially the phyllosphere, i.e. the aerial parts of plants. Some phyllosphere epiphytes are methylotrophic bacteria which can use single carbon compounds such as me...

  18. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  19. Graphene Metal Adsorption as a Model Chemistry for Atmospheric Reactions

    OpenAIRE

    Ortiz, Y. P.; A. F. Jalbout

    2013-01-01

    We propose a mechanism by which chloromethane and dichloromethane decomposition reaction occurs on the surfaces of graphene. To this end we have performed calculations on the graphene surface with metal adsorption on the sheet on the opposite side of reactions to reduce the formation of free-radical intermediates.

  20. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Steele, A.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  1. Dicty_cDB: Contig-U11669-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 563_3200( CP000563 |pid:none) Shewanella baltica OS155, compl... 71 7e-11 CU207211_2741( CU207211 |pid:none) Herminiimonas arsenic...terium chloromethanic... 74 8e-12 CU207211_2633( CU207211 |pid:none) Herminiimonas arsenicoxydans ch... 74 8...clone:ddc27i01, 5' ... 56 0.003 1 ( AM422018 ) Candidatus Phytoplasma australiense complete genome. 54 0.012...: CSM 6905 sequences; 5,674,871 total letters Score E Sequences producing significa...ts (466), Expect = 0.0 Identities = 501/511 (98%) Strand = Plus / Plus Query: 1 actgttggcctactggaaaaaaacattttca

  2. Effect of chloralkanes on the phenyltrichlorosilane synthesis by gas phase condensation

    Institute of Scientific and Technical Information of China (English)

    Tong Liu; Yunlong Huang; Chao Wang; Qiang Tang; Jinfu Wang

    2015-01-01

    To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.

  3. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; Cabane, Michel; Coll, Patrice; Conrad, Pamela; Dworkin, Jason; Grotzinger, John; Ming, Douglas; Navarro-Gonzales, Rafael; Steele, Andrew; Szopa, Cyril

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  4. Gaseous Products of Incense Coil Combustion Extracted by Passive Solid Phase Microextraction Samplers

    Directory of Open Access Journals (Sweden)

    Wen-Hsi Cheng

    2015-06-01

    Full Text Available Burning incense indoors is a common behavior in Southeast Asia. In this investigation, needle trap samplers (NTS, a novel, green analytical technology is used for sampling gaseous combustion by-products from sandalwood incense coils. To extract indoor volatile organic compounds (VOCs, two NTS are prepared, one using 60–80 mesh and the other using 100–120 mesh divinylbenzene (DVB particles packed in 22-gauge stainless steel needles. This work compares extraction efficiency of an NTS and that of a commercially available 100 μm polydimethylsiloxane solid phase microextration (PDMS-SPME fiber sampler. Experimental results indicated that the 100–120 mesh DVB-NTS performed best among all samplers during a 1 h sampling period. The main extracted compounds were toluene, ethylbenzene, propane, chloromethane, 1,3-butadiene, methanol and dichloromethane. The potential use of small badge-sized or pen-sized NTS for the indoor atmosphere and occupational hygiene applications is addressed.

  5. Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications

    Directory of Open Access Journals (Sweden)

    J. T. G. Hamilton

    2004-08-01

    Full Text Available We report that the most abundant C1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs are also anomalously depleted in 13C compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca. 2.5% of carbon in plant biomass, represents an important substrate for methanogenesis and could be a significant source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin.

  6. Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2004-01-01

    Full Text Available We report that the most abundant C1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs are also anomalously depleted in 13C compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca 2.5% of carbon in plant biomass, could be an important substrate for methanogenesis and thus be envisaged as a possible source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin.

  7. Gas phase ion-molecule reactions of buckminsterfullerene C60 with some small organic compounds in mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    刘淑莹; 郭兴华; 刘子阳; 倪嘉缵

    1995-01-01

    In chemical ionization mass spectrometry (CIMS) gas phase C60+ or C60can react with fragment ions from three chloromethane and four multichloroethane molecular ions via ion-molecule reactions A dozen of gas-phase adduct ions of C60 are observed, and most of them contain chlorine atoms The results of the comparison and analysis show that the relative intensities of adduct ions are not directly proportional to the corresponding fragment ions in the MS of reagents,which implies that some fragment ions containing radicals are more reactive with C60+ or C60. This indicates that the alkene-like C60+ or C60 can act as a radical sponge in addition reactions.

  8. Spectral behavior and laser activity of 3-(4‧-dimethylaminophenyl)-1-(1H-pyrrol-2-yl) prop-2-en-1-one (DMAPrP). A new laser dye

    Science.gov (United States)

    El-Sayed, Y. S.; El-Daly, S. A.; Gaber, M.

    2010-03-01

    The photophysical properties of DMAPrP have been investigated in different solvents. DMAPrP dye exhibits a large change in dipole-moment upon excitation due to an intramolecular charge transfer interaction. A crystalline solid of DMAPrP give an excimer like emission at 546 nm. The ground and excited state protonation constants of DMAPrP are calculated. DMAPrP acts as good laser dye upon pumping with nitrogen laser in some organic solvents. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are also calculated. The photoreactivity and net photochemical quantum yield of DMAPrP in chloromethane solvents are also studied.

  9. Formation of the center of ignition in a CH3Cl-Cl2 mixture under the action of UV light

    Science.gov (United States)

    Begishev, I. R.; Belikov, A. K.; Komrakov, P. V.; Nikitin, I. S.

