WorldWideScience

Sample records for chlorine activation indoors

  1. Predicting bromide incorporation in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, Abu Jafar; Husain, Tahir

    2016-06-01

    The water in and air above swimming pools often contain high levels of disinfection byproducts (DBPs) due to chemical reactions between chlorine- or bromine-based disinfectants and organic/inorganic matter in the source water and released from swimmers. Exposure to these DBPs, though inevitable, can pose health threats to humans. In this study, DBPs in tap water (S1), and water from a chlorinated indoor swimming pool before (S2) and after swimming (S3) were measured. The brominated species constituted the majority of DBPs formed in S1, S2, and S3. Trihalomethanes (THMs) in S3 was 6.9 (range 2.9-11.1) and 1.4 (range 0.52-2.9) times those in S1 and S2, respectively; and the haloacetic acids (HAAs) in S3 was 4.2 (range 2.5-7.5) and 1.2 (range 0.6-2.6) times those in S1 and S2, respectively. The mean THMs in air above the swimming pool before (S2-A) and after swimming (S3-A) were 72.2 and 93.0 μg/m(3), respectively, and their ranges were 36.3-105.8 and 44.1-133.6 μg/m(3), respectively. The average percentages of bromide incorporation (BI) into THMs in S1, S2, and S3 were 3.0, 9.3, and 10.6 %, respectively; and the BI into HAAs in S1, S2, and S3 were 6.6, 12.0, and 12.2 %, respectively. Several models were trained for predicting the BI into THMs and HAAs. The results indicate that additional information is required to develop predictive models for BI in swimming pools.

  2. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Cassan, Delphine; Mercier, Béatrice; Castex, Françoise; Rambaud, André

    2006-03-01

    The aim of our study was to determine the impact of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. An indoor swimming pool was equipped with two medium-pressure UV lamps. We collected eight samples of water daily over a four-weeks period and measured total and free chlorine, pH, water temperature, bacteriological parameters, total organic carbon and trihalomethanes. During the first week, which served as control, medium-pressure UV lamps were turned off. During the next three weeks, medium-pressure UV lamps were kept on 24 h per day. The third week, we reduced the level of the injected chlorine into water, and the last week we also reduced the water renewal volume by 27%. Our results showed that bacteriological parameters remained within allowable french limits. When medium-pressure UV lamps were kept on, total, free and active chlorine levels were significantly increased (P<0.001), whereas combined chlorine level were significantly decreased (P<0.001 and P<0.05, respectively). The levels of chloroform and bromodichloromethane were significantly increased when medium-pressure UV lamps were kept on (P<0.001), whereas chlorodibromomethane and bromoform levels significantly decreased (P<0.05 and P<0.001, respectively). The additional formation of chloroform and bromodichloromethane may be explained by the increase in active chlorine and by radicalizing mechanisms initiated by UV radiation.

  3. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    Science.gov (United States)

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  4. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide.

    Science.gov (United States)

    Hsu, Ching-Shan; Lu, Ming-Chun; Huang, Da-Ji

    2015-02-01

    As with all indoor public spaces in Taiwan, the stack rooms in public libraries should meet the air quality guidelines laid down by the Taiwan Environmental Protection Administration. Accordingly, utilizing a university library in Taiwan for experimental purposes, this study investigates the efficiency of gaseous chlorine dioxide (ClO2) as a disinfection agent when applied using three different treatment modes, namely a single-daily disinfection mode (SIM), a twice-daily disinfection mode (TWM), and a triple-daily disinfection mode (TRM). For each treatment mode, the ClO2 is applied using an ultrasonic aerosol device and is performed both under natural lighting conditions and under artificial lighting conditions. The indoor air quality is evaluated before and after each treatment session by measuring the bioaerosol levels of bacteria and fungi. The results show that for all three disinfection modes, the application of ClO2 reduces the indoor bacteria and fungi concentrations to levels lower than those specified by the Taiwan EPA (i.e., bacteria <1500 CFU/m(3), fungi <1000 CFU/m(3)), irrespective of the lighting conditions under which the disinfection process is performed. For each disinfection mode, a better disinfection efficiency is obtained under natural lighting conditions since ClO2 readily decomposes under strong luminance levels. Among the three treatment modes, the disinfection efficiencies of the TWM and TRM modes are very similar under natural lighting conditions and are significantly better than that of the SIM mode. Thus, overall, the results suggest that the TWM treatment protocol represents the most cost-effective and efficient method for meeting the indoor air quality requirements of the Taiwan EPA.

