WorldWideScience

Sample records for chlorine chlorides

  1. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  2. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  3. Coagulation properties of anelectrochemically prepared polyaluminum chloride containing active chlorine

    Institute of Scientific and Technical Information of China (English)

    HU Chengzhi; LIU Huijuan; QU Jiuhui

    2006-01-01

    With high content of the Al13 species and the active chloride, an electrochemically prepared polyaluminum chloride (E-PACl) presents integrated efficiency of coagulation and oxidation. The coagulation properties of E-PACl were systemically investigated through jar tests in the various water quality conditions. The active chlorine in E-PACl can significantly influence the coagulation behavior due to the active chlorine preoxidation, which can change the surface charge characteristic of organic matter (OM) in water. The active chlorine preoxidation could improve the E-PACl coagulation efficiency if the water possessed the characteristics of relatively low OM content (2 mg/L) and high hardness (278 mg CaCO3/L). In the water with medium content of OM (5 mg/L), dosage would be a crucial factor to decide whether the active chlorine in E-PACl aided coagulation process or not. Comparing with alkaline condition, active chlorine would show a more significant influence on the coagulation process in acidic region.

  4. THE COMPATIBILITY OF BLENDS OF POLY(VINYL CHLORIDE) OR CHLORINATED POLY(VINYL CHLORIDE) WITH POLY(METHYL METHACRYLATE)

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHENG Rongshi

    1988-01-01

    IR spectral shifts of carbonyl vibrational absorption for ethyl acetate, which acts analogically as the structural unit of poly(methyl methacrylate), in cyclohexane, chloroform, chlorinated paraffins, poly(vinyl chloride) and chlorinated poly(vinyl chloride) were measured. The results suggest that there are specific interactions between the carbonyl groups and the chlorinated hydrocarbons which could be responsible for the apparent compatibility of poly(vinyl chloride) -poly(methyl methacrylate) and chlorinated poly(vinyl chloride) -poly(methyl methacrylate) blends. Additionally, the effects of the preparation mode of blend films on phase separation and observed compatibility are discussed.

  5. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    Science.gov (United States)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  6. PHASE EQUILIBRIUM FOR THE TERNARY SYSTEM VINYL CHLORIDE-CHLORINATED POLYETHYLENE-POLY (VINYL CHLORIDE)

    Institute of Scientific and Technical Information of China (English)

    LOU Jianfeng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1991-01-01

    Swelling capacity of vinyl chloride (VC) in chlorinated polyethylene (CPE) with 25- 40 wt% Cl at temperature 30- 57 ℃ was studied and their relationships were correlated with Langmuir and Freundlich adsorption equations. A ternary phase diagram for VC-CPE-PVC was also established.In-situ polymerization conditions of CPE-g -VC were proposed and CPE content control was analyzed for the manufacturing process of CPE-g-VC graft product based on results of phase equilibrium study.

  7. Mechanism of chlorinating lanthanum oxide and cerium oxide with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    朱国才; 李赋屏; 肖明贵

    2003-01-01

    Using ammonium chloride(NH4Cl)as a chlorinating agent,the effects of chlorinating temperature,at 300℃ for 90 min,and have no advantage to chlorination of lanthanum and cerium oxides at higher temperature.The thermal decomposition of LaCl3 and CeCl3 is carried out to explore the mechanism of chlorinating lanthanum and cerium oxides.At the same time,the chlorination of lanthanum and cerium oxides is not devoted to the HCl decomposed from NH4Cl,but to NH4Cl directly taking part in the chlorination of La2O3 and CeO2.The lanthanum and cerium oxides in chlorination firstly form intermediate LaOCl and CeOCl,and then transfer to LaCl3 and CeCl3,fither prove the existence of the intermediates LaOCl and CeOCl.Therefore the chlorinating temperature and time should strictly be controlled when the lanthanum oxide and cerium oxide are chlorinated with NH4 Cl.And over-dosage of NH4 Cl should be also applied in the process of chlorination.

  8. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Lucía I., E-mail: lbarbosa@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); González, Jorge A. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Parque General San Martín, CP M5502JMA Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina)

    2015-04-10

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl{sub 2} on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl{sub 2} at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl{sub 2}Si{sub 2}O{sub 8}, SiO{sub 2}, and CaSiO{sub 3}.

  9. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  10. A Visible-Light-Induced α-H Chlorination of Alkylarenes with Inorganic Chloride under NanoAg@AgCl.

    Science.gov (United States)

    Liu, Shouxin; Zhang, Qi; Li, Huiying; Yang, Yihua; Tian, Xia; Whiting, Andrew

    2015-06-26

    An efficient, photocatalytic chlorination of alkylarene α-H groups using NaCl/HCl as a chlorine source has been developed, which involves a radical mechanism under visible-light (including sunlight) conditions. A chlorine radical is proposed to be formed by an electron transfer from chloride ion to O2 in air through the bandgap hole of the semiconductor AgCl. The chlorination protocol is characterized by its use of natural sunlight or other visible light, mild conditions, cheap source of chlorine, green solvent, and high selectivity. The yield of benzylchloride is 95% with a toluene conversion as high as 40%, which rivals traditional chlorination methods.

  11. Conversion of chlorinated waste streams from the production of polyvinyl chloride over La-based catalysts

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.

    2008-01-01

    Annually, more than one third of all chlorine consumption is used for the production of C2H3Cl. This is the monomer for the production of polyvinyl chloride (PVC). Even though the production process of C2H3Cl is rather selective, by-products are formed in large amounts due to the large scale of the

  12. Recovering germanium from coal ash by chlorination with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new process of enriching germanium from coal ash was developed. The process involves in mixing the coal ash and ammonium chloride and then roasting the mixture to produce germanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germanium oxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH4Cl/coal ash is 0.15, roasting temperature 400℃ and roasting time 90 min.

  13. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  14. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride.

    Science.gov (United States)

    Fujimori, Takashi; Takaoka, Masaki; Morisawa, Shinsuke

    2010-03-15

    The relationship between the formation of chlorinated aromatic (aromatic-Cl) compounds and ferric chloride in the solid phase during a thermal process motivated us to study the chemical characteristics of iron in a model solid sample, a mixture of FeCl(3) x 6H(2)O, activated carbon, and boron nitride, with increasing temperature. Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed drastic changes in the chemical form of amorphous iron, consistent with other analytical methods, such as X-ray diffraction using synchrotron radiation (SR-XRD) and Fourier-transform infrared (FT-IR) spectroscopy. Atomic-scale evidence of the chlorination of aromatic carbon was detected by Cl-K X-ray absorption near edge structure (XANES) spectroscopy. These results showed the thermal formation mechanism of aromatic-Cl compounds in the solid phase with ferric chloride. We attribute the formation of aromatic-Cl compounds to the chlorination of carbon, based on the oxychlorination reaction of FeCl(3) at temperatures in excess of ca. 300 degrees C, when the carbon matrix is activated by carbon gasification, catalyzed by Fe(2)O(3), and surface oxygen complexes (SOC) generated by a catalytic cycle of FeCl(2) and FeOCl. Chemical changes of trace iron in a thermal process may offer the potential to generate aromatic-Cl compounds in the solid phase.

  15. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.

    Science.gov (United States)

    Fujimori, Takashi; Nishimoto, Yoshihiro; Shiota, Kenji; Takaoka, Masaki

    2014-12-01

    Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.

  16. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  17. Ab initio heats of formation for chlorinated hydrocarbons: Allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride

    Science.gov (United States)

    Colegrove, Brenda Thies; Thompson, Tyler B.

    1997-01-01

    Ab initio molecular energies at several levels of theory (MP4/6-311G**//MP2/6-31G*, MP4/6-311+G**//MP2/6-31G*,G1, and G2) are used to determine the heats of formation of several chlorinated hydrocarbons (allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride) from atomization and isodesmic reactions. More than one isodesmic reaction was investigated for each molecule. Inconsistencies between the results from isodesmic reactions for a given molecule indicated possible errors in the experimental heats of formation for some of the chlorinated molecules used as references in the isodesmic reactions (in particular 1-chloropropane and 2-chloropropane). To further examine this possibility we did a multivariate regression for the G2 calculated reaction enthalpies for the 30 isodesmic reactions. In the regression, the heats of formation of the hydrocarbons and CH3Cl were fixed at the experimental values. The heats of formation of all the other chlorinated hydrocarbons were varied. The heats of formation determined using this method were: ΔHf298(CH2Cl2)=-22.6 kcal/mole, ΔHf298(CHCl=Cl2)=5.0 kcal/mole, ΔHf298(CCl2=CH2)=-0.2 kcal/mole, ΔHf298(CH2Cl-CH3)=-27.0 kcal/mole, ΔHf298(c-CHCl=CH-CH3)=-3.1 kcal/mole, ΔHf298(t-CHCl=CH-CH3)=-2.8 kcal/mole, ΔHf298(CH2=CClCH3)=-5.4 kcal/mole, ΔHf298(CH2=CH-CH2Cl)=-0.8 kcal/mole, ΔHf298(CH2Cl-CH2-CH3) =-32.2 kcal/mole, ΔHf298(CH3-CHCl-CH3 )=-35.9 kcal/mole. The calculated heats of formation were used to derive the following Benson group enthalpy values: C-(Cl)(H)2(Cd)=-15.6 kcal/mole, Cd-(Cl)(H)=-1.3 kcal/mole, and cis-halogen-alkyl =-0.3 kcal/mole.

  18. A simple and convenient method for direct α-chlorination of ketones with ammonium chloride and Oxone

    Institute of Scientific and Technical Information of China (English)

    Zhong Shi Zhou; Li Li; Xue Han He

    2012-01-01

    When ketones were treated with ammonium chloride and Oxone(R) in MeOH at room temperature,a direct α-chlorination of ketones was occurred and a series of the corresponding α-chloroketones were obtained in moderate to good yields after 24 h.In this reaction,ammonium chloride was used as the source of chlorine and Oxone(R) was used as an oxidant.This method was simple,convenient and providing a novel procedure for preparation of α-chloroketones.

  19. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Science.gov (United States)

    2010-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... other thermal treatment unit subject to controls on HCl or Cl2 emissions under a RCRA operating permit... risk assessments—(1) General. Conformance with the Tier III controls must be demonstrated by...

  20. Chlorine

    Science.gov (United States)

    ... but it is also used to make pesticides (insect killers), rubber, and solvents. Chlorine is used in ... the following signs and symptoms may develop: Blurred vision Burning pain, redness, and blisters on the skin ...

  1. Copper chloride electrolyzer for the production of hydrogen via the copper-chlorine thermochemical cycle

    Science.gov (United States)

    Roy, Rahul Dev

    Hydrogen is considered a key element in solving the upcoming energy crisis, it is not the primary fuel source but an "energy carrier" similar to electricity and has to be produced using some other hydrogen rich source. Thermochemical water decomposition is a promising alternative to steam-methane reforming and electrolytic water splitting for a sustainable method of large-scale hydrogen production. The Copper-Chlorine thermochemical cycle is one of prime contenders among all the other thermochemical cycles being studied because of its low energy requirements compared to others and mild operating conditions, therefore making it available to be readily integrated to the available nuclear reactors or solar energy installations. This present work focuses on the study and development of a proton exchange membrane (PEM) electrolyzer cell for the Copper-Chlorine thermo chemical cycle to obtain a better understanding through experiments and models of this process. Different operating and design parameters such as temperature, flow rate, current density, membranes and gas diffusion layers were considered to reduce the voltage and hence increase the efficiency of the electrolyzer. The effects of catalyst and mass transfer were studied on the thin film electrode using a rotating disk electrode (RDE) setup. A mathematical model was also developed to monitor the performance of the electrolyzer by predicting the change in concentration of copper chloride in the system with respect to time. It is observed that flow rate and temperature plays a major role in decreasing the voltage drop. There was no effect of catalyst in the anode when compared to a bare anode at lower flow rates; but at higher flow rates there was significant decrease in voltage drop when a carbon cloth was placed at the anode end. High surface area carbon black has comparable activity towards CuCl oxidation with conventional catalyst like Platinum or Ruthenium oxide. It is also seen that mass transfers possess a

  2. Chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, Sylvia Smith [ORNL

    2009-01-01

    Following a brief description of the use of chlorine as a chemical warfare agent in World War I, this chapter summarizes physical and chemical data and recent clinical and controlled laboratory studies on the irritant and lethal effects of chlorine. The mechanism of toxicity for both irritation and lethal effects is described. The mathematical relationship between concentration and exposure duration for a set endpoint is given for both an irritancy response and mortality. This information can be used to assist in time-scaling for the set endpoint to other exposure durations. Risk assessment addresses the potential for greater effects in sensitive populations such as asthmatics. A concentration of 0.5 ppm for up to 8 hours is a no-adverse-effect concentration in most sensitive subjects; whereas, a concentration of 1.0 ppm induces some sensory irritation and transient changes in respiratory tract airflow parameters. Treatment and intervention of exposed individuals is dependent upon symptoms

  3. Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions.

    Science.gov (United States)

    Redon, Paul-Olivier; Abdelouas, Abdesselam; Bastviken, David; Cecchini, Sébastien; Nicolas, Manuel; Thiry, Yves

    2011-09-01

    Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils. Concentrations of total chlorine (Cl(tot)) and organic chlorine (Cl(org)) were determined in litterfall, forest floor and mineral soil samples. Cl(org) constituted 11-100% of Cl(tot), with the highest concentrations being found in the humus layer (34-689 mg Cl(org) kg(-1)). In terms of areal storage (53 - 400 kg Cl(org) ha(-1)) the mineral soil dominated due to its greater thickness (40 cm). Cl(org) concentrations and estimated retention of organochlorine in the humus layer were correlated with Cl input, total Cl concentration, organic carbon content, soil pH and the dominant tree species. Cl(org) concentration in mineral soil was not significantly influenced by the studied environmental factors, however increasing Cl:C ratios with depth could indicate selective preservation of chlorinated organic molecules. Litterfall contributions of Cl were significant but generally minor compared to other fluxes and stocks. Assuming steady-state conditions, known annual wet deposition and measured inventories in soil, the theoretical average residence time calculated for total chlorine (inorganic (Cl(in)) and organic) was 5-fold higher than that estimated for Cl(in) alone. Consideration of the Cl(org) pool is therefore clearly important in studies of overall Cl cycling in terrestrial ecosystems.

  4. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation.

    Science.gov (United States)

    Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying

    2017-05-01

    Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (kobs, DDBAC) increased from 0.046 min(-1) to 0.123 min(-1) in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone.

  5. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: elie.kawerk@etu.upmc.fr [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Carniato, Stéphane [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Iwayama, Hiroshi; Shigemasa, Eiji [Ultraviolet Synchrotron Orbital Radiation Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Piancastelli, Maria Novella [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Wassaf, Joseph; Khoury, Antonio [Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Simon, Marc [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2013-02-15

    Highlights: ► We measured the X-ray absorption spectrum of C{sub 2}H{sub 3}Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C{sub 2}H{sub 3}Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account.

  6. Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air

    OpenAIRE

    Pszenny, A. A. P.; W. C. Keene; Jacob, Daniel James; S. Fan; J. R. Maben; Zetwo, M. P.; Springer-Young, M.; J. N. Galloway

    1993-01-01

    We report the first measurements of inorganic chlorine gases in the marine atmosphere using a new tandem mist chamber method. Surface air was sampled during four days including one diel cycle in January, 1992, at Virginia Key, Florida. Concentrations of HCl* (including HCl, ClNO3, ClNO2, and NOCl) were in the range 40 to 268 pptv and concentrations of Cl2* (including Cl2 and any HOCl not trapped in the acidic mist chamber) were in the range

  7. UV enhanced gas-solid synthesis of chlorinated poly vinyl chloride characterized by a UV-Vis online analysis method☆

    Institute of Scientific and Technical Information of China (English)

    Qianli Yang; Wei Lu; Lin Bai; Binhang Yan; Yi Cheng

    2015-01-01

    Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly. Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reac-tion once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature (Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.

  8. Comparison of purge and trap GC/MS and purgeable organic chloride analysis for monitoring volatile chlorinated hydrocarbons

    Science.gov (United States)

    Barber, Larry B.; Thurman, E. Michael; Takahashi, Yoshi; Noriega, Mary C.

    1992-01-01

    A combined field and laboratory study was conducted to compare purge and trap gas chromatography/mass spectrometry (PT-GC/MS) and purgeable organic chloride (POCl) analysis for measuring volatile chlorinated hydrocarbons (VCH) in ground water. Distilled-water spike and recovery experiments using 10 VCH indicate that at concentrations greater than 1 ??g/l recovery is more than 80 percent for both methods with relative standard deviations of about 10 percent. Ground-water samples were collected from a site on Cape Cod, Massachusetts, where a shallow unconfined aquifer has been contaminated by VCH, and were analyzed by both methods. Results for PT-GC/MS and POCl analysis of the ground-water samples were not significantly different (alpha = 0.05, paired t-test analysis) and indicated little bias between the two methods. Similar conclusions about concentrations and distributions of VCH in the ground-water contamination plume were drawn from the two data sets. However, only PT-GC/MS analysis identified the individual compounds present and determined their concentrations, which was necessary for toxicological and biogeochemical evaluation of the contaminated ground water. POCl analysis was a complimentary method for use with PT-GC/MS analysis for identifying samples with VCH concentrations below the detection limit or with high VCH concentrations that require dilution. Use of POCl as a complimentary monitoring method for PT-GC/MS can result in more efficient use of analytical resources.

  9. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.

    Science.gov (United States)

    Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y

    2014-06-01

    In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination.

  10. Solubilities of Chlorine in CaO-SiO2-Al2O3-MgO Slags: Correlation Between Sulfide and Chloride Capacities

    Science.gov (United States)

    Okeda, M.; Hasegawa, M.; Iwase, M.

    2011-04-01

    To derive a correlation between sulfide and chloride capacities through our own systematic experimental studies by using a gas equilibrium technique involving Ar-H2-H2O-HCl gas mixtures, the solubilities of chlorine were determined for CaO-SiO2-MgO-Al2O3 slags at temperatures between 1673 K and 1823 K (1400 °C and 1550 °C). As a formula to correlate sulfide and chloride capacities, the following equation that is the function of temperature only was obtainable; 2log C_{{Cl}} - log C_{{S}} = - 64.4 + {82,890/{T({{K})}}} ± 0.75 whereas chloride capacities were formulated as the function of temperature and optical basicity in the following equation: 2log C_{{Cl}} = ( {43.6 - {54,600/{T({{K})}}}} )Uplambda + ( { - 39.2 + {60,200/{T({{K})}}}} ) ± 0.5{.}

  11. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  12. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    Energy Technology Data Exchange (ETDEWEB)

    Shen Shaobo, E-mail: shaoboshen@metall.ustb.edu.cn [Key Laboratory of Ecological and Recycling Metallurgy, Ministry of Education of China, Beijing 100083 (China); Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Pan Tonglin; Liu Xinqiang; Yuan Lei [Key Laboratory of Ecological and Recycling Metallurgy, Ministry of Education of China, Beijing 100083 (China); Wang Jinchao [Key Laboratory of Ecological and Recycling Metallurgy, Ministry of Education of China, Beijing 100083 (China); Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang Yongjian; Guo Zhanchen [Key Laboratory of Ecological and Recycling Metallurgy, Ministry of Education of China, Beijing 100083 (China)

    2010-07-15

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K{sub d}) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q{sub max} based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  13. The evaluation of the pyrochemistry for the treatment of Gen IV nuclear fuels Inert matrix chlorination studies in the gas phase or molten chloride salts

    Science.gov (United States)

    Bourg, S.; Péron, F.; Lacquement, J.

    2007-01-01

    The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).

  14. Fluorescent probes based on side-chain chlorinated benzo[a]phenoxazinium chlorides: Studies of interaction with DNA

    Science.gov (United States)

    Raju, B. Rama; Gonçalves, M. Sameiro T.; Coutinho, Paulo J. G.

    2017-01-01

    The interaction of DNA with six water soluble benzo[a]phenoxazinium chlorides mono- or di-substituted with 3-chloropropyl groups at the O and N of 2- and 9-positions, along with methyl, hydroxyl and amine terminal groups at 5-positions, was investigated by photophysical techniques. The results indicated that almost all compounds intercalated in DNA base pairs at phosphate to dye ratio higher than 5. At lower values of this ratio, electrostatic binding mode with DNA was observed. Groove binding was detected mainly for the benzo[a]phenoxazinium dye with NH2·HBr terminal. The set of six benzo[a]phenoxazinium chlorides proved successful to label the migrating DNA in agarose gel electrophoresis assays. These finding proves the ability of these benzo[a]phenoxazinium dyes to strongly interact with DNA.

  15. Quantum chemical study of chlorine-dissociation of oxalyl chloride (ClCO)2→2Cl + 2CO

    Institute of Scientific and Technical Information of China (English)

    DAI; Nianzhen; (戴年珍); LI; Zonghe; (李宗和)

    2003-01-01

    The multi-bond dissociation dynamics of oxalyl chloride ((ClCO)2) is investigated by ab initio calculation. Dissociation of C-Cl bond of oxalyl chloride in the ground state is of barrierless. After the absorption of a photon, (ClCO)2 is excited to the first excited state and one of its C-Cl bonds is broken toyield Cl and ClCOCO* free radicals. In addition, ClCOCO* with high energy is prone to release energy (Q), and to turn into ClCOCO in the ground state. The energy (Q) is adequate for ClCOCO to break down into ClCO and CO, and even for ClCO into Cl and CO. The result is consistent with the experimental data that Kong reported.

  16. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  17. Production process and market situation of chlorinated polyvinyl chloride%氯化聚氯乙烯的生产工艺与市场现状

    Institute of Scientific and Technical Information of China (English)

    王林祥; 唐霞

    2001-01-01

    The application,production process and market situation ofchlorinated polyvinyl chloride are introduced, If CPVC can substitute 1 percent of PVC consumed at home, its domestic market demands will be up to 20 000 t/a. So it has bright market prospets. Because CPVC is a kind of product cosuming chlorine and its production can make good use of exiting production equipment of PVC, this kind of product is worth developing in domestic chlor-alkali plants.%介绍了氯化聚氯乙烯的国内外应用、生产工艺、市场现状,国内使用的PVC若有1%用CPVC代替,国内CPVC需求量将达到2万t/a,因此氯化聚氯乙烯具有广阔的市场前景。氯化聚氯乙烯是氯碱厂吃氯的下游产品,生产CPVC既可充分利用现有的PVC生产装置,又可充分发挥烧碱装置的生产能力,因此氯化聚氯乙烯是国内氯碱厂可以大力开发的产品。

  18. Leaching of copper concentrates with high arsenic content in chlorine-chloride media; Lixiviacion de concentrados de cobre con alto contenido de arsenico en medio cloro-cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-07-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs.

  19. The chlorination of cyclopentanone and cyclohexanone

    NARCIS (Netherlands)

    Maatman, Hendrik

    1980-01-01

    In this thesis the results of an investigation of the chlorination of cyclopentanone and cyclohexanone in the solvent carbontetrachloride and catalyzed by hydrogen chloride are described. ... Zie: Summary

  20. Strontium mono-chloride — A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Lopez, Alfredo H.D.; Gois, Jefferson S. de; Caramori, Giovanni F. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Borges, Daniel L.G.; Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry. - Highlights: • The spectrum of the SrCl molecule was calculated on a theoretical basis and found very close to the predicted wavelength. • It is the first time that the spectrum of the SrCl molecule is described and used analytically for the determination of Cl. • No spectral interferences were observed as the

  1. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  2. A DFT study of the interaction between large PAHs and atomic chlorine or hydrogen chloride molecule: Toward a modelling of the influence of chlorinated species on the trapping of water by soot

    Science.gov (United States)

    Garcia-Fernandez, C.; Radola, B.; Martin-Gondre, L.; Picaud, S.; Rayez, M. T.; Rayez, J. C.; Ouf, F. X.; Rubayo-Soneira, J.

    2017-02-01

    First-principle calculations have been performed to characterize the interaction of chlorinated species (HCl and Cl) with large polycyclic aromatic hydrocarbon (PAH) molecules and radicals. Whereas the characterization of the interaction process on the face of the PAH molecules requires taking into account long-range dispersion interactions in the calculations, trapping at the edge of PAH radicals involves stronger interactions that lead to the dissociation of the HCl molecule. Then, the first steps of water adsorption on the corresponding chlorinated species has been characterized, showing that chlorine may act as an efficient nucleation center for water molecules on such aromatic systems mimicking part of the carbonaceous surfaces that are likely present in soot. These results represent a first but necessary step for a better understanding of soot behavior in industrial or domestic fire situations.

  3. Environmental factors regulating soil organic matter chlorination

    Science.gov (United States)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  4. Chlorine Salts at the Phoenix Landing Site

    Science.gov (United States)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  5. Determination of water movement in the unsaturated zone at Yucca Mountain using chloride, bromide, and chlorine isotopes as environmental tracers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-31

    This report, prepared by Hydro Geo Chem staff for Los Alamos National Laboratory, summarizes work conducted by the company under Subcontract 9-XG1-N3993-1. The ultimate objective of this work is to characterize the movement of subsurface water in the vicinity of Yucca Mountain, Nevada. Data produced under this contract is to be used by the US Department of Energy in its Yucca Mountain Site Characterization Project (YMP) to help determine hydrologic flows that may affect the performance of a potential nuclear waste repository. The data may be used in the licensing proceedings, and certain quality assurance procedures have thus been required. The work has focussed on measuring the distribution of environmental tracers-chlorine-36, chlorine, and bromine-and on evaluating the depth to which these conservative solutes have percolated in the unsaturated zone at Yucca Mountain. The following discussion summarizes progress made on the tasks outlined in the original Scope of Work. Details of this work and all data acquired by Hydro Geo Chem for this subcontract have been systematically organized in logbooks and laboratory notebooks. These documents have been structured to make it easy to trace the analytical history of a sample, from time of receipt to the final analytical results.

  6. 氯化银浊度法测定铜电解液中氯离子%Determination of Chlorine Ion in Copper Electrolyte Using Chloride Turbidimetric Method

    Institute of Scientific and Technical Information of China (English)

    巫来富

    2012-01-01

    在丙酮存在的条件下,铜电解液中的氯离子与硝酸银反应,形成氯化银乳浊液,用铜电解液的原液(即实验中铜电解液原液没有加硝酸银的试液)作参比,于分光光度计500nm处测定其吸光度,从而得出铜电解液中氯离子的含量.%In the condition of Acetone existence,Chloride ion in Copper electrolyte reacted with Silver nitrate,forming the Silver Chloride emulsion.And then we used the initial copper electrolyte solution(i.e.,copper electrolyte solution without the addition of silver nitrate solution) as reference to determine its absorbance at 500nm in spectrophotometer.Finally,we got the content of Chloride ion in Copper electrolyte.

  7. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  8. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study.

    Science.gov (United States)

    Han, You; Sun, Mengxia; Li, Wei; Zhang, Jinli

    2015-03-28

    The catalytic mechanism of Ru-based catalysts in the acetylene hydrochlorination reaction has been investigated via the density functional theory (DFT) method. To study the effect of the chlorine coordination number on the catalytic mechanism, Ru3Cl9, Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 clusters were chosen as the catalytic models. Our results show that the energy barrier for acetylene hydrochlorination on Ru3Cl9 was as high as 1.51 eV at 458 K. When the chlorine coordination number decreased, the energy barriers on Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 were 1.29, 0.89, 1.01 and 1.42 eV, respectively. On Ru3Cl9, the H and Cl atoms of HCl were simultaneously added to C2H2 to form C2H3Cl, while the reaction was divided into two steps on Ru3Cl7, Ru3Cl3 and Ru3 clusters. The first step was the addition of H atom of HCl to C2H2 to form C2H3˙, and the second step was the addition of Cl atom to C2H3˙ to form C2H3Cl. The step involving the addition of Cl was the rate-controlling step during the whole reaction. On Ru5Cl7 cluster, there was an additional step before the steps involving the addition of H and Cl: the transfer of H atom from HCl to Ru atom. This step was the rate-controlling step during the reaction of acetylene hydrochlorination on Ru5Cl7 and its energy barrier was the lowest among all the above-mentioned catalytic models. Therefore, the Ru5Cl7 cluster played the most predominant role in acetylene hydrochlorination with the largest reaction rate constant kTST of 10(3).

  9. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  10. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable.

  11. Microbial reductive dehalogenation of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  12. Halogenase-Inspired Oxidative Chlorination Using Flavin Photocatalysis.

    Science.gov (United States)

    Hering, Thea; Mühldorf, Bernd; Wolf, Robert; König, Burkhard

    2016-04-18

    Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal-catalyzed cross-couplings. Nature chlorinates with chloride anions, FAD-dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket.

  13. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  14. FIELD AND LABORATORY EVIDENCE FOR INTRINSIC BIODEGRADATION OF VINYL CHLORIDE CONTAMINATION IN A FE(III)-REDUCING AQUIFER

    Science.gov (United States)

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biod...

  15. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by alkaline chlorides as complex former

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yanhui [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)]. E-mail: sunyanhui0102@163.com; He Peng [Department of Ecology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Huani [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)

    2007-08-30

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by the vapor complexes KLnCl{sub 4} and NaLnCl{sub 4} (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl{sub 3} is in the increasing order ScCl{sub 3} < YCl{sub 3} < LaCl{sub 3}, and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl{sub 3} > ScCl{sub 3}, and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl{sub 3} and GdCl{sub 3} mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl{sub 3}, CeCl{sub 3}, YbCl{sub 3} and LuCl{sub 3}, while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl{sub 3} and EuCl{sub 3}. More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl{sub 3} as complex former.

  16. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  17. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  18. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  19. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    Science.gov (United States)

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  20. Plasma assisted synthesis of chlorinated poly vinyl chloride (CPVC) using a gas-solid contact method%低温等离子体氯化聚氯乙烯(CPVC)气固相合成技术

    Institute of Scientific and Technical Information of China (English)

    卢巍; 杨千里; 冯雪兰; 曹腾飞; 颜彬航; 程易

    2012-01-01

    提出了一种采用低温等离子体快速引发PVC氯化的气固相氯化聚氯乙烯(CPVC)合成方法。通过等离子体振动床在线氯化分析方法,探究了等离子体的高效引发氯化效率。通过拉曼光谱、固相NMR、GPC等典型表征手段,证明产品CPVC具有较为理想的微观结构。%This work proposes a novel gas-solid PVC chlorination method using cold plasma as the initiator. At the same time, the efficiency of plasma initiation is explored by online analysis of chlorination process in plasma vibrated bed and the feasibility of process decoupling method is validated. Subsequently, we use typical analysis method such as Raman spectral analysis, Solid NMR and GPC to prove that CPVC products have regular microstructure.

  1. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  2. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  3. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  4. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    -forming elements were torrefied/pyrolyzed in the temperature range of 150-500 degrees C. The relative release of chlorine and sulfur was calculated based on mass balance and analysis of the biomass before and after torrefaction. In selected cases, measurement of methyl chloride (CH3Cl) in the gas from straw...

  5. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  6. Prompt gamma analysis of chlorine in concrete for corrosion study.

    Science.gov (United States)

    Naqvi, A A; Nagadi, M M; Al-Amoudi, O S B

    2006-02-01

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine gamma-rays and calcium gamma-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine gamma-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  7. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  8. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  9. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  10. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    Science.gov (United States)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  11. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways.

    Science.gov (United States)

    Wu, Zihao; Fang, Jingyun; Xiang, Yingying; Shang, Chii; Li, Xuchun; Meng, Fangang; Yang, Xin

    2016-11-01

    The UV/chlorine process, which forms several reactive species including hydroxyl radicals (HO) and reactive chlorine species (RCS) to degrade contaminants, is being considered to be an advanced oxidation process. This study investigated the kinetics and mechanism of the degradation of trimethoprim (TMP) by the UV/chlorine process. The degradation of TMP was much faster by UV/chlorine compared to UV/H2O2. The degradation followed pseudo first-order kinetics, and the rate constant (k') increased linearly as the chlorine dosage increased from 20 μM to 200 μM and decreased as pH rose from 6.1 to 8.8. k' was not affected by chloride and bicarbonate but decreased by 50% in the presence of 1-mg/L NOM. The contribution of RCS, including Cl, Cl2(-) and ClO, to the degradation removal rate was much higher than that of HO and increased from 67% to 87% with increasing pH from 6.1 to 8.8 under the experimental condition. The increasing contribution of RCS to the degradation with increasing pH was attributable to the increase in the ClO concentration. Kinetic modeling and radical scavenging tests verified that ClO mainly attacked the trimethoxybenzyl moiety of TMP. RCS reacted with TMP much faster than HOCl/OCl(-) to form chlorinated products (i.e., m/z 325) and chlorinated disinfection byproducts such as chloroform, chloral hydrate, dichloroacetonitrile and trichloronitromethane. The hydroxylation and demethylation of m/z 325 driven by HO generated m/z 327 and m/z 341. Meanwhile, reactions of m/z 325 with HO and RCS/HOCl/OCl(-) generated dichlorinated and hydroxylated products (i.e., m/z 377). All the chlorinated products could be further depleted to produce products with less degree of halogenation in the UV/chlorine process, compared to dark chlorination. The acute toxicity to Vibrio fischeri by UV/chlorine was lower than chlorination at the same removal rate of TMP. This study demonstrated the importance of RCS, in particular, ClO, in the degradation of micropollutants

  12. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%.

  13. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  14. Chloride transference during electrochemical chloride extraction process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical titration method and lab-made chloride probes were jointly adopted to investigate the effects of water-to-cement (W/C) ratio and the impressed current density on chloride transport for cement-based materials during electrochemical chloride extraction (ECE) process.The dissolution of bound chlorides and the effect of current density on dissolution were analyzed.The variations of chloride concentration at different depths and the chloride transference process were monitored.Test results show that W/C ratios adopted have slight influence on chloride extraction,while chloride extraction efficiency is mainly determined by the impressed current density.During ECE process a portion of bound chloride ions dissolved and the amount of bound chlorides released is directly proportional to current density.

  15. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    OpenAIRE

    Taylor, Robert H; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains wer...