    2016-07-01

    The dependence of temperature on time is investigated using a microthermocouple at different distances from a UV light source in a mixture of chlorine and chloromethane. These relationships give an idea of the size and location of a center of photoignition. It is found that if the size of the reaction vessel in the direction of the luminous flux is much greater than the dimensions of the ignition center, the thermal expansion of a reacting gas mixture has a huge impact on such photoignition parameters as the critical concentration limits and the critical intensity of UV radiation. It is found that by increasing the length of the vessel, some chlorinated combustible mixtures lose the ability to ignite when exposed to UV light.

  10. Nanoscale determination of ecotoxicological hall-mark in animal hair

    Science.gov (United States)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Ristoiu, Tania

    2010-11-01

    Biomonitoring studies for estimation population health surveillance and exposure risk assessment of different chemical contaminants such as chlorinated compounds or polycyclic aromatic hydrocarbon (PAH) compounds has become an important task especially after the Stockholm Convention. If before the toxicological evaluation of humans were done using invasive methods like surgery or pricking, today many scientists tried to elaborate non-invasive analytical methods without disparage the final results. During the last years studies it was observed a relative higher pollution with organochlorine and polycyclic aromatic hydrocarbon compounds in surrounding regions of Dej, Transylvania. These past studies shown that pollution with chlorinated compounds as chlorinated solvents are attributed to the industrial activities from this region. The levels in soil and river water of these compounds were: ~ 20 - 60 μg.kg-1 and ~ 15 - 45 μg.L-1, respectively. In case of PAHs the following results were obtained for soil and river water: for two ring specie was between ~ 26 - 35 μg.kg-1 and ~ 21 - 30 μg.L-1, respectively; for three ring species was 15 - 35 μg.kg-1 and ~ 10 - 24 μg.L-1, respectively; and in case of four ring species was between 10 - 20 μg.kg-1 and ~ 3 - 15 μg.L-1, respectively. These results carry on concern regarding the bioaccumulation of these pollutants by humans through food web chain. In order to establish the uptake level of these compounds by humans, home grown animal hair as pig and cow were analyzed through SIM-GC-MS mode and ECD-FID-GC. The presence of chlorinated solvents detected in pig and cows hair were as follows: compounds from chloromethane family ~ 5 - 10 ng.kg-1 dry weight; compounds from chloroethane family ~ 7 - 34 ng.kg-1 dry weight for pig hair, and ~ 12 - 17 ng.kg-1 dry weight for compounds from chloromethane family and 14 - 48 ng.kg-1 dry weight for cow hair. Difference between accumulation levels of PAH metabolites were observed also

  11. Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars

    Science.gov (United States)

    Navarro-Gonzalez, R.; Vargas, E.; de La Rosa, J.; Raga, A. C.; McKay, C.

    2010-12-01

    The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process in order to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected with traces of chloromethane at 15 ppb in the Viking Landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm with traces of dichloromethane at 0.04-40 ppb in the Viking Landing site 2. The abundance ratio of the 35Cl and 37Cl isotopes in these chlorohydrocarbons was 3:1, corresponding to the terrestrial isotopic abundance. Therefore, these chlorohydrocarbons were considered to be terrestrial contaminants although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert with 32±6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated nearly all the organics present are decomposed to water and carbon dioxide, but a small amount are chlorinated forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500○C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. The isotopic distribution of 35Cl and 37Cl for Mars is not known. Studies on Earth indicate that there is no isotopic fractionation of chlorine in the mantle or crust, despite the fact that it is significantly depleted on the planet as compare to solar abundances. The 37Cl/35Cl isotopic ratio in carbonaceous chondrites is similar to the Earth’s value, which suggests that the terrestrial planets, including Mars, were all formed from a similar reservoir of chlorine species in the presolar nebulae and that there was no further isotopic fractionation during the Earth’s differentiation or late

  12. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    Science.gov (United States)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; Coll, Patrice; Cabane, Michel; Mahaffy, Paul; Conrad, Pamela; Martin-Torres, Francisco; Zorzano-Mier, Maria; Grotzinger, John

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests <0.1 percent perchlorate and ppm levels of organic carbon at landing site 1 and 2 [2]. The suggestion of perchlorate in the Viking sites [2] has been challenged on the grounds that the detected compounds (CH3Cl and CH2Cl2) were carried from Earth [4]. Recently the Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of

  13. Photophysical Parameters, Excitation Energy Transfer, and Photoreactivity of 1,4-Bis(5-phenyl-2-oxazolylbenzene (POPOP Laser Dye

    Directory of Open Access Journals (Sweden)

    Samy A. El-Daly

    2012-01-01

    Full Text Available The effect of solvents on the absorption and emission spectra of 1,4-bis(5-phenyl-2-oxazolylbenzene (POPOP laser dye has been studied in various solvents at 298 K. A bathochromic shift was observed in absorption and fluorescence spectra upon increase of solvent polarity, which indicates that this transition is π-∗. The ground and excited state dipole moments were calculated as 2.23 and 6.34 Debye, respectively. The dye solution in MeOH, n-heptane, and methyl isobutyl ketone gives laser emission in the blue region upon excitation by a 337.1 nm nitrogen pulse; the gain coefficient and emission cross section as well as normalized photostability have been determined. Excitation energy transfer from POPOP to rhodamine B and fluorescine was studied to improve the laser emission from these dyes. Such an energy transfer dye laser system (ETDL obeys a long range columbic energy transfer mechanism with a critical transfer distance, R0, of 25 and 33 Å and kq equal to 10.4×1012 and 26.2×1012M−1s−1 for the POPOP/RB and POPOP/fluorescine pair, respectively. The POPOP dye is highly photostable in polar protic and polar aprotic solvents, while it displays photodecomposition in chloromethane solvent via formation of a contact ion pair. The photochemical quantum yield and rate of photodecomposition depend on the electron affinity of solvent.