  5. Respiratory Function and Changes in Lung Epithelium Biomarkers after a Short-Training Intervention in Chlorinated vs. Ozone Indoor Pools

    Science.gov (United States)

    Fernández-Luna, Álvaro; Gallardo, Leonor; Plaza-Carmona, María; García-Unanue, Jorge; Sánchez-Sánchez, Javier; Felipe, José Luis; Burillo, Pablo; Ara, Ignacio

    2013-01-01

    Background Swimming in indoor pools treated with combined chemical treatments (e.g. ozone) may reduce direct exposure to disinfection byproducts and thus have less negative effects on respiratory function compared to chlorinated pools. The aim of this study is to analyze the effects of a short-term training intervention on respiratory function and lung epithelial damage in adults exercising in indoor swimming pool waters treated with different disinfection methods (chlorine vs. ozone with bromine). Methods Lung permeability biomakers [surfactant protein D (SP-D) and Clara cell secretory protein (CC16) in plasma] and forced expiratory volumes and flow (FEV1, FVC and FEF25–75) were measured in 39 healthy adults. Thirteen participants swam during 20 sessions in a chlorinated pool (CP), 13 performed and equivolumic intervention in an ozone pool (OP) and 13 were included in a control group (CG) without exposition. Results Median plasma CC16 levels increased in CP swimmers (4.27±3.29 and 6.62±5.51 µg/L, p = 0.01, pre and post intervention respectively) while no significant changes in OP and CG participants were found. No significant changes in median plasma SP-D levels were found in any of the groups after the training period. FVC increased in OP (4.26±0.86 and 4.43±0.92 L, pchlorinated treated pools. PMID:23874631

  6. Chlorine

    Science.gov (United States)

    ... but it is also used to make pesticides (insect killers), rubber, and solvents. Chlorine is used in ... the following signs and symptoms may develop: Blurred vision Burning pain, redness, and blisters on the skin ...

  7. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  8. Device-Free Indoor Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulaziz Aide Al-qaness

    2016-11-01

    Full Text Available In this paper, we explore the properties of the Channel State Information (CSI of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS and none-line-of-sight (NLOS scenarios, and the results validate the performance of the proposed system.

  9. Effects of chlorine and chlorine dioxide on mutagenic activity of Lake Kinnereth water

    Energy Technology Data Exchange (ETDEWEB)

    Guttman-Bass, N.; Bairey-Albuquerque, M.; Ulitzur, S.; Chartrand, A.; Rav-Acha, C.

    1987-03-01

    Water from Lake Kinnereth (Israel) was tested for the presence of mutagenic activity, with and without disinfection by chlorine and chlorine dioxide. The samples were assayed for activity with two Ames Salmonella typhimurium tester strains, TA 104 and TA 100, and by a luminescent genotoxic assay with a dark mutant strain of Photobacterium fischeri. The water concentrates were mutagenic in strain TA 104 and in the luminescent assay, reaching positive mutagenic activities in the equivalent of 20 mL of water. Chlorination did not greatly affect the net mutagenic activity, although ClO/sub 2/ apparently reduced it. Humic acids were isolated from lake sediment and were assayed with and without disinfection in distilled water and in lake water from which the organic components were removed. The humic acids were mutagenic in both test systems, and treatment with Cl/sub 2/ generally decreased the net activity. ClO/sub 2/ also tended to decrease the mutagenic activity, and cytotoxic effects were observed in some of the samples. Conversely, commercial humic acid was mutagenic only after chlorination on strain TA 100. 54 references, 3 figures, 6 tables.