  16. Methyl chloride production from methane over lanthanum-based catalysts.

    Science.gov (United States)

    Podkolzin, Simon G; Stangland, Eric E; Jones, Mark E; Peringer, Elvira; Lercher, Johannes A

    2007-03-07

    The mechanism of selective production of methyl chloride by a reaction of methane, hydrogen chloride, and oxygen over lanthanum-based catalysts was studied. The results suggest that methane activation proceeds through oxidation-reduction reactions on the surface of catalysts with an irreducible metal-lanthanum, which is significantly different from known mechanisms for oxidative chlorination. Activity and spectroscopic measurements show that lanthanum oxychloride (LaOCl), lanthanum trichloride (LaCl3), and lanthanum phases with an intermediate extent of chlorination are all active for this reaction. The catalyst is stable with no noticeable deactivation after three weeks of testing. Kinetic measurements suggest that methane activation proceeds on the surface of the catalyst. Flow and pulse experiments indicate that the presence of hydrogen chloride is not required for activity, and its role appears to be limited to maintaining the extent of catalyst chlorination. In contrast, the presence of gas-phase oxygen is essential for catalytic activity. Density-functional theory calculations suggest that oxygen can activate surface chlorine species by adsorbing dissociatively and forming OCl surface species, which can serve as an active site for methane activation. The proposed mechanism, thus, involves changing of the formal oxidation state of surface chlorine from -1 to +1 without any changes in the oxidation state of the underlying metal.

  17. Reaction products of chlorine dioxide.

    Science.gov (United States)

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  18. Methyl chloride and other chlorocarbons in polluted air during INDOEX

    NARCIS (Netherlands)

    Scheeren, HA; Lelieveld, J; de Gouw, JA; van der Veen, C; Fischer, H

    2002-01-01

    [1] Methyl chloride (CH3Cl) is the most abundant, natural, chlorine-containing gas in the atmosphere, with oceans and biomass burning as major identified sources. Estimates of global emissions suffer from large uncertainties, mostly for the tropics, partly due to a lack of measurements. We present a

  19. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts.

    Science.gov (United States)

    Zhang, Xiangru; Minear, Roger A; Guo, Yingbo; Hwang, Cordelia J; Barrett, Sylvia E; Ikeda, Kazuhiro; Shimizu, Yoshihisa; Matsui, Saburo

    2004-11-01

    Identification of chlorinated drinking water disinfection byproducts (DBPs) was investigated by using electrospray ionization-mass spectrometry/mass spectrometry (ESI-MS/MS). Chlorine-containing compounds were found to form chloride ion fragments by MS/MS, which can be used as a 'fingerprint' for chlorinated DBPs. Instrumental parameters that affect the formation of chloride ions by ESI-MS/MS were examined, and appropriate conditions for use in finding specific structural information were evaluated. The results show that maximizing the formation of chloride ions by MS/MS required a relatively high collision energy and collision gas pressure; also, limiting the scan range to m/z 30-40 allowed improved sensitivity for detection; but obtaining structural information required the use of lower collision energies. The conditions obtained were demonstrated to be effective in identifying chlorinated DBPs in a standard sample with relatively low concentrations of each component and in a chlorinated humic substance sample. Sample pretreatment techniques including ultrafiltration and size exclusion chromatography appeared to be helpful for identifying highly polar or high molecular weight chlorine-containing DBPs by ESI-MS/MS.

  20. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  1. Electrochemical cell design for the impedance studies of chlorine evolution at DSA anodes

    Science.gov (United States)

    Silva, J. F.; Dias, A. C.; Araújo, P.; Brett, C. M. A.; Mendes, A.

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA®) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm-3 NaCl) and high current densities (up to 140 mA cm-2) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  2. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    Science.gov (United States)

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  3. Chlorine dioxide and hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.P. (Dartmouth Coll., Hanover, NH (USA). Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  4. Tribenzylammonium chloride

    Directory of Open Access Journals (Sweden)

    Waly Diallo

    2014-05-01

    Full Text Available Single crystals of the title salt, C21H21NH+·Cl−, were isolated as a side product from the reaction involving [(C6H5CH23NH]2[HPO4] and Sn(CH33Cl in ethanol. Both the cation and the anion are situated on a threefold rotation axis. The central N atom in the cation has a slightly distorted tetrahedral environment, with angles ranging from 107.7 to 111.16 (10°. In the crystal, the tribenzylammonium cations and chloride anions are linked through N—H...Cl and C—H...Cl hydrogen bonds, leading to the formation of infinite chains along [001]. The crystal studied was a merohedral twin.

  5. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  6. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  7. In-depth analysis of chloride treatments for thin-film CdTe solar cells

    OpenAIRE

    Major, J.D.; Al Turkestani, M.; Bowen, L; Brossard, M.; Li, C; Lagoudakis, P.; S. J. Pennycook; Phillips, L. J.; Treharne, R. E.; Durose, K.

    2016-01-01

    CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated th...

  8. Natural Chlorinated Auxins Labeled with Radioactive Chloride in Immature Seeds

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1975-01-01

    Immature seeds were harvested from 15 species grown in perlite/vermiculite containing 36Cl-, but with very low levels of cold Cl-. Autoradiograms of one- and two-dimensional thin layer chromatograms of butanol extracts of lyophilized seeds indicated several radioactive compounds besides the 36Cl-...

  9. Comparing polyaluminum chloride and ferric chloride for antimony removal.

    Science.gov (United States)

    Kang, Meea; Kamei, Tasuku; Magara, Yasumoto

    2003-10-01

    Antimony has been one of the contaminants required to be regulated, however, only limited information has been collected to date regarding antimony removal by polyaluminium chloride (PACl) and ferric chloride (FC). Accordingly, the possible use of coagulation by PACl or FC for antimony removal was investigated. Jar tests were used to determine the effects of solution pH, coagulant dosage, and pre-chlorination on the removal of various antimony species. Although high-efficiency antimony removal by aluminum coagulation has been expected because antimony is similar to arsenic in that both antimony and arsenic are a kind of metalloid in group V of the periodic chart, this study indicated: (1) removal density (arsenic or antimony removed per mg coagulant) for antimony by PACl was about one forty-fifth as low as observed for As(V); (2) although the removal of both Sb(III) and Sb(V) by coagulation with FC was much higher than that of PACl, a high coagulant dose of 10.5mg of FeL(-1) at optimal pH of 5.0 was still not sufficient to meet the standard antimony level of 2 microg as SbL(-1) for drinking water when around 6 microg as SbL(-1) were initially present. Consequently, investigation of a more appropriate treatment process is necessary to develop economical Sb reduction; (3) although previous studies concluded that As(V) is more effectively removed than As(III), this study showed that the removal of Sb(III) by coagulation with FC was much more pronounced than that of Sb(V); (4) oxidation of Sb(III) with chlorine decreased the ability of FC to remove antimony. Accordingly, natural water containing Sb(III) under anoxic condition should be coagulated without pre-oxidation.

  10. Molecular dynamics study of the Cu-water interface in the presence of chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Mazzolo, A.; Halley, J.W. [Univ. of Minnesota, Minneapolis, MN (United States). School of Physics and Astronomy; Price, D.L. [Univ. of Memphis, TN (United States). Dept. of Physics

    1998-05-01

    As part of a program to model and explain the sensitivity of electron transfer reactions at metal interfaces to trace amounts of chloride in aqueous solutions, preliminary results on a direct dynamics model for the adsorption of chloride ion on a copper 100 surface in water are reported. The model predicts the charge state of the chlorine in water and vacuum correctly, but gives a solvation energy which is too large. Possible reasons for this are discussed.

  11. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  12. Natural chlorine and fluorine in the atmosphere, water and precipitation

    Science.gov (United States)

    Friend, James P.

    1990-01-01

    The geochemical cycles of chlorine and fluorine are surveyed and summarized as framework for the understanding of the global natural abundances of these species in the atmosphere, water, and precipitation. In the cycles the fluxes into and out of the atmosphere can be balanced within the limits of our knowledge of the natural sources and sinks. Sea salt from the ocean surfaces represent the predominant portion of the source of chlorine. It is also an important source of atmospheric fluorine, but volcanoes are likely to be more important fluorine sources. Dry deposition of sea salt returns about 85 percent of the salt released there. Precipitation removes the remainder. Most of the sea salt materials are considered to be cyclic, moving through sea spray over the oceans and either directly back to the oceans or deposited dry and in precipitation on land, whence it runs off into rivers and streams and returns to the oceans. Most of the natural chlorine in the atmosphere is in the form of particulate chloride ion with lesser amounts as gaseous inorganic chloride and methyl chloride vapor. Fluorine is emitted from volcanoes primarily as HF. It is possible that HF may be released directly form the ocean surface but this has not been confirmed by observation. HCl and most likely HF gases are released into the atmosphere by sea salt aerosols. The mechanism for the release is likely to be the provision of protons from the so-called excess sulfate and HNO3. Sea salt aerosol contains fluorine as F(-), MgF(+), CaF(+), and NaF. The concentrations of the various species of chlorine and fluorine that characterize primarily natural, unpolluted atmospheres are summarized in tables and are discussed in relation to their fluxes through the geochemical cycle.

  13. Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems.

    Science.gov (United States)

    Walter, Ryan K; Lin, Po-Hsun; Edwards, Marc; Richardson, Ruth E

    2011-04-01

    Plastic piping made of polyvinyl chloride (PVC), and chlorinated PVC (CPVC), is being increasingly used for drinking water distribution lines. Given the formulation of the material from vinyl chloride (VC), there has been concern that the VC (a confirmed human carcinogen) can leach from the plastic piping into drinking water. PVC/CPVC pipe reactors in the laboratory and tap samples collected from consumers homes (n = 15) revealed vinyl chloride accumulation in the tens of ng/L range after a few days and hundreds of ng/L after two years. While these levels did not exceed the EPA's maximum contaminant level (MCL) of 2 μg/L, many readings that simulated stagnation times in homes (overnight) exceeded the MCL-Goal of 0 μg/L. Considerable differences in VC levels were seen across different manufacturers, while aging and biofilm effects were generally small. Preliminary evidence suggests that VC may accumulate not only via chemical leaching from the plastic piping, but also as a disinfection byproduct (DBP) via a chlorine-dependent reaction. This is supported from studies with CPVC pipe reactors where chlorinated reactors accumulated more VC than dechlorinated reactors, copper pipe reactors that accumulated VC in chlorinated reactors and not in dechlorinated reactors, and field samples where VC levels were the same before and after flushing the lines where PVC/CPVC fittings were contributing. Free chlorine residual tests suggest that VC may be formed as a secondary, rather than primary, DBP. Further research and additional studies need to be conducted in order to elucidate reaction mechanisms and tease apart relative contributions of VC accumulation from PVC/CPVC piping and chlorine-dependent reactions.

  14. A comparison of chlorinated organic material produced by chlorine and chlorine dioxide bleaching

    Energy Technology Data Exchange (ETDEWEB)

    McKaque, A.B.; Reeve, D.W. [Univ. of Toronto (Canada)

    1995-12-31

    Chlorine and chlorine dioxide react differently with pulp during bleaching and produce different types of organic by-products. The main differences are the large reduction in the amount of AOX (adsorbable organic halogen) in the effluent and EOX (extractable organic halogen) in the pulp. This talk reviews the differences in the amounts and types of chlorinated organic by-products produced by the two different bleaching agents.

  15. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    Science.gov (United States)

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  16. Photochemical reactions among formaldehyde, chlorine, and nitrogen dioxide in air

    Energy Technology Data Exchange (ETDEWEB)

    Hanst, P.L.; Gay, B.W. Jr.

    1977-11-01

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared technique by use of folded light paths up to 504 m. With an excess of NO/sub 2/ over Cl/sub 2/, the reaction products included O/sub 3/, CO, HNO/sub 3/,N/sub 2/O/sub 5/, HCl, and nitryl chloride (ClNO/sub 2/). When chlorine exceeded NO/sub 2/, the principal product was peroxy nitric acid (HOONO/sub 2/). Peroxy formyl nitrate, nitrous acid, and chlorine nitrate were not seen. The nitryl chloride was stable even with the ultraviolet lights on. The peroxy nitric acid disappeared from the cell with a half-life of about 10 min. Formyl radicals (HCO), unlike acetyl radicals, did not combine with O/sub 2/ and NO/sub 2/ by addition. HCO reacted with O/sub 2/ to yield CO and HO/sub 2/. The HO/sub 2/ will then add to NO/sub 2/ to yield HOONO/sub 2/. If NO is present, the HO/sub 2/ will prefer to react with it, oxidizing it to NO/sub 2/.

  17. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  18. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10/sup -5/ %, of chlorine- 1x10/sup -4/% in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10/sup -4/ - nx10/sup -3/ mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine.

  19. Inactivation of Chironomid Larvae with Chlorine Dioxide and Chlorine

    Institute of Scientific and Technical Information of China (English)

    SUN Xin-bin; CUI Fu-yi

    2008-01-01

    Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process.The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some boundary values in practice were determined under conditions of various oxidant dosage,organic precursor concentration and pH value.In addition,removal effect of differmt pre-oxidation combined with coagulation process on Chironomid larvae in law water was evaluated.It was found that chlorine dioxide possessed better inactivation effect than chlorine.Complete inactivation of Chironomid larvae in raw water was resulted by 1.5mg/L of chlorine dioxide with 30min of contact time. Additionally,the ocgallic precursor concentration,pH value had little influence on the inactivation effect.The coagulation jar test showed that Chironomid larvae in the raw water could be completely ronxwed by chlorine dioxide pre-oxidation in combination with the omgulation process at chlorine dioxide dosage of 0.8 mg/L.

  20. Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  1. Sliding of poly(vinyl chloride) on metals studied by Auger electron spectroscopy

    Science.gov (United States)

    Pepper, S. V.

    1974-01-01

    The sliding of polyvinyl chloride on nickel, iron and S-Monel has been studied by Auger electron spectroscopy. Polymer was not transferred to the metals, rather shear appeared to take place at the interface. The metal was progressively chlorinated as the polymer made multiple passes on the surface. The thickness of this chlorine film was the order of one atomic layer. Electron-induced desorption studies indicate that the chlorine is chemisorbed to the metal. These results are interpreted as evidence for mechanically induced and/or thermal degradation of the polymer during sliding. Degradation products of HCl and Cl2 which chemisorb to the metal are evolved near the interface.

  2. Gaseous, chlorine-free chlorine dioxide for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, G. [Miami Univ., Oxford, OH (United States); Rosenblatt, A. [CDG Technology Inc., New York, NY (United States)

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  3. In-depth analysis of chloride treatments for thin-film CdTe solar cells

    Science.gov (United States)

    Major, J. D.; Al Turkestani, M.; Bowen, L.; Brossard, M.; Li, C.; Lagoudakis, P.; Pennycook, S. J.; Phillips, L. J.; Treharne, R. E.; Durose, K.

    2016-10-01

    CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies.

  4. Improved method generates more chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R.W.; Kosinski, A.J.; Baker, R.J.

    1980-10-01

    The addition of acid can greatly improve the chlorine-chlorite process and enhance the use of chlorine dioxide as an alternative to chlorine for disinfection. The process is economical for use in taste and odor control, and for manganese, oxidation. The maximum yield is obtained using no excess chlorine, and the amount of unreacted sodium chlorite and chlorine in the product stream is reduced. (1 diagram, 4 graphs, 9 references)

  5. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B., E-mail: B.Maniscalco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); Abbas, A.; Bowers, J.W.; Kaminski, P.M.; Bass, K. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); West, G. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom)

    2015-05-01

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl{sub 2}) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl{sub 4}), cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}), hydrochloric acid (HCl) and zinc chloride (ZnCl{sub 2}). TeCl{sub 4} was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH{sub 3}CO{sub 2}){sub 2}) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl{sub 2} was employed as an alternative to CdCl{sub 2}. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl{sub 2}) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances.

  6. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  7. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  8. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  9. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    Science.gov (United States)

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine.

  10. Transformation of iopamidol during chlorination.

    Science.gov (United States)

    Wendel, Friedrich M; Lütke Eversloh, Christian; Machek, Edward J; Duirk, Stephen E; Plewa, Michael J; Richardson, Susan D; Ternes, Thomas A

    2014-11-01

    The transformation of the iodinated X-ray contrast media (ICM) iopamidol, iopromide, iohexol, iomeprol, and diatrizoate was examined in purified water over the pH range from 6.5 to 8.5 in the presence of sodium hypochlorite, monochloramine, and chlorine dioxide. In the presence of aqueous chlorine, only iopamidol was transformed. All other ICM did not show significant reactivity, regardless of the oxidant used. Chlorination of iopamidol followed a second order reaction, with an observed rate constant of up to 0.87 M(-1) s(-1) (±0.021 M(-1) s(-1)) at pH 8.5. The hypochlorite anion was identified to be the reactive chlorine species. Iodine was released during the transformation of iopamidol, and was mainly oxidized to iodate. Only a small percentage (less than 2% after 24 h) was transformed to known organic iodinated disinfection byproducts (DBPs) of low molecular weight. Some of the iodine was still present in high-molecular weight DBPs. The chemical structures of these DBPs were elucidated via MSn fragmentation and NMR. Side chain cleavage was observed as well as the exchange of iodine by chlorine. An overall transformation pathway was proposed for the degradation of iopamidol. CHO cell chronic cytotoxicity tests indicate that chlorination of iopamidol generates a toxic mixture of high molecular weight DBPs (LC50 332 ng/μL).

  11. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies.

  12. Non-destructive analysis of chlorine in fly ash cement concrete

    Science.gov (United States)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  13. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer

    Science.gov (United States)

    Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.

    1998-01-01

    Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.

  14. Bank security dye packs: synthesis, isolation, and characterization of chlorinated products of bleached 1-(methylamino)anthraquinone.

    Science.gov (United States)

    Egan, James M; Rickenbach, Michael; Mooney, Kim E; Palenik, Chris S; Golombeck, Rebecca; Mueller, Karl T

    2006-11-01

    Banknote evidence is often submitted after a suspect has attempted to disguise or remove red dye stain that has been released because of an anti-theft device that activates after banknotes have been unlawfully removed from bank premises. Three chlorinated compounds have been synthesized as forensic chemical standards to indicate bank security dye bleaching as a suspect's intentional method for masking a robbery involving dye pack release on banknotes. A novel, facile synthetic method to provide three chlorinated derivatives of 1-(methylamino)anthraquinone (MAAQ) is presented. The synthetic route involved Ultra Clorox bleach as the chlorine source, iron chloride as the catalyst, and MAAQ as the starting material and resulted in a three-component product mixture. Two mono-chlorinated isomers (2-chloro-1-(methylamino)anthraquinone and 4-chloro-1-(methylamino)anthraquinone) and one di-chlorinated compound (2,4-dichloro-1-(methylamino)anthraquinone) of the MAAQ parent molecule were detected by gas chromatography mass spectrometry (GC-MS), and subsequently isolated by liquid chromatography (LC) with postcolumn fraction collection. Although GC-MS is sensitive enough to detect all of the chlorinated products, it is not definitive enough to identify the structural isomers. Liquid-state nuclear magnetic resonance (NMR) spectroscopy was utilized to elucidate structurally the ortho- and para-mono-chlorinated isomers once enough material was properly isolated. A reaction mechanism involving iron is proposed to explain the presence of chlorinated MAAQ species on stolen banknotes after attempted bleaching.

  15. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  16. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    Science.gov (United States)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  17. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents the state-of-the art: an analytical model which describes chloride profiles in concrete as function of depth...... makes physical sense for the design engineer, i.e. the achieved chloride diffusion coefficients at 1 year and 100 years, D1 and D100 respectively, and the corresponding achieved chloride concentrations at the exposed concrete surface, C1 and C100. Data from field exposure supports the assumption of time...... dependent surface chloride concentrations and the diffusion coefficients. Model parameters for Portland cement concretes with and without silica fume and fly ash in marine atmospheric and submerged South Scandinavian environment are suggested in a companion paper based on 10 years field exposure data....

  18. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing.

    Science.gov (United States)

    Green, Jessie N; Kettle, Anthony J; Winterbourn, Christine C

    2014-12-01

    Neutrophils ingest and kill bacteria within phagocytic vacuoles. We investigated where they produce hypochlorous acid (HOCl) following phagocytosis by measuring conversion of protein tyrosine residues to 3-chlorotyrosine. We also examined how varying chloride availability affects the relationship between HOCl formation in the phagosome and bacterial killing. Phagosomal proteins, isolated following ingestion of opsonized magnetic beads, contained 11.4 Cl-Tyr per thousand tyrosine residues. This was 12 times higher than the level in proteins from the rest of the neutrophil and ~6 times higher than previously recorded for protein from ingested bacteria. These results indicate that HOCl production is largely localized to the phagosomes and a substantial proportion reacts with phagosomal protein before reaching the microbe. This will in part detoxify the oxidant but should also form chloramines which could contribute to the killing mechanism. Neutrophils were either suspended in chloride-free gluconate buffer or pretreated with formyl-Met-Leu-Phe, a procedure that has been reported to deplete intracellular chloride. These treatments, alone or in combination, decreased both chlorination in phagosomes and killing of Staphylococcus aureus by up to 50%. There was a strong positive correlation between the two effects. Killing was predominantly oxidant and myeloperoxidase dependent (88% inhibition by diphenylene iodonium and 78% by azide). These results imply that lowering the chloride concentration limits HOCl production and oxidative killing. They support a role for HOCl generation, rather than an alternative myeloperoxidase activity, in the killing process.

  19. Industrial metabolism of chlorine: a case study of a chlor-alkali industrial chain.

    Science.gov (United States)

    Han, Feng; Li, Wenfeng; Yu, Fei; Cui, Zhaojie

    2014-05-01

    Substance flow analysis (SFA) is applied to a case study of chlorine metabolism in a chlor-alkali industrial chain. A chain-level SFA model is constructed, and eight indices are proposed to analyze and evaluate the metabolic status of elemental chlorine. The primary objectives of this study are to identify low-efficiency links in production processes and to find ways to improve the operational performance of the industrial chain. Five-year in-depth data collection and analysis revealed that system production efficiency and source efficiency continued increasing since 2008, i.e., when the chain was first formed, at average annual growth rates of 21.01 % and 1.01 %, respectively. In 2011, 64.15 % of the total chlorine input was transformed into final products. That is, as high as 98.50 % of the chlorine inputs were utilized when other by-products were counted. Chlorine loss occurred mostly in the form of chloride ions in wastewater, and the system loss rate was 0.54 %. The metabolic efficiency of chlorine in this case was high, and the chain system had minimal impact on the environment. However, from the perspectives of processing depth and economic output, the case study of a chlor-alkali industrial chain still requires expansion.

  20. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...

  1. Ultraviolet absorptions of non-stoichiometric lead chloride PbCl2

    NARCIS (Netherlands)

    Vries, K.J. de; Santen, J.H. van

    1964-01-01

    Tempering evaporated lead chloride films in a nitrogen atmosphere without or with excess lead or chlorine results in extra absorption bands between 268 and 360 mμ and at about 253 mμ, and in a change of the existing absorption at 265.5 mμ (measured at liquid nitrogen temperature). These absorption a

  2. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  3. Understanding microwave vessel contamination by chloride species.

    Science.gov (United States)

    Recchia, Sandro; Spanu, Davide; Bianchi, Davide; Dossi, Carlo; Pozzi, Andrea; Monticelli, Damiano

    2016-10-01

    Microwaves are widely used to assist digestion, general sample treatment and synthesis. The use of aqua regia is extensively adopted for the closed vessel mineralization of samples prior to trace element detection, leading to the contamination of microwave vessels by chlorine containing species. The latter are entrapped in the polymeric matrix of the vessels, leading to memory effects that are difficult to remove, among which the risk of silver incomplete recoveries by removal of the sparingly soluble chloride is the predominant one. In the present paper, we determined by mass spectrometry that hydrogen chloride is the species entrapped in the polymeric matrix and responsible for vessel contamination. Moreover, several decontamination treatments were considered to assess their efficiency, demonstrating that several cleaning cycles with water, nitric acid or silver nitrate in nitric acid were inefficient in removing chloride contamination (contamination reduction around 90%). Better results (≈95% decrease) were achieved by a single decontamination step in alkaline environment (sodium hydroxide or ammonia). Finally, a thermal treatment in a common laboratory oven (i.e. without vacuum and ventilation) was tested: a one hour heating at 150°C leads to a 98.5% decontamination, a figure higher than the ones obtained by wet treatments which requires comparable time. The latter treatment is a major advancement with respect to existing treatments as it avoids the need of a vacuum oven for at least 17h as presently proposed in the literature.

  4. Isotopic evidence for quick freshening of magmatic chlorine in the Lesser Antilles arc volcanoes

    Science.gov (United States)

    Li, L.; Jendrzejewski, N.; Aubaud, C. P.; Bonifacie, M.; Crispi, O.; Dessert, C.; Agrinier, P.

    2012-12-01

    Despite numerous geophysical and geochemical monitoring techniques developed over the last 50 years to detect magma activities in volcanoes, it is still challenging to evaluate the state of magmatic activity during its decreasing phase (transitory quiet stage and/or final stage of the magma intrusion which may last for decades) for those infrequent, slow developing, and dangerous explosive eruptive arc volcanoes, attributed to the interaction between the magma and hydrothermal cells at shallow depths to produce complex phreato-magmatic events. Recent studies have implied that chloride in intrusion-induced thermal springs could be a potential sensitive indicator of shallow magma degassing. However, possible contamination from surface chlorine reservoirs, such as seawater, may overprint the magmatic signature and complicate the interpretation of field observation. Here, based on chlorine isotope examination of various water samples from two recently erupted volcanoes in the Lesser Antilles arc (Soufrière in Guadeloupe: phreatic eruption in1976-1977; Montagne Pelée in Martinique: pelean eruption in 1929-1932), we show that magmatic chlorine is isotopically distinct from surface chlorine (seawater, meteoric water, and ground water). A chlorine isotopic survey on thermal springs in Guadeloupe and Martinique indicate that the magmatic chlorine signature is still present in some of the thermal springs in Guadeloupe but completely disappeared in Martinique. This suggests that magmatic chlorine be rapidly flushed from hydrothermal system within < 30 to 80 years after the magmatic eruption. This enables chlorine isotopes to be a sensitive proxy to monitor shallow magmatic activities, particularly practicable at centennial scale.

  5. Enzymatic chlorination and bromination.

    Science.gov (United States)

    van Pée, Karl-Heinz

    2012-01-01

    Our knowledge about the enzymes catalyzing the incorporation of halide ions during the biosynthesis of halometabolites has increased tremendously during the last 15 years. Between 1960 and 1995, haloperoxidases were the only halogenating enzymes known. However, absolute proof for the connection of haloperoxidases to the biosynthesis of halometabolites is still missing. In 1997, FADH(2)-dependent halogenases were identified as the type of halogenating enzymes responsible for the incorporation of chloride and bromide atoms into aromatic and aliphatic compounds activated for electrophilic attack. FADH(2)-dependent halogenases are two-component systems consisting of a flavin reductase providing the FADH(2) required by the halogenase. Elucidation of the three-dimensional structure of FADH(2)-dependent halogenases led to the understanding of the reaction mechanism, which involves the formation of hypohalous acids. Unactivated carbon atoms were found to be halogenated by nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases. The reaction mechanism of this type of halogenase was shown to involve the formation of a substrate radical. These two types of halogenating enzymes, together with the much less common fluorinases, are the major types of halogenating enzymes. However, the existence of other types of halogenating enzymes, yet not detected, cannot be completely ruled out. Here, we describe the detection, purification, characterization, and reaction mechanisms of flavin-dependent halogenases and of nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases.

  6. Conversion of dechlorodauricumine into chlorinated alkaloids in Menispermum dauricum root culture.

    Science.gov (United States)

    Sugimoto, Yukihiro; Matsui, Miharu; Babiker, Hind A A

    2007-02-01

    (15)N-Labeled dechlorodauricumine and dechloroacutumine were isolated from Menispermum dauricum roots cultured in a chloride-deficient medium, in which nitrogen-containing macro-components K(14)NO(3) and ((14)NH(4))(2)SO(4) were replaced by K(15)NO(3) and ((15)NH(4))(2)SO(4), respectively. These (15)N-labeled substrates were supplied independently to the roots cultured in a chloride-enriched medium. LC-ESI-MS analysis of alkaloids extracted from the roots, harvested 5 and 10 days after administering the (15)N-labeled substrates, revealed that the (15)N derived from dechlorodauricumine was much more effectively incorporated into chlorinated alkaloids than that derived from dechloroacutumine. These findings suggest that dechlorodauricumine is the principal precursor of the chlorinated alkaloids produced by M. dauricum roots.

  7. Colorectal cancers and chlorinated water

    Institute of Scientific and Technical Information of China (English)

    Ahmed Mahmoud El-Tawil

    2016-01-01

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers.

  8. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    OpenAIRE

    Korich, D. G.; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactiv...

  9. Disinfectants: Chlorine and chlorine dioxide. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The bibliography contains citations concerning the antimicrobial properties of chlorine and chlorine dioxide. The use of chlorine for the inactivation of viruses, bacteria, and fungi in wastewater treatment plants is discussed, including the mode of action and factors influencing inactivation. The use of chlorine dioxide as an alternative to chlorine disinfection in swimming pools and water supplies, and possible adverse effects are also discussed. (Contains a minimum of 157 citations and includes a subject term index and title list.)

  10. Acute Respiratory Distress Syndrome Secondary to Inhalation of Chlorine Gas in Sheep

    Science.gov (United States)

    2006-05-01

    throughout the duration of the protocol. Maintenance intravenous (IV) fluids ( lactated Ringers solution, 0.9% sodium chloride, 5% dextrose) were given...27 and that in lower doses leads to reactive airway dysfunction syndrome (RADS).28 To date, systemic10,26,29 and inhaled steroids,26,30,31 nebulized ...budesonide reduces chlorine gas-induced acute lung injury. J Trauma. 2004;56:850–862. 32. Bosse GM. Nebulized sodium bicarbonate in the treatment of

  11. Photo-assisted electrochemical degradation of simulated textile effluent coupled with simultaneous chlorine photolysis.

    Science.gov (United States)

    de Mello Florêncio, Thaíla; de Araújo, Karla Santos; Antonelli, Raissa; de Toledo Fornazari, Ana Luiza; da Cunha, Paula Cordeiro Rodrigues; da Silva Bontempo, Letícia Helena; de Jesus Motheo, Artur; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2016-10-01

    The influence of chloride ion concentration during the photo-assisted electrochemical degradation of simulated textile effluent, using a commercial Ti/Ru0.3Ti0.7O2 anode, was evaluated. Initially, the effect of applied current and supporting electrolyte concentration on the conversion of chloride ions to form reactive chlorine species in 90 min of experiment was analyzed in order to determine the maximum production of reactive chlorine species. The optimum conditions encountered (1.5 A and 0.3 mol dm(-3) NaCl) were subsequently employed for the degradation of simulated textile effluent. The efficiency of the process was determined through the analysis of chemical oxygen demand (COD), total organic carbon (TOC), of the presence of organochlorine products and phytotoxicity. Photo-assisted electrochemical degradation was more efficient for COD and TOC removal than the electrochemical technique alone. With simultaneous UV irradiation, a reduced quantity of reactive chlorine was produced, indicating that photolysis of the chlorine species led to the formation of hydroxyl radicals. This fact turns a simple electrochemical process into an advanced oxidation process.

  12. Prompt gamma ray evaluation for chlorine analysis in blended cement concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Kalakada, Zameer; Al-Amoudi, O S B

    2014-12-01

    Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

  13. Chlorides behavior in raw fly ash washing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Fenfen, E-mail: zhu@hse.gcoe.kyoto-u.ac.jp [Department of Urban and Environmental Engineering, Graduate School of Engineering, Katsura Campus, Kyoto University, Nishikyo-ku, Kyoto 615-8540 (Japan); Takaoka, Masaki; Oshita, Kazuyuki [Department of Urban and Environmental Engineering, Graduate School of Engineering, Katsura Campus, Kyoto University, Nishikyo-ku, Kyoto 615-8540 (Japan); Kitajima, Yoshinori; Inada, Yasuhiro [High Energy Accelerator Research Organization (KEK), Institute of Material Structure Science (IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Morisawa, Shinsuke; Tsuno, Hiroshi [Department of Urban and Environmental Engineering, Graduate School of Engineering, Katsura Campus, Kyoto University, Nishikyo-ku, Kyoto 615-8540 (Japan)

    2010-06-15

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl{sub 2}, and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl{sub 2} decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al{sub 2}O{sub 3}.CaCl{sub 2}) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl{sub 2}. Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl{sub 2}.

  14. Cloreto isocianúrico e cloreto cianúrico: aspectos gerais e aplicações em síntese orgânica Isocyanuric chloride acid and cyanuric chloride: general aspects and applications in organic synthesis

    Directory of Open Access Journals (Sweden)

    Anna Claudia Cunha

    2006-06-01

    Full Text Available The aromatic six-membered heterocycles having three nitrogen atoms are denominated triazines. Among these heterocycles, isocyanuric chloride and cyanuric chloride are inexpensive and readily available 1,3,5-triazine derivatives, which have been attracting significant attention of organic chemists due to their different kinds of applications, which vary from pharmaceuticals to explosives. This short overview explores their uses in synthetic methods, as chlorinating and oxidating agents and some procedures for their preparation.

  15. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  16. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  17. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    Science.gov (United States)

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-11-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn.

  18. Heavy metal removal from MSS fly ash by thermal and chlorination treatments.

    Science.gov (United States)

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-11-25

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn.

  19. The roles of reactive species in micropollutant degradation in the UV/free chlorine system.

    Science.gov (United States)

    Fang, Jingyun; Fu, Yun; Shang, Chii

    2014-01-01

    The UV/free chlorine process forms reactive species such as hydroxyl radicals (HO(•)), chlorine atoms (Cl(•)), Cl2(•-), and O(•-). The specific roles of these reactive species in aqueous micropollutant degradation in the UV/chlorine process under different conditions were investigated using a steady-state kinetic model. Benzoic acid (BA) was chosen as the model micropollutant. The steady-state kinetic model developed fitted the experimental data well. The results showed that HO(•) and Cl(•) contributed substantially to BA degradation, while the roles of the other reactive species such as Cl2(•-) and O(•-) were negligible. The overall degradation rate of BA decreased as the pH increased from 6 to 9. In particular, the relative contributions of HO(•) and Cl(•) to the degradation changed from 34.7% and 65.3% respectively at pH 6 to 37.9% and 62% respectively at pH 9 under the conditions evaluated. Their relative contributions also changed slightly with variations in chlorine dosage, BA concentration and chloride concentration. The scavenging effect of natural organic matter (NOM) on Cl(•) was relatively small compared to that on HO(•), while bicarbonate preferentially reduced the contribution of Cl(•). This study is the first to demonstrate the contributions of different reactive species to the micropollutant degradation in the UV/chlorine system under environmentally relevant conditions.