  14. Purification and characterization of major extracellular proteinases from Trichophyton rubrum.

    Science.gov (United States)

    Asahi, M; Lindquist, R; Fukuyama, K; Apodaca, G; Epstein, W L; McKerrow, J H

    1985-11-15

    Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).

  15. Wildlife ecological screening levels for inhalation of volatile organic chemicals.

    Science.gov (United States)

    Gallegos, Patricia; Lutz, Jill; Markwiese, James; Ryti, Randall; Mirenda, Rich

    2007-06-01

    For most chemicals, evaluation of ecological risk typically does not address inhalation because ingestion dominates exposure. However, burrowing ecological receptors have an increased exposure potential from inhalation at sites contaminated with volatile chemicals in the subsurface. Evaluation of ecological risk from contaminants like volatile organic chemicals (VOCs) is constrained by a lack of relevant ecological screening levels (ESLs). To address this need, inhalation ESLs were developed for 16 VOCs: Acetone, benzene, carbon tetrachloride, chloroform, chloromethane, dichlorodifluoromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, methylene chloride, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene, trichlorofluoromethane, and total xylene. These ESLs are based on Botta's pocket gopher (Thomomys bottae) as a representative fossorial receptor. The ESLs are presented with an emphasis on the process for developing inhalation toxicity reference values to illustrate the selection of suitable toxicity data and effect levels from the literature. The resulting ESLs provide a quantitative method for evaluating ecological risk of VOCs through comparison to relevant exposure data such as direct burrow-air measurements. The toxicity reference value development and ESL calculation processes and assumptions detailed here are provided as bases from which risk assessors can use or refine to suit site-specific needs with respect to toxicity and exposure inputs.

  16. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii

    International Nuclear Information System (INIS)

    Five anaerobic bacteria were tested for their abilities to transform tetrachloromethane so that information about enzymes involved in reductive dehalogenations of polychloromethanes could be obtained. Cultures of the sulfate reducer Desulfobacterium autotrophicum transformed some 80 μM tetrachloromethane to trichloromethane and a small amount of dichloromethane in 18 days under conditions of heterotrophic growth. The acetogens Acetobacterium woodii and Clostridium thermoaceticum in fructose-salts and glucose-salts media, respectively, degraded some 80 μM tetrachloromethane completely within 3 days. Trichloromethane accumulated as a transient intermediate, but the only chlorinated methanes recovered at the end of the incubation were 8 μM dichloromethane and traces of chloromethane. Desulfobacter hydrogenophilus and an autotrophic, nitrate-reducing bacterium were unable to transform tetrachloromethane. Reduction of chlorinated methanes was thus observed only in the organisms with the acetyl-coenzyme A pathway. Experiments with [14C]tetrachloromethane were done to determine the fate of this compound in the acetogen A. woodii. Radioactivity in an 11-day heterotrophic culture was largely (67%) recovered in CO2, acetate, pyruvate, and cell material. In experiments with cell suspensions to which [14C]tetrachloromethane was added, 14CO2 appeared within 20 s as the major transformation product. A. woodii thus catalyzes reductive dechlorinations and transforms tetrachloromethane to CO2 by a series of unknown reactions

  17. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  18. The dynamics of azulene in liquids and compressed gases on ultrafast time scales

    International Nuclear Information System (INIS)

    The ultrafast dynamics of vibrationally hot ground state azulene molecules have been time resolved by picosecond transient absorption spectroscopy in a variety of solvents including hexane, chloromethanes, methanol, CClF3, Xe and Kr. A high pressure optical cell was used to liquify gases for use as solvents and change their density and temperature, independently, over the entire liquid density range. Experimental results indicate that the vibrational cooling rate is strongly solvent dependent, with cooling rates of approximately 20 psec in molecular solvents and approximately 150 psec in atomic solvents. Comparison of the rates in Xe and Kr at constant density demonstrates the strong effect of solvent mass on energy transfer. The effect of solvent temperature on vibrational cooling is minimal, as is the effect of solvent density. This latter result is quite surprising in light of earlier experiments on simpler molecular systems, such as I2 in Xe. This anomalous density effect is examined in light of Isolated Binary Collision (IBC) theory and bulk thermal transport models. Both theories accurately model all experimental results obtained with the exception of the density effect. Possible explanations for the breakdown of IBC theory in this case are offered along with methods to improve IBC theory for application to complex three dimensional molecular systems

  19. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    Science.gov (United States)

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions. PMID:25073729

  20. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Staline Johnson

    2014-03-01

    Full Text Available This paper portrays the design and analysis of SAW based MEMS gas sensor for the detection of volatile organic gases. The gas sensor consists of interdigitated transducers modeled on a piezoelectric substrate and covered by a thin film of polyisobutylene (PIB which acts as the sensing layer. The piezoelectric substrate material used is YZ cut Lithium Niobate (LiNbO3 and electrodes used are made of Aluminium (Al. Mass loading effect on the sensing layer is used for the detection of volatile organic gases. The design and simultions were carried out by using comsol multiphysics software based on Finite Element Method (FEM for analytical simulations. The resonant frequency of the SAW device was determined and simulations are carried out by exposing the sensor to 100 ppm of various volatile organic gases and corresponding shift in resonant frequency for various gases are determined. The reduction in the resonant frequency is used for the detection of volatile organic gases such as chloromethane, dichloromethane, trichloromethane, tetrachloroethene, carbon tetrachloride and trichloroethylene.