  10. Chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, Sylvia Smith [ORNL

    2009-01-01

    Following a brief description of the use of chlorine as a chemical warfare agent in World War I, this chapter summarizes physical and chemical data and recent clinical and controlled laboratory studies on the irritant and lethal effects of chlorine. The mechanism of toxicity for both irritation and lethal effects is described. The mathematical relationship between concentration and exposure duration for a set endpoint is given for both an irritancy response and mortality. This information can be used to assist in time-scaling for the set endpoint to other exposure durations. Risk assessment addresses the potential for greater effects in sensitive populations such as asthmatics. A concentration of 0.5 ppm for up to 8 hours is a no-adverse-effect concentration in most sensitive subjects; whereas, a concentration of 1.0 ppm induces some sensory irritation and transient changes in respiratory tract airflow parameters. Treatment and intervention of exposed individuals is dependent upon symptoms

  11. Activity Recognition and Semantic Description for Indoor Mobile Localization

    Science.gov (United States)

    Guo, Sheng; Xiong, Hanjiang; Zheng, Xianwei; Zhou, Yan

    2017-01-01

    As a result of the rapid development of smartphone-based indoor localization technology, location-based services in indoor spaces have become a topic of interest. However, to date, the rich data resulting from indoor localization and navigation applications have not been fully exploited, which is significant for trajectory correction and advanced indoor map information extraction. In this paper, an integrated location acquisition method utilizing activity recognition and semantic information extraction is proposed for indoor mobile localization. The location acquisition method combines pedestrian dead reckoning (PDR), human activity recognition (HAR) and landmarks to acquire accurate indoor localization information. Considering the problem of initial position determination, a hidden Markov model (HMM) is utilized to infer the user’s initial position. To provide an improved service for further applications, the landmarks are further assigned semantic descriptions by detecting the user’s activities. The experiments conducted in this study confirm that a high degree of accuracy for a user’s indoor location can be obtained. Furthermore, the semantic information of a user’s trajectories can be extracted, which is extremely useful for further research into indoor location applications. PMID:28335555

  12. Coagulation properties of anelectrochemically prepared polyaluminum chloride containing active chlorine

    Institute of Scientific and Technical Information of China (English)

    HU Chengzhi; LIU Huijuan; QU Jiuhui

    2006-01-01

    With high content of the Al13 species and the active chloride, an electrochemically prepared polyaluminum chloride (E-PACl) presents integrated efficiency of coagulation and oxidation. The coagulation properties of E-PACl were systemically investigated through jar tests in the various water quality conditions. The active chlorine in E-PACl can significantly influence the coagulation behavior due to the active chlorine preoxidation, which can change the surface charge characteristic of organic matter (OM) in water. The active chlorine preoxidation could improve the E-PACl coagulation efficiency if the water possessed the characteristics of relatively low OM content (2 mg/L) and high hardness (278 mg CaCO3/L). In the water with medium content of OM (5 mg/L), dosage would be a crucial factor to decide whether the active chlorine in E-PACl aided coagulation process or not. Comparing with alkaline condition, active chlorine would show a more significant influence on the coagulation process in acidic region.

  13. Criteria For Specifikation Of The Indoor Environment Of Active House

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Hansen, Ellen Kathrine; Duer, Karsten

    2011-01-01

    of human health and wellbeing will be specifically considered. This paper presents the first version of the Active House specification for indoor environment for residential buildings (where specifications for energy and environment also exist). It is based on the EN 15251 philosophy, and with specific......The Active House Alliance has been formed by companies and organisations in the building design, components and construction industry to with the intention to improve the quality of the built environment through a balanced focus on indoor environment, energy and environment – and where the aspects...

  14. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p < 0.01). A film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels.

  15. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  16. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  17. Chlorination of nickel ore by gaseous chlorine in the presence of active additives

    Directory of Open Access Journals (Sweden)

    Ilić Ilija B.

    2003-01-01

    Full Text Available Paper presents a thermodynamic analysis of chemical reactions occurring during chlorination with and without additives for both nickel oxides and nickel ferrites, which are component parts of nickel ore. The experimental research investigated the influence of temperature in the range from 600 up to 1000 °C and time (up to 3 h on the chlorination degree of nickel ores with and without additives. It was found that the introduction of additives such as C, S, BaS and NaCl intensified the chlorination of nickel ore. The results can be applied and may help determine the optimal conditions for the chlorination of low-grade ferrous nickel ores.