  20. Volatile disinfection byproducts resulting from chlorination of uric acid: implications for swimming pools.

    Science.gov (United States)

    Lian, Lushi; E, Yue; Li, Jing; Blatchley, Ernest R

    2014-03-18

    Cyanogen chloride (CNCl) and trichloramine (NCl3) are important disinfection byproducts in chlorinated swimming pools. However, some unknowns exist regarding the precursors of their formation. In this study, uric acid is shown to be an efficient precursor to formation of CNCl and NCl3. The molar yields of CNCl and NCl3 were observed to be as high as 44% (pH = 6.0, chlorine/precursor molar ratio [Cl/P] = 6.4) and 108% (pH = 7.0, Cl/P = 30), respectively, both being strong functions of Cl/P, pH, and temperature. Analysis of swimming pool water samples, combined with the results of experiments involving chlorination of uric acid, and chlorination of body fluid analog mixtures, indicated that uric acid chlorination may account for a large fraction of CNCl formation in swimming pools. Moreover, given that uric acid introduction to pools is attributable to urination, a voluntary action for most swimmers, these findings indicate important benefits to pool water and air chemistry that could result from improved hygiene habits on the part of swimmers.

  1. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  2. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.

    Science.gov (United States)

    Guo, Zhanyong; Li, Qing; Wang, Gang; Dong, Fang; Zhou, Haoyuan; Zhang, Jing

    2014-01-01

    A group of novel inulin derivatives containing benzene or chlorinated benzene were synthesized by reaction of chloracetyl inulin (CAIL) with the Schiff bases of 4-amino-pyridine, including (2-pyridyl)acetyl inulin chloride (PAIL), 2-[4-(2-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2CPAIL), 2-[4-(4-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (4CPAIL), and 2-[4-(2,4-dichlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2,4DCPAIL). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro. Of all the synthesized chitosan derivatives, 2,4DCPAIL inhibited the growth of the tested phytopathogens with inhibitory indices of 67%, 47%, and 43% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak and Fusarium oxysporum (schl.) F.sp. niveum (F. oxysporum) respectively at 1.0 mg/mL. The results indicate that all the inulin derivatives have better antifungal activity than inulin, and the inhibitory index is affected by the chlorine atom grafted to the inulin derivatives.

  3. Use of chlorine kinetic isotope effects for evaluating ion pairing in nucleophilic displacements at saturated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Taylor, J.W.; Turnquist, C.R.

    1978-11-08

    Use of the Winstein scheme to describe ion pairing leads to the conclusion that chlorine kinetic isotope effects (KIE) are primarily responsive to processes involving the covalently bound chlorine and less indicative of reactions which occur after the formation of the initial ion pair. This conclusion has been tested by showing that the calculated equilibrium isotope effect (1.0057) and observed (1.0059/sub 6/ +- 0.0001/sub 1/) KIE are nearly identical when the solvolysis of p-methylbenzyl chloride is forced toward a limiting case with 97% trifluoroethanol as solvent. The reaction of p-phenoxybenzyl chloride showed similar behavior with an equilibrium KIE value of 1.0058/sub 4/ +- 0.0001/sub 1/. These results suggest that competing ion-pair and S/sub N/2 processes may be one factor contributing to Hammett plot curvature for these nucleophilic displacement reactions. Chloride KIE values for the reaction of n-butyl chloride with thiophenoxide anion, where ion pairing does not occur, show little variation with a wide variety of solvents. 3 tables.

  4. Reactions of aqueous chlorine and chlorine dioxide with model food compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fukayama, M.Y.; Tan, H.; Wheeler, W.B.; Wei, C.

    1986-11-01

    This presentation reviews published information concerning the reactions of chlorine gas (CL/sub 2/(g)), aqueous chlorine, and ClO/sub 2/ with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO/sub 2/. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO/sub 2/ with several food products, including flour and shrimp, have also been characterized. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully.

  5. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  6. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  7. Is chlorination one of the major pathways in the formation of polychlorinated naphthalenes (PCNs) in municipal solid waste combustion?

    Science.gov (United States)

    Ryu, Jae-Yong; Kim, Do-Hyong; Jang, Seong-Ho

    2013-03-01

    The chlorination patterns of unsubstituted naphthalene were studied using a laminar flow reactor with a 1 cm particle bed of 0.5% (mass) copper(II) chloride (CuCl2) mixed with silicon dioxide (SiO2), operated over a temperature range of 100 to 400 °C and at gas velocities of 2.7 and 0.32 cm/s. The polychlorinated naphthalene (PCN) yield increased until a temperature reached at 250 °C, where a peak yield of 3.07% (percent of naphthalene input, carbon basis) was observed. All PCN homologue groups, mono- through octa-chlorinated naphthalenes, were observed. To test the hypothesis that PCNs in combustion processes are formed via chlorination pathways, the PCN homologue and isomer patterns from the experiments were compared with those observed in municipal solid waste combustion (MSW) incinerators. PCN congeners with 1,4-substituents dominated formation in the naphthalene chlorination experiments, whereas 2,3-substituents were major congeners in both MSW combustion flue gas and fly ash samples. These results suggest that contrary to the hypothesis, chlorination is not a primary PCN formation route in either the flue gas or fly ash from MSW combustion. Even so, naphthalene chlorination pathways presented in this paper provide an improved means for evaluating PCN formation mechanisms in combustion processes.

  8. High resolution spectrophotometry for identification of chlorine dioxide in concentrated chlorine solutions.

    Science.gov (United States)

    Gauw, R D; Emmert, G L; Bubnis, B; Gordon, G

    1999-12-06

    Electrolyzed salt brine generators hold great promise for water disinfection in small communities and remote locations. Electrolysis cell liquors have been reported to contain chlorine, chlorine dioxide and ozone. High resolution spectrophotometry was used to observe the presence (or absence) of a unique spectral absorbance pattern present in solutions containing 1-2 mg/l chlorine dioxide.

  9. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon done on different tantalum parts to determine the amount of dissolved hydrogen.

  10. Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan : using B–Cl isotopes to interpret fluid sources

    NARCIS (Netherlands)

    Musashi, Masaaki; Oi, Takao; Kreulen, Rob

    2015-01-01

    We report chlorine stable isotopic compositions (δ37Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ2H and δ18O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780 m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical r

  11. Development of RuO2/TiO2 titanium anodes and a device for in situ active chlorine generation

    Directory of Open Access Journals (Sweden)

    Spasojević Miroslav D.

    2013-01-01

    Full Text Available Chlorine is used worldwide for water disinfection purposes. However, due to its toxicity the EU has imposed a set of standards that must be applied when transporting and storing chlorine. In Serbia, numerous studies have been conducted attempting to develop the technology for the generation of active chlorine disinfectant but with a non-toxic aqueous solution of sodium chloride as the raw material. This study provides an overview of the titanium anodes activated by thermally obtained solid solution of ruthenium and titanium oxide development. It also presents new findings on the effect of the temperature of thermal treatment, the composition, the thickness of an active coating on its microstructural properties, and consequently on the catalytic activity, ion selectivity, and corrosion stability during active chlorine generation through the electrolysis of dilute sodium chloride solutions at room temperature. The study also evaluates the effect of the kinetic and operational parameters of the electrochemical process of active chlorine generation on both current and energy efficiencies. The results obtained were used to determine optimal values of technological parameters of the production process. This comprehensive research resulted in the construction of different types of remote-controlled and fully automated active chlorine generating plants.

  12. Method of effective evaluation for examination of chloride ion in concrete

    Institute of Scientific and Technical Information of China (English)

    SUNG Wen-pei; CHEN Kuen-suan; LIN Hsue-chun

    2005-01-01

    The chloride ion contained in reinforced concrete seriously corrodes the steel surface and damages concrete, resulting in inferior reinforced concrete that strength seriously compromises the entire structure's safety. Consequently, the examination of chloride ions contained in reinforced concrete becomes an important part of a complete quality control procedure. To effectively check the concentration of chloride ions in concrete, the evaluation process should be accurate and precise. Laboratory data obtained using existing evaluation methods for the examination of chloride ion are not sufficiently objective to yield reliable results with accuracy and consistency for each sample. An evaluation algorithm with capability to define indices of precision degree (Ep)and accuracy degree (Ea) is presented in this paper. The authors established a statistically reliable index of unbiased estimators and equations to critically examine the laboratory methods' precision, accuracy degrees and application value for measuring chlorine ion concentration in reinforced concrete.

  13. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    Science.gov (United States)

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  14. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  15. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  16. The photoreactivity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, V. [Univ. of Colorado, Boulder, CO (United States); Simon, J.D. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-06-09

    Determining the detailed photoreactivity of radicals that are of importance in atmospheric processes requires information from both laboratory and field measurements and theoretical calculations. Laboratory experiments and quantum calculations have been used to develop a comprehensive understanding of the photoreactivity of chlorine dioxide (OClO). The photoreactivity is strongly dependent on the medium (gas phase, liquid solution, or cryogenic matrix). These data reveal details of the complex chemistry of OClO. The potential role of this radical in stratospheric ozone depletion is discussed in accord with these laboratory measurements. 53 refs., 4 figs.

  17. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    Energy Technology Data Exchange (ETDEWEB)

    Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.

  18. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    Science.gov (United States)

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water. PMID:2339894

  19. Mutagenic compounds from chlorination of humic substances

    Science.gov (United States)

    Holmbom, Bjarne

    Chlorination of natural humic substances, as well as of lignin, produces a myriad of non-chlorinated and chlorinated compounds. The identification of an important class of strongly mutagenic compounds is reviewed. The most important Ames mutagen in chlorinated drinking waters of various origin is the compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone ("MX"). This compound occurs at neutral pH in the acyclic form, i.e. in the form of Z-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid. Its E-isomer (E-MX) is present in chlorinated drinking waters at a similar concentration, but is less mutagenic in Ames test. Both oxidised and reduced forms of MX and E-MX are also present in chlorinated waters. The present knowledge of the chemistry and toxicology of these mutagens is examined. The formation and possible elimination of the chlorination mutagens is discussed. The need of understanding the mechanisms of formation of these mutagens from humic substances during drinking water chlorination is emphasized.

  20. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  1. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    Science.gov (United States)

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  2. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    Science.gov (United States)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  3. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  4. InCl{sub 3}/NaClO: a reagent for allylic chlorination of terminal olefins

    Energy Technology Data Exchange (ETDEWEB)

    Pisoni, Diego S.; Gamba, Douglas; Fonseca, Carlos V.; Costa, Jesse S. da; Petzhold, Cesar L.; Oliveira, Eduardo R. de; Ceschi, Marco A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: mceschi@iq.ufrgs.br

    2006-03-15

    Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of {beta}-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes. (author)

  5. Method of analysis for sulfur, chlorine and fluorine in inspection penetrants and others

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    The Japanese Society for Nondestructive Inspection established the standard of the method. In the method, a sample is burned in a sealed tube for burning using oxyhydrogen flame, the burned product is absorbed in a solution of hydroperoxide or water. The resulted sulfuric acid, hydrochloric acid and hydrofluoric acid are measured by spectrophotometry or turbidimetry (fluorophotometer). In the case of a sample which can not be burned with oxyhydrogen flame (mainly powder sample), a sample is subjected to acid treatment and then analysed. The following methods of analysis are utilized depending on the case. Sulfur is analysed by barium chloride-propyleneglycol turbidimetric analysis (transmission turbidimetry) for sulfur concentration of about 2 Wt. ppm or more, barium chloride-ethanol turbidimetric analysis (scattered light turbidimetry) for sulfur concentration of about 5 Wt. ppm or more, and barium chloride-ethanol turbidimetric analysis (visual turbidimetry) for sulfur concentration of about 20 Wt. ppm or more. Chlorine is analysed by absorptiometry for a sample with chlorine concentration of about 5 Wt. ppm or more. Fluorine is analysed by absorptiometry for a sample with fluorine concentration of about 1 Wt. ppm or more.

  6. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  7. Corrosion Study of Stainless Steels in Peracetic Acid Bleach Media With and Without Chloride and Chelant

    Directory of Open Access Journals (Sweden)

    Rohtash

    2014-12-01

    Full Text Available The paper industries are adopting non-chlorine containing chemicals e.g. peroxide, ozone, peracids etc. as alternate of chlorine based bleach chemicals e.g. chlorine and chlorine dioxide etc. with the aim of eco-friend atmospheres. Changeover to the new chemicals in the bleaching process is likely to affect the metallurgy of the existing bleach plants due to change in the corrosivity of the media. Accordingly, corrosion investigations were performed in a peracid namely peracetic acid to test the suitability of austenitic stainless steels 654SMO, 265SMO, 2205, 317L and 316L. The performance of above stainless steels was evaluated through long term immersion tests and Electrochemical polarization measurements in peracetic acid (PAA bleach media at pH value 4 maintaining concentration 0.2 % as active oxygen along with three chloride levels 0, 500 and 1000 ppm in pulp-free laboratory. To study the effect of corrosion inhibitors with extending limit of chloride in liquors, measurements were also made with two types of chelants- EDTA & MgSO4. The results showed that corrosivity of PAA reduced by addition of chelant while increased with concentration of Cl¯. The results also exhibited that EDTA is better inhibitor than MgSO4.

  8. Benzalkonium Chloride and Glaucoma

    OpenAIRE

    Rasmussen, Carol A.; Kaufman, Paul L.; Kiland, Julie A.

    2014-01-01

    Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapo...

  9. Reduction of chlorinated solvents at the Y-12 Oak Ridge Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.; Richards, H.L. [Oak Ridge Y-12 Plant, TN (United States)

    1989-11-01

    The Oak Ridge Y-12 Plant has been actively seeking replacements for chlorinated solvents for several years. The first step in the reduction program was the identification of the solvents and their usages. The four main solvents used at the plant include Freon, methyl chloroform, perchloroethylene, and methylene chloride. The main reduction has been in the use of perchloroethylene. Other significant reductions have occurred in the area of changing out vapor degreasers which utilized perchloroethylene or methyl chloroform. These degreasers were replaced with ultrasonic cleaners which utilize aqueous detergent for cleaning. Ultrasonic cleaning has many advantages, but the one disadvantage is that it requires a rinse step. Currently, the work on reduction of chlorinate solvents is focused on finding solvents which can be substituted for squirt bottle type applications. Concerns which were addressed when looking at replacement solvents were disposal, compatibility, and health effects.

  10. A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Shirin R. King

    2015-08-01

    Full Text Available Aqueous solutions of tetrachloroauric acid of high purity and stability were synthesised using the known reaction of gold metal with chlorine gas. The straightforward procedure developed here allows the resulting solution to be used directly for gold nanoparticle synthesis. The procedure involves bubbling chlorine gas through pure water containing a pellet of gold. The reaction is quantitative and progressed at a satisfactory rate at 50 °C. The gold(III chloride solutions produced by this method show no evidence of returning to metallic gold over at least twelve months. This procedure also provides a straightforward method to determine the concentration of the resulting solution using the initial mass of gold and volume of water.

  11. A modified oxidative microcoulometric method for determination of sulphur in hydrocarbons containing large amounts of chlorine.

    Science.gov (United States)

    Cedergren, A

    1977-01-01

    The oxidative coulometric method for trace sulphur determinations has been modified and a procedure is described which includes the elimination of the interferences caused by chlorine whilst retaining a high recovery of sulphur. The liquid hydrocarbon sample is combusted in an excess of oxygen at 1000 K followed by dilution with a proper flow of carbon monoxide at 1300 K. In this way the partial pressure of oxygen is kept small and the interfering chlorine compounds are effectively converted into hydrogen chloride which does not interfere with the coulometric titration. A recovery of sulphur of 96 +/- 1% was found for thiophene in mixtures of chlorobenzene (0-10%) and cyclohexane, thus indicating the absence of significant interference.

  12. Report: New reliable method for the measurement of chlorine in refuse-derived fuels through combustion experiments in a pilot plant.

    Science.gov (United States)

    Schröer, Ramona; Urban, A I

    2010-02-01

    The calorific values and the chlorine contents of refuse-derived fuels were measured in the pilot combustion plant (PCP) by means of combustion experiments followed by mass and energy balancing. This plant reaches an increased precision by measuring the integrated values throughout the whole experimental period of three hours, based on a fuel capacity of 10 kg per test, allowing a more reliable measurement of pollutants than for experimental analysis of only a few grams of the sample. The combustion experiments are shown for the verification of the quality of the chlorine balancing in the PCP. The test evaluation was carried out by balancing the inputs and outputs of chlorine in the mass streams, and the recovery rates for chlorine were determined. An emission pattern for the chlorine is described by the transfer coefficients and via the temporal fluctuation of the hydrogen chloride concentration in the flue gas. The results of the combustion experiments prove that the balancing via combustion experiments in the PCP provides reliable data on the chlorine concentrations in the fuels, and is a new and reliable method for measuring polluting chlorine in refuse-derived fuels.

  13. Chlorination of Wastewater, Manual of Practice No. 4.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  14. Electron affinity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, L.M.; Pentecost, T.; Koppenol, W.H. (Louisiana State Univ., Baton Rouge (USA))

    1989-12-14

    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 {plus minus} 0.10 eV was found by bracketing between the electron affinities of HS* and SF{sub 4} as a lower limit and that of NO{sub 2} as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the ClO{sub 2}/ClO{sub 2}{sup {minus}} couple and a Gibbs hydration energy identical with that of SO{sub 2}{sup {sm bullet}{minus}}.

  15. Phosphate valorization by dry chlorination route

    OpenAIRE

    Kanari N.; Menad N.; Diot F.; Allain E.; Yvon J.

    2016-01-01

    International audience; This work deals with the extraction of phosphorus chlorinated compounds from phosphate materials using chlorination with gaseous chlorine. An industrial sample of dicalcium phosphate dihydrate, after transformation into calcium pyrophosphate (Ca 2 P 2 O 7), is subjected to reactions with Cl 2 +CO+N 2 and Cl 2 +C+N 2 at temperatures ranging from 625 to 950 °C using boat experiments. Gathering results of the thermodynamic predictions and TG/DT analysis with those of SEM ...

  16. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations.

    Science.gov (United States)

    Fujimori, Takashi; Nakamura, Madoka; Takaoka, Masaki; Shiota, Kenji; Kitajima, Yoshinori

    2016-07-01

    Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms.

  17. OLGA experiments with {sup 261}104 under chlorinating and brominating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W.; Eichler, B.; Jost, D.T.; Piguet, D.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Buklanov, G.; Lebedev, V.; Timokhin, S.; Vedeev, M.V.; Yakushev, A.; Zvara, I. [FLNR, Dubna (Russian Federation); Huebener, S. [FZR (Germany)

    1997-09-01

    With the On-Line Gas chemistry Apparatus OLGA III the retention times of element 104 chloride and bromide was measured in a quartz column using the isotope {sup 261}104 with a half-life of 78 s. With HCl as chlorinating agent element 104 was found to quantitatively pass through the column at 150{sup o}C, whereas with HBr this temperature shifted to about 300{sup o}C. Under both halogenating conditions, the homologuous element Hf passed through the column at higher temperatures than element 104, in agreement with expectations. (author) 2 figs., 2 refs.

  18. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.

    Science.gov (United States)

    Painter, Richard G; Bonvillain, Ryan W; Valentine, Vincent G; Lombard, Gisele A; LaPlace, Stephanie G; Nauseef, William M; Wang, Guoshun

    2008-06-01

    Chloride anion is essential for myeloperoxidase (MPO) to produce hypochlorous acid (HOCl) in polymorphonuclear neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. However, as the chloride level was raised, the killing efficiency increased in a dose-dependent manner. By using specific inhibitors to selectively block NADPH oxidase, MPO, and cystic fibrosis transmembrane conductance regulator (CFTR) functions, neutrophil-mediated killing of PsA could be attributed to three distinct mechanisms: CFTR-dependent and oxidant-dependent; chloride-dependent but not CFTR- and oxidant-dependent; and independent of any of the tested factors. Therefore, chloride anion is involved in oxidant- and nonoxidant-mediated bacterial killing. We previously reported that neutrophils from CF patients are defective in chlorination of ingested bacteria, suggesting that the chloride channel defect might impair the MPO-hydrogen peroxide-chloride microbicidal function. Here, we compared the competence of killing PsA by neutrophils from normal donors and CF patients. The data demonstrate that the killing rate by CF neutrophils was significantly lower than that by normal neutrophils. CF neutrophils in a chloride-deficient environment had only one-third of the bactericidal capacity of normal neutrophils in a physiological chloride environment. These results suggest that CFTR-dependent chloride anion transport contributes significantly to killing PsA by normal neutrophils and when defective as in CF, may compromise the ability to clear PsA.

  19. Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Shuzo, E-mail: eto@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Tanaka, Masayoshi Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2014-11-01

    The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm{sup 2} within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously. - Highlights: • We estimated the carbonation depth and the apparent diffusion coefficient of chlorine sodium in the reinforced concrete with cracking damage by LIBS. • Two-dimensional profile measurement of the emission intensity in each element was performed to visualize the chloride penetration and the carbonation in the reinforced concrete. • Apparent diffusion coefficient of chlorine and sodium can be estimated using the Fick

  20. Oxomemazine hydro-chloride.

    Science.gov (United States)

    Siddegowda, M S; Butcher, Ray J; Akkurt, Mehmet; Yathirajan, H S; Ramesh, A R

    2011-08-01

    IN THE TITLE COMPOUND [SYSTEMATIC NAME: 3-(5,5-dioxo-phen-othia-zin-10-yl)-N,N,2-trimethyl-propanaminium chloride], C(18)H(23)N(2)O(2)S(+)·Cl(-), the dihedral angle between the two outer aromatic rings of the phenothia-zine unit is 30.5 (2)°. In the crystal, the components are linked by N-H⋯Cl and C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.

  1. Behavior of chlorine during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  2. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    Science.gov (United States)

    1994-09-01

    chemically with each other, and with living organisms, particularly bacteria ( Manahan , 1991:435). To ensure effective disinfection, to meet the CWA...halogens are strong oxidants and are highly reactive ( Manahan , 1991:504). Chlorine is never found uncombined in nature, it exists only as the...HOCI) according to the following reaction: Cl2 (gas) + H20 =• HOC1 + H+ + Cl The hydrogen is oxidized and the chlorine gas is reduced ( Manahan , 1991

  3. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Stuart E.

    2002-06-01

    Several varieties of transgenic poplar containing cytochrome P-450 2E1 have been constructed and are undergoing tests. Strategies for improving public acceptance and safety of transgenic poplar for chlorinated hydrocarbon phytoremediation are being developed. We have discovered a unique rhizobium species that lives within the stems of poplar and we are investigating whether this bacterium contributes nitrogen fixed from the air to the plant and whether this endophyte could be used to introduce genes into poplar. Studies of the production of chloride ion from TCE have shown that our present P-450 constructs did not produce chloride more rapidly than wild type plants. Follow-up studies will determine if there are other rate limiting downstream steps in TCE metabolism in plants. Studies of the metabolism of carbon tetrachloride in poplar cells have provided evidence that the native plant metabolism is due to the activity of oxidative enzymes similar to the mammalian cytochrome P-450 2E1.

  4. Recovery of Niobium and Zirconium from the Cyclone Discharge of Chlorination Plant Producing Titanium Tetrachloride

    Directory of Open Access Journals (Sweden)

    V. S. Gireesh

    2014-03-01

    Full Text Available This paper describes a method for recovering niobium and zirconium from the cyclone solid residues arising from chlorination of titaniferrous ores. The residue contains beneficiated ilmenite (BI fines, calcined petroleum coke (CPC and metal chlorides of niobium, aluminium, zirconium, iron, manganese, vanadium etc. The BI fines and CPC present in the residue were removed by soaking the residue with water and by separating the insoluble fraction contain BI and CPC by filtration. The filtrate containing the soluble metal chlorides was acidified with hydrochloric acid followed by agitation and heating in the presence of sulphate ions (sulphuric acid to precipitate niobium and zirconium as their oxo sulphate which is filtered, dried and calcined to convert niobium and zirconium oxides. The optimum amount of sulphuric acid was found to be 3 % and the optimum pH and temperature for precipitation of niobium and zirconium is 0.5 and 90 oC respectively.

  5. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Majcher, Emily H.; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2014-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  6. PCDD/F catalysis by metal chlorides and oxides.

    Science.gov (United States)

    Zhang, Mengmei; Yang, Jie; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2016-09-01

    Model fly ash (MFA) samples were composed of silica, sodium chloride, and activated carbon, and doped with metal (0.1 wt% Cu, Cr, Ni, Zn and Cd) chloride or oxide. Each sample was de novo tested at 350 °C for 1 h, in a flow of gas (N2, N2 + 10% O2, +21% O2 or +10% H2) to investigate the effect of metal catalyst and gas composition on PCDD/F formation. Total PCDD/F yield rises rapidly with oxygen content, while the addition of hydrogen inhibits the formation and chlorination of PCDD/F. The amount of PCDD on average rises linearly with the oxygen concentration, while that of PCDF follows a reaction order of about 1/2; thus the PCDF to PCDD ratio drops when more oxygen becomes available. Some samples do not follow this trend. Chlorides are much more active than oxides, yet there are marked differences between individual metals. Principal component analysis (PCA) was applied to study the signatures from all samples, showing their unique specificity and diversity. Each catalyst shows a different signature within its individual homologue groups, demonstrating that these signatures are not thermodynamically controlled. Average congener patterns do not vary considerably with oxygen content changing from oxidising (air) to reducing (nitrogen, hydrogen).

  7. The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure of the Vinyl Chloride-Hydrogen Chloride Complex

    Science.gov (United States)

    Messinger, Joseph P.; Leung, Helen O.; Marshall, Mark D.

    2014-06-01

    In all previous examples of complexes formed between protic acids and haloethylenes, we have observed similar modes of binding regardless of the specific identity of the acid, HF, HCl, or HCCH. Although details of the structures, such as hydrogen bond length and amount of deviation from linearity, do reflect the strength of the interaction and show clear correlations with the gas-phase acidity, the complexes of a given haloethylene with any of the acids have identical structural motifs. Vinyl chloride, on the other hand, has been observed to adopt different modes of binding in its interactions with HF and HCCH. The HF complex, reported two years ago, has a geometry with HF interacting across the double bond of vinyl chloride and forming a secondary interaction with the hydrogen cis to the chlorine atom, but in the complex with acetylene, reported last year, HCCH locates at one end of the vinyl chloride with the secondary interaction occurring with the geminal hydrogen atom. This variety continues and is expanded in the vinyl chloride-HCl complex. Ab initio theory predicts a complex that has the HCl molecule interacting across the double bond, but located out of the vinyl chloride plane. The microwave spectrum of the most abundant isotopologue of this complex is consistent with theoretical predictions and additionally shows the presence of large amplitude motion connecting two equivalent structures.

  8. Origin of unusual sintering phenomena in compacts of chloride-derived 3Y-TZP nanopowders

    Directory of Open Access Journals (Sweden)

    Sweeney Sean M.

    2014-01-01

    Full Text Available After evaluating three alternative possibilities, the present study shows that seemingly minor amounts (at least as low as 0.06 wt% of chlorine impurities are responsible for the poor sintering behavior observed in chloride-derived 3 mol% yttria stabilized zirconia (3Y-TZP nanopowders. Models and quantitative estimates are used to explain the role of evolved HCl and ZrCl4 gases in such anomalous behaviors as reduced sintered densities for higher green densities, de-densification, improved sintering in nitrogen over oxygen, and formation of a dense shell microstructure. Two solutions to problematic residual chlorides are compared: 1 a thermal treatment composed of an extended hold at 1000°C to allow HCl gas removal before the onset of closed porosity, and 2 a chemical treatment performed by washing bisque-fired samples at room temperature using a concentrated ammonium hydroxide solution to remove chlorides. The thermal treatment was found to be superior.

  9. Assessment of the efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and Tetrahymena spp.

    Science.gov (United States)

    Vaerewijck, M J M; Sabbe, K; Baré, J; Spengler, H-P; Favoreel, H W; Houf, K

    2012-03-01

    The efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and two Tetrahymena spp. was determined based on the European Standard EN 1276:2009 suspension test. Trophozoite viability was assessed by determination of the membrane integrity using flow cytometry as a fast screening technique. Bovine serum albumin was added to simulate clean (0.3 g/liter) and dirty (3 g/liter) conditions. Benzalkonium chloride caused cell lysis at concentrations above 50 mg/liter under clean and dirty conditions. A concentration of 50 mg of free chlorine per liter had a strong biocidal effect on acanthamoebae and tetrahymenae after 15 min under clean and dirty conditions. Our results suggest that benzalkonium chloride and sodium hypochlorite were effective against the three microorganisms at concentrations commonly applied in the food industry.

  10. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  11. Microbial perchlorate reduction: A precise laboratory determination of the chlorine isotope fractionation and its possible biochemical basis

    Science.gov (United States)

    Ader, Magali; Chaudhuri, Swades; Coates, John D.; Coleman, Max

    2008-05-01

    Perchlorate-reducing bacteria fractionate chlorine stable isotopes giving a powerful approach to monitor the extent of microbial consumption of perchlorate in contaminated sites undergoing remediation or natural perchlorate containing sites. This study reports the full experimental data and methodology used to re-evaluate the chlorine isotope fractionation of perchlorate reduction in duplicate culture experiments of Azospira suillum strain PS at 37 °C (Δ 37Cl Cl --ClO 4-) previously reported, without a supporting data set by Coleman et al. [Coleman, M.L., Ader, M., Chaudhuri, S., Coates, J.D., 2003. Microbial Isotopic Fractionation of Perchlorate Chlorine. Appl. Environ. Microbiol. 69, 4997-5000] in a reconnaissance study, with the goal of increasing the accuracy and precision of the isotopic fractionation determination. The method fully described here for the first time, allows the determination of a higher precision Δ 37Cl Cl --ClO 4- value, either from accumulated chloride content and isotopic composition or from the residual perchlorate content and isotopic composition. The result sets agree perfectly, within error, giving average Δ 37Cl Cl --ClO 4- = - 14.94 ± 0.15‰. Complementary use of chloride and perchlorate data allowed the identification and rejection of poor quality data by applying mass and isotopic balance checks. This precise Δ 37Cl Cl --ClO 4- value can serve as a reference point for comparison with future in situ or microcosm studies but we also note its similarity to the theoretical equilibrium isotopic fractionation between a hypothetical chlorine species of redox state + 6 and perchlorate at 37 °C and suggest that the first electron transfer during perchlorate reduction may occur at isotopic equilibrium between an enzyme-bound chlorine and perchlorate.

  12. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  13. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  14. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    Science.gov (United States)

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P < 0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6- and 4.3-log reduction of Escherichia coli O157:H7 and Listeria monocytogenes, respectively. However, this treatment could result in the presence of chloroxyanion residues, such as chloride (Cl(-)), chlorite (ClO2(-)), chlorate (ClO3(-)), and perchlorate (ClO4(-)), which, apart from chloride, are a toxicity concern. Radiolabeled chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This

  15. Influence of Plants on Chlorine Cycling in Terrestrial Environments

    Science.gov (United States)

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2016-04-01

    Chlorine (Cl), one of the 20 most abundant elements on Earth, is crucial for life as a regulator of cellular ionic strength and an essential co-factor in photosynthesis. Chlorinated organic compounds (Clorg) molecules are surprisingly abundant in soils, in fact many studies during the last decades show that Clorg typically account for more than 60% of the total soil Cl pool in boreal and temperate forest soils and frequently exceed chloride (Cl-) levels. The natural and primarily biotic formation of this Clorg pool has been confirmed experimentally but the detailed content of the Clorg pool and the reasons for its high abundance remains puzzling and there is a lack of Cl budgets for different ecosystems. Recently, the radioisotope 36Cl has caused concerns because of presence in radioactive waste, a long half-life (301 000 years), potential high mobility, and limited knowledge about Cl residence times, speciation and uptake by organisms in terrestrial environments. The chlorination of organic molecules may influence the pool of available Cl- to organisms and thereby the Cl cycling dynamics. This will prolong residence times of total Cl in the soil-vegetation system, which affects exposure times in radioactive 36Cl isotope risk assessments. We tested to what extent the dominating tree species influences the overall terrestrial Cl cycling and the balance between Cl- and Clorg. Total Cl and Clorg were measured in different tree compartments and soil horizons in the Breuil experimental forest, Bourgogne, established in 1976 and located at Breuil-Chenue in Eastern France. The results from this field experiment show how the dominating tree species affected Cl cycling and accumulation over a time period of 30 years. Cl uptake by trees as well as content of both total Cl and Clorg in soil humus was much higher in experimental plots with coniferous forests compared to deciduous forests. The amounts of Clorg found in plant tissue indicate significant Clorg production inside

  16. Maxillofacial prostheses of chlorinated polyethylene.

    Science.gov (United States)

    May, P D

    1978-05-01

    There is clearly a need for maxillofacial prosthetic materials with improved properties. The chlorinated polyethylenes are thermoplastic elastomers which have particularly promising properties, and were used by us to prepare improved maxillofacial prostheses. Suitable CPE resins were compounded with other polymers and with pigments on a heated rubber mill to form thin sheets in a variety of shades. These were heated at 190 degrees C for 10 min and placed between heated linotype mold halves. The prosthesis was formed in a hand press. Sometimes heating and pressing were repeated. After cooling in water, the prosthesis was removed and hand-shaded with oil-soluble dyes. Physical properties were evaluated using standard techniques; skin irritation studies were conducted by 14-day insult patch tests on rabbits. Clinical evaluations were conducted on human volunteers. Parallel evaluations were conducted on commerically available materials for comparison. The CPE was superior to all of the three commerical materials in most properties, and comparable to the better of the three in the remaining properties. On balance, CPE was significantly superior. Early results indicate that the materials and techniques required are easily handled in the dental lab and that the final prosthesis has excellent aesthetic and patient acceptability.