  1. Gas Phase Conversion of Carbon Tetrachloride to Alkyl Chlorides Catalyzed by Supported Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    SUN Aijun; ZHANG Jinlong; LI Chunxi; MENG Hong

    2009-01-01

    An efficient way of converting carbon tetrachloride(CTC)to alkyl chlorides is reported,which uses the catalysts of ionic liquids supported on granular active carbon.The catalytic performance was evaluated in a temperature range of 120-200℃ and atmospheric pressure for different ionic liquids,namely 1-butyl-3-methylimidazolium chloride,1-octyl-3-methylimidazolium chloride,hydrochloric salts of N-methylimidazole(MIm),pyridine and triethylamine,as well as bisulfate and dihydric phosphate of N-methylimidazole.On this basis,the reaction mechanism was proposed,and the influences of the reaction temperature and the attributes of ionic liquids were discussed.The overall reaction was assumed to be comprised of two steps,the hydrolysis of CTC and reaction of HCI with alcohols under acidic catalyst.The results indicate that the conversion of CTC increased monotonically with temperature and even approached 100% at 200 ℃,while the maximum selectivity to alkyl chlorides was obtained around 160 ℃.This reaction might be potentially applicable to the resource utilization of superfluous byproduct of CTC in the chloromethane industry.

  2. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    International Nuclear Information System (INIS)

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air

  3. Organohalogen emission from saline environments – spatial extrapolation using remote sensing as most promising tool

    Directory of Open Access Journals (Sweden)

    H. F. Schöler

    2011-07-01

    Full Text Available Due to their negative water budget most recent semi-/arid regions are characterized by vast evaporates (salt lakes and salty soils. We recently identified those hyper-saline environments as additional sources for a multitude of volatile halogenated organohalogens (VOX. These compounds affect the ozone layer of the stratosphere and play a key role in the production of aerosols. A remote sensing based analysis was performed in the southern Aral Sea basin, providing information of main soil types as well as their extent and spatial and temporal evolution. VOX production has determined in dry and moist soil samples for 24 h. Several C1- and C2 organohalogens, including chloromethane and bromomethane, have been found in hyper-saline topsoil profiles. The range of naturally produced organohalogens includes dichloroethene. For the 15 000 km2 ranging research area in the southern Aralkum desert a daily production of up to 23 t dichloroethene has been calculated using MODIS time series and supervised image classification. The applied setup reproduces a short-term change in climatic conditions starting from dried-out saline soil, instantly humidified during rain events or flooding. VOX emission from dry fallen Aral Sea sediments will further increase since the area of salt affected soils is expected to increase in future. Opportunities, limits and requirements of satellite based rapid change detection and salt classification are discussed.

  4. Photophysical properties and semiempirical calculations of perylene-3,4,9,10-tetracarboxylic tetramethylester (PTME).

    Science.gov (United States)

    El-Daly, Samy A; Awad, Mohamed K; Abdel-Halim, Shakir T; Dowidar, Dina A

    2008-12-01

    The spectral behavior and fluorescence quantum yield of perylene-3,4,9,10-tetracarboxylic tetramethylester (PTME) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity. The dye exhibits high fluorescence quantum yield and high photostable. Crystalline solid of PTME gives excimer-like emission at 530 nm. The laser activity of PTME has been investigated. The dye solution in N,N-dimethylformamide (DMF) gives laser emission around 480 nm upon excitation by 337.1 nm nitrogen laser pulse. The excitation energy transfer from 7-dimethylamino-4-methylcoumarine (DMC) to PTME has also has been studied and the value of energy transfer rate constant, k(ET), and critical transfer distance, R(0) indicate a Förster-type mechanism. The photodecomposition of PTME in chloromethane solvents has been also studied. We applied semiempirical MO calculations using (PM3 and ZINDO-CI) calculations to explain the geometric and electronic behaviors of the PTME molecule in both ground and excited states and make a correlation with the experimental observations. PMID:18436473

  5. Photophysical parameters and laser performance of 3-(4‧-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP): A new laser dye

    Science.gov (United States)

    El-Daly, S. A.; Gaber, M.; El-Sayed, Y. S.

    2009-09-01

    The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser ( λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460-590 nm. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.

  6. The dynamics of azulene in liquids and compressed gases on ultrafast timescales

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.E.

    1992-02-01

    The ultrafast dynamics of vibrationally hot ground state azulene molecules have been time resolved by picosecond transient absorption spectroscopy in a variety of solvents including hexane, chloromethanes, methanol, CClF{sub 3}, Xe and Kr. A high pressure optical cell was used to liquify gases for use as solvents and change their density and temperature, independently, over the entire liquid density range. Experimental results indicate the vibrational cooling rate is strongly solvent dependent, with cooling rates of approximately 20 psec in molecular solvents and approximately 150 psec in atomic solvents. Comparison of the rates in Xe and Kr at constant density demonstrates the strong effect of solvent mass on energy transfer. The effect of solvent temperature on vibrational cooling is minimal, as is the effect of solvent density. This latter result is quite surprising in light of earlier experiments on simpler molecular systems, such as I{sub 2} in Xe. This anomalous density effect is examined in light of Isolated Binary Collision (IBC) theory and bulk thermal transport models. Both theories accurately model all experimental results obtained with the exception of the density effort. Possible explanations for the breakdown of the IBC theory in this case are offered along with methods to improve IBC theory for application to complex three dimensional molecular systems.