  18. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    Science.gov (United States)

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-12-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes.

  19. Evidence for heterogeneous chlorine activation in the tropical UTLS

    Science.gov (United States)

    von Hobe, M.; Grooß, J.-U.; Günther, G.; Konopka, P.; Gensch, I.; Krämer, M.; Spelten, N.; Afchine, A.; Schiller, C.; Ulanovsky, A.; Sitnikov, N.; Shur, G.; Yushkov, V.; Ravegnani, F.; Cairo, F.; Roiger, A.; Voigt, C.; Schlager, H.; Weigel, R.; Frey, W.; Borrmann, S.; Müller, R.; Stroh, F.

    2011-01-01

    Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10-20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt - significantly exceeding those expected from gas phase chemistry - were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.

  20. Evidence for heterogeneous chlorine activation in the tropical UTLS

    Directory of Open Access Journals (Sweden)

    M. von Hobe

    2011-01-01

    Full Text Available Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005 and SCOUT-O3 (Darwin, Australia, November/December 2005 field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both, suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS. In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.

  1. Evidence for heterogeneous chlorine activation in the tropical UTLS

    Directory of Open Access Journals (Sweden)

    M. von Hobe

    2010-07-01

    Full Text Available Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brasil, February 2005 and SCOUT-O3 (Darwin, Australia, November/December 2005 field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations concur with low temperatures or with the presence of cirrus clouds (often both, suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS. In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. At least for one of these flights, a significant denoxification is in contrast to the observed NO levels suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.

  2. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application.

    Science.gov (United States)

    Jo, Wan-Kuen; Park, Kun-Ho

    2004-11-01

    The current study evaluated the technical feasibility of applying TiO2 photocatalysis to the removal of low-ppb concentrations of volatile organic compounds (VOCs) commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) for VOCs, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) in relation to the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs exhibited any significant dependence on the RH, which is inconsistent with a previous study where, under conditions of low humidity and a ppm toluene inlet level, a drop in the PCO efficiency was reported with a decreasing humidity. However, the other four parameters (HD, RM, FT, and IPS) were found to be important for better VOC removal efficiencies as regards the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues was up to nearly 100%, and the CO generated during PCO was a negligible addition to indoor CO levels. Accordingly, a PCO reactor would appear to be an important tool in the effort to improve non-occupational indoor air quality.

  3. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    Science.gov (United States)

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  4. ASCORBIC ACID REDUCTION ON RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    Science.gov (United States)

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (odxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time . Such research projects often have distinct needs from requi...

  5. ASCORBIC ACID REDUCTION OF RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    Science.gov (United States)

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Thus, methods designed for compliance monitoring are not alway...

  6. Characterization of chlorinated tire-derived mesoporous activated carbon for adsorptive removal of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jianzhong [College of Environment, HoHai University, Nanjing (China); Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO (United States); Liang, Hao [Logistic Department of Guangzhou Military District, Guangzhou (China); Fang, Jun [Delon Hampton and Associates District of Columbia Water and Sewer Authority, Washington, DC (United States); Zhu, Jianguo [Wistron NeWeb (Kunshan) Corporation, Kunshan, Jiangsu Province (China); Shi, Buchang [Department of Chemistry, Western Kentucky University, Bowling Green, KY (United States)

    2011-06-15

    A series of chlorinated mesoporous activated carbons were derived from waste tires by pyrolysis, activation, and chlorination at different temperatures. The physical and chemical properties of the samples were studied by Brunauer-Emmett-Teller (BET) analysis, Fourier Transform IR Spectroscopy (FT-IR), point of zero charge measurement, thermogravimetric analysis, and by testing their behavior as adsorbents for toluene removal. Our results showed that the tire-derived activated carbon samples have highly mesoporous volumes and surface areas, and chlorination treatment has a slight effect on the pore structure. Lewis acidity of the sample increases after chlorination and the chlorine content increases from 0.24 to 2.32% with chlorination temperature increasing from 50 to 400 C. The higher the chlorine content, the more is the toluene adsorption. In comparison with the commercial carbon (F-400), all the samples have significantly higher adsorption capacity for toluene due to the presence of mesopores, inductive effect of the partial positive chemisorbed chlorine and resonance effects of C-Cl structures. The mesopores probably render easier diffusion of toluene molecule to inner carbon matrix and the strong {pi}-{pi} interaction between toluene and C-Cl resonance structure in the carbon significantly affects the interplay bonding process thus enhances the toluene removal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Jaguaribe, E.F.; Araujo, L.P. [Paraiba Univ., Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Lab. de Carvao Ativado]. E-mail:emersonjaguaribe@globo.com; Medeiros, L.L.; Barreto, M.C.S. [Paraiba Univ., Joao Pessoa, PB (Brazil). Dept. de Quimica]. E-mail: luciana-lucena@bol.com.br