  17. Chlorine Abundances in Cool Stars

    CERN Document Server

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  18. Reactions of polynuclear aromatic hydrocarbons with chlorine and chlorine dioxide in coal tar lined pipes

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.; Maier, M.; Sacher, F.; Maier, D. [University of Karlsruhe, Karlsruhe (Germany). Engler Bunte Institut

    1997-12-31

    In the presence of disinfectants, PAH are remobilised from the coal tar lining of water distribution mains. Reactions of the PAH with chlorine and chlorine dioxide can lead to chlorinated PAH that might show higher mutagenic effects that the parent PAH. Detection limits in the lower nanogram-per-litre level for the determination of PAH and chlorinated PAH were achieved by using solid phase micro extraction and a gas chromatographic mass spectrometric device. Thus, the reactions of four PAH (anthracene, fluoranthene, fluorene and phenanthrene) with chlorine and chlorine dioxide under conditions and at concentrations of common practice in the drinking water distribution system could be investigated. In batch experiments with demineralised and drinking water at pH 7, the concentrations of fluoranthene, fluorene and phenanthrene remained constant, whereas anthracene reacted quantitatively with both disinfectants. The reaction of anthracene followed by pseudo-first order kinetics. In these reactions no chlorinated products could be detected, only monohydroxyanthracene and anthraquinone were identified. The toxic effect of a set of chlorinated and oxidised PAH was also examined.

  19. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Bormate (BrO3-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions,particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and,simultaneously, 6.6%-32% of Br- was oxidized to BrO3-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.

  20. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  1. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guo-Dong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Wang, Yu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Zhou, Dong-Mei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A kinetic model was used to predict the radical species and their distributions. Black-Right-Pointing-Pointer The generated radical species were identified by EPR. Black-Right-Pointing-Pointer The second-order rate constants of sulfate radical with PCBs were determined. - Abstract: Advanced oxidation processes (AOPs) based on sulfate radical (SO{sub 4}{center_dot}{sup -}) have been recently used for soil and groundwater remediation. The presence of chloride ion in natural or wastewater decreases the reactivity of sulfate radical system, but explanations for this behavior were inconsistent, and the mechanisms are poorly understood. Therefore, in this paper we investigated the effect of chloride ion on the degradation of 2,4,4 Prime -CB (PCB28) and biphenyl (BP) by persulfate, based on the produced SO{sub 4}{center_dot}{sup -}. The results showed that the presence of chloride ion greatly inhibited the transformation of PCB28 and BP. Transformation intermediates of BP were monitored, suggesting that the chloride ion can react with SO{sub 4}{center_dot}{sup -} to produce chlorine radical, which reacts with BP to generate chlorinated compounds. To better understand the underlying mechanisms of these processes, a kinetic model was developed for predicting the effect of chloride ion on the types of radical species and their distributions. The results showed that chloride ion could influence the selectivity of radical species and their distribution, and increase the concentration of the sum of radical species. In addition, the second-order rate constants of sulfate radical with PCBs were determined, and quantum-chemical descriptors were introduced to predict the rate constants of other PCBs based on our experimental data.

  2. Benzalkonium chloride and glaucoma.

    Science.gov (United States)

    Rasmussen, Carol A; Kaufman, Paul L; Kiland, Julie A

    2014-01-01

    Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology.

  3. Chloride on the Move

    KAUST Repository

    Li, Bo

    2017-01-09

    Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele to control root-to-shoot delivery of Cl−.

  4. Chlorine dioxide treatment for zebra mussel control

    Energy Technology Data Exchange (ETDEWEB)

    Rybarik, D. [Dairyland Power Cooperative, La Crosse, WI (United States); Byron, J. [Nalco Chemical Company, Naperville, IL (United States); Germer, M. [Rio Linda Chemical Company, Sacramento, CA (United States)

    1995-06-01

    Chlorine is recognized and commonly used biocide for power plant cooling water and service water treatment programs, including the control of zebra mussels. Chlorine dioxide has recently become a popular method of zebra mussel control because of its economy, safety, environmental acceptability, and effectiveness when compared to other mussel control methods. This control technique was recently demonstrated at Dairyland Power Cooperative`s Alma Generating Station on the east bank of the upper Mississippi River in Alma, Wisconsin. The project was assisted with EPRI Tailored Collaboration Program funds. The Dairyland Power Alam Generating Station consists of five generating units that utilize raw, untreated Mississippi River water for condenser, circulating, and service water supplies. The first units were built in 1947, with the final and largest unit being completed in 1960. Total station generating capacity is 200 MW. Because of recent increases in the zebra mussel density at the station intake, Dairyland Power selected the team of Nalco and Rio Linda to perform a chlorine dioxide treatment of the station`s new water systems to eradicate and control the mussels before their presence created operational difficulties. This paper will present the results of the treatment including treatment theory, design and construction of the treatment system, the method of chlorine dioxide generation, treatment concentration, analytical methods o monitoring chlorine dioxide generation, residuals and trihalomethane (THM) concentrations, protocol for monitoring treatment mortality, and the effects of chlorine dioxide and detoxification on other water chemistry parameters and equipment materials. The goal of this paper is to inform and assist users with establishing consistent and uniform practices for safely utilizing and monitoring chlorine dioxide in the eradication and control of zebra mussels.

  5. Optimum conditions for the formation of Al13 polymer and active chlorine in electrolysis process with Ti/RuO2-TiO2 anodes

    Institute of Scientific and Technical Information of China (English)

    Chengzhi Hu; Huijuan Liu; Jiuhui Qu

    2012-01-01

    A polyaluminum containing a high concentration of Al13 polymer and active chlorine (PACC) was successfully synthesized by a new electrochemical reactor using Ti/RuO2-TiO2 anodes.PACC can potentially be used as a dual-function chemical reagent for water treatment.The obtained results indicated that the formation of Al13 polymer and active chlorine,were the most active components in PACC responsible for coagulation and disinfection respectively.These components were significantly influenced by electrolyte temperature,current density,and stirring rate.It was observed that high electrolyte temperature favored the formation of Al13.Increasing current density and stirring rate resulted in high current efficiency of chlorine evolution,thus favoring the generation of Al13 and active chlorine in PACC.When the PACC (AlT =0.5 mol/L,basicity =2.3) was prepared at the optimum conditions by electrolysis process,the Al13 polymer and active chlorine in product reached above 70% of AlT and 4000 mg/L,respectively.In the pilot scale experiment with raw polyaluminum chloride used as an electrolyte,PACC was successfully prepared and produced a high content of Al13 and active chlorine products.The pilot scale experiment demonstrated a potential industrial approach of PACC preparation.

  6. Synthesis of functional aromatic multisulfonyl chlorides and their masked precursors.

    Science.gov (United States)

    Percec, V; Bera, T K; De, B B; Sanai, Y; Smith, J; Holerca, M N; Barboiu, B; Grubbs, R B; Fréchet, J M

    2001-03-23

    The synthesis of functional aromatic bis(sulfonyl chlorides) containing an acetophenone and two sulfonyl chloride groups, i.e., 3,5-bis[4-(chlorosulfonyl)phenyl]-1-acetophenone (16), 3,5-bis(chlorosulfonyl)-1-acetophenone (17), and 3,5-bis(4-(chlorosulfonyl)phenyloxy)-1-acetophenone (18) via a sequence of reactions, involving in the last step the quantitative oxidative chlorination of S-(aryl)- N,N'-diethylthiocarbamate, alkyl- or benzyl thiophenyl groups as masked nonreactive precursors to sulfonyl chlorides is described. A related sequence of reactions was used for the synthesis of the aromatic trisulfonyl chloride 1,1,1-tris(4-chlorosulfonylphenyl)ethane (24). 4-(Chlorosulfonyl)phenoxyacetic acid, 2,2-bis[[[4-(chlorosulfonyl)phenoxyacetyl]oxy]methyl]-1,3-propanediyl ester (27), 5,11,17,23-tetrakis(chlorosulfonyl)-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (38), 5,11,17,23,29,35-hexakis(chlorosulfonyl)-37,38,39,40,41,42-hexakis(ethoxycarbonylmethoxy)calix[6]arene (39), 5,11,17,23,29,35,41,47-octakis(chlorosulfonyl)-49,50,51,52,53,54,55,56-octakis(ethoxycarbonylmethoxy)calix[8]arene (40), 5,11,17,23-tetrakis(tert-butyl)-25,26,27,28-tetrakis(chlorosulfonyl phenoxyacetoxy)calix[4]arene (44), 5,11,17,23,29,35-hexakis(tert-butyl)-37,38,39,40,41,42-hexakis(chlorosulfonylphenoxyacetoxy)calix[6]arene (45), and 5,11,17,23,29,35,41,47-octakis(tert-butyl)-49,40,51,52,53,54,55,56-octakis(chlorosulfonylphenoxyacetoxy)calix[8]arene (46) were synthesized by two different multistep reaction procedures, the last step of both methods consisting of the chlorosulfonation of compounds containing suitable activated aromatic positions. 2,4,6-Tris(chlorosulfonyl)aniline (47) was obtained by the chlorosulfonation of aniline. The conformation of two series of multisulfonyl chlorides i.e., 38, 39, 40 and 44, 45, 46, was investigated by (1)H NMR spectroscopy. The masked nonreactive precursor states of the functional aromatic multisulfonyl chlorides and the aromatic

  7. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine

    Institute of Scientific and Technical Information of China (English)

    Meiquan Cai; Liqiu Zhang; Fei Qi; Li Feng

    2013-01-01

    Owing to its low cost,free chlorine is one of the most common disinfectants for wastewater and drinking water treatment.However,the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades.Antipyrine (ANT),an anti-inflammatory analgesic,has been frequently detected in the aquatic environment.In this work.the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments.The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L,free chlorine dosage from 0.30 to 1.31 mg/L,and pH from 1.5 to 9.0.The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry.The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L,ANT 0.5 mg/L,pH 7.0).Higher oxidant dosage,lower ANT initial concentration and low pH favor the ANT removal.The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro1,5-dimethyl-2-phenyl-3H-pyrazol-3-one),which can be further chlorinated by free chlorine.In addition,the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  8. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    Science.gov (United States)

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  9. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes.

    Science.gov (United States)

    Karlsson, Rasmus K B; Cornell, Ann

    2016-03-09

    Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation.

  10. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  11. Chlorination of organophosphorus pesticides in natural waters.

    Science.gov (United States)

    Acero, Juan L; Benítez, F Javier; Real, Francisco J; González, Manuel

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 degrees C and pH 7 were determined to be 110.9, 0.004 and 191.6 M(-1) s(-1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L(-1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  12. Chlorine-36 and the initial value problem

    Science.gov (United States)

    Davis, Stanley N.; Cecil, DeWayne; Zreda, Marek; Sharma, Pankaj

    Chlorine-36 is a radionuclide with a half-life of 3.01×105a. Most 36Cl in the hydrosphere originates from cosmic radiation interacting with atmospheric gases. Large amounts were also produced by testing thermonuclear devices during 1952-58. Because the monovalent anion, chloride, is the most common form of chlorine found in the hydrosphere and because it is extremely mobile in aqueous systems, analyses of both total Cl- as well as 36Cl have been important in numerous hydrologic studies. In almost all applications of 36Cl, a knowledge of the initial, or pre-anthropogenic, levels of 36Cl is useful, as well as essential in some cases. Standard approaches to the determination of initial values have been to: (a) calculate the theoretical cosmogenic production and fallout, which varies according to latitude; (b) measure 36Cl in present-day precipitation and assume that anthropogenic components can be neglected; (c) assume that shallow groundwater retains a record of the initial concentration; (d) extract 36Cl from vertical depth profiles in desert soils; (e) recover 36Cl from cores of glacial ice; and (f) calculate subsurface production of 36Cl for water that has been isolated from the atmosphere for more than one million years. The initial value from soil profiles and ice cores is taken as the value that occurs directly below the depth of the easily defined bomb peak. All six methods have serious weaknesses. Complicating factors include 36Cl concentrations not related to cosmogenic sources, changes in cosmogenic production with time, mixed sources of chloride in groundwater, melting and refreezing of water in glaciers, and seasonal groundwater recharge that does not contain average year-long concentrations of 36Cl. Résumé Le chlore-36 est un radionucléide de période 3.01×105a. Pour l'essentiel, le 36Cl dans l'hydrosphère provient des effets du rayonnement cosmique sur les gaz atmosphériques. De grandes quantités de 36Cl ont aussi été produites au cours des

  13. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, W.E. Jr. [Alabama Power Co./GSC No. 8, Birmingham, AL (United States); Laylor, M.M. [Univ. of Alabama, Birmingham, AL (United States)

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  14. Microbiological aspects of the removal of chlorinated hydrocarbons from air

    NARCIS (Netherlands)

    Dolfing, Jan; Wijngaard, Arjan J. van den; Janssen, Dick B.

    1993-01-01

    Chlorinated hydrocarbons are widely used synthetic chemicals that are frequently present in industrial emissions. Bacterial degradation has been demonstrated for several components of this class of compounds. Structural features that affect the degradability include the number of chlorine atoms and

  15. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara;

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  16. Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Erkelens, Corrie; Galan, L.

    1985-01-01

    The chlorination of terrestrial humic acid was studied at pH 7. 2 with varying chlorine to carbon ratios. The principal products are chloroform, di- and trichloroacetic acid, and chlorinated C-4 diacids. At a high chlorine dose many new chlorination products were detected, among them chlorinated aro

  17. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    Science.gov (United States)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  18. Chlorine: Undergraduate Research on an Element of Controversy

    Science.gov (United States)

    Chang, Hasok

    2009-04-01

    If chemical elements were people, chlorine would be a celebrity. Although intrinsically no more or less important than any other element, chlorine has had a knack of making headlines. The genre of "object biography" has been quite successful in popular science recently. We took this opportunity to write a "biographical" study of chlorine. Chlorine's wide range of interesting controversies is well suited for attracting and maintaining the enthusiasm of the diverse range of students we teach in our department.

  19. Determination of chlorine in silicate rocks

    Science.gov (United States)

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  20. Method to remove poisonous chlorine compounds using supercritical carbon dioxide. Chorinkai tansan gas wo mochiita yudoku enso kagobutsu no jokyoho

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Y. (Government Industrial Research Institute, Tohoku, Sendai (Japan))

    1989-12-15

    This paper describes a method to extract and remove selectively poisonous chlorine compounds from aqueous solution using supercritical CO2. This method is characterized in that it extracts and separates only chlorine compounds in short time under a moderate condition, and removes it without a need of whatever post-treatment. The supercritical CO2 pressure was 80 kg/cm[sup 2], and the extraction temperature was 40[degree]C. The supercritical CO2 extracted 70% to 80% by weight of trichloroethylene and tetrachloroethylene in 15 to 30 minutes, almost all of 1,2-dichloroethane and 1,1,1-trichloroethane in one hour, and about 70% by weight of benzil chloride after 90 minutes. When the supercritical CO2 extraction was carried out for a dilute chlorine compound at 1000 ppm for three hours, the concentrations of trichloroethylene and tetrachloroethylene in the aqueous solution decreased down to several ppm, with no other substances than chlorine compounds detected in the extracts. This proves that no water has been extracted at all. 5 figs., 1 tab.

  1. Effects of bypass system on PCDD/F emission and chlorine circulation in cement kilns.

    Science.gov (United States)

    Zhan, Ming-Xiu; Fu, Jianying; Chen, Tong; Li, Yeqing; Zhang, Jiang; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-10-01

    A bypass at the kiln inlet allows the effective reduction of alkali chloride cycles and thus perhaps affects the emission of PCDD/Fs. Effects of bypass system on PCDD/F emission and chlorine circulation were studied in two typical dry cement kilns with 5000 ton/day clinker capacity in China and named CK1 and CK2, respectively. Firstly, the emission level of PCDD/Fs with the operation of bypass system was estimated in CK1, to certify that bypass system has a perfect adaption to the cement kiln regarding the PCDD/F emission even with the refuse derived fuel (RDF) as the replacement of fuel. On the other hand, the operating conditions in the CK2 were scrutinised by monitoring the concentrations of SO2, NH3 and HCl. In addition, the characteristics of raw meal, clinker, bag filter ash and bypass ash were also investigated by Energy Dispersive Spectrometer (EDS), metal and chlorine analysis. The balance of chlorine showed that 18 % of the possible accumulated chlorine could be ejected from the cement kiln system when 2 % of kiln exhaust gas was extracted. Furthermore, the emission level of PCDD/Fs in the main flue gas also decreased from 0.037 ± 0.035 ng I-TEQ/Nm(3) to 0.019 ± 0.007 ng I-TEQ/Nm(3) with a reduction efficiency of 48.2 %. Most importantly, PCDD/F emission from the bypass system was proven to have rather minor effect on the total emission factor. The congener distributions of PCDD/Fs were also analysed in the flue gas and fly ash, before and after application of bypass system, to find cues to the formation mechanism.

  2. Studies Update Vinyl Chloride Hazards.

    Science.gov (United States)

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  3. 35Cl NQR spectra of phosphorus chlorides and their molecular conformations in crystals. Part 1. Phosphorus (III) chlorides RPCl 2

    Science.gov (United States)

    Kozlov, E. S.; Kapustin, E. G.; Soifer, G. B.

    2000-09-01

    For the phosphorus chlorides RPCl 2 (R=Cl, Me, ClCH 2, CF 3, Et, i-Pr, Me 2C=CH, PhCH=CH, Me 2N, Et 2N, Pr 2N, MeO, PhO) and R'PCl 2 (R'=Ar, 2-thienyl) two linear correlations between the 35Cl NQR frequencies and charges on the chlorine atoms of the PCl 2 groups calculated by the MNDO procedure have been found. It was shown that the 35Cl NQR spectra and the relative magnitudes of the charges on the chlorine atoms of the PCl 2 groups can be used to determine conformation of the RPCl 2 molecules in crystal. Ab initio (RHF/6-31 G ∗ and MP2/6-31 G ∗) calculations showed that the gauche conformation of Me 2NPCl 2 molecule is more stable than trans conformation. In light of ab initio calculations electron diffraction results (Vilkov L.V., Khaikin L.S., Dokl. Akad. Nauk SSSR, 168 (1966) 810) are erroneous. The NBO analysis confirmed the presence of donor-acceptor interactions between the lone pair orbital of the nitrogen atom and the antibonding orbitals of the P-Cl bonds.

  4. Parameters Affecting Hydrogen Chloride Measurements

    Science.gov (United States)

    1993-06-01

    contain sea salt, which is hygroscopic because of the magnesium chloride present, or ammonium bisulfate , which mostly comes from sulfur pollution and is...boosters release hydrogen chloride as a combustion product, and hydrazines or nitric acid can be spilled from liquid fuel motors. Monitoring the...solubility constant, and the second is the acid ionization constant. From experimental work, the product of the two constants is well established (Reference

  5. Clean production of chlorine from hydrogen chloride with Mn-compound as intermediate☆

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Yong Sun; Jinping Zhang; Zuohu Li; Yunshan Wang

    2015-01-01

    A new process is developed by using compound Mn as intermediate to produce Cl2 from HCl, with the following steps. (1) HCl steam is decomposed by intermediate Mn2O3 to produce Cl2 and MnCl2 at 500 °C. (2) Produced MnCl2 is oxidized by water steam to produce MnO at 450 °C. (3) The MnO compound is oxidized by air to yield Mn2O3. The X-ray diffraction (XRD) crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions. Long term experiments for continuous conversion of HCl to Cl2 by using Mn2O3 as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2 on stream of 30 h. The production of Cl2 from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.

  6. Analysis of chlorinated polyvinyl chloride pipe burst problems :Vasquez residence system inspection.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Menicucci, David F.; Harrison, John (Florida Solar Energy Center)

    2005-10-01

    This report documents the investigation regarding the failure of CPVC piping that was used to connect a solar hot water system to standard plumbing in a home. Details of the failure are described along with numerous pictures and diagrams. A potential failure mechanism is described and recommendations are outlined to prevent such a failure.

  7. Study by XPS of the chlorination of proteins aggregated onto tin dioxide during electrochemical production of hypochlorous acid

    Energy Technology Data Exchange (ETDEWEB)

    Debiemme-Chouvy, Catherine [Laboratoire Interfaces et Systemes Electrochimiques, UPR 15 du CNRS, UPMC Case Courrier 133-4, Place Jussieu, 75252 Paris Cedex (France)]. E-mail: debiemme@ccr.jussieu.fr; Haskouri, Sanae [Laboratoire Interfaces et Systemes Electrochimiques, UPR 15 du CNRS, UPMC Case Courrier 133-4, Place Jussieu, 75252 Paris Cedex (France); Cachet, Hubert [Laboratoire Interfaces et Systemes Electrochimiques, UPR 15 du CNRS, UPMC Case Courrier 133-4, Place Jussieu, 75252 Paris Cedex (France)

    2007-04-15

    In solution, hypochlorous acid (HOCl) reacts with organic matter and notably with protein side-chains. In this study, HOCl was produced by an electrochemical way, by oxidation of chloride ions at a transparent tin dioxide electrode in the presence of a protein, the bovine serum albumin (BSA). A thick irregular layer is formed at the electrode when HOCl is produced at the SnO{sub 2} surface. Indeed, SEM analyses show that an important deposit is formed during the anodic polarization of SnO{sub 2} in the presence of chloride ions and proteins. Actually, two phenomena take place on the one hand the chlorination of the proteins due to the reaction of HOCl with some protein side-chains and on the other hand the aggregation of proteins onto the SnO{sub 2} surface. The present X-ray photoelectron spectroscopy study points out the cross-linking of BSA molecules via formation of inter molecular sulfonamide groups. It also shows that the BSA chlorination is due on the one hand to the formation of sulfonyl chloride groups (-SO{sub 2}Cl) and on the other hand to formation of chloramine groups ( N-Cl). The Cl2p and S2p photo-peak intensities allowed us to quantify the chloramines. It is found that, one BSA entity immobilized onto the SnO{sub 2} surface contains about 50 chloramine groups.

  8. Electrochemical disinfection using boron-doped diamond electrode--the synergetic effects of in situ ozone and free chlorine generation.

    Science.gov (United States)

    Rajab, Mohamad; Heim, Carolin; Letzel, Thomas; Drewes, Jörg E; Helmreich, Brigitte

    2015-02-01

    This work investigated the capability of using a boron-doped diamond (BDD) electrode for bacterial disinfection in different water matrices containing varying amounts of chloride. The feed water containing Pseudomonas aeruginosa was electrochemically treated while applying different electrode conditions. Depending on the applied current density and the exposure time, inactivation between 4- and 8-log of the targeted microorganisms could be achieved. The disinfection efficiency was driven by the generation of free chlorine as a function of chloride concentration in the water. A synergetic effect of generating both free chlorine and ozone in situ during the disinfection process resulted in an effective bactericidal impact. The formation of the undesired by-products chlorate and perchlorate depended on the water matrix, the applied current density and the desired target disinfection level. In case of synthetic water with a low chloride concentration (20 mg L(-1)) and an applied current density of 167 mA cm(-2), a 6-log inactivation of Pseudomonas aeruginosa could be achieved after 5 min of exposure. The overall energy consumption ranged between 0.3 and 0.6 kW h m(-3) depending on the applied current density and water chemistry. Electrochemical water disinfection represents a suitable and efficient process for producing pathogen-free water without the use of any chemicals.

  9. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  10. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution....

  11. Chlorination of nickel ore by gaseous chlorine in the presence of active additives

    Directory of Open Access Journals (Sweden)

    Ilić Ilija B.

    2003-01-01

    Full Text Available Paper presents a thermodynamic analysis of chemical reactions occurring during chlorination with and without additives for both nickel oxides and nickel ferrites, which are component parts of nickel ore. The experimental research investigated the influence of temperature in the range from 600 up to 1000 °C and time (up to 3 h on the chlorination degree of nickel ores with and without additives. It was found that the introduction of additives such as C, S, BaS and NaCl intensified the chlorination of nickel ore. The results can be applied and may help determine the optimal conditions for the chlorination of low-grade ferrous nickel ores.

  12. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  13. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  14. Method and apparatus for producing chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Santillie, P.W.; Ramras, D.M.

    1984-05-29

    A continuous method and apparatus are described for the efficient production of gaseous chlorine dioxide by the reaction between gaseous sulfur dioxide and an aqueous solution of a metallic chlorate. The chlorate solution and a highly concentrated sulfur dioxide gas are introduced into a packed columnar chamber at closely adjacent locations at the bottom of the chamber so as to flood the chamber and maximize both the contact area and contact time of the two reactants. Throughout the reaction the chamber is subjected to high vacuum imposed by an eductor which exhausts the chlorine dioxide gas and spent reactants. For use of the chlorine dioxide to produce potable water or treat foodstuffs, the chlorine dioxide and spent reactants are exhausted from the chamber separately by respective eductors substantially balanced with respect to each other to impose comparable vacuums upon the chamber. Because of the high efficency of the reaction, substantial heat is generated therefrom which is absorbed by a coolant flowing through a jacket surrounding the chamber. The flow rate of the coolant and flow rate of the reactants into the chamber are porportional due to the dependency of the reactant flow rate on the coolant flow rate.

  15. Photoabsorption and photoionization of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Flesch, R.; Ruehl, E.; Hottmann, K.; Baumgaertel, H. (Freie Universitaet Berlin (Germany))

    1993-01-28

    Photoprocesses of chlorine dioxide in the near-UV have become highly important for stratospheric photoprocesses at high latitudes, especially in Antarctica. Chlorine dioxide has been identified among other absorbers because of its specific absorption cross section in the near-UV. Possible contributions of chlorine dioxide photochemistry to polar ozone depletion have been discussed recently. The high-resolution He I photoelectron spectrum and the absolute (vacuum-UV) absorption cross section (6-25 eV) as well as the ionic fragmentation of chlorine dioxide (OCIO) are reported. The photoelectron spectrum is interpreted in terms of exchange splitting effects of the various singlet and triplet cation states as well as by comparison to chemically related molecules. The vacuum-UV absorption spectrum shows different Rydberg series converging to the cation states. These Rydberg series and their vibrational progressions are assigned by term value arguments, dipole selection rules, and comparison with the photoelectron spectrum. Photoionization mass spectrometry is used for measurements of the ionization and fragmentation threshold of OCIO. The major fragment is ClO[sup +] which occurs above 13.4 eV. Thermomechanical data such as heats of formation and bond dissociation energies are derived. No evidence for isomerization of OClO[sup +] is found, as observed for the electronically excited neutral molecule. 54 refs., 6 figs., 7 tabs.

  16. Inhibitor treatment program for chlorine dioxide corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, J.G.; Holder, E.P.

    1991-11-12

    This patent describes a method of inhibiting corrosion by chlorine dioxide in oil field waterflood systems by adding a sufficient amount of a corrosion inhibiting composition. It comprises a phosphonate, a copolymer consisting of repeating units of acrylic acid/allyl hydroxy propyl sulfonate ether, and a permangante.

  17. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  18. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene...

  19. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    Science.gov (United States)

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.

  20. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  1. Multifold Increases in Turing Pattern Wavelength in the Chlorine Dioxide-Iodine-Malonic Acid Reaction-Diffusion System

    Science.gov (United States)

    Gaskins, Delora K.; Pruc, Emily E.; Epstein, Irving R.; Dolnik, Milos

    2016-07-01

    Turing patterns in the chlorine dioxide-iodine-malonic acid reaction were modified through additions of sodium halide salt solutions. The range of wavelengths obtained is several times larger than in the previously reported literature. Pattern wavelength was observed to significantly increase with sodium bromide or sodium chloride. A transition to a uniform state was found at high halide concentrations. The observed experimental results are qualitatively well reproduced in numerical simulations with the Lengyel-Epstein model with an additional chemically realistic kinetic term to account for the added halide and an adjustment of the activator diffusion rate to allow for interhalogen formation.

  2. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2012-02-01

    Full Text Available The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2 which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2. Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions burden, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4% but causes large increases (up to 13 ppbv in isolated episodes. It also substantially reduce the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 3–4% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that ClNO2 formation is limited more by the presence of particulate chloride than by the abundance of N2O5.

  3. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  4. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  5. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    Energy Technology Data Exchange (ETDEWEB)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  6. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.; Rajamohan, R.; Harinath, Y.V.; Mohan, T.V.K.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil nadu (India)

    2010-07-01

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L{sup -1} TRO) and chlorine dioxide (0.4 - 0.5 mg L{sup -1}) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  7. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (E)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Depends on how you Look at it

    Science.gov (United States)

    Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid haloethylene complexes, the structure of the (E)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 7 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is very similar to the fluorine binding, vinyl fluoride-hydrogen chloride complex, suggesting that the substitution of chlorine for a hydrogen trans to the fluorine atom has very little effect on intermolecular interactions in this case. On the other hand, vinyl chloride-hydrogen chloride adopts a non-planar, chlorine binding configuration so that alternatively one could say that the presence of fluorine has a large effect on protic acid-chlorine interactions.

  8. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (Z)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Most Certainly DOES!

    Science.gov (United States)

    Tandon, Hannah K.; Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid-haloethylene complexes, the structure of the (Z)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 6 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is unlike that of any previously characterized protic acid-haloethylene complex with a bifurcated primary interaction in which the hydrogen of the acid interacts with both the fluorine and the chlorine atoms on the haloethylene and there is no evidence for a secondary interaction involving the electron rich region of the acid. This structure can be contrasted to those of vinyl fluoride-hydrogen chloride (fluorine bound, planar ``top-binding,'' across the double bond), vinyl chloride-hydrogen chloride (chlorine bound, non-planar) and (Z)-1-chloro-2-fluoroethylene-acetylene (chlorine bound, planar ``side-binding,'' at one end of the double bond).

  9. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Labutin, Timur A.; Popov, Andrey M.; Zaytsev, Sergey M.; Zorov, Nikita B.; Belkov, Mikhail V.; Kiris, Vasilii V.; Raikov, Sergey N.

    2014-09-01

    Accurate and reliable quantitative determination of non-metal corrosion agents in concrete is still an actual task of analytical use of LIBS. Two double-pulse LIBS systems were tested as a tool for the determination of chlorine, sulfur and carbon in concretes. Both systems had collinear configuration; a laboratory setup was equipped with an ICCD and two lasers (355/532 nm + 540 nm), but a CCD was a detector for a mobile system with one laser (1064 nm). Analytical lines of Cl I at 837.59 nm, S I at 921 nm and C I at 247.86 nm were used to plot calibration curves. Optimal interpulse delays for the laboratory setup were 4 μs for chlorine and 2.8 μs for carbon, while an interpulse delay of 2 μs was optimal for chlorine and sulfur determination with the mobile system. We suggested the normalization of the Cl I line at 837.59 nm to the Mg II line at 279.08 nm (visible at 837.23 nm in the third order) to compensate for pulse-to-pulse fluctuations of chlorine lines. It provided the decrease of the detection limit of chlorine from 400 ppm to 50 ppm. Therefore, we reported that LIBS can be used to determine main corrosive active substances under ambient conditions in concrete below critical threshold values. Moreover, the application of the mobile system for in-situ qualitative assessment of corrosion way of a steel cage of a swimming pool dome was also demonstrated. It was found that chloride corrosion due to the disinfection of water was the main way for corrosion of the open part steel and the steel rebar inside the concrete.

  10. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    Science.gov (United States)

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl2/Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl2/Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl2/Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species.

  11. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    Science.gov (United States)

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  12. Lubiprostone: a chloride channel activator.

    Science.gov (United States)

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  13. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D.; Guk Kim, J. [Research Institute of Industrial Technology, Chonbuk National University, Chonju 561-756 (Korea); Palanivelu, K. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India)

    2005-01-01

    Electrochemical oxidation of phenol using a Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode in the presence of chloride as the supporting electrolyte was investigated. The experiments were performed in an undivided batch reactor. Preliminary investigations showed that only a small fraction of phenol was oxidized by direct electrolysis, while complete degradation of phenol was achieved by indirect electrochemical oxidation using chloride as a supporting electrolyte. The effect of operating parameters such as initial pH, supporting electrolyte concentration, phenol concentration, and charge input was studied using Box-Behnken second order composite experimental design. The effect of current density on COD removal was studied separately. TOC removal and AOX formation were studied for selected conditions. It was found that the formation of chlorinated organic compounds was pronounced at the beginning of electrolysis, but it was reduced to lower levels by extended electrolysis. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  14. Revisiting the thermochemistry of chlorine fluorides

    CERN Document Server

    Sánchez, H R

    2016-01-01

    In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClF$_n$, n=1--7; Cl$_2$F and Cl$_3$F$_2$) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. In order to complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods.

  15. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista de Duffard, A.M.; Duffard, R. [Laboratorio de Toxicologia Experimental, Santa Fe (Argentina)

    1996-04-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  16. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

    Science.gov (United States)

    Zhang, Tian-Yang; Xu, Bin; Hu, Chen-Yan; Lin, Yi-Li; Lin, Lin; Ye, Tao; Tian, Fu-Xiang

    2015-01-01

    This study compared the formation of iodinated trihalomethanes (I-THMs) from iodide-containing raw waters oxidized by chlorine, chlorine dioxide (ClO₂) and potassium permanganate (KMnO₄) at different oxidant concentrations, reaction times, pHs, initial iodide concentrations and bromide to iodide mass ratios. Among the six investigated I-THMs, iodoform was the major species formed during the oxidation using chlorine, ClO₂ and KMnO₄. When oxidant concentration increased from 0.1 to 3.0 mg/L, the formation of I-THMs increased and then decreased for chlorine and ClO₂, but kept increasing for KMnO₄. As the reaction time went by, I-THM concentration increased to a plateau within 10 h (ClO₂ within only 1 h, especially) for all the three oxidants. I-THM formation gradually increased from pH 3.0 to 9.0 and remained stable at pH values higher than 7.5 for chlorine; however, for ClO₂ and KMnO₄ the highest I-THM formation showed at pH 7.0 and 7.5, respectively. As initial iodide concentration increased from 20 to 800 μg/L, the total amount and species of I-THMs increased for the three oxidants. Iodide contributed to I-THM formation much more significantly than bromide.