  7. Fragranced consumer products and undisclosed ingredients

    International Nuclear Information System (INIS)

    Fragranced consumer products-such as air fresheners, laundry supplies, personal care products, and cleaners-are widely used in homes, businesses, institutions, and public places. While prevalent, these products can contain chemicals that are not disclosed to the public through product labels or material safety data sheets (MSDSs). What are some of these chemicals and what limits their disclosure? This article investigates these questions, and brings new pieces of evidence to the science, health, and policy puzzle. Results from a regulatory analysis, coupled with a chemical analysis of six best-selling products (three air fresheners and three laundry supplies), provide several findings. First, no law in the U.S. requires disclosure of all chemical ingredients in consumer products or in fragrances. Second, in these six products, nearly 100 volatile organic compounds (VOCs) were identified, but none of the VOCs were listed on any product label, and one was listed on one MSDS. Third, of these identified VOCs, ten are regulated as toxic or hazardous under federal laws, with three (acetaldehyde, chloromethane, and 1,4-dioxane) classified as Hazardous Air Pollutants (HAPs). Results point to a need for improved understanding of product constituents and mechanisms between exposures and effects

  8. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Science.gov (United States)

    Wang, Qiaoqiao; Shao, Min; Liu, Ying; William, Kuster; Paul, Goldan; Li, Xiaohua; Liu, Yuan; Lu, Sihua

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K + sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0-16.8% and 4.0-19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.

  9. IN-VITRO PHARMACOLOGICAL INVESTIGATIONS OF THE PLANT BOERHAVIA REPENS (FAMILY: NYCTAGINACEAE

    Directory of Open Access Journals (Sweden)

    Avijit Dey

    2013-07-01

    Full Text Available Boerhavia repens is an important medicinal plant having application in jaundice, fever and various other disorders. The whole plant Boerhavia repens was sun dried and extracted using methanol. Later the crude methanolic extract was fractionated into four different fractions using Petroleum ether, carbon tetra-chloride, Di-chloromethane and Ethyl acetate. The anti-oxidant activity of the different fractions was measured by the DPPH free radical scavenging activity. The ethyl acetate and the di-chloro methane soluble fractions showed very potent anti-oxidant activity by the DPPH free radical scavenging method. The anti-microbial activity of the different fractions was measured by disc diffusion method. The antimicrobial screening of the plant showed that the carbon tetra-chloride soluble fractions and the Petroleum ether soluble fractions showed mild antimicrobial activity. Evaluation of cyto-toxic activity was done using the brine-shrimp lethality bio-assay. The petroleum ether soluble fraction and the ethyl acetate soluble fractions showed significant cyto-toxic activity.

  10. Analogue Experiments Identify Possible Precursor Compounds for Chlorohydrocarbons Detected in SAM

    Science.gov (United States)

    Miller, K.; Summons, R. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Martin, M. G.; Team, M.

    2013-12-01

    Since landing at Gale Crater on August 6, 2012, the Sample Analysis at Mars (SAM) instrument suite, aboard the Curiosity Rover, has conducted multiple analyses of scooped and drilled samples and has identified a suite of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, and chlorobenzene (Glavin et al., 2013; Leshin et al., 2013). These compounds were identified after samples were pyrolysed at temperatures up to ~835°C through a combination of Evolved Gas Analysis (EGA) and Gas Chromatography Mass Spectrometry (GCMS). Since these chlorinated species were well above the background levels determined by empty cup blanks analyzed prior to solid sample analyses, thermal degradation of oxychlorine phases, such as perchlorate, present in the Martian soil, are the most likely source of chlorine needed to generate these chlorohydrocarbons. Laboratory analogue experiments show that terrestrial organics internal to SAM, such as N-methyl-N(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a derivatization agent, can react with perchlorates to produce all of the chlorohydrocarbons detected by SAM. However, in pyrolysis-trap-GCMS laboratory experiments with MTBSTFA, C4 compounds are the predominant chlorohydrocarbon observed, whereas on SAM the C1 chlorohydrocarbons dominate (Glavin et al., 2013). This, in addition to the previous identification of chloromethane and dichloromethane by the 1976 Viking missions (Biemann et al., 1977), suggest that there could be another, possibly Martian, source of organic carbon contributing to the formation of the C1 chlorohydrocarbons, or other components of the solid samples analyzed by SAM are having a catalytic effect on chlorohydrocarbon generation. Laboratory analogue experiments investigated a suite of organic compounds that have the potential to accumulate on Mars (Benner et al., 2000) and thus serve as sources of carbon for the formation of chlorohydrocarbons detected by the SAM and

  11. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    Science.gov (United States)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  12. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  13. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author).

  14. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6. Danish consumption and emissions, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2006-05-19

    The objective of this project was to map the 2004 consumption of newly produced industrial ozone-depleting substances and the consumption and actual emissions of HFCs, PFCs, and SF6. The evaluation was made in accordance with the IPCC guidelines, and following the method employed in previous evaluations and it covers the net consumption of ozone-depleting substances. The term 'net consumption' is understood as the amount of imported goods in bulk or drums, less any re-export of substances as raw materials. Ozone-depleting substances contained in finished products that are imported and exported are not included in the evaluation. This delimitation is in full compliance with international guidelines. The evaluation does not account for the consumption of ozone-depleting substances used as raw material in the production of other substances, such as tetra chloromethane, and which are not subsequently emitted to the atmosphere. The information on consumption has been gathered from importers, suppliers and enterprise end-users (usually purchasing departments), and Statistics Denmark. This method of data gathering means that the information gathered is about the quantities of substances traded. Purchase and sales figures are used as an expression of consumption. This approach is considered to be suitable and adequate for the present purpose, since experience from previous projects shows that a levelling out occurs with time and that the substances sold/purchased are consumed within a relatively small time horizon. None of the substances covered here are produced in Denmark. Furthermore, ozone-depleting substances are treated at chemical waste processing plants in Denmark. Treatment and destruction data was gathered for the evaluation, but in line with all previous evaluations it has not been accounted for in the consumption figures. (BA)