    2005-03-01

    The capacity of activated carbons obtained from different raw materials, such as sugarcane bagasse, babassu (Orbygnia speciosa), and coconut (Cocus nucifera) shells, to remove residual chlorine is studied. The influence of particle size and time of contact between particles of activated carbon and the chlorinated solution were taken into account. The adsorptive properties of the activated carbons were measured by gas adsorption (BET method), using an ASAP 2010 porosimeter, and liquid phase adsorption, employing iodine and methylene blue adsorbates. The activated carbon from sugarcane bagasse was the only adsorbent capable of removing 100% of the residual chlorine. (author)

  8. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    Science.gov (United States)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.

  9. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2016-03-01

    TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  10. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    Science.gov (United States)

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  11. Chlorinated Iridoid Glucosides from Veronica longifolia and their Antioxidant Activity

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Harput, U. Sebnem;

    2010-01-01

    From Veronica longifolia were isolated three chlorinated iridoid glucosides, namely asystasioside E (6) and its 6-O-esters 6a and 6b, named longifoliosides A and B, respectively. The structures of 6a and 6b were proved by analysis of their spectroscopic data and by conversion to the catalpol este...

  12. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system.

    Science.gov (United States)

    Kuruto-Niwa, Ryoko; Nozawa, Ryushi; Miyakoshi, Takashi; Shiozawa, Tatsushi; Terao, Yoshiyasu

    2005-01-01

    Alkylphenol ethoxylates, widely used non-ionic surfactants, are biodegraded into alkylphenols such as nonylphenol (NP) and t-octylphenol (OP), short-chain ethoxylates such as NP-monoethoxylate (NP1EO) and NP-diethoxylate (NP2EO), and alkylphenoxy carboxylic acids such as 4-t-octylphenoxyacetic acid (OP1EC). Bisphenol S (BPS) is more heat-stable and photo-resistant than bisphenol A (BPA), and therefore replaces BPA. These chemicals could be chlorinated during wastewater treatment. We synthesized these compounds and their chlorinated derivatives to estimate their estrogenic activities using a GFP expression system. The EC(50) ranking of NP-related compounds was NP > ClNP > diClNP > NP1EO > ClNP1EO > NP2EO. The estrogenic activity of OP1EC was 10 times less potent than parent OP. Furthermore, BPS showed comparable estrogenic activity with BPA. The EC(50) ranking of BPS-related compounds was BPA ≥ BPS > triClBPS > diClBPS > ClBPS. Other tested BPS derivatives had no estrogenic activity. Chlorination of the tested chemicals did not enhance their estrogenic activity, in contrast to certain chlorinated BPAs. Thus, our results demonstrated that chlorinated derivatives of NP, OP, and BPS, even if artificially produced during wastewater processing, were less estrogenic than their parent chemicals, known as endocrine disruptors.