  17. Chlorine-36 alidation Study at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Paces

    2006-08-28

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ({sup 36}Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of {sup 36}Cl to total chloride ({sup 36}Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse {sup 36}Cl (i.e., {sup 36}Cl/Cl ratios greater than 1250 x 10{sup -15} resulting from {sup 36}Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the {sup 36}Cl/Cl data with an independent validation study. DOE asked the USGS

  18. The gas phase chlorination of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Olsbye, Unni; Myhrvold, Elisabeth M.; Slagtern, Aase; Dahl, Ivar M. [SINTEF Applied Chemistry, Oslo (Norway)

    1999-07-01

    Light alkanes are dehydrogenated to their corresponding olefins before further reactions to more valuable chemicals. The conversion of ethane to ethene in a steam cracker requires the addition of a substantial amount of heat (90 kJ/mol). Oxidative processes for ethane dehydrogenation could in principle be carried out adiabatically, however, the oxidation selectivity towards hydrogen is too low in existing systems, which leads to low ethene selectivities. This paper discusses the potential for light alkane derivatization through chlorination.

  19. Thermal diffusion of chlorine in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S. [Inst. de Physique Nucleaire de Lyon (IPNL), Villeurbanne (France); Martin, P. [Commissariat a l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, Saint-Paul lez Durance (France); Raimbault, L. [Centre d' Informatique Geologique (CIG), Ecole des Mines, Fontainebleau (France); Scheidegger, A.M. [Lab. for Waste Management, Nuclear Energy and Safety Dept. (NES), Paul Scherrer Inst. Villigen PSI (Switzerland)

    2006-07-01

    In a nuclear reactor, isotopes such as {sup 35}Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as {sup 36}Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO{sub 2}. {sup 37}Cl was implanted at a 10{sup 13} at/cm{sup 2} fluence in depleted UO{sub 2} samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain {sup 37}Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO{sub 2} at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO{sub 2} was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  20. Hydraulic fracturing with chlorine dioxide cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.A.; Newlove, J.C.; Horton, R.L.

    1990-10-23

    This patent describes a method for fracturing a subterranean formation penetrated by a wellbore. It comprises: injecting a fracturing fluid into the formation to form a vertical fracture therein, the fracturing fluid being gelled with a polymer selected from guar, guar derivatives, acrylamide, acrylamide derivatives, cellulose, cellulose derivatives, and mixtures thereof and crosslinked with an organometallic crosslinking compound and having temperature stability above about 175{degrees} F.; packing the fracture with particulate propping agent; backflowing fluids from the formation through the propped fracture to remove a portion of the polymer; injecting at matrix rates sufficient aqueous solution of chlorine dioxide down the wellbore and into the propped fracture to penetrate at least 60 feet of the propped fracture length and contact polymer in the fracturing fluid and polymer residue in the propped fracture and on the fracture walls, the amount of the chlorine dioxide in the aqueous medium being sufficient to degrade polymer in the fracturing fluid and polymer residue; permitting the chlorine dioxide to remain in contact with the polymer in the fracturing fluid and with the polymer residue on the fracture walls and in the fracture for sufficient time to degrade the polymer thereby reducing the fracturing fluid viscosity and dissolving portions of the polymer residue; and flowing formation fluid from the formation through the propped fracture and into the wellbore to remove substantial portions of the polymer and degraded polymer from the fracture.

  1. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    Science.gov (United States)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  2. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    Science.gov (United States)

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  3. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  4. The Potential Feasibility of Chlorinic Photosynthesis on Extrasolar Planets

    Science.gov (United States)

    Haas, Johnson

    2009-09-01

    It is highly likely that the first convincing evidence of extrasolar life will arrive in the form of atmospheric absorption spectra. The modern search for life-bearing extrasolar planets emphasizes the potential detection of O2 and O3 absorption spectra in exoplanetary atmospheres as archetypal signatures of biology. However, oxygenic photosynthesis apparently failed to evolve independently more than once on Earth, and is thus unlikely to be reliably ubiquitous throughout the universe. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This study examines the potential feasibility of one such exotic metabolism: chlorinic photosynthesis (CPS), defined as biologically-mediated halogenation of aqueous chloride to HClO, Cl2 or partially-oxidized intermediates (e.g. haloalkanes, haloacids, haloaromatics), coupled with photosynthetic CO2 fixation. This metabolic couple is feasible thermodynamically and appears to be geochemically plausible under approximately terrestrial conditions. This study hypothesizes that planetary biospheres dominated by CPS would develop atmospheres enriched with dihalogens and other halogenated compounds, evolve a highly oxidizing surface geochemical environment, and foster biological selection pressures favoring halogen resistance and eventual metazoan heterotrophy based on dihalogen and halocarbon respiration. Planets favoring the evolution of CPS would probably receive equivalent or greater surface UV flux than Earth did in the Paleoarchean (promoting abiotic photo-oxidation of aqueous halides, and establishing a strong biological selective pressure toward their accommodation), and would orbit stars having equivalent or greater bulk metallicities (promoting greater planetary halide abundances) relative to the Sun. Directed searches for such worlds should probably focus on A, F and G0 spectral class stars having bulk

  5. [Headspace GC/MS analysis of residual vinyl chloride and vinylidene chloride in polyvinyl chloride and polyvinylidene chloride products].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Kawamura, Yoko; Suzuki, Masako; Aoyama, Taiki

    2005-02-01

    A headspace GC/MS analysis method for the simultaneous determination of residual vinyl chloride (VC) and vinylidene chloride (VDC) in polyvinyl chloride (PVC) and polyvinylidene chloride (PVDC) products was developed. A test sample was swelled overnight with N,N-dimethylacetamide in a sealed vial. The vial was incubated for 1 hour at 90 degrees C, then the headspace gas was analyzed by GC/MS using a PLOT capillary column. The recoveries from spiked PVC and PVDC samples were 90.0-112.3% for VC and 85.2-108.3% for VDC. The determination limits were 0.01 microg/g for VC and 0.06/microg/g for VDC, respectively. By this method, VC was detected in two PVC water supply pipes at the levels of 0.61 and 0.01 microg/g. On the other hand, VC and VDC were not detected in any of the food container-packages or toys tested.

  6. 1,5-Diaminotetrazolium chloride

    Directory of Open Access Journals (Sweden)

    Ling-Qiao Meng

    2010-04-01

    Full Text Available The title compound, CH5N6+·Cl−, crystallized with two indepedent 1,5-diaminotetrazolium cations and two independent chloride anions in the asymmetric unit. In the crystal, there are a number of N—H...Cl hydrogen-bonding interactions, which generate a three-dimensional network.

  7. Chloride : The queen of electrolytes?

    NARCIS (Netherlands)

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O. B.

    2012-01-01

    Background: Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general d

  8. Electric plasma discharge combustion synthesis of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, R. L.; Geren, G. W.

    1984-09-18

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent.

  9. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Labutin, Timur A., E-mail: timurla@laser.chem.msu.ru [Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1-3, Moscow 119991 (Russian Federation); Popov, Andrey M.; Zaytsev, Sergey M.; Zorov, Nikita B. [Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1-3, Moscow 119991 (Russian Federation); Belkov, Mikhail V.; Kiris, Vasilii V.; Raikov, Sergey N. [B.I. Stepanov Institute of Physics, Nezavisimosti Ave. 68, Minsk 220072 (Belarus)

    2014-09-01

    Accurate and reliable quantitative determination of non-metal corrosion agents in concrete is still an actual task of analytical use of LIBS. Two double-pulse LIBS systems were tested as a tool for the determination of chlorine, sulfur and carbon in concretes. Both systems had collinear configuration; a laboratory setup was equipped with an ICCD and two lasers (355/532 nm + 540 nm), but a CCD was a detector for a mobile system with one laser (1064 nm). Analytical lines of Cl I at 837.59 nm, S I at 921 nm and C I at 247.86 nm were used to plot calibration curves. Optimal interpulse delays for the laboratory setup were 4 μs for chlorine and 2.8 μs for carbon, while an interpulse delay of 2 μs was optimal for chlorine and sulfur determination with the mobile system. We suggested the normalization of the Cl I line at 837.59 nm to the Mg II line at 279.08 nm (visible at 837.23 nm in the third order) to compensate for pulse-to-pulse fluctuations of chlorine lines. It provided the decrease of the detection limit of chlorine from 400 ppm to 50 ppm. Therefore, we reported that LIBS can be used to determine main corrosive active substances under ambient conditions in concrete below critical threshold values. Moreover, the application of the mobile system for in-situ qualitative assessment of corrosion way of a steel cage of a swimming pool dome was also demonstrated. It was found that chloride corrosion due to the disinfection of water was the main way for corrosion of the open part steel and the steel rebar inside the concrete. - Highlights: • Determination of chlorine, sulfur and carbon in concrete in the air. • Comparison of mobile and laboratory LIBS systems. • LOD by double-pulse LIBS under ambient conditions: for sulfur 1500 ppm, for chlorine — 50 ppm. • Background level of carbon content in concrete is about 0.27% wt.

  10. 21 CFR 173.375 - Cetylpyridinium chloride.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No... Nutrition's Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or...

  11. Method of improving formation permeability using chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, L.A.; Williams, D.A.

    1991-07-16

    This patent describes a method of treating a sandstone formation containing clays or silicates. It comprises injection a treating liquid into the formation comprising an aqueous solution of: from 50 to 4,200 ppm chlorine dioxide and from 1 to 85 volume percent of carbon dioxide; permitting the chlorine dioxide to react with material in the formation; and thereafter injecting into the formation an acid solution capable of dissolving the reaction products of chlorine dioxide and the clays and silicates.

  12. Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

    OpenAIRE

    Buffin, Lisa Webster

    1992-01-01

    Chlorine (C12(sq»' chlorine dioxide (Cl02 ) and potassium permanganate (KMn04) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The ef...

  13. Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles%Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles

    Institute of Scientific and Technical Information of China (English)

    冷瑜婷; 杨帆; 吴养洁; 李克

    2011-01-01

    An efficient and facile protocol for palladacycle-catalyzed chlorination of 2-arylbenzoxazoles was developed. The results represent the first examples involving the palladacycle as the catalyst for such chlorination. This chlori- nation was not a ligand-directed ortho-C--H activation, but an electrophilic substitution process at the para-position of the nitrogen atom in the benzo ring of benzoxazole moiety, the regiochemistry of which had been confirmed by HMBC spectral analysis. The catalytic system could tolerate various halogen atoms, such as F, Cl and Br, affording the corresponding products in moderate to excellent yields.

  14. Progress of Carbonation in Chloride Contaminated Concretes

    OpenAIRE

    Wang, Yaocheng; Basheer, P. A.M.; Nanukuttan, S; Bai, Y.

    2016-01-01

    Concretes used in marine environment are generally under the cyclic effect of CO2 and chloride ions (Cl-). To date, the influence of carbonation on ingress of chloride ions in concretes has been widely studied; in comparison, study on the influence of Cl- on the progress of carbonation is limited. During the study, concretes were exposed to independent and combined mechanisms of carbonation and chloride ingress regimes. Profiles of apparent pH and chloride concentration were used to indicate ...

  15. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  16. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  17. A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation

    Science.gov (United States)

    Hossaini, Ryan; Chipperfield, Martyn P.; Saiz-Lopez, Alfonso; Fernandez, Rafael; Monks, Sarah; Feng, Wuhu; Brauer, Peter; Glasow, Roland

    2016-12-01

    Chlorine atoms (Cl) are highly reactive toward hydrocarbons in the Earth's troposphere, including the greenhouse gas methane (CH4). However, the regional and global CH4 sink from Cl is poorly quantified as tropospheric Cl concentrations ([Cl]) are uncertain by 2 orders of magnitude. Here we describe the addition of a detailed tropospheric chlorine scheme to the TOMCAT chemical transport model. The model includes several sources of tropospheric inorganic chlorine (Cly), including (i) the oxidation of chlorocarbons of natural (CH3Cl, CHBr2Cl, CH2BrCl, and CHBrCl2) and anthropogenic (CH2Cl2, CHCl3, C2Cl4, C2HCl3, and CH2ClCH2Cl) origin and (ii) sea-salt aerosol dechlorination. Simulations were performed to quantify tropospheric [Cl], with a focus on the marine boundary layer, and quantify the global significance of Cl atom CH4 oxidation. In agreement with observations, simulated surface levels of hydrogen chloride (HCl), the most abundant Cly reservoir, reach several parts per billion (ppb) over polluted coastal/continental regions, with sub-ppb levels typical in more remote regions. Modeled annual mean surface [Cl] exhibits large spatial variability with the largest levels, typically in the range of 1-5 × 104 atoms cm-3, in the polluted northern hemisphere. Chlorocarbon oxidation provides a tropospheric Cly source of up to 4320 Gg Cl/yr, sustaining a background surface [Cl] of methane sink of 12-13 Tg CH4/yr due the CH4 + Cl reaction ( 2.5% of total CH4 oxidation). Larger regional effects are predicted, with Cl accounting for 10 to >20% of total boundary layer CH4 oxidation in some locations.

  18. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O,...

  19. Cystic Fibrosis (CF): Chloride Sweat Test

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cystic Fibrosis (CF) Chloride Sweat Test KidsHealth > For Parents > Cystic Fibrosis (CF) Chloride Sweat Test Print A A A ... It Is A chloride sweat test helps diagnose cystic fibrosis (CF) , an inherited disorder that makes kids sick ...

  20. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the...

  1. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full review... revocation of the antidumping duty order on barium chloride from China would be likely to lead...

  2. 21 CFR 172.180 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  3. Recovering Y and Eu from Waste Phosphors Using Chlorination Roasting—Water Leaching Process

    Directory of Open Access Journals (Sweden)

    Mingming Yu

    2016-10-01

    Full Text Available Recovering Y and Eu from waste phosphors using chlorination roasting followed by a water leaching process was investigated in this study. Firstly, by chlorination roasting and water leaching, Y and Eu elements present in waste phosphors were efficiently extracted into a leach solution. Secondly, the majority of the impurities in the solution can be removed by adjusting the pH to 4.5 using a Na2S and NH3·H2O solution. Thirdly, the rare earths can be precipitated afterwards by adding a H2C2O4 solution and adjusting the pH to 2.0. Then rare earth oxides (REOs can be obtained after calcining at 800 °C for 1 h. The characterization study of the waste phosphors and the rare earth oxide products was performed by XRD, XRF, and SEM-EDS analysis to determine the phase and morphological features. Influences of the factors, such as roasting temperatures and time, the addition of ammonium chloride on the roasting of waste phosphors, as well as the pH and the amount of oxalates on the precipitation of Y and Eu, were investigated. The maximum grade (99.84% of mixed rare earth oxides and recovery rate (87.35% of Y and Eu were obtained at the optimized conditions.

  4. N-Chlorotaurine and ammonium chloride: an antiseptic preparation with strong bactericidal activity.

    Science.gov (United States)

    Gottardi, Waldemar; Arnitz, Roland; Nagl, Markus

    2007-04-20

    The bactericidal activity of the endogenous antiseptic N-chlorotaurine (NCT) is significantly enhanced in the presence of ammonium chloride which induces the formation of monochloramine (NH(2)Cl) whose strong bactericidal activity is well known. In this study the properties of NCT plus ammonium chloride have been investigated. The reaction of active chlorine compounds like chloramine-T (N-chlorotoluene-sulfonamide sodium), chloroisocyanuric acid derivatives, hypochlorites (NaOCl, CaOCl(2)) with ammonium chloride did not stop at the stage of monochloramine, and the pungent smelling by-products di- and trichloramine, NHCl(2) and NCl(3), were also formed. This was not the case with NCT where only monochloramine was generated. The equilibrium constant of the reaction of NCT with ammonium was found to be [Formula: see text] , which allows to estimate the equilibrium concentration of monochloramine in aqueous solutions of NCT and ammonium chloride. At concentrations each ranging between 0.01% and 1.0% it comes to [NH(2)Cl]=3.5-254 ppm. As an unexpected result the monochloramine containing formulation turned out to be most stable in plain water without buffer additives. Quantitative killing assays revealed complete inactivation of 10(6) to 10(7)CFU/mL of seven bacterial strains by 0.1% NCT plus 0.1% ammonium chloride within 5 min, while with plain 0.1% NCT an incubation time of 2-4h was needed to achieve the same effect. The highly significant increase of bactericidal activity (200-300-fold) could be assigned to the presence of monochloramine which could be isolated by vacuum distillation. Aqueous solutions of NCT and ammonium chloride provide a highly effective and well tolerable antiseptic preparation appropriate to a treatment cycle of at least 1 month if stored in the refrigerator.

  5. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, New York 11794 (United States); Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Duan, Xiaonan [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Giannelis, Emmanuel P. [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Center for Refining and Petrochemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Monteiro, Paulo M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g{sup −1} and 257 mg g{sup −1}, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol{sup −1} or 121 mg g{sup −1}), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix.

  6. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deshwal, Bal Raj [Department of Chemistry, A.I.J.H.M. College, Rohtak 124001, Haryana (India); Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun [Korea Institute of Energy Research, Daejon 305 600 (Korea, Republic of); Jung, Jong Hyeon [Department of Environmental Engineering, Sorabol College, Kyungbuk - 780 711 (Korea, Republic of); Lee, Hyung Keun [Korea Institute of Energy Research, Daejon 305 600 (Korea, Republic of)], E-mail: hklee@kier.re.kr

    2008-02-11

    The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO{sub 2}, pH of the solution and NaCl feeding rate on the NO{sub x} removal efficiency at 45 deg. C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO{sub 2} gas into the scrubbing solution. NO is finally converted into nitrate and ClO{sub 2} is reduced into chloride ions. A plausible reaction mechanism concerning NO{sub x} removal by ClO{sub 2} is suggested. DeNO{sub x} efficiency increased slightly with the increasing input NO concentration. The presence of SO{sub 2} improved the NO{sub 2} absorption but pH of solution showed marginal effect on NO{sub 2} absorption. NO{sub x} removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO{sub x} removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.

  7. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function-An ecological study

    Science.gov (United States)

    Chen, Hui-Ming; Wu, Ming-Tsang

    2017-01-01

    Groundwater pollution from the petrochemical industry causes serious deterioration of soil and groundwater quality and impacts on human health worldwide. However, few studies have examined the effect of residential exposure to petrochemical chlorinated hydrocarbon-contaminated groundwater on renal function impairment in humans. We conducted an ecological study to investigate the two. A polyvinyl chloride (PVC) plant was located in one of the six villages, the study area, in Kaohsiung city of southwestern Taiwan. Based on the direction of groundwater flow and previous groundwater measurements of chlorinated hydrocarbons from Taiwan Environmental Protection Bureau, we divided the six villages into highly-polluted villages, moderately-polluted villages, and a non-polluted village. All inhabitants in those six villages were invited to receive free health examinations between May-June, 2010. In total, 4,432 study subjects ≥18 yrs old were analyzed. Compared to those in the non-polluted village, subjects in highly-polluted villages had 1.89- and 1.46-fold the risk of impaired estimated glomerular filtration rate (eGFR) and proteinuria (95% CI = 1.15–1.85 and 1.09–3.28, respectively) after adjusting for other covariates. Given this relative large sample size, we found that groundwater chlorinated hydrocarbon pollution can cause kidney damage in adults. PMID:28067285

  8. Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water.

    Science.gov (United States)

    Ma, Xiaoyan; Deng, Jing; Feng, Jiao; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Dietrich, Andrea M

    2016-10-01

    Unregulated disinfection byproducts (DBPs), including nitrogenous disinfection byproducts (N-DBPs), originating from chlorination of the precursor amino acid phenylalanine in aqueous systems, were identified in laboratory reactions and distributed tap. The major N-DBP identified was phenylacetonitrile, and minor DBPs of benzyl chloride, phenylacetaldehyde, 2-chlorobenzyl cyanide, and 2, 6-diphenylpyridine were also formed. Phenylacetonitrile was generated through decarboxylation, dechlorination and/or hydrolysis processes. With an aromatic structure, phenylacetonitrile has an unpleasant odor of various descriptors and an odor threshold concentration of 0.2 ppt-v as measured through gas chromatography-olfactometry. The half-life of phenylacetonitrile in reagent water and chlorinated water at 19 °C were 121 h and 792 h, respectively. The occurrence of phenylacetonitrile as an N-DBP in tap water was investigated for the first time; the results revealed that μg/L concentrations were present in nine different distributed drinking waters in China and the United States. Phenylacetonitrile deteriorates the aesthetic quality of drinking water and may present risk due to its prolonged existence in drinking water, especially in the presence of residual chlorine.

  9. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function-An ecological study

    Science.gov (United States)

    Chen, Hui-Ming; Wu, Ming-Tsang

    2017-01-01

    Groundwater pollution from the petrochemical industry causes serious deterioration of soil and groundwater quality and impacts on human health worldwide. However, few studies have examined the effect of residential exposure to petrochemical chlorinated hydrocarbon-contaminated groundwater on renal function impairment in humans. We conducted an ecological study to investigate the two. A polyvinyl chloride (PVC) plant was located in one of the six villages, the study area, in Kaohsiung city of southwestern Taiwan. Based on the direction of groundwater flow and previous groundwater measurements of chlorinated hydrocarbons from Taiwan Environmental Protection Bureau, we divided the six villages into highly-polluted villages, moderately-polluted villages, and a non-polluted village. All inhabitants in those six villages were invited to receive free health examinations between May-June, 2010. In total, 4,432 study subjects ≥18 yrs old were analyzed. Compared to those in the non-polluted village, subjects in highly-polluted villages had 1.89- and 1.46-fold the risk of impaired estimated glomerular filtration rate (eGFR) and proteinuria (95% CI = 1.15–1.85 and 1.09–3.28, respectively) after adjusting for other covariates. Given this relative large sample size, we found that groundwater chlorinated hydrocarbon pollution can cause kidney damage in adults.

  10. An electron spin double resonance study of x-ray irradiated phenacyl chloride single crystals

    Science.gov (United States)

    Hwang, J. S.; Wang, H. C.; Andersson, B.; Kispert, L. D.; Geoffroy, M.

    1981-10-01

    Single crystals of phenacyl chloride irradiated at room temperature give rise to an EPR spectrum that has been shown by ENDOR and ELDOR studies to be due to the radical The EPR spectra are complicated by the appearance of a large number of forbidden lines due to the presence of a chlorine quadrupole interaction similar in magnitude to the proton hyperfine coupling. Spectral assignment is not possible by considering the EPR spectra alone. Although ENDOR spectra are difficult to obtain, it is possible to obtain an ENDOR spectrum along one of the crystal axis that identifies the spectra as due to radical I. Furthermore, rather intense and highly resolved ELDOR spectra are obtained at -60 °C as a function of angle enabling the chlorine and proton magnetic hyperfine tensor components of the -ĊHCl fragment to be determined as -15.4, -8.3, +45.6 MHz and -26.5, -52.5, -80.0 MHz, respectively. The Qzz components of the chlorine quadrupole tensor is -11.2 MHz.

  11. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  12. Effects of chlorine and chlorine dioxide on mutagenic activity of Lake Kinnereth water

    Energy Technology Data Exchange (ETDEWEB)

    Guttman-Bass, N.; Bairey-Albuquerque, M.; Ulitzur, S.; Chartrand, A.; Rav-Acha, C.

    1987-03-01

    Water from Lake Kinnereth (Israel) was tested for the presence of mutagenic activity, with and without disinfection by chlorine and chlorine dioxide. The samples were assayed for activity with two Ames Salmonella typhimurium tester strains, TA 104 and TA 100, and by a luminescent genotoxic assay with a dark mutant strain of Photobacterium fischeri. The water concentrates were mutagenic in strain TA 104 and in the luminescent assay, reaching positive mutagenic activities in the equivalent of 20 mL of water. Chlorination did not greatly affect the net mutagenic activity, although ClO/sub 2/ apparently reduced it. Humic acids were isolated from lake sediment and were assayed with and without disinfection in distilled water and in lake water from which the organic components were removed. The humic acids were mutagenic in both test systems, and treatment with Cl/sub 2/ generally decreased the net activity. ClO/sub 2/ also tended to decrease the mutagenic activity, and cytotoxic effects were observed in some of the samples. Conversely, commercial humic acid was mutagenic only after chlorination on strain TA 100. 54 references, 3 figures, 6 tables.

  13. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    Science.gov (United States)

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  14. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  15. Oxomemazine hydro­chloride

    OpenAIRE

    Siddegowda, M. S.; Butcher, Ray J.; Mehmet Akkurt; Yathirajan, H.S.; Ramesh, A. R.

    2011-01-01

    In the title compound [systematic name: 3-(5,5-dioxophenothiazin-10-yl)-N,N,2-trimethylpropanaminium chloride], C18H23N2O2S+·Cl−, the dihedral angle between the two outer aromatic rings of the phenothiazine unit is 30.5 (2)°. In the crystal, the components are linked by N—H...Cl and C—H...Cl hydrogen bonds and C—H...π interactions.

  16. Shock compression of polyvinyl chloride

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2016-04-01

    This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.

  17. Developing chloride resisting concrete using PFA

    Energy Technology Data Exchange (ETDEWEB)

    Dhir, R.K.; El-Mohr, M.A.K.; Dyer, T.D. [Univ. of Dundee (United Kingdom). Dept. of Civil Engineering

    1997-11-01

    PFA concrete mixes were designed to optimize resistance to chloride ingress. Chloride binding capacity, intrinsic permeability and their concomitant influence on the coefficient of chloride diffusion have been investigated. PFA replacements up to 67% and exposure concentrations of 0.1, 0.5, 1.0 and 5.0 mole/liter were used. Chloride binding capacity was found to increase with increasing PFA replacement up to 50% and to then decline. It increased with chloride exposure concentration as well as water/binder ratio. The coefficient of chloride diffusion of concrete samples was found to be dependent on both the intrinsic permeability of the concrete and the ability of its cement matrix to bind chlorides.

  18. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Bonnie A.; Cory, Rose M.; Weinberg, Howard S., E-mail: howard_weinberg@unc.edu

    2014-01-15

    Highlights: • DBP formation from UV-chlorine/chloramine drinking water treatment was measured. • The effect of UV on DBP precursors was evaluated by fluorescence and PARAFAC. • UV alone decreased protein/tryptophan- and humic-like fluorescence. • Loss of two components correlated with cyanogen chloride formation (R{sup 2} = 0.79–0.91). • Loss of the components also correlated with chloral hydrate formation (R{sup 2} = 0.95–1.000). -- Abstract: Ultraviolet (UV) irradiation is being increasingly used to help drinking water utilities meet finished water quality regulations, but its influence on disinfection byproduct (DBP) precursors and DBP formation is not completely understood. This study investigated the effect of medium pressure (MP) UV combined with chlorination/chloramination on the fluorescent fraction of dissolved organic matter (DOM) isolated from a United States surface water with median total organic carbon content. Parallel factor analysis was used to understand how UV may alter the capacity of DOM to form DBPs of potential human health concern. The production of chloral hydrate and cyanogen chloride from MP UV followed by chlorine or chloramine, respectively, correlated with a decrease in fluorescence intensity of a protein/tryptophan-like component (R{sup 2} = 0.79–0.99) and a humic-like component (R{sup 2} = 0.91–1.00). This suggests that the UV-induced precursors to these compounds originated from DOM with similar characteristics to these components. The fluorescent DOM components identified in this study are similar to reoccurring components that have been previously identified in a range of raw and treated waters, and this work demonstrates the value of using fluorescence analysis of DOM to understand the relationships between DOM source and DBP formation under a range of treatment conditions.

  19. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P.

    1981-04-01

    Ozone and chlorine dioxide present definite advantages and disadvantages over chlorination. Chlorination, particularly for the removal of ammonia and the maintenance of a disinfectant residual in the distribution system has decisive advantages and will be difficult to replace. Ozone and chlorine dioxide seem to produce fewer carcinogenic by-products but the risk for acute toxicity, especially from the chlorites which follow chlorine dioxide, is higher than with chlorine. Chlorine dioxide and more particularly ozone should be considered as useful complements to chlorination, but no strong oxidative treatment should be applied before most of the organic matter has been removed.

  20. 78 FR 66767 - Chlorinated Isocyanurates From China and Japan

    Science.gov (United States)

    2013-11-06

    ... publishing the notice in the Federal Register of September 10, 2013 (78 FR 55293). The conference was held in... COMMISSION Chlorinated Isocyanurates From China and Japan Determinations On the basis of the record \\1... injured by reason of imports from China and Japan of chlorinated isocyanurates, provided for...

  1. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    Science.gov (United States)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  2. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  3. 75 FR 23303 - Chlorinated Isocyanurates From China and Spain

    Science.gov (United States)

    2010-05-03

    ... COMMISSION Chlorinated Isocyanurates From China and Spain AGENCY: United States International Trade... isocyanurates from China and Spain. SUMMARY: The Commission hereby gives notice that it has instituted reviews... revocation of the antidumping duty orders on chlorinated isocyanurates from China and Spain would be...

  4. 75 FR 51113 - Chlorinated Isocyanurates From China and Spain

    Science.gov (United States)

    2010-08-18

    ... COMMISSION Chlorinated Isocyanurates From China and Spain AGENCY: United States International Trade... chlorinated isocyanurates from China and Spain. SUMMARY: The Commission hereby gives notice of the scheduling... from China and Spain would be likely to lead to continuation or recurrence of material injury within...

  5. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  6. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    Science.gov (United States)

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  7. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  8. Low-Cost Graphite-Based Free Chlorine Sensor.

    Science.gov (United States)

    Pan, Si; Deen, M Jamal; Ghosh, Raja

    2015-11-01

    Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.

  9. Biodegradability of Chlorinated Anilines in Waters

    Institute of Scientific and Technical Information of China (English)

    CHAO WANG; GUAN-GHUA LU; YAN-JIE ZHOU

    2007-01-01

    Objective To identify the bacteria tolerating chlorinated anilines and to study the biodegradability of o-chloroaniline and its coexistent compounds. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicant. Biodegradability of chlorinated anilines was determined using domesticated complex bacteria as an inoculum by shaking-flask test. Results The complex bacteria were identified, consisting of Xanthomonas, Bacillus alcaligenes,Acinetobacter, Pseudomonas, and Actinomycetaceae nocardia. The obtained complex bacteria were more tolerant to o-chloroaniline than mixture bacteria in natural river waters. The effects of exposure concentration and inoculum size on the biodegradability of o-chloroaniline were analyzed, and the biodegradation characteristics of single o-chloroaniline and 2,4-dichloroaniline were compared with the coexistent compounds. Conclusion The biodegradation rates can be improved by decreasing concentration of compounds and increasing inoculum size of complex bacteria. When o-chloroaniline coexists with aniline, the latter is biodegraded prior to the former, and as a consequence the metabolic efficiency of o-chloroaniline is improved with the increase of aniline concentration. Meanwhile, when o-chloroaniline coexists with 2,4-dichloroaniline, the metabolic efficiency of 2,4-dichloroaniline is markedly improved.

  10. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    Science.gov (United States)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-03-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  11. Efficacy of gamma radiation and aqueous chlorine on Escherichia coli O157:H7 in hydroponically grown lettuce plants.

    Science.gov (United States)

    Nthenge, Agnes K; Weese, Jean S; Carter, Melvin; Wei, Cheng-I; Huang, Tung-Shi

    2007-03-01

    Interaction of Escherichia coli O157:H7/pGFP with hydroponically grown lettuce plants was evaluated in this study. Lettuce seedlings were planted in contaminated Hoagland's nutrient solution and thereafter subjected to gamma radiation at 0.25, 0.5, and 0.75 kGy, and aqueous chlorine at 200 ppm. There was no trace of E. coli O157:H7/pGFP in lettuce leaves harvested from noncontaminated nutrient solution (control); however, for plants grown in contaminated nutrient solution, the pathogen was recovered from the leaves disinfected with 80% ethanol and 0.1% mercuric chloride. Most of the lettuce seedlings grown in contaminated nutrient solution tested negative for E. coli O157:H7/pGFP under controlled conditions. Gamma radiation at 0.25 and 0.5 kGy, and aqueous chlorine at 200 ppm failed to eliminate E. coli O157:H7/pGFP in lettuce tissue completely; however, the bacteria were not detected in 0.75-kGy treated plants. The presence of E. coli O157:H7/pGFP in lettuce leaves is an indication that the pathogen migrated from the contaminated hydroponic system through the roots to the internal locations of lettuce tissue. Due to inaccessibility and limited penetrating power, aqueous chlorine could not eliminate the bacteria localized in the internal tissue. Findings from this study suggest that gamma irradiation was more efficacious than was aqueous chlorine to control internal contamination in hydroponically grown lettuce. Gamma irradiation is a process that processors can use to inactivate E. coli O157:H7 and therefore, consumers benefit from a safer food product [corrected

  12. Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongna, E-mail: lihongna@gmail.com [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Zhu Xiuping [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2011-11-30

    Highlights: > Electrochemical, O{sub 3}, NaClO and NH{sub 2}Cl were compared at respective optimal condition. > Disinfection efficacy was similar for different bacteria in electrolysis. > Harsh Bacillus was inactivated more difficult in O{sub 3}, NaClO and NH{sub 2}Cl system. > Efficient disinfection of electrolysis was attributed to nonselectivity of {center_dot}OH. > Cell surface damage was more obvious in electrochemical process than the others. - Abstract: Electrochemical process in chloride-free electrolytes was proved to be powerful in disinfection due to the strong oxidants produced in the electrolysis and no formation of disinfection byproducts (DBPs). In this study, disinfection experiments were conducted by electrochemical treatment compared with ordinary and advanced methods (ozonation, chlorination and monochloramination), with Escherichia coli (E. coli) K-12, Staphylococcus aureus (S. aureus) A106, Bacillus subtilis (BST) and an isolated Bacillus as the representative microorganisms. Firstly, factor tests were performed on E. coli to obtain the optimal conditions of the four disinfection procedures. At their respective optimal condition, CT (concentration of disinfectant x contact time) value of a 4-log E. coli inactivation was 33.5, 1440, 1575, 1674 mg min L{sup -1} for electrochemical process, ozonation, chlorination and monochloramination, respectively. It was demonstrated that the disinfection availability was in the following order: electrochemical process > ozonation > chlorination > monochloramination, which could be attributed to the hydroxyl radical generated in the electrolysis, with strong oxidizing ability and non-selectivity compared with the other three disinfectants. Moreover, the disinfection efficacy of the four disinfection procedures was compared for four different bacteria. It was found that the disinfection efficacy was similar for the selected four bacteria in electrochemical process, while in the other three treatments

  13. Hydrolysis of cupric chloride in aqueous ammoniacal ammonium chloride solutions

    Directory of Open Access Journals (Sweden)

    Limpo, J. L.