  15. Potential precursor compounds for chlorohydrocarbons detected in Gale Crater, Mars, by the SAM instrument suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-03-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  16. Determination of volatile halohydrocarbons in drinking water by capillary column gas chromatography%毛细管柱气相色谱法测定生活饮用水中挥发性卤代烃

    Institute of Scientific and Technical Information of China (English)

    董玉英; 张瑞雨; 欧利华

    2013-01-01

    Objective: To establish a method for determination of seven volatile halohydrocarbons in drinking water. Methods: The seven volatile halohydrocarbons (chlorofrom, tetrachloromethane, trichloroethylene, bromodi-chloromethane, tetrachloroethylene, dibromochloromethane, bromoform) in drinking water were determined by head-space Gas Chromatography with DB - 624 capillary column. Results: Under the optimal experimental conditions, the recoveries of the seven volatile halohydrocarbons were in the range of 92.5% -102%, the relative standard deviation was between 1.20% ~4.61%, and the determination limit was between 0.01 μg/L ~ 1.00 μg/L. Conclusion: The developed methjod is sensitive, simple, rapid and accurate, and seven volatile halohydrocarbons in drinking water can be determined simultaneously.%目的:建立一种快速、准确测定生活饮用水中7种挥发性卤代烃的方法.方法:采用DB-624毛细管柱、顶空气相色谱法测定生活饮用水中三氯甲烷、四氯化碳、三氯乙烯、二氯一溴甲烷、四氯乙烯、一氯二溴甲烷及三溴甲烷.结果:在所选择的实验条件下,7种挥发性卤代烃的平均回收率在92.5%~102%之间,相对标准偏差(RSD)为1.20% ~4.61%,检出限为0.01 μg/L ~1.00 μg/L.结论:所建立的分析方法灵敏、简便、快速、准确,可同时测定生活饮用水中的7种挥发性卤代烃.

  17. Measurements of reactive chlorocarbons over the Surinam tropical rain forest: indications for strong biogenic emissions

    Directory of Open Access Journals (Sweden)

    H. A. Scheeren

    2003-10-01

    Full Text Available Contrary to the understanding of the emissions and chemical behavior of halocarbons from anthropogenic sources (e.g. CFCs and HCFCs, the biogeochemistry of naturally emitted halocarbons is still poorly understood. We present measurements of chloromethane (methyl chloride, CH3Cl, trichloromethane (chloroform, CHCl3, dichloromethane (CH2Cl2, and tetrachloroethylene (C2Cl4 from air samples taken over the Surinam rainforest during the 1998 LBA/CLAIRE campaign. The samples were collected in stainless steel canisters on-board a Cessna Citation jet aircraft and analyzed in the laboratory using a gas chromatograph equipped with FID and ECD. The chlorocarbons we studied have atmospheric lifetimes of ~1 year or less, and appear to have significant emissions from natural sources including oceans, soils and vegetations, as well as biomass burning. These sources are primarily concentrated in the tropics (30º N-30º S. We detected an increase as a function of latitude of methyl chloride, chloroform, and tetrachloroethylene mixing ratios, in pristine air masses advected from the Atlantic Ocean toward the central Amazon. In the absence of significant biomass burning sources, we attribute this increase to biogenic emissions from the Surinam rainforest. From our measurements, we deduce fluxes from the Surinam rainforest of 7.6±1.8 μg CH3Cl m−2 h−1, 1.11±0.08g CHCl3 μm−2 h−1, and 0.36±0.07 μg C2Cl4 m−2 h−1. Extrapolated to a global scale, our emission estimates suggest a large potential source of 2 Tg CH3Cl yr−1 from tropical forests, which could account for the net budget discrepancy (underestimation of sources, as indicated previously. In addition, our estimates suggest a potential emission of 57±17,Gg C2C4 yr−1

  18. 气相色谱-质谱法测定海水及水产品中的莠去津%Determination of atrazine in seawater and sea food by gas chromatohraph- mass spectrum

    Institute of Scientific and Technical Information of China (English)

    吴茂生

    2012-01-01

    本文采用有机溶剂萃取的提取方法,利用气相色谱一质谱选择离子检测,建立了海水及水产品中莠去津的检测方法。该方法在0.001-0.5μg/L的范围内具有良好的线性范围,线性相关系数为0.9996;在海水和水产品中的检出限(S/N=3)分别为0.001μg/L和0.001mg/kg;在加标回收率试验中,海水中莠去津回收率为95.8%-113.2%,水产品中莠去津回收率为83.1%~92.6%;相对标准偏差(n=6)均小于4.4%。%A gas chromatohraph - mass spectrum method was established for determination of atrazine in sea- water and sea food. The pretreatment and chromatographic conditions were optimized. The total of 50 mL di- chloromethane was chosen in the process of organic solvent - seawater extract with liquid - liquid extraction technique. Florisil SPE column and hexane mixed with ethyl acetate were used to clean up the sea food sample so as to reduce continuum organic interference in Ionization mode (EI) using select ion monitori obtained for atrazine in the range of 0. 001 -0. ng 5 GC -MS detection. Identification was achieved by Electron (SIM). Under the optimal conditions, good linearities were μg/L. The quantification was performed with internal stand- ards. The recoveries of atrazine in seawater and sea food were in the range of 95.8% - 113.2% and 83.1% -92.6% respectively. The relative standard deviations (RSD) were less than 4.4%. The limits of detection were 0. 001 μg/L for atrazine in seawater, and 0 successfully applied to determination of atrazine in an accident 001 mg/kg for atrazine in sea food. The method has been seawater and sea food in sea area of Fujian province during