  13. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2012-11-01

    Full Text Available Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite

  14. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    Science.gov (United States)

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  15. Enhancement of photocatalytic activity of TiO2 film electrode by in situ photoelectro-generating active chlorine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The photoelectrocatalytic activity of TiO2 film electrodes in the degradation of nitrite ion was greatly enhanced in the presence of chlorine ion. The influences of NaCl concentration and initial pH value on the degradation rate of NO2- and active chlorine production were studied. The results show that the decay rate of NO2- and the accumulation rate of active chlorine increase with increasing NaCl concentration. At pH<8, both the decay of NO2- and active chlorine formation rates are enhanced with increasing NaCl concentration, while at pH> 10, they are suppressed. In addition, contrast to conventionally accepted view, in which an advantage of anatase over the rutile modification of TiO2 is in terms of photoactivity, it is found that a thermal oxidation rutile TiO2 electrode is more suitable for both photogenerating active chlorine and degrading NO2- in the presence of Cl-. The correlative mechanism was also discussed in detail. Specific adsorption of Cl- on the electrode causes its energy band edges to move towards positive value and also lower the photocurrent,thus less OH· radicals are produced. However,more active species of Cl· that have longer lifetime are available to take part in the oxidation of NO2-, thus improving its degradation rate.

  16. Influence of organophosphorus pesticides on peroxidase and chlorination activity of human myeloperoxidase.

    Science.gov (United States)

    Lazarević-Pašti, Tamara; Momić, Tatjana; Radojević, Miloš M; Vasić, Vesna

    2013-09-01

    Inhibitory effects of five organophosphorus pesticides (diazinon, malathion, chlorpyrifos, azinphos-methyl and phorate) and their oxo-analogs on human myeloperoxidase (MPO) activity were investigated. While inspecting separately peroxidase and chlorination activity, it was observed that investigated OPs affect peroxidase activity, but not chlorination activity. Among investigated pesticides, malathion and malaoxon have showed the highest power to inhibit MPO peroxidase activity with IC50 values of the order of 3×10(-7) and 5×10(-9) M, respectively. It was proposed that inhibition trend is rendered by molecular structure which invokes steric hindrance for OPs interaction with MPO active center responsible for peroxidase activity. In addition, it was concluded that physiological function of MPO is not affected by any of the investigated OPs.

  17. Polar Stratospheric Cloud evolution and chlorine activation measured by CALIPSO and MLS, and modelled by ATLAS

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2015-08-01

    Full Text Available We examined observations of polar stratospheric clouds (PSCs by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT and super-cooled ternary solution (STS mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  18. Polar Stratospheric Cloud evolution and chlorine activation measured by CALIPSO and MLS, and modelled by ATLAS

    Science.gov (United States)

    Nakajima, H.; Wohltmann, I.; Wegner, T.; Takeda, M.; Pitts, M. C.; Poole, L. R.; Lehmann, R.; Santee, M. L.; Rex, M.

    2015-08-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  19. Green Thumbs: A Kid's Activity Guide to Indoor and Outdoor Gardening.

    Science.gov (United States)

    Carlson, Laurie

    This guide contains indoor and outdoor gardening activities for children. The activities teach children how plants live and grow; how the weather, temperature, and seasons affect all living things; how living things come out of seeds and soil; how the birds, earthworms, bees, and toads help in the garden; and how the whole environment works…

  20. Indoor metallic pollution related to mining activity in the Bolivian Altiplano

    Energy Technology Data Exchange (ETDEWEB)

    Fonturbel, Francisco E., E-mail: fonturbel@ug.uchile.cl [Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Barbieri, Enio [IRD-HSM (Institut de Recherche pour le Developpement), La Paz (Bolivia, Plurinational State of); Herbas, Cristian [Universidad Mayor de San Andres, IGEMA Institute (Instituto de Investigaciones Geologicas y del Medio Ambiente), La Paz (Bolivia, Plurinational State of); Barbieri, Flavia L.; Gardon, Jacques [IRD-HSM (Institut de Recherche pour le Developpement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andres, SELADIS Institute (Instituto de Servicios de Laboratorio para el Diagnostico e Investigacion en Salud), La Paz (Bolivia, Plurinational State of)

    2011-10-15

    The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children. - Highlights: > We measured polymetallic pollution in household indoor dust from a mining town. > Toxic elements (Pb, As, Cd, Sb) in dust are correlated, suggesting a common origin. > The most polluted houses are within a 1 km radius around the mining center. > Carrying mining workwear home increases indoor pollution. > Lead concentrations in dust represent a serious concern for Public Health (600 {mu}g/g). - In a typical Andean mining city, the urban indoor pollution with toxic metallic elements is directly related to the closeness of the mining activities.