    1995-06-01

    Full Text Available Cupric solubility in the CuCl2-NH4Cl-NH3-H2O system for chloride concentrations lower than 4 molal in the temperature range 25-60 °C was studied. The experimental results show that for chloride concentration between 3.0 and 1.0 molal the cupric solubility is determined by the solubility of the cupric hydroxychloride Cu(OH1.5Cl0.5. For a chloride concentration value of 4.0 molal, there are two cupric compounds, the hydroxychloride Cu(OH1.5Cl0.5 or the diammine chloride Cu(NH32Cl2, on which the solubility of Cu(II depends, according to the temperature and the value of the ratio [NH3]Total/[Cu]Total.

    Se estudia la solubilidad del Cu(II en el sistema CuCl2-NH4Cl-NH3-H2O para concentraciones de cloruro inferiores a 4 molal en el intervalo de temperaturas 25-60 °C. Los resultados experimentales muestran que, para concentraciones de cloruros comprendidas entre 3,0 y 1,0 molal, la solubilidad cúprica viene determinada por la solubilidad del hidroxicloruro cúprico, Cu(OH1.5Cl0.5. Para concentraciones de cloruro 4,0 molal, existen dos compuestos cúpricos, el hidroxicloruro, Cu(OH1.5Cl0.5 o el cloruro de diamina, Cu(NH32Cl2, de los que, de acuerdo con la temperatura y con el valor de la relación [NH3]Total/[Cu]Total depende la solubilidad del Cu(II.

  14. Synergetic Inactivation of Microorganisms in Drinking Water by Short-term Free Chlorination and Subsequent Monochloramination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Escherichia coli,Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. Results The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. Conclusion The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.

  15. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  16. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  17. Change in genotoxicity of wastewater during chlorine dioxide and chlorine disinfections and the influence of ammonia nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Lisha; HU Hongying; WANG Chao; Koichi Fujie

    2007-01-01

    The effects of chlorine dioxide and chlorine disinfections on the genotoxicity of different biologically treated sewage wastewater samples were studied by umu-test.The experiment results showed that when chlorine dioxide dosage was increased from 0 to 30 mg/L,the genotoxicity of wastewater first decreased rapidly and then tended to be stable,while when the chlorine dosage was increased from 0 to 30 mg/L,the genotoxicity of wastewater changed diversely for different samples.It was then found that ammonia nitrogen did not affect the change of genotoxicity during chlorine dioxide disinfection of wastewater,while it greatly affected the change of genotoxicity during chlorine disinfection of wastewater.When the concentration of ammonia nitrogen was low(<10-20mg/L),the genotoxicity of wastewater decreased after chlorine disinfection,and when the concentration of ammonia nitrogen was high(>10-20 mg/L),the genotoxicity of wastewater increased after chlorine disinfection.

  18. Chlorine and Sulfur Volatiles from in Situ Measurements of Martian Surface Materials

    Science.gov (United States)

    Clark, B. C.

    2014-12-01

    A sentinel discovery by the first in situ measurements on Mars was the high sulfur and chlorine content of global-wide soils. A variety of circumstantial evidence led to the conclusion that soil S is in the form of sulfate, and the Cl is probably chloride. An early hypothesis states that these volatiles are emitted as gases from magmas, and quickly react with dust, soil, and exposed rocks. Subsequent determination that SNC meteorites are also samples of the martian crust revealed a significantly higher S content, as sulfide, than terrestrial igneous rocks but substantially less than in soils. The ensuing wet chemical analyses by the high-latitude Phoenix mission discovered not only chloride but also perchlorate and possibly chlorate. MSL data now also implicate perchlorate at low latitudes. Gaseous interactions may have produced amorphous material on grain surfaces without forming stoichiometric salts. Yet, when exposed to liquid water, Phoenix samples released electrolytes, indicating that the soils have not been leached by rain or fresh groundwater. Sulfate occurrences at many locations on Mars, as well as some chloride enrichments, have now been discovered by remote sensing, Landed missions have discovered Cl-enrichments and ferric, Mg, Ca and more complex sulfates as duricrust, subsurface soil horizons, sandstone evaporites, and rock coatings - most of which cannot be detected from orbit. Salt-forming volatiles affect habitability wherever they are in physical contact: physicochemical parameters (ionic strength, freezing point, water activity); S is an essential element for terrestrial organisms; perchlorate is an oxidant which can degrade some organics but also can be utilized as an energy source; the entire valence range of S-compounds has been exploited by diverse microbiota on Earth. Whether such salt-induced conditions are "extremes" of habitability depends on the relative abundance of liquid H2O.

  19. Oxomemazine hydro­chloride

    Science.gov (United States)

    Siddegowda, M. S.; Butcher, Ray J.; Akkurt, Mehmet; Yathirajan, H. S.; Ramesh, A. R.

    2011-01-01

    In the title compound [systematic name: 3-(5,5-dioxo­phen­othia­zin-10-yl)-N,N,2-trimethyl­propanaminium chloride], C18H23N2O2S+·Cl−, the dihedral angle between the two outer aromatic rings of the phenothia­zine unit is 30.5 (2)°. In the crystal, the components are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions. PMID:22090928

  20. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant.

    Science.gov (United States)

    Almubaddal, F; Alrumaihi, K; Ajbar, A

    2009-01-15

    This paper presents results of an experimental study of coagulation/flocculation process of wastewater generated from a polyvinyl chloride (PVC) plant. The wastewater contains fine chlorine-based solid materials (i.e. latex). Experiments were carried out using a model wastewater which is chemically identical to the actual plant but is more consistent. Inorganic ions (Al2(SO4)3, FeCl3 and CaCl2) and a water soluble commercial polyelectrolyte (PE) were added to the wastewater sample. Coagulation efficiency was determined by measuring both the turbidity of the supernatants and the relative settlement of the flocs in the jar test. It was found that aluminum and ferric ions were more efficient than calcium ions as coagulants. The addition of polyelectrolyte was found to improve substantially the coagulation/flocculation process. It was found that the (Al2(SO4)3) combined with the polyelectrolyte at certain pH and agitation speed gave the best results compared to calcium chloride or ferric chloride when combined with the same concentration of polyelectrolyte. Only 0.0375g of a solution of (0.5% Al2(SO4)3) was required to coagulate the model wastewater. Ferric chloride (2.5% FeCl3) combined with the polyelectrolyte, on the other hand, required 0.1g while the optimum turbidity is almost the same. As for calcium chloride (2.5% CaCl2) it was found to be the least effective. The coagulation/flocculation process was found to be dependent on both pH and the agitation speed.

  1. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality....

  2. Ultrafast measurements of chlorine dioxide photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  3. Chloride Ion Critical Content in Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloride ion critical content was studied under soaking and cycle of dry and wet conditions,with three electrochemical nondestructive measuring techniques, i e, half-cell potential, A C impedance, and time potential. The experimental results show that chloride ion critical content is primarily determined by the water cement ratio, while for the same concrete mixture the chloride ion critical content in soaking conditions is larger than that in a cycle of dry and wet conditions.

  4. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    Science.gov (United States)

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  5. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  6. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France) and Universite Claude Bernard Lyon-1, Institut Universitaire de Technologie (IUT A), 94, boulevard Niels Bohr, 69622 Villeurbanne cedex (France)]. E-mail: pipon@ipnl.in2p3.fr; Bererd, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Universite Claude Bernard Lyon-1, Institut Universitaire de Technologie (IUT A), 94, boulevard Niels Bohr, 69622 Villeurbanne cedex (France); Moncoffre, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Peaucelle, C. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Toulhoat, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Commissariat a l' Energie Atomique (CEA), DEN/Saclay, 91191 Gif sur Yvette cedex (France); Jaffrezic, H. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Raimbault, L. [Ecole des Mines de Paris, Centre de Geosciences, 35 rue Saint Honore, F-77305 Fontainebleau cedex (France); Sainsot, P. [Institut National des Sciences Appliquees de Lyon (INSA), UMR 5514, F-69621 Villeurbanne cedex (France); Carlot, G. [Commissariat a l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, 13108 Saint-Paul lez Durance (France)

    2007-04-15

    The radiation enhanced diffusion of chlorine in UO{sub 2} during heavy ion irradiation is studied. In order to simulate the behaviour of {sup 36}Cl, present as an impurity in UO{sub 2}, {sup 37}Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV {sup 127}I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10{sup -14} cm{sup 2} s{sup -1}, reflect the high mobility of chlorine in UO{sub 2} during irradiation with fission products.

  7. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  8. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  9. Removal effect on Mesocyclops leukarti and mutagenicity with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; CUI Fu-yi; QU Bo; ZHU Gui-bing

    2006-01-01

    Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocyclops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with the conventional drinking water treatment process.Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukarti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.

  10. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...... have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion...

  11. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  12. Green process to recover magnesium chloride from residue solution of potassium chloride production plant

    Institute of Scientific and Technical Information of China (English)

    Lin WANG; Yunliang HE; Yanfei WANG; Ying BAO; Jingkang WANG

    2008-01-01

    The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant, which comes from the leach solution of a potash mine in Laos, is designed and optimized. The res-idue solution contains magnesium chloride above 25 wt-%, potassium chloride and sodium chloride together below 5 wt-% and a few other ions such as Br-, SO2-4and Ca2+. The recovery process contains two steps: the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride. The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt. The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production. The produced magnesium chloride is up to industrial criteria.

  13. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO

    Science.gov (United States)

    Höhener, Patrick

    2016-12-01

    BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes 12C, 13C, 35Cl, 37Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of Csbnd Cl bonds. The model is correctly reproducing results for δ13C and δ37Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.

  14. Characterization of Chlorinated Ethene Degradation in a Vertical Flow Constructed Wetland

    Science.gov (United States)

    2007-03-01

    pathway for chlorinated volatiles in phytoremediation applications. Although transpiration of chlorinated solvents has been confirmed in studies ... case study publications and conference presentations providing support for the use of constructed wetlands for the treatment of chlorinated solvent...groundwater. This study characterized and evaluated the concentration of chlorinated ethenes within a vertical flow constructed wetland, fed with PCE

  15. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  16. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  17. Aqueous reactions of chlorine dioxide with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rav-Acha, C.; Choshen, E.

    1987-11-01

    In contrast to mechanisms proposed earlier in the literature, according to which chlorine dioxide (ClO/sub 2/) reacts with various hydrocarbons in aqueous media by abstracting allylic or benzylic hydrogens, it is shown that ClO/sub 2/ reacts with olefins through initial electron transfer. Hydrocarbons that can undergo facile oxidation, such as polycyclic aromatic hydrocarbons (PAH) and some olefins, react with ClO/sub 2/ quite rapidly, while saturated aliphatic hydrocarbons, some aromatic hydrocarbons, and olefins substituted with electron-withdrawing groups remain unreactive. This was substantiated by comparing the reactivities toward ClO/sub 2/ of a variety of hydrocarbons, including aliphatic and aromatic hydrocarbons, saturated and unsaturated acids, PAH, or cyclic and acyclic olefins. The results were supported by a detailed kinetic and product study of the reaction between ClO/sub 2/ and some model compounds.

  18. ENVIRONMENTAL EXPOSURE TO VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-09-01

    Full Text Available Vinyl chloride (VC monomer is a wellknown carcinogenic and mutagenic substance causes liver damages, angiosarcoma of the liver, acro – osteolysis, sclerodermalike changes in workers chronically exposed to this gas. There are following VC emitors to the environment: VC production plants, polymerization facilities and planes where polyvinyl products are fabricated. Because of that, the general population is coming into VC contact through polluted air, food and water. VC concentration in all mentioned sites is very low, often not detectable. There was found any health risk for the general population. The VC air concentration in the vicinity to antropogenic emitors is always higher. Such a situation may causes undesirable health effect for residents living in the neighbourhood. Epidemiological studies are performed to detect the adverse VC effect in selected cohorts. Non of the study did not confirmed cases of angiosarcoma among residents living near a vinyl chloride sites. VC production is growing permanently, so VC emission will be higher. Because of that health monitoring of general population and especially of selected groups seems to be necessary in the future.

  19. Effects of continuous chlorination on entrained estuarine plankton

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, S.J.; Foulk, H.R.

    1980-01-01

    Technical report: The effects of continuous chlorination in running sea water on entrained plankton were examined. The concentration of ATP was used as an indicator of biomass because: it is present in all living cells; the concentration is proportional to the living biomass; and dead cells lose ATP rapidly. Effects were measured by bioluminescence; luciferin-luciferase reagents from firefly lanterns were used to analyze ATP concentration. Results indicate that ATP measurement is an accurate, effective means of evaluating damage done to planktonic organisms by continuous chlorination. Further studies of the effects of low-concentration, continuous chlorination are recommended. (13 references, 1 table)

  20. Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis

    OpenAIRE

    Kaur, Simran

    2013-01-01

    Chlorine dioxide is a selective oxidant and powerful antimicrobial agent. Previous work has shown that treatment of cantaloupe with chlorine dioxide gas at 5 mg/L for 10 minutes results in a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monocytogenes respectively. A significant reduction (p Current analytical methods for chlorine dioxide and chloroxyanions are only applicable to aqueous samples. Some of these methods have been used to determine surface residues in treated products by...

  1. Chlorine-36 and chlorine concentrations within several compartments of a deciduous forest ecosystem in Meuse/Haute-Marne (France)

    Science.gov (United States)

    Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves

    2013-04-01

    Chlorine-36 is a cosmogenic nuclide mainly produced in the atmosphere by interactions between energetic particles originating from the cosmic radiations and 40Ar. Because of its long half-life (T1-2 = 3.01 105 yr) and its high mobility, chlorine-36 is a critical radionuclide concerning radioactive waste repository sites. Moreover, it has been shown that inorganic chlorine could be enriched along the trophic chain due to its high solubility and bioavailability (Ashworth and Shaw, 2006). Additionally, many studies during the last decades have established that due to chlorination process, organic chlorine may account for a large proportion of the total soil chlorine pool (more than 80 % in surface soils of temperate ecosystems. Redon et al., 2012). The aim of this study is thus to measure chlorine-36 in all the compartments of the biogeochemical cycle, to better understand its recycling in the biosphere. The study site is the experimental beech forest site of the Andra long-term monitoring and testing system (OPE*). It is located at Montiers-sur-Saulx, North-East of France and is associated to the future radioactive waste repository site of Bure. Since March 2012, rainwater above (rainfall collected from a 45 m high tower built on purpose) and below (throughfall and stemflow) the canopy, has been collected monthly, as well as soil solutions (gravitational and bound waters) at four depths (0, 10, 30, 60 cm deep). Chlorine-36 and chlorine have been measured in the rainfall samples between March and July 2012 and in water solutions collected from all compartments of the biosphere using isotope dilution mass spectrometry at the french AMS national facility ASTER located at CEREGE. The results yielded from the rainfall samples allow to study the temporal fluctuations of chlorine-36 in the atmosphere, which represents the main inflow of chlorine-36 in its biogeochemical cycle. The first results indicate a flow increase during the late spring-early summer. Santos et al

  2. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  3. RESEARCH ON MATHEMATICAL SIMULATION OF RESIDUAL CHLORINE DECAY AND OPTIMIZATION OF CHLORINATION ALLOCATION OF URBAN WATER DISTRIBUTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    TIAN Yi-mei; CHI Hai-yan; LI Hong; SHAN Jin-lin; ZHAI Chun-nian

    2005-01-01

    The concentration of Residual Chlorine (RC) frequently violates the standard in situations of urban water distribution system with large water supply area and long time of distribution.If chlorine dosage increases within water treatment plant, although RC in distribution system could meet water quality standard, Disinfection By-Products (DBPs) such as hydrocarbon halide rises.In the paper, a mathematical model of chlorine allocation optimization was presented based on reaction kinetics mechanism and optimization theory to solve the problem.The model includes the objective function of minimizing annual operation cost and constraints of RC standard and rational chlorination station distribution, and solving by 0-1 Integer Programming (IP).The model had been applied to a real water distribution system.The simulation results of the model showed that adding chlorine in water distribution system remarkably improved water quality and reduced the operation cost by 49.3% per year less than chlorine dosed only in water treatment plant to meet RC standard.The results prove adding chlorine in water distribution system based on the model can bring both technological and economic advancement.

  4. Electrochemical Behavior of Copper in Thionyl Chloride Solutions.

    Science.gov (United States)

    1980-12-01

    lithium - thionyl chloride batteries . Thionyl chloride is known *3 to react...electrolyte for lithium - thionyl chloride batteries . 8R. K. McAlpine and B. A. Soule, Prescott and Johnson’s Qualitative Chemical Analysis, D. Van...black carbon electrodes, cupric chloride appears to be a useful cathode additive for lithium - thionyl chloride batteries . Preliminary results2l

  5. Research progress on deep application of vinyl chloride monomer%氯乙烯单体深加工应用的研究现状

    Institute of Scientific and Technical Information of China (English)

    李红海; 李婧; 吴天祥

    2011-01-01

    概述了国内外氯乙烯单体深加工的研究现状,简述了工业上氯乙烯单体生产聚氯乙烯、共聚物、聚偏二氯乙烯、氯化聚氯乙烯、1,1,1,3,3-五氟丙烷和氯乙醛等深加工途径以及产品的应用前景。%Research progress in the deep proccssing of vinyl chloridc monomer at homc and abroad was summarized. The dcrivativcs of vinyl chloride monomer and their application prospccts wcrc also introduced, such as potyvinyl chloride(PVC), copolymcr, polyvinylidcnc chloride, chlorinated polyvinyl chloride, 1,1,1,3,3- pcntafluoropropanc and chloroacetaldchydc.

  6. Thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene and aliphatic dicarboxylic acid chlorides

    Indian Academy of Sciences (India)

    Khudbudin Mulani; Mohasin Momin; Nitin Ganjave; Nayaku Chavan

    2015-09-01

    A series of thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene (BHBOMB) and aliphatic dicarboxylic acid chlorides were investigated. All these polyesters were synthesized by interfacial polycondensation method and characterized by differential scanning calorimetry and wide-angle X-ray diffractometer. These polyesters consist of BHBOMB as a mesogenic diol and aliphatic diacid chlorides were used as flexible spacers. The length of oligomethylene units in polymer was varied from the trimethylene to the dodecamethylene groups. The transition temperatures and thermodynamic properties were studied for all these polymers. All these polyesters were soluble in chlorinated solvents such as chloroform, dichloromethane, dichloroethane, etc. More importantly, all these polyesters exhibited very large mesophase stability.

  7. Complete detoxification of short chain chlorinated aliphatic compounds: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, J.M.

    1998-06-01

    'Widespread use and careless handling, storage and disposal practices, have lead to the dissemination of chlorinated short chain aliphatics into groundwater systems. These compounds are toxic and the presence of chlorinated ethenes and chlorinated propanes in the environment is of public concern. Halorespiration is a newly recognized anaerobic process by which certain bacteria use chlorinated compounds as terminal electron acceptors in their energy metabolism. In contrast to co-metabolic dechlorination, which is fortuitous, slow, and without benefit to the organisms, halorespiration, characterized by high dechlorination rates, is a specific metabolic process beneficial to the organism. The goals are to isolate and characterize organisms which use chlorinated ethenes (including tetrachloroethene [PCE], trichloroethene [TCE], cis-dichloroethene [cis-DCE], and vinyl chloride [VC], or 1,2-dichloropropane [1,2-D]) as electron acceptors in their energy metabolism. Better understanding of the physiology and phylogeny of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems, will greatly enhance the authors knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites. This report summarizes the results of 1.5 years of a 2-year project. Anaerobic microcosms were established using a variety of geographically distinct sediments. In several microcosms complete dechlorination of PCE to ethene (ETH), and 1,2-D to propene was observed. Upon subsequent transfers to anaerobic medium, four sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and two cultures that dechlorinated 1,2-D to propene. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene or the dechlorination of PCE to cis-DCE. However, the complete dechlorination of PCE to VC and ETH was severely inhibited. They could also

  8. Chronopotentiometric chloride sensing using transition time measurement

    NARCIS (Netherlands)

    Abbas, Y.; Graaf, de D.B.; Olthuis, W.; Berg, van den A.

    2013-01-01

    Detection of chloride ions is crucial to accurately access the concrete structure durability[1]. The existing electrochemical method of chloride ions detection in concrete, potentiometry[1], is not suitable for in-situ measurement due to the long term stability issue of conventional reference electr

  9. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this...

  10. 29 CFR 1926.1117 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1117 Vinyl chloride. Note: The requirements applicable to construction work under this section are identical to...

  11. Chemische contaminanten in diervoeder additief Choline Chloride

    NARCIS (Netherlands)

    Traag, W.A.; Hoogenboom, L.A.P.; Jong, de J.; Egmond, van H.J.; Dam, ten G.

    2010-01-01

    Dit briefrapport beschrijft de resultaten van een onderzoek naar chemische contaminanten in Choline Chloride. De doelstellingen waren: 1) Inzicht te verkrijgen in het voorkomen van (gebromeerde) vlamvertragers en broomdioxines in het diervoederadditief Choline Chloride en het, op basis van de result

  12. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  13. Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jared A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hylton, Tom D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brunson, Ronald Ray [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney Dale [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inlet was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.

  14. Modeling of residual chlorine in water distribution system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of residual chlorine decay in water pipe has been developed,given the consumption of chlorine in reactions with chemicals in bulk water, bio-films on pipe wall, in corrosion process, and the mass transport of chlorine from bulk water to pipe wall. Analytical methods of the flow path from water sources to the observed point and the water age of every observed node were proposed. Model is used to predict the decay of residual chlorine in an actual distribution system. Good agreement between calculated and measured values was obtained.

  15. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  16. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  17. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  18. Kinetics of Chlorine Decay in Water Distribution Systems

    Institute of Scientific and Technical Information of China (English)

    周建华; 薛罡; 赵洪宾; 汪永辉; 郭美芳

    2004-01-01

    A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with total organic carbon (TOC), the initial chlorine concentration and the temperature. Except for the initial stages they can be simplified into a linear increase with TOC, a linear decrease with initial chlorine concentration and an exponential relationship with the temperature. The model also explains why chlorine decays rapidly in the initial stages. The parameters of model are determined by deriving the best fitness with experimental data. And the accuracy of model has been verified by using the experimental data and the monitoring data in a distribution system.

  19. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  20. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  1. Silver-Catalyzed C(sp(3))-H Chlorination.

    Science.gov (United States)

    Ozawa, Jun; Kanai, Motomu

    2017-03-17

    A silver-catalyzed chlorination of benzylic, tertiary, and secondary C(sp(3))-H bonds was developed. The reaction proceeded with as low as 0.2 mol % catalyst loading at room temperature under air atmosphere with synthetically useful functional group compatibility. The regioselectivity and reactivity tendencies suggest that the chlorination proceeded through a radical pathway, but an intermediate alkylsilver species cannot be ruled out.

  2. Bromoform production in tropical open-ocean waters: OTEC chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  3. Assessment of the risk of transporting liquid chlorine by rail

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  4. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  5. CEN standard for water-soluble chloride, sodium and potassium in solid bio-fuels; CEN standard for vandoploeseligt chlorid, natrium og kalium i faste biobraendsler

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    In 2000 a European work of standardization for 'Solid bio-fuels' under CEN/TC 335 was started. In Denmark this work is followed through the Danish mirror committee S-358. Denmark was asked to prepare a draft for a European standard concerning determination of the water-soluble content of chloride, sodium and potassium in solid bio-fuels. The draft should be based on the Danish 'Recommended analysis methods' no. 10 and 11 concerning respectively the determination of the water-soluble content of chloride and the water soluble content of sodium and potassium in solid bio-fuels. The content of chlorine, sodium and potassium in a fuel is important for the use of the fuel, as high contents can contribute significantly to utilisation problems such as corrosion, fouling and slagging in furnaces. The gaseous emissions from the thermal processes may also be affected. Concerning sodium and potassium it is furthermore the content of the water-soluble and readily volatile salts which is problematic in relation with energy conversion processes. Sodium and potassium bound in non-water soluble compounds as clay minerals (silicates) normally will not volatilises during the process and therefore do not contribute to the formation of deposits. A determination of the water-soluble content of sodium and potassium is therefore not an alternative routine method for sodium and potassium, but a separate method for a determination of the 'aggressive' contents of sodium and potassium. For some solid bio-fuels the water-soluble contents will however be equal to the total contents, this goes for instance for potassium in straw. There is a very large variation in the content of chlorine, sodium and potassium for the different types of solid bio-fuel, from the low contents in clean wood to contents in percentage in straw. Knowledge of the content of chlorine, sodium and potassium in a bio-fuel is thus important in relation to e.g. plant design and fuel purchasing

  6. Chlorine dioxide project allows Stora to clean up, use hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    Butters, G.

    1988-10-01

    Effluent fouling into the Strait of Canso between Nova Scotia mainland and Cape Breton Island has caused Stora Forest Industries Ltd. to develop a $5.6 million solution to its chlorine and acid problems. In 1987, Stora produced about 160,000 tonnes of market pulp where their resource base increasingly consisted of hardwood. The company uses hardwood chips for a growing percentage of its annual pulp production and for its hog fuel boiler, but became faced with having to use more local hardwoods which contributes to the resin problem. Their solution was to construct a 12-tpd chlorine dioxide generator, a process using dry sodium chlorate added to concentrated H/sub 2/SO/sub 4/, The products are chlorine dioxide and highly concentrated sulphuric acid resulting from the elimination of water at the starting point. This will eliminate the acid effluent from the generator and the sulphuric acid will be recycled to the top of the chlorine dioxide generation process. In the new process, ClCO/sub 2/ replaces 70% of the chlorine in the first stage, with 100% substitution a goal. In addition to eliminating the chlorine, other benefits include an increase in pulp production, a nominal increase in pulp strength, lower production costs, and an economic incentive to harvest the area's mixed-wood stands.

  7. Zebra mussel control using periodic chlorine dioxide treatments

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, J. [Electric Power Research Institute, Palo Alto, CA (United States); Coyle, J. [Central Illinois Public Service, Merdosia, IL (United States); Crone, D. [Illinois Power Company, Alton, IL (United States)] [and others

    1996-08-01

    This paper summarizes the EPRI report (TR-105202) on the same topic as well as presents changes in current thinking on the suitability (applicability) of chlorine dioxide for fouling control. Chlorine dioxide was tested as a zebra mussel biocide at two steam electric generating stations in Illinois and one in Indiana. The purpose of these studies was to determine the efficacy of chlorine dioxide in killing zebra mussels and to develop site specific treatment programs for the three utilities. The Electric Power Research Institute (EPRI) Zebra Mussel Consortium sponsored the testing of this recent use of chlorine dioxide. The raw water system at Central Illinois Public Service`s Meredosia Station, on the Illinois River, received applications of chlorine dioxide in April, July, and September 1994. The raw water system at Illinois Power Company`s Wood River Station, on the Mississippi River, received applications in July 1993, January, April, May, July, and September 1994. The Gallagher Station, on the Ohio River, was treated in July and October 1994. Chlorine dioxide was generated on-site and injected into the water intake structure. Both cooling and service water systems were treated at the facilities. 6 refs., 13 figs.

  8. Chlorobenzene outputs from combustion of chlorinated organic and inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.E.S.; Vitali, J.A.; Miller, T.L. [Univ. of Florida, Gainesville, FL (United States)

    1994-12-31

    The authors consider the gas phase formation of chlorinated benzenes and phenols as precursors of chlorinated dioxins and furans from the combustion of solid fuels containing organically bound chlorine. The model investigated is intended to apply to the combustion of medical waste, municipal waste and coals containing chlorine. Assuming a temperature-time profile drawn from incinerator experiments, the authors use kinetic modeling with known reaction rates to further investigate four models of chlorinated benzene formation. Since reaction rates for most chlorination processes are now known, the authors choose simple systems of reaction rates that yield outputs that can be made approximately compatible with results of the Pittsfield-Vicon incinerator and Clean Combustion Technology Laboratory experiments. The authors also consider recent measurements of HCI emissions from crematoria and the implication of this work with respect to the benefits of material substitution in medical and municipal waste incineration. These benefits should also accompany the dechlorination of coals. The authors note the disparity between the prevailing USA position and the emerging position of Germany on the issue of halogenated plastics. The authors also note that Europe and Asia are beginning to address solid fuel issues as a consolidated discipline. This pattern should be helpful in broadening the understanding of solid fuels combustion processes and in ferreting out erroneous data and conclusions. This is important in view of the recent concern about the role of low dioxin exposure levels on fetal development and the immune system.

  9. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    Science.gov (United States)

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  10. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  11. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yanli Zhang; Chunlei Li; Xinming Wang; Hai Guo; Yanli Feng; Jianmin Chen

    2012-01-01

    Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3± 2.1),(38.7 ± 9.0),(19.4 ± 10.1) and (30.0 ± 11.1) μg/m3,respectively; while trichloroethylene (TrCE),tetrachloroethylene (TeCE)and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3),(1.3 ± 0.5),(4.1 ± 1.1),(2.2 ± 1.1) and (1.2 ± 0.3) μg/m3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O)ratios of 1.1-9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.

  12. Adsorption of chlorine on Ag(111): No subsurface Cl at low coverage

    Science.gov (United States)

    Gava, Paola; Kokalj, Anton; de Gironcoli, Stefano; Baroni, Stefano

    2008-10-01

    The adsorption of molecular and atomic chlorine on perfect Ag(111) surface has been studied and characterized by means of extensive density-functional-theory calculations. For the molecular adsorption, we find that the dissociation of Cl2 proceeds with an almost vanishing barrier. As for the adsorption of atomic Cl, on-surface, subsurface, and substitutional adsorptions are considered as a function of the coverage. At coverage lower than 1/2 ML, the on-surface adsorption displays the most exothermic chemisorption energies, whereas the mixed on-surface+subsurface and on-surface+substitutional adsorption modes become competitive with pure on-surface adsorption at about 1/2 ML of coverage and at higher coverages even preferred. The analysis of the adsorption free energy as a function of chlorine chemical potential reveals that the on-surface (3×3)R30° adsorption phase is thermodynamically the most stable over a very broad range of Cl chemical potential. The mixed adsorption modes become thermodynamically more stable at high coverage for values of the Cl chemical potential that are substantially larger than those needed to form silver chloride. This finding seems to indicate that the formation of mixed adsorption phases, if they would ever occur, cannot be due to thermodynamic equilibrium but can only result from kinetic effects. We also find that the presence of open surface steps does not stabilize the subsurface Cl adsorption at low coverage. However due to the stronger Cl-surface interaction near steps, the mixed on-surface+subsurface adsorption on Ag(210) at high coverage becomes thermodynamically the most stable phase at Cl chemical potential close to that needed for the formation of bulk AgCl.

  13. Reductive cleavage of chlorine from 6-chloronicotinic acid on mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, M., E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, S., E-mail: q02pibes@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain); Rodriguez Mellado, J.M., E-mail: jmrodriguez@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain)

    2011-04-30

    Highlights: Dissociation constants (as pK) of 6 chloronicotinic acid (6CNA) obtained by UV-vis spectroscopy: -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen). Electrolysis of 6CNA evidenced the reductive cleavage of chlorine from the molecule. Kinetic parameters (Tafel slopes and reaction orders) determined at the foot of the waves. Reduction pathways have been proposed. - Abstract: This paper presents polarographic (direct current, dc, and differential pulse, DP) and voltammetric (linear-sweep cyclic voltammetry) studies on the electroreduction of 6-chloronicotinic acid (6CNA) on mercury electrodes. In order to obtain the dissociation constants of 6CNA, UV-vis spectra were recorded as a function of pH. pK values of -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen) were obtained. The electrochemical studies were performed in the acidity range 6 M H{sub 2}SO{sub 4} to pH 8. Above the last pH value no signals were obtained. Electrolysis made at potentials corresponding to the limiting current of the first wave indicates that there is a reductive cleavage of chlorine from the molecule. This was confirmed by dc and DP polarografic results and also by voltammetric results. Kinetic parameters such as Tafel slopes and electrochemical reaction orders have been determined at potentials corresponding to the foot of the waves. From these results, together with those obtained by cyclic voltammetry, a reaction pathway is proposed, in which the rate-determining step of the process is the release of a chloride ion from the radical formed after the uptake of a H{sup +} ion and an electron.

  14. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  15. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Wang, Ting; Hu, Hong-Ying

    2016-07-01

    For successful wastewater reclamation, advanced oxidation processes have attracted attention for elimination of emerging contaminants. In this study, the synergistic treatment with UV irradiation and chlorine (UV/chlorine) was used to degrade carbamazepine (CBZ). Neither UV irradiation alone nor chlorination alone could efficiently degraded CBZ. UV/chlorine oxidation showed a significant synergistic effect on CBZ degradation through generation of radical species (OH and Cl), and this process could be well depicted by pseudo first order kinetic. The degradation rate constants (kobs,CBZ) of CBZ increased linearly with increasing UV irradiance and chlorine dosage. The degradation of CBZ by UV/chlorine in acidic solutions was more efficient than that in basic solutions mainly due to the effect of pH on the dissociation of HOCl and OCl(-) and then on the quantum yields and radical species quenching of UV/chlorine. When pH was increased from 5.5 to 9.5, the rate constants of degradation of CBZ by OH decreased from 0.65 to 0.14 min(-1) and that by Cl decreased from 0.40 to 0.11 min(-1). The rate constant for the reaction between Cl and CBZ was 5.6 ± 1.6 × 10(10) M(-1) s(-1). Anions of HCO3(-) (1-50 mM) showed moderate inhibition of CBZ degradation by UV/chlorine, while Cl(-) did not. UV/chlorine could efficiently degrade CBZ in wastewater treatment plant effluent, although the degradation was inhibited by about 30% compared with that in ultrapure water with chlorine dosage of 0.14-0.56 mM. Nine main oxidation products of the CBZ degradation by UV/chlorine were identified using the HPLC-QToF MS/MS. Initial oxidation products arose from hydroxylation, carboxylation and hydrogen atom abstraction of CBZ by OH and Cl, and were then further oxidized to generate acylamino cleavage and decarboxylation products of acridine and acridione.