  19. SPE- HPLC determination of pyrethroid pesticide residues in Platycodon grandiflorum%固相萃取-高效液相色谱法测定桔梗中拟除虫菊酯的农药残留

    Institute of Scientific and Technical Information of China (English)

    翁淑琴; 游勇基

    2011-01-01

    目的:建立桔梗中甲氰菊酯、高效氯氟氰菊酯、溴氰菊酯、氰戊菊酯、氯菊酯、联苯菊酯共6个拟除虫菊酯类农药残留的提取、净化及其残留量测定的方法.方法:样品运用石油醚提取,商品CARB/NH2小柱净化,乙腈-二氯甲烷(5:95)洗脱,HPLC - DAD检测.色谱条件:采用Hypersil BDS C18(250 mm ×4.6 mm,5μm)色谱柱,流动相为乙腈-水(70:30),流速1mL·min-1,检测波长230nm.结果:样品4水平添加时的6个拟除虫菊酯类化合物回收率在75.63%~107.5%范围内,RSD在2.3% ~9.9%范围内,可以满足农药残留分析的要求.结论:该方法灵敏度高,选择性强,操作简单、快速,净化效果好.可应用于桔梗药材中痕量农药残留的检测.%Objective: To develop a method for the extraction, clean - up and determination of fenpropathrin, lambda - cyhalothrin, deltamethrin, fenvalerate, permethrin and bifenthrin in Platycodon grandiflorum. Methods: Pesticide residues were extracted from samples with ligarine; Extracts were cleaned - up by CARB/NH2 column, eluted with acetonitrile -chloromethane(5: 95). Analytical screening was determined by HPLC with a diode array detector. HPLC condition:Hypersil BDS C18(250mm ×4. 6 mm,5 μm)column was adopted,the mobile phase consisted of acetonitrile - water(70: 30) at a flow rate of 1 mL · min-1 ,and the detection wavelength was 230 ran. Results; The average recoveries were in the range of 75. 63% - 107. 6% with RSD of 2. 3% - 9. 9%. The method met the requirement of pesticide residue analysis. Conclusion: The proposed method has high sensitivity, repeatability and selectivity, it is simple and fast, which can be used for the analysis of 6 pyrethroid pesticides.

  20. Thermal Reactivity of Organic Molecules in the Presence of Chlorates and Perchlorates and the Quest for Organics on Mars with the SAM Experiment Onboard the Curiostiy Rover

    Science.gov (United States)

    Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel

    2016-10-01

    One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the

  1. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    Science.gov (United States)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  2. Comparison of detection methods of total lipid content in microalgae%微藻油脂含量不同测定方法的比较研究

    Institute of Scientific and Technical Information of China (English)

    彭悦; 刘玉莹; 祁艳霞; 胡玉才; 付晚涛

    2015-01-01

    为了对微藻油脂含量不同测定方法进行比较,以球等鞭金藻8701 Isochrysis galbana Parke 8701和小新月菱形藻Nitzschia closterium f. minutissima两种微藻为研究对象,采用溶剂提取法和苏丹黑B染色法对其油脂含量进行测定,建立了两种微藻油脂含量与苏丹黑染色后吸光度A645 nm的线性回归方程,并应用于微藻油脂积累培养过程的快速测定,利用气相色谱法对两种微藻脂肪酸组成进行分析。结果表明:当提取溶剂为二氯甲烷和甲醇的混合溶剂(二者的体积比为1:2)时,油脂提取效果较好,得到球等鞭金藻8701和小新月菱形藻的油脂含量分别为22.99%和16.89%;采用苏丹黑B染色法测定的油脂含量基本和生物量大体一致,是一种可行的估测油脂含量的方法;气相色谱检测结果显示,两种微藻具有明显不同的脂肪酸组成特征,球等鞭金藻8701的饱和脂肪酸含量(55.02%)较小新月菱形藻(51.39%)高。研究表明,从两种微藻的油脂含量和脂肪酸组成来看,球等鞭金藻8701较小新月菱形藻更适用于作为生物柴油的原料。%The total lipid contents were analyzed by methods of organic solvents and Sudan black B staining in two species of microalgae, Isochrysis galbana Parke 8701 and Nitzschia closterium f. minutissima. linear regression e-quations were established between lipid contents and absorbance at a wavelength of 645 nm. It was found that mi-croalgae cells were stained with Sudan black B, and applied to rapid determination of the microalgae oil accumula-tion rapidly. Fatty acid compositions were also analyzed by gas chromatography ( GC) . The extraction of solvent di-chloromethane/methanol ( volume ratio =1:2 ) revealed that there was total lipid content of 22 . 99% in Isochrysis galbana Parke 8701, and 16. 89% in Nitzschia closterium f. minutissima. The total lipid was consistent with the bi-omass by Sudan black B staining method

  3. Design and Performance of an Enhanced Bioremediation Pilot Test in a Tidal Wetland Seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Majcher, Emily H.; Lorah, Michelle M.; Phelan, Daniel J.; McGinty, Angela L.