  1. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B., E-mail: B.Maniscalco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); Abbas, A.; Bowers, J.W.; Kaminski, P.M.; Bass, K. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); West, G. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom)

    2015-05-01

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl{sub 2}) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl{sub 4}), cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}), hydrochloric acid (HCl) and zinc chloride (ZnCl{sub 2}). TeCl{sub 4} was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH{sub 3}CO{sub 2}){sub 2}) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl{sub 2} was employed as an alternative to CdCl{sub 2}. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl{sub 2}) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances.

  2. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.

    2011-06-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive oxygen species such as ozone and hydroxyl radicals in addition to chlorine. This study compares sodium hypochlorite (NaOCl) and ECA in terms of disinfection efficacy, trihalomethanes (THMs) formation, stability and composition. The studies were carried out under different process conditions (pH 5,7 and 9, disinfectant concentrations of 2-5 mg/L and dissolved organic carbon (DOC) concentration of 2-4 mg/L). The results indicated that in the presence of low DOC (<2 mg/L) ECA showed better disinfection efficacy for Escherichia coli inactivation, formed lower THM and had better stability compared with NaOCl at both pH 5 and 7. Stability studies of stock solutions showed that over a period of 30 days, ECA decayed by only 5% while NaOCl decayed by 37.5% at temperatures of 4 °C. In a fresh ECA of 200 mg/L chlorine, about 5.3 mg/L ozone and 36.9 mg/L ClO2 were detected. The study demonstrates that ECA could be a suitable alternative to NaOCl where decentralized production and use are required. © IWA Publishing 2011.

  3. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    Science.gov (United States)

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  4. In vitro and in vivo estrogenic activity of chlorinated derivatives of bisphenol A.

    Science.gov (United States)

    Takemura, Hitomi; Ma, Jie; Sayama, Kazutoshi; Terao, Yoshiyasu; Zhu, Bao Ting; Shimoi, Kayoko

    2005-02-14

    The estrogenic activity of bisphenol A (BPA) and its chlorinated derivatives, 2-(3-chloro-4-hydroxyphenyl)-2-(4-hydroxyphenyl)propane (3-ClBPA) and 2,2-bis(3-chloro-4-hydroxyphenyl)propane (3,3'-diClBPA) was assessed by determining their relative binding affinity for the human estrogen receptor-alpha and -beta (ERalpha and ERbeta) and also their uterotrophic activity in ovariectomized female rats. BPA and its chlorinated derivatives were active in competing with [3H]17beta-estradiol for their binding to the human ERalpha and ERbeta proteins. While 3-ClBPA and 3,3'-diClBPA competed more effectively for ERalpha binding than BPA (IC50 values of 2.48x10(-5), 1.28x10(-5), and 1.08x10(-4)M, respectively), they had similar activity as BPA for competing the binding to ERbeta (IC50 values of 1.43x10(-5), 1.87x10(-5), and 2.59x10(-5)M, respectively). To determine the uterotropic activity, three doses (10, 50 and 100 mg/kg/day) of BPA and its derivatives were given to mature ovariectomized Sprague-Dawley rats for 3 consecutive days. Treatment of animals with 50 and 100 mg/kg/day of BPA or its chlorinated derivatives caused a significant increase in the uterine wet weight and the endometrial area. The results of our present study demonstrated that the affinities of 3-ClBPA and 3,3'-diClBPA for ERalpha were higher than the affinity of BPA, although the in vivo estrogenic activity of the two chlorinated BPAs in ovariectomized female Sprague-Dawley rats appeared to be comparable to that of BPA.

  5. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    Science.gov (United States)

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  6. Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10

    Science.gov (United States)

    Wegner, Tobias; Pitts, Michael C.; Poole, Lamont R.; Tritscher, Ines; Grooß, Jens-Uwe; Nakajima, Hideaki

    2016-04-01

    In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of polar stratospheric clouds (PSCs). These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl (hydrochloric acid) mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 (chlorine nitrate) was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSCs indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSC particles and the observed chlorine activation can only be explained by an increase in surface area density due to PSC formation. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area density.