  16. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  17. Ficusmicrochlorin A-C, two new methoxy lactone chlorins and an anhydride chlorin from the leaves of Ficus microcarpa.

    Science.gov (United States)

    Lin, Huan-You; Chiu, Hsi-Lin; Lu, Te-Ling; Tzeng, Chih-Ying; Lee, Tzong-Huei; Lee, Ching-Kuo; Shao, Yi-Yuan; Chen, Chiy-Rong; Chang, Chi-I; Kuo, Yueh-Hsiung

    2011-01-01

    Two new methoxy lactone chlorins ficusmicrochlorin A (1) and ficusmicrochlorin B (2), and one new anhydride chlorin ficusmicrochlorin C (3), along with eight known pheophytins were isolated from the leaves of Ficus microcarpa. Their structures were determined by the extensive 1D- and 2D-NMR techniques. New pheophytin compound was rarely obtained from natural sources. In the past ten years, only three new natural pheophytins were characterized.

  18. Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment.

    Science.gov (United States)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-11-15

    Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  19. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Science.gov (United States)

    Vidakovic-Koch, Tanja; Martinez, Isai Gonzalez; Kuwertz, Rafael; Kunz, Ulrich; Turek, Thomas; Sundmacher, Kai

    2012-01-01

    Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl− crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized. PMID:24958294

  20. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears indicates a gradual increase from Alaska east to Svalbard, except PCB levels are significantly higher in eastern Greenland and Svalbard. Information on temporal trends is somewhat contradictory.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Directory of Open Access Journals (Sweden)

    Ulrich Kunz

    2012-07-01

    Full Text Available Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized.

  2. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  3. Dynamic headspace: a single-step extraction for isotopic analysis of microg/L concentrations of dissolved chlorinated ethenes.

    Science.gov (United States)

    Morrill, Penny L; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood

    2004-01-01

    In this study a dynamic headspace method was developed to measure the carbon isotope values of dissolved chlorinated ethenes at microg/L concentrations. A gas chromatograph/combustion/isotope ratio mass spectrometer (GC/C/IRMS) was modified to include a headspace extraction system followed by a cryogenic trap. Extracting headspace from a 160 mL vial with 80 mL of aqueous solution and 40 g of NaCl for 8-12 min resulted in accurate and reproducible delta13C values for trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE) at concentrations of 50-75 microg/L. Based on these results a conservative lower limit of quantitation of 38 microg/L can be calculated for these compounds. For more volatile compounds such as tetrachloroethene (PCE) and vinyl chloride (VC), field data analyzed using this method indicate a lower limit of quantitation in the tens of microg /L range.

  4. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    Science.gov (United States)

    Behera, Swayamprabha; Joseph, Jorly; Jena, Purusottam

    2011-03-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n , M = Sc,Y, La; n = 1--5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5 . The electron affinities of MCl n (n = 1--3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4 , YCl 4 and LaCl 4 , respectively and remain high for n = 5. MCl n , (n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data

  5. Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method

    Science.gov (United States)

    Aiken, G.R.

    1992-01-01

    The presence of Cl- in concentrations greater than 0.02 M is shown to interfere with the analysis of aqueous DOC concentrations by the wet oxidation method of analysis when a reaction time of 5 min is employed. Chloride competes with DOC for S2O82-, lowering the overall oxidation efficiency. The resulting HOCl from the oxidation of Cl- reacts with DOC, producing significant amounts of chlorinated intermediate compounds in addition to CO2. These compounds were found in the waste effluent from the reaction chamber and in the gas stream transporting CO2 to the detector. While a possible Cl- effect has been noted for DOC measurements in the past, it has not previously been demonstrated to be a source of error at the concentrations reported in this paper. The interference can be overcome either by increasing the digestion time or by diluting samples to contain less than 0.02 M Cl-.

  6. EFFECTS OF SODIUM CHLORIDE ON GROWTH AND MINERAL NUTRITION OF PURPLETOP VERVAIN

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2016-04-01

    Full Text Available There is a rising demand for salt-tolerant species for landscaping. Purpletop vervain is an excellent landscape plant for gardens and parks, with fragrant lavender to rose-purple flowers. However, little is known concerning the effect of sodium chloride on morphological characteristics, flowering and mineral uptake of purpletop vervain. In this study, carried out in 2013–2014, the plants of purpletop vervain were grown in pots in an unheated plastic tunnel. The plants were watered with 200 mM NaCl solution four times, every seven days. Salinity-exposed plants were characterized by slightly reduced plant height, weight of the aboveground part and visual score. Salt stress caused also an increase in leaf content sodium, chlorine and manganese. Salinity had no effect on earliness of flowering and content in leaves of phosphorus, potassium, magnesium, copper, zinc and iron. Purpletop vervain seems to be plant species able to tolerate salt stress under controlled conditions.

  7. Polarizabilities and Shielding Factors of Ions in Cesium Halide Crystals with the Cesium Chloride Structure

    Science.gov (United States)

    Mahbubar, Rahman; Michihiro, Yoshitaka; Nakamura, Koichi; Kanashiro, Tatsuo

    2001-08-01

    The calculated results of the polarizabilities and the quadrupole shielding factor of the ions in cesium halide crystals with the cesium chloride structure are presented. The calculation is done on the basis of the self-consistent field local density approximation and the modified Sternheimer equation. The crystalline potential is treated by the spherical solid model. The size effect is seen in the values of the polarizabilities and the quadrupole shielding factor. The values of the polarizabilities and the quadrupole shielding factor of cesium ion show only slight change in different crystals. The values of chlorine ion show significant reduction and the amount of the reduction is different in the different crystals. The effect of the crystalline environment on the electron states is discussed.

  8. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  9. Anaerobic transformation of chlorinated dioxins by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Adrian, L. [Fachgebiet Technische Biochemie, Technische Univ. Berlin (Germany); Lechner, U. [Inst. fuer Mikrobiologie, Martin-Luther-Univ. Halle-Wittenberg (Germany)

    2004-09-15

    Mixed bacterial cultures catalyze diverse chlorodioxin-dehalogenation pathways. Some of these pathways lead to relatively harmless end products, which can undergo further biological degradation e.g. by aerobic bacteria. However, the possible formation of highly toxic products is a critical problem for a bioremediation approach but also for untreated sites where such dechlorination reactions can occur. Bioaugmentation with suitable pure or mixed cultures is promising. This has recently been demonstrated in a tetrachloroethene-contaminated groundwater using a Dehalococcoidescontaining inoculum that almost completely converted tetrachloroethene to ethene without accumulation of the toxic intermediate vinyl chloride. With Dehalococcoides sp. strain CBDB1 the first bacterium is now known, that grows by dehalorespiration with dioxins. Learning from the physiology and biochemistry of this bacterium will help us to understand the role of these bacteria in the environment and to predict the fate of dioxin pollution.

  10. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  11. Chloride Ingress into Concrete under Water Pressure

    OpenAIRE

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent; Hansen, Kurt Kielsgaard

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 kPa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly infl...

  12. Reliability-Based Planning of Chloride Measurements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1996-01-01

    on measurements of the chloride content obtained from the given structure. In the present paper optimal planning of measurements of the chloride content in reinforced concrete structures is considered. It is shown how optimal experimental plans can be obtained using FORM-analysis. Bayesian statistics are used......In reinforced concrete structures corrosion is initiated when the chloride concentration around the reinforcement exceeds a threshold value. If corrosion starts then expensive repairs can be necessary. The estimation of the probability that corrosion has been initiated in a given structure is based...

  13. Comparison of chlorine and chlorine dioxide toxicity of fathead minnows and bluegill

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Soracco, R.J.; Mayack, L.A.; Shealy, R.L.; Broadwell, T.L.; Steffen, R.F.

    1983-01-01

    The comparative toxicity of total residual chlorine (TRC) and chlorine dioxide (ClO/sub 2/) was evaluated by conducting 96 h flow-through bioassays with three types of fish. The fish were subjected to an intermittent exposure regime in which biocide residuals were present for approximately 2-h periods beginning at 0, 24, 48 and 72 h into the tests. These conditions simulated the antifouling procedure (1 h day/sup -1/ biocide addition) used to control biofouling of nuclear reactor heat exchangers at the Savannah River Plant near Aiken, South Carolina. LC/sub 50/ values showed that ClO/sub 2/ was approximately 2 to 4 times more toxic than TRC to: (1) juvenile and 1-year-old fathead minnows (Pimphales promelas); and (2) young-of-the-year bluegill (Lepomis macrochirus). The TRC mean 96-h LC/sub 50/ values were: 0.08 mg l/sup -1/ for juvenile fathead minnows, 0.35 mg l/sup -1/ for adult fathead minnows and 0.44 mg l/sup -1/ for young-of-the-year bluegills. The ClO/sub 2/ mean LC/sub 50/ values were: 0.02 mg l/sup -1/ for juvenile fathead minnows, 0.17 mg l/sup -1/ for adult fathead minnows and 0.15 mg l/sup -1/ for young-of-the-year bluegills. 31 references, 1 figure, 3 tables.

  14. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products.

  15. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    Science.gov (United States)

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  16. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.

    Science.gov (United States)

    Yeh, Ellen; Cole, Lindsay J; Barr, Eric W; Bollinger, J Martin; Ballou, David P; Walsh, Christopher T

    2006-06-27

    The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).

  17. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA)

    Science.gov (United States)

    Mundle, S.O.C.; Johnson, T.; Lacrampe-Couloume, G.; Perez-De-Mora, A.; Duhamel, M.; Edwards, E.A.; McMaster, M.L.; Cox, E.; Revesz, K.; Lollar, B. Sherwood

    2012-01-01

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = −6.7‰ ± 0.4‰, and −4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = −3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ13C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  18. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).

    Science.gov (United States)

    Mundle, Scott O C; Johnson, Tiffany; Lacrampe-Couloume, Georges; Pérez-de-Mora, Alfredo; Duhamel, Melanie; Edwards, Elizabeth A; McMaster, Michaye L; Cox, Evan; Révész, Kinga; Sherwood Lollar, Barbara

    2012-02-07

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  19. Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region

    Science.gov (United States)

    Weritz, F.; Schaurich, D.; Wilsch, G.

    2007-12-01

    Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur and chlorine content of building materials. Both, chloride and sulfate ions are major damaging species affecting the stability and lifetime of a structure. Chlorine and sulfur are mostly detected in the VUV and the NIR. In case of building materials the main elements like calcium or iron have many strong spectral lines over the whole spectral range, so that trace elements can only be detected in spectral windows unaffected from these lines. With regard to a preferably simply, robust against dust and vibrations and portable setup only the NIR spectral features are used for civil engineering applications. Most detectors, mainly CCD cameras have rapidly decreasing quantum efficiency in the NIR. Also the quantum efficiency of the photocathode of CCD-Detectors with image intensifier is decreasing in the NIR. Different CCD-detectors were tested with respect to high quantum efficiency and high dynamic range, which is necessary for simultaneous detection of weak spectral lines from trace elements and intense spectral lines from main elements. The measurements are made on reference samples consisting of cement, hydrated cement, cement mortar and concrete with well-defined amounts of the trace elements. Experimental conditions are chosen for an optimum intensity of the trace element spectral lines. The detector systems are compared by limit of detections and the signal to noise ratio.

  20. Simultaneous removal of SO{sub 2} and NO by wet scrubbing using aqueous chlorine dioxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dong-Seop [Flue Gas Treatment Center, Korea Institute of Energy Research, Daejon 305 600 (Korea, Republic of); Deshwal, Bal-Raj [Department of Chemistry, A.I.J.H.M. College, Rohtak 124001, Haryana (India)]. E-mail: deshwalbr@yahoo.com; Park, Young-Seong [Department of Environmental Engineering, Daejon University, Daejon (Korea, Republic of); Lee, Hyung-Keun [Flue Gas Treatment Center, Korea Institute of Energy Research, Daejon 305 600 (Korea, Republic of)

    2006-07-31

    The present study attempts to generate chlorine dioxide (ClO{sub 2}) gas continuously by chlorate-chloride process and to utilize it further to clean up SO{sub 2} and NO {sub x} gases simultaneously from the flue gas in the lab-scale bubbling reactor. Experiments were carried out to examine the effect of various operating parameters like input SO{sub 2} concentration, input NO concentration, pH of the reaction medium, and ClO{sub 2} feeding rate on the SO{sub 2} and NO {sub x} removal efficiencies at 45 deg. C. Complete oxidation of NO into NO{sub 2} occurred on passing sufficient ClO{sub 2} gas into the scrubbing solution. SO{sub 2} removal efficiency of about 100% and NO {sub x} removal efficiency of 66-72% were achieved under optimized conditions. NO {sub x} removal efficiency decreased slightly with increasing pH and NO concentration. Input SO{sub 2} concentration had marginal catalytic effect on NO{sub 2} absorption. No improvement in the NO {sub x} removal efficiency was observed on passing excess of chlorine dioxide in the scrubbing solution.

  1. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  2. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination.

    Science.gov (United States)

    Lyon, Bonnie A; Cory, Rose M; Weinberg, Howard S

    2014-01-15

    Ultraviolet (UV) irradiation is being increasingly used to help drinking water utilities meet finished water quality regulations, but its influence on disinfection byproduct (DBP) precursors and DBP formation is not completely understood. This study investigated the effect of medium pressure (MP) UV combined with chlorination/chloramination on the fluorescent fraction of dissolved organic matter (DOM) isolated from a United States surface water with median total organic carbon content. Parallel factor analysis was used to understand how UV may alter the capacity of DOM to form DBPs of potential human health concern. The production of chloral hydrate and cyanogen chloride from MP UV followed by chlorine or chloramine, respectively, correlated with a decrease in fluorescence intensity of a protein/tryptophan-like component (R(2)=0.79-0.99) and a humic-like component (R(2)=0.91-1.00). This suggests that the UV-induced precursors to these compounds originated from DOM with similar characteristics to these components. The fluorescent DOM components identified in this study are similar to reoccurring components that have been previously identified in a range of raw and treated waters, and this work demonstrates the value of using fluorescence analysis of DOM to understand the relationships between DOM source and DBP formation under a range of treatment conditions.

  3. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform

    Institute of Scientific and Technical Information of China (English)

    Zhimin QIANG; Weiwei BEN; ChinPao HUANG

    2008-01-01

    The degradation of selected chlorinated ali-phatic hydrocarbons (CAHs) exemplified by trichloroethy-lene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contami-nants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton's reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new "time-squared" kinetic model, C = Coexp(-kobst2), was developed to express the degrada-tion kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ·OH. Chloride release was monitored to examine the degree of dechlorina- tion during the oxidation of selected CAHs. TCE was more easily dechlorinated than DCE and CF. Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermedi- ates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton's reagent was proposed.

  4. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; GAO Tingyao; ZHOU Rongfeng; MA Lumin

    2007-01-01

    The electrochemical reduction characteristies of chlorinated hyrdrocarbons were investigated by cyclic voltammetry technique.The reduction mechanism and activity of the chlorinated hydrocarbons at the copper electrode were explored.The relationship between the structure of chlorinated hydrocarbons and their reductive activity were discussed.The experimental results showed that chlorinated alkanes and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode.However,chlorinated aromatic hydrocarbons were not easy to reduce at the copper electrode.The results provided a theoretical basis for the catalyzed iron inner electrolysis method.

  5. Study on metal corrosion caused by chlorine dioxide of various purities

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼; 许晶

    2004-01-01

    Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contras, metals corrosion is the least serious in the case of chlorine dioxide.The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.

  6. Solubility and surface thermodynamics of conducting polymers by inverse gas chromatography. III: polypyrrole chloride.

    Science.gov (United States)

    Duaij, Omar K; Alghamdi, Ali; Al-Saigh, Zeki Y

    2013-05-24

    Inverse gas chromatography, IGC, was applied to characterize conducting polypyrrole chloride (PPyCl) using twenty three solvents. IGC is able to reveal the change in the morphology, the strength of solvent-PPyCl interactions, thermodynamics parameters (χ12, Ω1(∞)), solvent and polymer solubility parameters, and molar heats of sorption, mixing and evaporation (ΔH1(s), ΔH1(∞), ΔH1(v)). The following solvents showed stronger interactions than others; yet, none of these solvents are good solvents for PPyCl: dodecane among the alkane family, tetrahydrofuran and methyl ethyl ketone among the oxy and keto group, dichloromethane among the chlorinated group up to 120°C and chloroform at 180°C, and toluene among the cyclic and aromatic group. Overall, the groups showed higher affinities to PPyCl are: acetates, oxy and cyclic, and chlorinated groups. Comprehensive solvents and PPyCl solubility parameters are obtained. The latter showed that PPyCl is not soluble in any solvent used.

  7. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  8. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammoni...

  9. Qualitative Determination of Nitrate with Triphenylbenzylphosphonium Chloride.

    Science.gov (United States)

    Berry, Donna A.; Cole, Jerry J.

    1984-01-01

    Discusses two procedures for the identification of nitrate, the standard test ("Brown Ring" test) and a new procedure using triphenylbenzylphosphonium chloride (TPBPC). Effectiveness of both procedures is compared, with the TPBPC test proving to be more sensitive and accurate. (JM)

  10. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  11. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent;

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  12. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: April 9, 2010. FOR FURTHER INFORMATION CONTACT:...

  13. Facile synthesis of nitrogen-doped carbon dots from COOH-functional ionic liquid and their sensing application in selective detection of free chlorine

    Science.gov (United States)

    Wang, Congyue; Wang, Chunfeng; Sun, Dong; Li, Aoqi; Chen, Yujuan; Zhuo, Kelei

    2016-09-01

    Heteroatom doped carbon dots (CDs) possess many unique properties and have attracted increasing attention. The precursor is vital for the preparation of highly fluorescent heteroatom doped CDs. Herein, 1, 3-bis(carboxymethyl)imidazolium chloride ([Im(AH)2]Cl, a COOH-functional ionic liquid) and aminoethylethanolamine (AEEA) were firstly used as precursors to prepare nitrogen-doped carbon dots (N-CDs) by a simple one-step pyrolysis approach. The effects of reaction time, temperature, and mass ratio of precursors on the quantum yield (QY) of N-CDs were investigated. The prepared N-CDs are spherical morphology with an average diameter of 2.4 nm, and have blue fluorescence with a QY of 23.2% and excitation-dependent emission behavior. They also possess good water solubility and fluorescent stability. In addition, based on the obtained N-CDs, a sensing method of free chlorine detection in acidic water system was introduced. The proposed method has good sensitivity and selectivity to free chlorine, and exhibits a nice linear response in the concentration range from 0.2 to 22 μM with a detection limit of 0.15 μM. Furthermore, this sensing method was successfully applied to detect free chlorine of tap water with satisfactory recovery (97%-103%), suggesting it has the potential application in water quality monitoring.

  14. Telomerization of Vinyl Chloride with Chloroform Initiated by Ferrous Chloride-Dimethylacetamide under Ultrasonic Conditions

    Directory of Open Access Journals (Sweden)

    Hua Qian

    2015-01-01

    Full Text Available Telomerization of vinyl chloride with chloroform was investigated using ferrous chloride-dimethylacetamide system, and 42.1% yield, more than four times the one reported before, was achieved. The addition of ultrasound further improved the reaction and yield was raised to 51.9% with trace byproducts at highly reduced reaction time and temperature. Ferrous chloride-dimethylacetamide under ultrasonic irradiation acts as a very efficient catalyst system for the 1 : 1 telomerization.

  15. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  16. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection.

    Science.gov (United States)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p=0.007-0.014, n=6),as well as contact time (p=0.0001, n=10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30-1.49 logs) could be achieved at FC dosage of 30 mg L(-1). The transformation kinetic data for ARGs removal (log C0/C) followed the second-order reaction kinetic model with FC dosage (R(2)=0.6829-0.9999) and contact time (R(2)=0.7353-8634), respectively. Higher ammonia nitrogen (NH3-N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl2:NH3-N ratio was over 7.6:1, a significant reduction of ARGs (1.20-1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36-0.40 at a fluence of 249.5 mJ cm(-2), which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters.

  17. Rapid Determination of HAAs Formation Potential of the Reaction of Humic Acid with Chlorine or Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-liang; GE Yuan-xin; ZHANG Rong-hua; MA Hong-mei; HAO Jian-fu

    2007-01-01

    On the basis of gas chromatography(GC) coupled with a short capillary column and an electron capture detector(ECD), a simple and rapid method for the determination of five haloacetic acids(HAAs) in drinking water was developed by the optimization of derivation conditions and the modification of gas chromatographic program. HAAs formation potential(HAAFP) of the reaction of humic acid with chlorine was determined via this method. The major advantages of the method are the simplicity of chromatographic temperature program and the short run time of GC. Dichloroacetic acid(DCAA) and Trichloroacetic acid(TCAA), which were detected in the determination of HAAFP, were rapidly formed in the first 72 h of the reaction of humic acid with chlorine. HAAFP of the reaction of humic acid with chlorine increased with the increase in the concentrations of humic acid and chlorine. The average HAAFP of the reaction of humic acid with chlorine was 39.9 μg/mg TOC under the experimental conditions. When the concentration of humic acid was 4 mg/L, the concentration of HAAs, which were produced in the reaction of humic acid with chorine, may exceed MCL of 60 μg/L HAAs as the water quality standards for urban water supply of China and the first stage of US EPA disinfection/disinfection by-products(D/DBP) rule; when the concentration of humic acid was 2 mg/L, the concentration of HAAs may exceed MCL of 30 μg/L HAAs for the second stage of US EPA D/DBP rule. When humic acid was reacted with chlorine dioxide, only DCAA was detected with a maximum concentration of 3.3 μg/L at a humic acid content of 6 mg/L. It was demonstrated that the substitution of chlorine dioxide for chorine may entirely or partly control the formation of HAAs and effectively reduce the health risk associated with disinfected drinking water.

  18. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta, M. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)], E-mail: mfontcub@aspb.es; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)

    2008-01-15

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan {alpha}, {beta} or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements.

  19. Intra- and intermembrane distribution of chlorin e6 derivatives

    Science.gov (United States)

    Zorin, Vladimir P.; Zorina, Tatyana E.; Mikhalovsky, Iosif S.; Khludeyev, Ivan I.

    1995-01-01

    The parameters of chlorin e6 and trimethylester of chlorin e6 incorporation and distribution in suspensions of unilamellar liposomes of DMPC, DPPC, and DSPC, as well as efficiency of the pigment redistribution from liposomes to cellular membranes have been studied. Determination of the fraction of pigments' fluorescence which is accessible to quenching by a watersoluble quencher indicates that for both chlorins the outer monolayer of the liposomal membrane is more populated than the inner one. Gel-liquid crystalline phase transition induces a shift of a part of the pigments' molecules toward the inner monolayer. By means of ultrafiltration technique it is shown that chlorins binding to liposomal membrane occurs as partitioning between water and lipid phases. The partition coefficient is affected strongly by the type of pigment, the phase state of the lipid bilayer. Similar results were obtained when the influence of the physical state of the lipid bilayer on the rate of chlorins redistribution from liposomes to cellular membrane was studied. These findings show that diffusive mobility of the sensitizer in suspensions of cellular and model membranes is a complex process which is dependent on structural features of both the pigment and its biological carriers.

  20. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  1. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.

    Science.gov (United States)

    Van Aken, Benoit; Doty, Sharon Lafferty

    2010-01-01

    Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.

  2. Application of chlorine dioxide as an oilfield facilities treatment fluid

    Energy Technology Data Exchange (ETDEWEB)

    Romaine, J.; Strawser, T.G.; Knippers, M.L.

    1995-11-01

    Both mechanical and chemical treatments are used to clean water flood injection distribution systems whose efficiency has been reduced as a result of plugging material such as iron sulfide sludge. Most mechanical treatments rely on uniform line diameter to be effective, while chemical treatments require good contact with the plugging material for efficient removal. This paper describes the design and operation of a new innovative application using chlorine dioxide for the removal of iron sulfide sludge from water flood injection distribution systems. This technology has evolved from the use of chlorine dioxide in well stimulation applications. The use of chlorine dioxide for continuous treatment of injection brines will also be discussed. Exxon USA`s Hartzog Draw facility in Gillette, Wyoming was the site for the application described. 4,500 barrels of chlorine dioxide was pumped in three phases to clean sixty-six miles of the water flood distribution system. Results indicate that chlorine dioxide was effective in cleaning the well guard screens, the injection lines, frac tanks used to collect the treatment fluids and the injection wells.

  3. MECHANISM OF CHLORATE FORMATION IN CHLORINE DIOIXDE DELIGNIFICATION

    Institute of Scientific and Technical Information of China (English)

    Byung-Ho Yoon; Li-Jun Wang; Se-Jong Kim

    2004-01-01

    The effect of pH on chlorate formation during chlorine dioxide delignification of oxygen delignified kraft pulp was studied. Chlorate formation was found to increase slightly when pH was increased from 1.8 to 2.5, further increase of pH decreased chlorate formation.The above phenomenon is explained by the combination of two mechanisms, one by the reaction between hypochlorous acid and chlorite, another by the effect of chlorine on the regeneration of chlorine dioxide. The first mechanism suggests that chlorate formation is highly dependent on HCIO concentration which decreases with increasing pH and causes chlorate formation to behave in the same trend. The second mechanism suggests that chlorine favors the regeneration of chlorine dioxide while HCIO favors chlorate formation, thus lowering the pH from about 4 to the acidic end should decreases chlorate formation. The two opposite effects lead to the maximum formation of chlorate at around pH 2.5.

  4. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    Science.gov (United States)

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors.

  5. Chlorination byproducts, their toxicodynamics and removal from drinking water.

    Science.gov (United States)

    Gopal, Krishna; Tripathy, Sushree Swarupa; Bersillon, Jean Luc; Dubey, Shashi Prabha

    2007-02-01

    No doubt that chlorination has been successfully used for the control of water borne infections diseases for more than a century. However identification of chlorination byproducts (CBPs) and incidences of potential health hazards created a major issue on the balancing of the toxicodynamics of the chemical species and risk from pathogenic microbes in the supply of drinking water. There have been epidemiological evidences of close relationship between its exposure and adverse outcomes particularly the cancers of vital organs in human beings. Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine. The total concentration of trihalomethanes and the formation of individual THM species in chlorinated water strongly depend on the composition of the raw water, on operational parameters and on the occurrence of residual chlorine in the distribution system. Attempts have been made to develop predictive models to establish the production and kinetics of THM formations. These models may be useful for operational purposes during water treatment and water quality management. It is also suggested to explore some biomarkers for determination of DBP production. Various methods have been suggested which include adsorption on activated carbons, coagulation with polymer, alum, lime or iron, sulfates, ion exchange and membrane process for the removal of DBPs. Thus in order to reduce the public health risk from these toxic compounds regulation must be inforced for the implementation of guideline values to lower the allowable concentrations or exposure.

  6. Cesium chloride-induced torsades de pointes

    OpenAIRE

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-01-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear ...

  7. The kinetics of the hydrogen chloride oxidation

    Directory of Open Access Journals (Sweden)

    Gonzalez Martinez Isai

    2013-01-01

    Full Text Available Hydrogen chloride (HCl oxidation has been investigated on technical membrane electrode assemblies in a cyclone flow cell. Influence of Nafion loading, temperature and hydrogen chloride mole fraction in the gas phase has been studied. The apparent kinetic parameters like reaction order with respect to HCl, Tafel slope and activation energy have been determined from polarization data. The apparent kinetic parameters suggest that the recombination of adsorbed Cl intermediate is the rate determining step.

  8. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gabr, Hamid Mohammad [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Zheng, Tianling [State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Yu, Xin, E-mail: xyu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log{sub 10} control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log{sub 10} reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus.

  9. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  10. Effect of Chloride Type on Penetration of Chloride Ions in Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of chloride type on the diffusivity of chloride ions in concrete was studied by experiment. The result shows that the glectric resistance of concrete and the chloride diffusion coefficient are influenced by chloride type. For the same water/cement ratio (W/C), the diffusion coefficient D in KCl solution is larger than that in NaCl solution; however, the concrete resistance in KCl solution is smaller than that in NaCl solution. The experimental result is analyzed with theory of diffusion.

  11. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  12. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  13. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    conditions in the trenches with in situ chemical oxidation (ISCO), which would be able to remove the rest of the accompanying pollutants, is proposed and merits evaluation. Preliminary batch experiments were performed to evaluate the feasibility of different chemical oxidation reactions (permanganate, persulphate, hydrogen peroxide and Fenton) on the complex contaminated recharge water which were, in general, more effective for degrading the chlorinated ethenes than for the chlorinated methanes (Torrentó et al. EGU 2012). Therefore, this study seeks to improve the understanding of CF and CT degradation mechanisms/processes that are going on in the interception trenches as well as to select between the two most effective chemical oxidation remediation treatments (persulphate and permanganate) taking into account their efficiency respect the chlorinated methanes removal, the generated acute toxicity and the applicability of the carbon isotopic fractionation as an indicator of the effectiveness of the future in situ remediation. Additionally, ongoing batch experiments are expected to elucidate if CT is undergoing abiotic reductive dechlorination by Fe-bearing minerals such as hydrophobic green rust (Ayala-Luis et al., 2012) which transform CT into non-chlorinated substances such as formic acid and carbon monoxide. This unstable iron compound might be formed in the interception trenches during chloride induced corrosion of iron mineral phases present in the concrete-based construction wastes (Sagoe-Crentsil and Glasser, 1993). The role of other minerals like iron oxy-hydroxides, carbonates or sulphides cannot be discarded at all. The potential of δ13C values to assess the efficiency of this abiotic CT degradation reaction will be also evaluated. References Ayala-Luis, K.; Cooper, N.; Bender C. and Hansen. H. (2012) Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercaled with dodecanoate anions. Environmental Science & Technology 46, 3390

  14. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... term secondary source that can leach to the underlying aquifer. As some of the chlorinated solvents and their degradation products are toxic and carcinogenic, remediation technologies applicable in low permeability settings are needed. Enhanced reductive dechlorination (ERD) has been proven efficient...... and ethanes in clay till (Vadsbyvej) revealed a very complex system where diffusion, biotic and abiotic degradation processes occurred simultaneously. High resolution sub sampling with combined use of chemical analysis, molecular microbial tools and CSIA was necessary to identify both biotic and abiotic...

  15. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  16. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2013-01-01

    Full Text Available In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS, Energy Dispersive Spectroscopy (EDS analysis, and also Mohr titration method, the presence of chlorine species on the surface of chlorinated samples was confirmed.

  17. Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides †

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2010-11-01

    Full Text Available A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET. 6-Chloro-N-(4-chlorophenylpyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL. The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenylpyrazine-2-carboxamide (MIC = 62.5 μmol/L. 6-Chloro-5-tert-butyl-N-(4-chlorophenylpyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L. chloroplasts (IC50 = 43.0 μmol/L. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed.

  18. In Situ Generation of Chlorine Dioxide for Surface Decontamination of Produce.

    Science.gov (United States)

    Hwang, Cheng-An; Huang, Lihan; Wu, Vivian Chi-Hua

    2017-04-01

    Fresh fruits and vegetables are frequently contaminated with bacterial pathogens and implicated in foodborne illnesses. The objective of this study was to develop a unique surface decontamination method for produce using sodium chlorite and an acid in a sequential treatment. The surfaces of cantaloupe rinds, peels of cucumbers, stem scars of grape tomatoes, and leaves of baby spinach were inoculated with Salmonella or Listeria monocytogenes at 5 to 6 log CFU/g, submerged in 1.6 to 4% sodium chlorite solutions for 10 or 30 min, dried for 20 min, and then soaked in 6 mM hydrogen chloride (HCl) for 10 or 30 min and dried for 20 min. Control samples were treated with deionized water, sodium chlorite, HCl, or a premixed solution of sodium chlorite and HCl for comparison. The control treatments reduced the levels of both pathogens on the samples by only 0.3 to 2.9 log CFU/g, whereas the sequential treatment caused significantly higher reductions (P < 0.05) of 5.1 to 5.6 log CFU/g, effectively eliminating the inoculated pathogens. The more effective decontamination resulting from the sequential treatment was attributed to the in situ formation of chlorine dioxide within the plant tissues under the surface by the reaction between sodium chlorite absorbed by the produce and HCl. These results suggest that the sequential use of sodium chlorite and acid is a potentially effective treatment for elimination of foodborne pathogens on produce.

  19. Supplying sodium and chlorine is effective on patients with congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Changcong Cui

    2005-01-01

    Objective: To analyze the relationship of severity of heart failure and the concentration of serum sodium(Na + ) and chlorine(Cl- ) and to explore the effect of supplying sodium and chlorine on patients with Congestive heart failure. Methods: 80 patients with congestive heart failure were divided into two groups, namely supplying and control group. Serum sodium and chlorine were measured in all these patients. All treatments but supplying sodium and chlorine were same between the supplying and control groups. Results:According to NYHA, patients who were in class Ⅳ had lower level of serum sodium and chlorine than those in class Ⅱ ( P < 0.05). The heart function was improved after the level of serum sodium and chlorine were raised. Conclusions: The concentration of serum sodium and chlorine relates to the severity of heart failure. The therapy of supplying sodium and chlorine is an effective way to decrease death rate.

  20. 76 FR 62149 - American Chemistry Council, The Chlorine Institute, Inc., the Fertilizer Institute, and PPG...

    Science.gov (United States)

    2011-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board American Chemistry Council, The Chlorine Institute, Inc., the Fertilizer... American Chemistry Council, The Chlorine Institute, Inc., The Fertilizer Institute (TFI), and...

  1. Toxicity of chlorine dioxide to early life stages of marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hose, J.E.; Di Fiore, D.; Parker, H.S.; Sciarrotta, T.