    2009-01-01

    unconsolidated sediments between 1.5 and 6 years following installation of the reactive mat. To ensure hydraulic compatibility in the mat design, mat materials that had a hydraulic conductivity greater than the surrounding wetland sediments were selected, and the mixture was optimized to consist of 1.5 parts compost, 1.5 parts peat and 1 part sand as a safeguard against fluidization. Sediment and matrix properties also indicated that a nonwoven geotextile with a cross-plane flow greater than that of the native sediments was suitable as the base of the reactive mat. Another nonwoven geotextile was selected for installation between the iron mix and organic zones of the mat to create more laminar flow conditions within the mat. Total metals and sequential extraction procedure analyses of mat materials, which were conducted to evaluate water-quality compatibility of the mat materials, showed that concentrations of metals in the compost ranged from one-half to one order of magnitude below consensus-based probable effect concentrations in sediment. A 22-inch-thick reactive mat, containing 0.5 percent WBC-2 by volume, was constructed at seep area 3-4W and monitored from October 2004 through October 2005 for the pilot test. No local, immediate failure of the mat or of wetland sediments was observed during mat installation, indicating that design estimates of bearing capacity and geotextile textile selection ensured the integrity of the mat and wetland sediments during and following installation. Measurements of surface elevation of the mat showed an average settlement of the mat surface of approximately 0.25 feet after 10 months, which was near the predicted settlement for unconsolidated sediment. Monitoring showed rapid establishment and sustainment throughout the year of methanogenic conditions conducive to anaerobic biodegradation and efficient dechlorination activity by WBC-2. The median mass removal of chloromethanes and total chloroethenes and ethane during the

  4. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    Science.gov (United States)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  5. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    Science.gov (United States)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  6. EXTRACTIVE DISTILLATION PROCESS SIMULATION FOR SEPARATION OF DICHLOROMETHANE AND ACETONE%萃取精馏分离二氯甲烷-丙酮的工艺模拟

    Institute of Scientific and Technical Information of China (English)

    王震; 高晓冲; 夏庆宁; 高瑞昶

    2012-01-01

    Dichloromethane and acetone can form the highest azeotrope, so it can not be separated by conventional distillation. Extractive distillation for separation of dichloromethane and acetone was simulated by computer. Wilson model and NRTL model were used for predicting VLE and LLE. The influence of operation factors such as stage number, reflux ratio, extractant feed rate, location, temperature and material feed location, temperature were analyzed. The optimal parameters of column were proposed: the theoretical total plate number of extraction column is 36, the reflux ratio is 3, the raw material is fed at 16th plate, the extractant is fed at 7th plate and the feed rate is 1 500 kg/h. Di-chloromethane-water azeotrope was obtained at the top of the extraction column. The dichloromethane layer was 99. 9%. Acetone-water mixture which was obtained at the bottom of extraction column was put into the acetone column, the theoretical total plate number of acetone column is 35, the reflux ratio is 4, and the raw material is fed at 25th plate. A top product of acetone with 99. 7% concentration and a bottom product of almost pure water which can be recycled as extraction water after cooling could be obtained. These results are useful for construction design and improvement.%以水为萃取剂对二氯甲烷丙酮混合物进行了萃取精馏过程模拟,体系的气-液平衡和液液平衡分别采用Wilson模型和NRTL模型预测.分析了总理论板数,回流比,萃取剂进料速率、塔板数、温度和原料进料塔板数、温度等操作参数对精馏过程的影响.并取得了最佳工艺参数为:萃取塔采用36块理论板,回流比为3,原料在第16块板进料,萃取剂用量1 500 kg/h,第7块板进料时塔顶得到二氯甲烷-水的共沸物,分层得99.9%的二氯甲烷,塔釜得到丙酮-水的混合物进入丙酮塔;丙酮塔为简单精馏塔,采用35块理论板,回流比为4,第25块板进料,塔顶可得99.7%的丙酮,塔釜得到几乎

  7. Organic carbon compounds detected by the SAM instrument suite on Curiosity: results of the first year of exploration at Gale Crater (Invited)

    Science.gov (United States)

    Summons, R. E.; Miller, K.; Glavin, D. P.; Eigenbrode, J. L.; Freissinet, C.; Martin, M. G.; Team, M.

    2013-12-01

    A search for organic matter is a high priority in the search for habitable environments on Mars as it is in the quest for clues about the nature of early life on Earth. These endeavors are technically challenging because of the inherent instability of organic matter under conditions that exist in the regolith of both planets and the antiquity of the sediments of interest. In the case of the early Earth, exposure to ionizing radiation and the heat associated with burial and tectonism are the main obstacles to organic matter preservation. On Mars, exposure to ionizing radiation and chemical oxidation are the prime threats to organic matter preservation. It has been hypothesized that UV-generated hydroxyl radicals will almost certainly oxidize or highly alter any organic carbon of martian or meteoritic origin at Mars' surface. Also, there could be diagenetic processes peculiar to Mars, for which no terrestrial analogs are presently known. Thus, the search for organics on Mars must be informed by data from the entire Curiosity payload since the results are mutually informative. Sediments from the Rocknest aeolian drift and the probable fluvio-lacustrine sediments of Yellowknife Bay in Gale Crater, when analyzed by pyrolysis with evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS), afforded a number of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene (1, 2). Some proportion of these compounds can be traced to instrument background from organic materials within the chromatographic columns, hydrocarbon traps and wet chemistry capability of SAM. N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide, compounds carried in SAM for chemical derivatization can react with gases released from the sediments to yield the C1 and C4 chlorohydrocarbons. However, we continue to explore the possibility that a portion of the C1 chlorohydrocarbons are derived

  8. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of