    1989-03-01

    With increasing interest in minimizing exposure to chlorine, many electric generating and water treatment plants are exploring the use of alternative biocides such as chlorine dioxide. Unlike chlorine, chlorine dioxide does not react with ambient organic compounds to form potentially carcinogenic trihalomethanes such as chloroform. However, the toxicity of chlorine dioxide to aquatic organisms has received little study. No information exists on chlorine toxicity to marine organisms. Furthermore, West Coast electric power stations usually discharge chlorine intermittently once or twice daily and substantial mixing of receiving water occurs between treatments. Therefore, this study sought to obtain information on chlorine dioxide toxicity using an exposure schedule typical of generating stations which discharge into the marine environment. Early life history stages of a plant, invertebrate and fish were tested since these stages are generally acknowledged to be most sensitive to toxicants and are the stages that are most likely to be exposed to the effluent.

  2. Chlorine release from biomass. Part 6; Kloravgaang fraan biobraenslen. Del 6

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Chlorine release from model compounds and different biomass fuels has been studied during thermal treatment in an electric oven in inert atmosphere (N{sub 2}) and with addition of 10% O{sub 2}. The amount of chlorine in all investigated materials has been kept to 2% with addition of KCl solution in methanol. The amount of chlorine was analysed before and after treatment in the decided atmosphere and to the temperature chosen. The influence from different functional groups on the chlorine release at low temperatures has been studied in pyrolysis experiments of simple model compounds with different structures. A good correlation between the chlorine release and the functional groups in the model substances was achieved. Results from the experiments shows that the early chlorine release, is most likely to occur in all biofuels, since all biomass fuels contains biological material with significant amounts of functional groups which can interact with fuel chlorine ( inorganic chlorine)

  3. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping

    Directory of Open Access Journals (Sweden)

    H. Guan

    2009-09-01

    Full Text Available Chloride is commonly used as an environmental tracer for studying water flow and solute transport in the environment. It is especially useful for estimating groundwater recharge based on the commonly used chloride mass balance (CMB method. Strong spatial variability in chloride deposition in coastal areas is one difficulty encountered in appropriately applying the CMB approach. Furthermore, intensive vegetation clearance for agriculture, for example during the European settlement in many coastal areas of Australia, may have perturbed catchment chloride balance conditions for appropriate use in CMB applications. In order to deal with these issues, a high resolution chloride deposition map in the coastal region is needed. In this study, we examined geographic, orographic, and atmospheric factors influencing chloride deposition in the Mount Lofty Ranges (MLR, a coastal hilly area of approximately 9000 km2 spatial extent in South Australia, using partial correlation and regression analyses. The results indicate that coastal distance, and terrain aspect and slope are two most significant factors controlling chloride deposition. Coastal distance accounts for 65% spatial variability in chloride deposition, with terrain aspect and slope for 8%. The deposition gradient is about 0.08 gm-2 year-1 km-1 as one progresses inland. The results are incorporated into a published de-trended residual kriging approach (ASOADeK to produce a 1 km×1 km resolution annual chloride deposition map and a bulk precipitation chloride concentration map. The average uncertainty of the deposition map is about 30% in the western MLR, and over 50% in the eastern MLR. The maps will form a very useful basis for examining catchment chloride balances for use in the CMB application in the study area.

  4. Chlorobenzene formation from fly ash: effect of moisture, chlorine gas, cupric chloride, urea, ammonia and ammonium sulfate

    NARCIS (Netherlands)

    Yan, M.; Qi, Z.F.; Li, X.D.; Chen, T.; Lu, S.Y.; Buekens, A.G.; Olie, K.; Yan, J.H.; Olie, K.

    2012-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are formed jointly with numerous products of incomplete combustion during waste incineration. Chlorobenzenes (CBz) are often cited as surrogates or precursors of PCDD/Fs. Experiments were conducted to investigate the effect of some key pa

  5. Semi- and full quantitative EDS microanalysis of chlorine in reinforced mortars subjected to chloride ingress and carbonation

    NARCIS (Netherlands)

    Mendonca Filho, F.F.; Pacheo, J.; Copuroglu, O.

    2015-01-01

    Energy dispersive X-ray spectrometry (EDS) is a powerful tool for research studies on building materials. Elemental quantification in cementitious phases contained in the concrete microstructure can be performed at an excellent spatial resolution. However, accurate compositional quantification requi

  6. A comprehensive probabilistic model of chloride ingress in unsaturated concrete

    OpenAIRE

    Bastidas-Arteaga, Emilio; Chateauneuf, Alaa; Sánchez-Silva, Mauricio; Bressolette, Philippe; Schoefs, Franck

    2011-01-01

    International audience; Corrosion induced by chloride ions has become a critical issue for many reinforced concrete structures. The chloride ingress into concrete has been usually simplified as a diffusion problem where the chloride concentration throughout concrete is estimated analytically. However, this simplified approach has several limitations. For instance, it does not consider chloride ingress by convection which is essential to model chloride penetration in unsaturated conditions as ...

  7. An unusual case of reversible acute kidney injury due to chlorine dioxide poisoning.

    Science.gov (United States)

    Bathina, Gangadhar; Yadla, Manjusha; Burri, Srikanth; Enganti, Rama; Prasad Ch, Rajendra; Deshpande, Pradeep; Ch, Ramesh; Prayaga, Aruna; Uppin, Megha

    2013-09-01

    Chlorine dioxide is a commonly used water disinfectant. Toxicity of chlorine dioxide and its metabolites is rare. In experimental studies, it was shown that acute and chronic toxicity were associated with insignificant hematological changes. Acute kidney injury due to chlorine dioxide was not reported. Two cases of renal toxicity due to its metabolites, chlorate and chlorite were reported. Herein, we report a case of chlorine dioxide poisoning presenting with acute kidney injury.

  8. Chlorine dioxide water disinfection: a prospective epidemiology study

    Energy Technology Data Exchange (ETDEWEB)

    Michael, G.E.; Miday, R.K.; Bercz, J.P.; Miller, R.G.; Greathouse, D.G.; Kraemer, D.F.; Lucas, J.B.

    1981-01-01

    An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.

  9. Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide1

    Science.gov (United States)

    Benarde, Melvin A.; Snow, W. Brewster; Olivieri, Vincent P.; Davidson, Burton

    1967-01-01

    Survival data are presented for a fecal strain of Escherichia coli exposed to three concentrations of chlorine dioxide at four temperatures. Chick's first-order reaction equation is generalized to a pseudo nth-order model. Nonlinear least squares curve-fitting of the survival data to the nth order model was performed on an analogue computer. The data were observed to follow fractional order kinetics with respect to survival concentration, with an apparent activation energy of 12,000 cal/mole. Initial experiments support the thesis that the mechanism of chlorine dioxide kill occurs via disruption of protein synthesis. Images Fig. 1 Fig. 2 Fig. 3 PMID:5339839

  10. Thermodynamic equilibrium diagram of the chlorine-titanium system

    Institute of Scientific and Technical Information of China (English)

    DU Ailing; GUO Xiaofei; ZHANG Heming; LIU Jiang

    2005-01-01

    The chemical and electrochemical equilibria of the chlorine-titanium system in the presence of gaseous phase were investigated. Many species, which consisted of chlorine and titanium, were considered. Various thermodynamic equilibria were calculated in the different pressures at different temperatures. The calculated results were shown as log p-1/T and E-T diagrams. These diagrams may be used as important tools for corrosion study and titanium production. The diagrams are also used to thermodynamically determine the existence areas of various species and so on.

  11. Sonochemical Treatment of Water Polluted by Chlorinated Organocompounds. A Review

    Directory of Open Access Journals (Sweden)

    Olivier Louisnard

    2010-02-01

    Full Text Available As one of several types of pollutants in water, chlorinated compounds have been routinely subjected to sonochemical analysis to check the environmental applications of this technology. In this review, an extensive study of the influence of the initial concentration, ultrasonic intensity and frequency on the kinetics, degradation efficiency and mechanism has been analyzed. The sonochemical degradation follows a radical mechanism which yields a very wide range of chlorinated compounds in very low concentrations. Special attention has been paid to the mass balance comparing the results from several analytical techniques. As a conclusion, sonochemical degradation alone is not an efficient treatment to reduce the organic pollutant level in waste water.

  12. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  13. Chlorine international thermodynamic tables of the fluid state

    CERN Document Server

    Angus, S; de Reuck, K M

    1985-01-01

    Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i

  14. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    Science.gov (United States)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  15. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.L.; Hackley, K.C.; Cao, J.; Donnals, G.L.; Ruch, R.R. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Shao, D. [Western Kentucky Univ., Bowling Green, KY (United States)

    1992-12-31

    Using the pyrolysis-QGA system, samples of coal were heated from ambient temperature to 800{degrees}C at a rate of 20{degrees}C/min in the pyrolysis chamber under a nitrogen atmosphere. The volatile products were carried with the nitrogen flow to the combustion chamber which was maintained at 850{degrees}C under a constant flow of oxygen. For Illinois coals (IBC-101, 103, and -109), HCl was the only chlorine species identified by the QGA. The HCl release profiles for the coals showed a broad peak between 250{degrees}C and 600{degrees}C with a maximum at 445{degrees}C. Neutron activation analysis of pyrolysis residues showed that 98 percent of the chlorine in raw coal was volatilized. Thus, it may be inferred that the chlorine in Illinois coals is released rapidly as HCl, not as sodium chloride (NaCl), during combustion in a utility/industrial boiler. In contrast to chlorine, the sulfur release profile for IBC-109 showed three peaks: the first sulfur peak at about 350{degrees}C was probably derived from elemental sulfur, the main peak at 475{degrees}C corresponded to the release of organic sulfur, and the third peak at 600{degrees}C resulted from the decomposition of pyrite. The low-temperature peak was absent for fresh samples. Sulfur dioxide (SO{sub 2}) was the major sulfur species in combustion gases under an oxidizing condition; additional gaseous sulfur species (COS and H{sub 2}S) were observed when the atmosphere was changed to a reducing condition.

  16. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  17. Congenital Chloride Diarrhea: Diagnosis by Easy-Accessible Chloride Measurement in Feces

    Directory of Open Access Journals (Sweden)

    C. Gils

    2016-01-01

    Full Text Available Background. Congenital chloride diarrhea (CCD is an autosomal recessive disorder caused by mutations in the genes encoding the intestinal Cl−/HCO3- exchanger and is clinically characterized by watery, profound diarrhea, electrolyte disturbances, and metabolic alkalosis. The CCD diagnosis is based on the clinical symptoms and measurement of high chloride concentration in feces (>90 mmol/L and is confirmed by DNA testing. Untreated CCD is lethal, while long-term clinical outcome improves when treated correctly. Case Presentation. A 27-year-old woman had an emergency caesarian due to pain and discomfort in gestational week 36 + 4. The newborn boy had abdominal distension and yellow fluid per rectum. Therapy with intravenous glucose and sodium chloride decreased his stool frequency and improved his clinical condition. A suspicion of congenital chloride diarrhea was strongly supported using blood gas analyzer to measure an increased chloride concentration in the feces; the diagnosis was confirmed by DNA testing. Discussion. Measurement of chloride in feces using an ordinary blood gas analyzer can serve as a preliminary analysis when congenital chloride diarrhea is suspected. This measurement can be easily performed with a watery feces composition. An easy-accessible chloride measurement available will facilitate the diagnostics and support the initial treatment if CCD is suspected.

  18. Validation of an integrative methodology to assess and monitor reductive dechlorination of chlorinated ethenes in contaminated aquifers

    Directory of Open Access Journals (Sweden)

    Sonia-Estelle eTarnawski

    2016-02-01

    Full Text Available Bioremediation of tetra-and trichloroethene-contaminated aquifers is frequently hampered due to incomplete dechlorination to the more toxic dichloroethene (DCE and vinyl chloride (VC, indicating insufficient knowledge about the biological mechanisms related to aquifer functioning. A methodology based on the joint analysis of geochemical and microbiological datasets was developed to assess the presence of the biochemical potential for complete reductive dechlorination to harmless ethene and to explain the reasons for which degradation often stalls at the more toxic intermediates. This methodology is composed of three successive steps, with i the acquisition of geochemical data including chlorinated ethenes, ii the detailed analysis of the bacterial community structures as well as the biochemical potential for complete dechlorination using microcosms and molecular detection of organohalide-respiring bacteria and key reductive dehalogenases, and iii a statistical Multiple Factor Analysis combining the above mentioned abiotic and biotic variables in a functional modelling of the contaminated aquifer. The methodology was validated by analyzing two chlorinated ethenes-contaminated sites. Results from the first site showed that the full biochemical potential for ethene production was present in situ. However, redox potential was overall too high and locally manganese reduction out-competed chlorinated ethenes reduction, explaining the reasons for the local accumulation of DCE and VC to a lesser extent. The second contaminated aquifer was under bioremediation by successive cheese whey injections. Analysis demonstrated that cheese whey additions led to increasingly reduced redox conditions and that hampered reductive dechlorination was not due to competition with other anaerobic respiration processes. Complete reductive dechlorination to ethene was preferentially occurring under methanogenic conditions. DCE and VC accumulation was probably induced first

  19. Chlorine cell disinfection determination with flow cell cytometry and plate count (poster)

    NARCIS (Netherlands)

    Peters, M.C.F.M.; Keuten, M.G.A.; De Kreuk, M.K.; Van Loosdrecht, M.C.M.; Rietveld, L.C.

    2013-01-01

    Chlorine is used for disinfection in different water systems. This research focuses on chlorine disinfection in swimming pool water. In the Netherlands, free available chlorine concentrations in swimming pools are limited between 0.5-1.5 mg/L, which is based on a 4-log removal of Pseudomonas aerugin

  20. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds

    NARCIS (Netherlands)

    Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    The Gibbs free energy of formation of chlorinated aliphatic compounds was estimated with Mavrovouniotis' group contribution method. The group contribution of chlorine was estimated from the scarce data available on chlorinated aliphatics in the literature, and found to vary somewhat according to the

  1. A MCM modeling study of the effects of nitryl chloride on oxidant budgets, ozone production, VOC lifetimes, and halogen recycling in polluted regions

    Science.gov (United States)

    Riedel, T. P.; Thornton, J. A.; Wolfe, G. M.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Bon, D.; Vlasenko, A. L.; Li, S.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.

    2012-12-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing particles. Nitryl chloride is photolyzed during the day to liberate highly reactive chlorine atoms. This chemistry takes place primarily in urban environments where the concentrations of N2O5 precursors (NOx and ozone) are high, though it can likely occur in remote regions at lower intensity. Recent field measurements have illustrated the potential importance of ClNO2 as a chlorine atom source and a NOx reservoir. However, the fate of these chlorine atoms and the overall impact of ClNO2 remain unclear. To this end we have incorporated ClNO2 production, photolysis, and subsequent Cl-atom reactions into an existing Master Chemical Mechanism (MCM version 3.2) based model framework. Cl-atom reactions with alkenes and alcohols not presently part of the MCM have also been added. Using observational constraints from the CalNex 2010 field study, we assess the dominant reactive sinks and sources of chlorine atoms over the course of a model day. Relative to model runs excluding ClNO2 formation, the presence of ClNO2 produces marked changes on a variety of species important to tropospheric chemistry and air quality (e.g. O3, RO2, OH, HO2, ClOx). For example a 50% yield of ClNO2 (max ClNO2 of 1.5 ppb) from nighttime N2O5 reactions leads to a ~10% enhancement in integrated ozone production. VOC and NOx lifetimes are shorter due primarily to enhanced OH from propagation of RO2 produced by Cl-atom chemistry under high NOx. The impact of ClNO2 on daytime halogen atom recycling is substantial, with order of magnitude higher daytime Cl2 production predicted with ClNO2 chemistry than without. In fact, incorporation of ClNO2 could help explain daytime levels of Cl2 observed in polluted coastal regions. Additionally, we highlight a set of chlorinated VOC oxidation products that are predicted to form at small, but potentially detectable levels in regions with similar VOC

  2. Preparation of disinfectant containing both chlorine dioxide and chlorine for safe urban reuse%复合二氧化氯的制备及其用于城市污水回用消毒

    Institute of Scientific and Technical Information of China (English)

    樊金红; 王红武; 马鲁铭

    2012-01-01

    在酸性环境中通过NaCl电解协同NaClO2化学氧化方法制备的复合二氧化氯溶液中ClO2和自由氯浓度分别达到70%和20%左右,系统地研究了电流密度(A)、NaClO2与NaCl质量比(B)、电解时间(C)对复合溶液中组分浓度和质量百分数的影响,并将复合溶液用于城市污水二级处理出水的消毒.结果表明,复合溶液中自由氯的浓度主要受因素C和A的影响,ClO2的浓度主要受因素C和B的影响,而A对副产物ClO-2和ClO-3的影响最大.总大肠菌群数在105~108个?L-1的城市污水二级处理出水采用复合溶液消毒时,当其中ClO2投加量为4mg? L-1,自由氯含量不低于1.20 mg?L-1,经30 min接触后出水生物学指标满足GB/T 18920-2002的要求.既降低了消毒剂的使用量,又减少了消毒副产物ClO-2的生成.%To achieve simultaneously maximum disinfection and minimum toxicity a mix disinfectant of chlorine dioxide and chlorine are found to be efficient for disinfection of drinking water and urban reused waste-water. However, transportation and reservation of the mixture may threat to environmental safety. Therefore, on-site preparation is necessary for field use. At present, preparation methods of the mix disinfectant have chemical reduction of sodium chlorate and electrolysis of sodium chloride, and the content of chlorine dioxide in mixture obtained is usually below 30%. To get high chlorine dioxide content, a method for the preparation of the mix disinfectant was proposed : electrolyzing sodium chloride (NaCl) was followed by a chemical oxidation of sodium chlorite (NaClC2) in an undivided electrolysis reactor, in which the content of C1O2 in the mix disinfectant can be controlled. The effect of current density (A), mass ratio of NaCIO2: NaCl (B), electrolysis time (C) on the concentration and mass percentage of CIO2, free chlorine, ClO-2 and C1O-3 was investigated systematically. Under the electrolysis conditions: current density 41. 67-83. 33 A

  3. Dynamic Electrochemical Measurement of Chloride Ions.

    Science.gov (United States)

    Abbas, Yawar; de Graaf, Derk B; Olthuis, Wouter; van den Berg, Albert

    2016-02-05

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement, long-term and continuous monitoring is limited due to the inherent drift and the requirement of a stable reference electrode. We utilized the chronopotentiometric approach to minimize drift and avoid the use of a conventional reference electrode. A galvanostatic pulse is applied to an Ag/AgCl electrode which initiates a faradic reaction depleting the Cl- ions near the electrode surface. The transition time, which is the time to completely deplete the ions near the electrode surface, is a function of the ion concentration, given by the Nernst equation. The square root of the transition time is in linear relation to the chloride ion concentration. Drift of the response over two weeks is negligible (59 µM/day) when measuring 1 mM [Cl-]using a current pulse of 10 Am(-2). This is a dynamic measurement where the moment of transition time determines the response and thus is independent of the absolute potential. Any metal wire can be used as a pseudo-reference electrode, making this approach feasible for long-term measurement inside concrete structures.

  4. Chloride binding site of neurotransmitter sodium symporters.

    Science.gov (United States)

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  5. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  6. Experimental and quantum chemical studies on the molecular structure of 3,3,3-trifluoropropane-1-sulfonyl chloride: CF3CH2CH2SO2Cl

    Science.gov (United States)

    Galván, J. E.; Defonsi Lestard, M. E.; Tuttolomondo, M. E.; Ben Altabef, A.

    2017-01-01

    The experimental and theoretical study on the molecular and vibrational analysis of CF3CH2CH2SO2Cl, 3,3,3-trifluoropropane-1-sulfonyl chloride is presented. The IR and Raman spectra were recorded in liquid state and compared with the spectral data obtained by the DFT/B3LYP method usingthe6-311G(3df) basis set. The influence of hyperconjugation effects of the lone pairs (LP) chlorine atom on the vibrational behavior of the group SO2 was determined. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum.

  7. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation

    Institute of Scientific and Technical Information of China (English)

    Ping Wang; Shiying Yang; Liang Shan; Rui Niu; Xueting Shao

    2011-01-01

    The effects of chloride anion (C1-) (up to 1.0 mol/L) on the decolorization of a model compound,azo dye Acid Orange 7 (AO7),by sulfate radical (SO4-*) based-peroxydisulfate (PS) or peroxymonosulfate (PMS) oxidation under various activated conditions (UV254 nm/PS,Thermal (70℃/PS,UV254 nm/PMS,Co2+/PMS) were investigated.Methanol and NH4+ were used as quenching reagents to determine the contributions of active chlorine species (dichloride radical (Cl2-*) and hypochlorous acid (HClO)).The results indicated that the effects of Cl- on the reaction mechanism were different under various activated conditions.For UV/PS and Thermal/PS,the inhibition tendency became more clear as the Cl-concentration increased,probably due to the reaction between Cl- and SO4-* and the generation of Cl2-* or HClO.For UV/PMS,Cl- did not exhibit inhibition when the concentration was below 0.1 mol/L.As Cl-concentration reached to 1.0 mol/L,the decolorization rate of AO7 was,however,accelerated,possibly because PMS directly reacts with C1- to form HC1O.For Co2+/PMS,Cl- exhibited a significant inhibiting effect even at low concentration (≤ 0.01 mol/L).When Cl- concentration exceeded 0.1 mol/L,the activation of PMS by Co2+ was almost completely inhibited.Under this condition,HClO maybe played a major role in decolorization of AO7.The results implicated that chloride ion is an important factor in SO4-*-based degradation of organic contamination in chloride-containing water.

  8. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides

    Directory of Open Access Journals (Sweden)

    Edwards Elizabeth A

    2011-06-01

    Full Text Available Abstract Background Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. Results We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. Conclusions The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes.

  9. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section...

  10. Chlorinated Iridoid Glucosides from Veronica longifolia and their Antioxidant Activity

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Harput, U. Sebnem;

    2010-01-01

    From Veronica longifolia were isolated three chlorinated iridoid glucosides, namely asystasioside E (6) and its 6-O-esters 6a and 6b, named longifoliosides A and B, respectively. The structures of 6a and 6b were proved by analysis of their spectroscopic data and by conversion to the catalpol este...

  11. Riverine input of chlorinated hydrocarbons in the coastal pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Everaarts, J.M.

    of various chlorinated hydrocarbons. It deals with an in-depth analysis of pollution of the coastal ecosystem around the Netherlands, U.K. and Germany due to inputs of contaminants from the rivers namely, Elbe, Weser, Ems Ijssel, Rhine, Meuse, Scheldt, Thames...

  12. Physical property determinations of short chain chlorinated paraffins

    Energy Technology Data Exchange (ETDEWEB)

    Drouillard, K.G.D. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Soil Science; Hiebert, T.; Friesen, K.J. [Univ. of Winnipeg, Manitoba (Canada). Dept. of Chemistry; Muir, D.C.G. [Freshwater Inst., Winnipeg, Manitoba (Canada)

    1995-12-31

    Chlorinated paraffins (CP) are chlorinated derivatives of n-alkanes commonly utilized in commercial formulations of flame retardants, plasticizers and high pressure lubricants. Recent reviews on CPs have expressed concern regarding the potential toxicity and carcinogenic properties of these compounds. Of the various classes of CPs, short chain compounds (carbon chain lengths 10 to 13) appear to pose the greatest risk. There is little data available concerning key physical properties of CPs required to assess their environmental behavior and mobility. In this study, water solubilities, dissolved organic matter water partition coefficients (K{sub DOM}) and Henry`s Law constants were determined for short chain chlorinated paraffins by generator column, apparent solubility enhancement and gas-purging techniques. Water solubilities were determined for synthesized, isolated products of polychlorinated decanes, undecanes and dodecanes. Solubilities at 25 C were on the order of 2 to 140 {micro}g/L for tetra- to hexachlorodecane products. The Henry`s Law constants for tetra- and pentachlorodecane were determined to be 6.6 {+-} 0.6 and 3.5 {+-} 0.6 Pa{center_dot}m{sup 3}{center_dot}mol{sup {minus}1} respectively. Relationships between carbon chain length and degree of chlorination on the determined physical properties will be discussed.

  13. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  14. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  15. Inactivation of human and simian rotaviruses by chlorine dioxide.

    Science.gov (United States)

    Chen, Y S; Vaughn, J M

    1990-01-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants. PMID:2160222

  16. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  17. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory experi...

  18. Transformation of Chlorinated Hydrocarbons on Synthetic Green Rusts

    Science.gov (United States)

    Green rusts (GRs) are layered double hydroxides that contain both ferrous and ferric ions in their structure. GRs can potentially serve as a chemical reductant for degradation of chlorinated hydrocarbons. GRs are found in zerovalent iron based permeable reactive barriers and in c...

  19. Transformation of chlorinated compounds by methanogenic granular sludge

    NARCIS (Netherlands)

    Eekert, van M.H.A.

    1999-01-01

    Chlorinated compounds are an important group of contaminants often found in sediments, groundwater, soils, wastewaters, and off-gasses. Many of these pollutants are found on the EPA list of Priority Pollutants indicating their potential hazard for the environment. Initial degradation can occur via d

  20. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    DEFF Research Database (Denmark)

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.;

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...

  1. ANALYSIS OF NASAL TISSUE FOR BIOMARKERS OF CHLORINE EXPOSURE

    Science.gov (United States)

    Both 3-chloro-tyrosine (CT) and 3,5-dichloro-tyrosine (dCT) are sensitive and specific biomarkers for evaluating exposure to chlorine gas (Cl2) and hypochlorous acid (HOCl). Previous investigations have focused on the formation of CT and dCT resulting from biochemical responses ...

  2. In situ aerobic cometabolism of chlorinated solvents: a review.

    Science.gov (United States)

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  3. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix;

    2010-01-01

    of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity...

  4. Disinfection byproduct yields from the chlorination of natural waters

    Science.gov (United States)

    Rathbun, R.E.

    1996-01-01

    Yields for the formation of trihalomethane and nonpurgeable total organic-halide disinfection byproducts were determined as a function of pH and initial free-chlorine concentration for the chlorination of water from the Mississippi, Missouri, and Ohio Rivers. Samples were collected at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans. LA, and on the Missouri and Ohio Rivers 1.6 km above their confluences with the Mississippi during the summer, fall, and spring seasons of the year. Yields varied little with distance along the Mississippi River, although the dissolved organic-carbon concentration decreased considerably with distance downstream. Yields for the Missouri and Ohio were comparable to yields for the Mississippi, despite much higher bromide concentrations for the Missouri and Ohio. Trihalomethane yields increased as the pH and initial free- chlorine concentration increased. Nonpurgeable total organic-halide yields also increased as the initial free-chlorine concentration increased, but decreased as the pH increased.

  5. Clustering chlorine reactivity of haloacetic acid precursors in inland lakes.

    Science.gov (United States)

    Zeng, Teng; Arnold, William A

    2014-01-01

    Dissolved organic matter (DOM) represents the major pool of organic precursors for harmful disinfection byproducts, such as haloacetic acids (HAAs), formed during drinking water chlorination, but much of it remains molecularly uncharacterized. Knowledge of model precursors is thus a prerequisite for understanding the more complex whole water DOM. The utility of HAA formation potential data from model DOM precursors, however, is limited due to the lack of comparability to water samples. In this study, the formation kinetics of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two predominant HAA species, were delineated upon chlorination of seventeen model DOM precursors and sixty-eight inland lake water samples collected from the Upper Midwest region of the United States. Of particular interest was the finding that the DCAA and TCAA formation rate constants could be grouped into four statistically distinct clusters reflecting the core structural features of model DOM precursors (i.e., non-β-diketone aliphatics, β-diketone aliphatics, non-β-diketone phenolics, and β-diketone phenolics). A comparative approach built upon hierarchical cluster analysis was developed to gain further insight into the chlorine reactivity patterns of HAA precursors in inland lake waters as defined by the relative proximity to four model precursor clusters. This work highlights the potential for implementing an integrated kinetic-clustering approach to constrain the chlorine reactivity of DOM in source waters.

  6. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  7. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry.

  8. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  9. [Electrochemical reduction characteristics and mechanism of chlorinated hydrocarbon at the copper electrode].

    Science.gov (United States)

    Xu, Wen-Ying; Gao, Ting-Yao; Zhou, Rong-Feng; Ma, Lu-Ming

    2005-07-01

    The electrochemical reduction characteristics of chlorinated hydrocarbons were investigated by applying cyclic voltammetry technique. The reduction mechanism and reactivity of the chlorinated hydrocarbons at the copper electrodes were explored. The relation between the reductive reactivity at the copper electrode and the structures of this kind of compounds was discussed. The experimental results show that chlorinated paraffin hydrocarbons and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode; however, chlorinated aromatic hydrocarbons aren't easy to reduced directly at the copper electrode. The results provide a theoretical basis for the catalyzed iron inner electrolysis method.

  10. Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy

    Science.gov (United States)

    Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.

    1996-04-01

    Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.

  11. Hazards of lithium thionyl chloride batteries

    Science.gov (United States)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  12. EVALUATION OF BACTERICIDAL EFFECTIVENESS OF BENZALKONIUM CHLORIDE

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1996-06-01

    Full Text Available Benzalkonium chloride is a quaternary ammounium Compounds derivative under different names such as Afxhang, Hamoon, Mahan etc, which have great and expanded use in sanitation and medical affairs. Bactericidal activity of these disinfectants was fulfilled according to National Standard Method No.2842 on Staph. Aureus, Sal. Typhimouium and E. coli. This laboratory test showed that, except Mahan that has not bactericidal efficacy on E.coli at concentration 0.4 percent, other disinfectants under the study in concentrations of 0.4, 0.8, 1, 1.2 percent have reliable antibacterial properties, and bacterial resistance to benzalkonium chloride has not occurred yet.

  13. Cesium chloride-induced torsades de pointes.

    Science.gov (United States)

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-09-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear temporal relationship between cesium ingestion and the arrhythmia, which later resolved following discontinuation of cesium therapy. Serial cesium plasma and whole blood levels were measured over the ensuing six months and pharmacokinetic analysis was performed.

  14. Impact of January 2005 solar proton events on chlorine species

    Directory of Open Access Journals (Sweden)

    A. Damiani

    2012-01-01

    Full Text Available Sudden changes in stratospheric chlorine species in the polar northern atmosphere, caused by the Solar Proton Events (SPEs of 17 and 20 January 2005, have been investigated and compared with version 4 of the Whole Atmosphere Community Climate Model (WACCM4. We used Aura Microwave Limb Sounder (MLS measurements to monitor the variability of ClO, HCl, HOCl and Michelson Interferometer for Passive Atmospheric Sounder (MIPAS on ENVISAT to retrieve ClONO2. SPE-induced chlorine activation has been identified. HCl decrease occurred at nearly all the investigated altitudes with the lowest values (of less than 0.25 ppbv on 21 January. HOCl was found to be the main active chlorine species under nighttime conditions (with increases of more than 0.2 ppbv whereas both HOCl and ClO enhancements (about 0.1 ppbv have been observed at the polar night terminator. Further, small ClO decreases (of less than 0.1 ppbv and ClONO2 enhancements (about 0.2 ppbv have been observed at higher latitudes (i.e., at nighttime roughly above 2 hPa.

    While WACCM4 reproduces most of the SPE-induced variability in the chlorine species fairly well, in some particular regions discrepancies between the modeled and measured temporal evolution of the abundances of chlorine species were found. HOCl changes are modelled very well with respect to both magnitude and geographic distribution. ClO decreases are reproduced at high latitudes, whereas ClO enhancements in the terminator region are underestimated and attributed to background variations. WACCM4 also reproduces the HCl depletion in the mesosphere but it does not show the observed decrease below about 2 hPa. Finally, WACCM4 simulations indicate that the observed ClONO2 increase is dominated by background variability, although SPE-induced production might contribute by 0.1 ppbv.

  15. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  16. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.

    Science.gov (United States)

    Kim, Tae-Kyoung; Moon, Bo-Ram; Kim, Taeyeon; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2016-11-01

    We conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction. Chloroform was found as a chlorinated intermediate during the UV/chlorine reaction of both geosmin and 2-MIB. The pH affected both the degradation and chloroform production during the UV/chlorine reaction. The open ring and dehydration intermediates identified during UV/chlorine reactions were 1,4-dimethyl-adamantane, and 1,3-dimethyl-adamantane from geosmin, 2-methylenebornane, and 2-methyl-2-bornene from 2-MIB, respectively. Additionally, 2-methyl-3-pentanol, 2,4-dimethyl-1-heptene, 4-methyl-2-heptanone, and 1,1-dichloro-2,4-dimethyl-1-heptane were newly identified intermediates from UV/chlorine reactions of both geosmin and 2-MIB. These intermediates were degraded as the reaction progressed. We proposed possible degradation pathways during the UV photolysis and UV/chlorine reactions of both compounds using the identified intermediates.

  17. Simultaneous Control of Microorganisms and Disinfection By-products by Sequential Chlorination

    Institute of Scientific and Technical Information of China (English)

    CHAO CHEN; XIAO-JIAN ZHANG; WEN-JIE HE; HONG-DA HAN

    2007-01-01

    Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus)inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process.The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination.Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  18. The effect of photochemical dissociation on downwind chlorine dioxide plume concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Michalowicz, R.; Alp, E. [Bovar Environmental, Toronto, Ontario (Canada)

    1997-12-31

    The pulp and paper industry handles toxic gases which may present an inherent hazard to the safety of the general public in the surrounding area. One such toxic gas that may pose a hazard is chlorine dioxide. Spills of chlorine dioxide solution result in the gassing off of toxic clouds of chlorine dioxide. Under daytime dry conditions, chlorine dioxide decomposes photolytically to form chlorine and oxygen and intermediates, chlorine trioxide and chlorine hexoxide. Air dispersion modeling of chlorine dioxide releases which does not properly account for its photochemical decomposition will lead to overly conservative hazard zone estimates. Under these conditions, risk control measures and emergency response evacuation zones based on such estimates will be unnecessarily expensive, perhaps prohibitive. This paper investigates the photolytic rate of dissociation of chlorine dioxide under various atmospheric conditions. It was found that modeling based on the decomposition of chlorine dioxide gas, resulted in downwind distances to TLV-Short Term Exposure Limits which are considerably shorter than modeling based on chlorine dioxide dispersion with no decomposition.

  19. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reacting with citric acid

    Science.gov (United States)

    Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...

  20. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.