  7. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    Science.gov (United States)

    Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus

    2016-03-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  8. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  9. Active Houses - development of carbon neutral buildings with healthy indoor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, Kurt Emil (VKR Holding (Denmark)). e-mail: kee@vkr-holding.com

    2009-07-01

    The European Commission and the European Parliament are calling for national strategies for low to zero carbon housing in their proposal for a revision of the EPBD; the European Commission is also recommending to include application of renewable energy sources, use of passive heating and cooling elements and shading in the design of the building and in the design of the building and to ensure indoor air quality and adequate natural light in buildings. A few Member States have already initiated targets on low energy housing, and there are several demonstration projects showing how future housing could be both zero carbon buildings and have a high indoor comfort level. The European and national strategies for low energy housing must focus on energy efficiency and CO{sub 2} reductions, but as people spend approximately 90% of their life inside buildings, future housing also needs to be developed with a focus on healthy indoor comfort. The different national standards for low energy housing have mainly been focusing on energy savings, but some new standards also focus on energy saving in combination with indoor comfort requirements, like the 'Sustainable Home standard' and BOLIG+. At the same time the German energy legislation and the EU Renewable Energy Directive are setting requirements to integrate a proportion of renewable energy into all new buildings and buildings undergoing major renovation, while others like France and England have targets to move towards energy producing houses. Therefore, a new approach, where energy efficiency, indoor climate and integration of renewable energy are included, is needed. A number of partners from the construction sector have initiated the first thoughts and, as they intend to move from passive systems to active systems, the network is named Active Houses.

  10. Radon adsorption on activated charcoal in the presence of indoor pollutants

    Science.gov (United States)

    Quirino Torres, Leopoldo Leonardo

    1998-12-01

    A number of recent studies have reported that activated charcoals can adsorb significant amounts of volatile organic compounds at concentration levels generally encountered indoors. In this study, a fundamental understanding of radon adsorption on activated charcoal in the presence of water vapor and various indoor volatile organic compounds has been presented. A dynamic adsorption system was designed and constructed to study adsorption of radon both as a pure component (when present alone in a gas mixture with nitrogen) and in the presence of water vapor and some selected indoor air pollutants. The air pollutants investigated in this study include carbon dioxide, formaldehyde, toluene and 1,1,1-trichloroethane. The experimental data were obtained in the form of breakthrough curves. The data were used to verify several existing models for both pure component radon adsorption and its adsorption from binary mixtures. As expected, radon adsorption capacity by charcoal decreased in the presence of water vapor. However, a decrease of about 9% was observed when the relative humidity of the nitrogen stream was below 40%. A sharp decrease in the adsorption capacity, about 40%, was noted if the relative humidity was above 50%. The adsorption capacity for radon decreased by 10% to 20% in the presence of toluene and 1,1,1-trichloroethane. The decrease was about 2% to 6% when carbon dioxide or formaldehyde was present in the gas mixture. The capacity for radon also decreased by about 40% during adsorption from the multicomponent mixtures. However, this reduction in the capacity was due mainly to the water vapor. Therefore it may be concluded that radon measurements would be affected significantly in the presence of various indoor pollutants. The models used in this study provided excellent agreement with the experimental data for both pure radon (when present alone in the nitrogen stream) and when present in binary mixtures with water vapor and other indoor pollutants.

  11. Photochemical chlorine and bromine activation from artificial saline snow

    Directory of Open Access Journals (Sweden)

    S. N. Wren

    2013-05-01

    Full Text Available The activation of reactive halogen species – particularly Cl2 – from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [O3] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack which is initiated by heterogeneous oxidation, and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates an important role for active chemistry occurring within the interstitial air of aged (i.e., acidic snow for halogen activation at polar sunrise.

  12. Photochemical chlorine and bromine activation from artificial saline snow

    Directory of Open Access Journals (Sweden)

    S. N. Wren

    2013-10-01

    Full Text Available The activation of reactive halogen species – particularly Cl2 – from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [ozone] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack, which is initiated by heterogeneous oxidation and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates this important role of active chemistry occurring within the interstitial air of aged (i.e. acidic snow for halogen activation at polar sunrise.

  13. Photochemical chlorine and bromine activation from artificial saline snow

    Science.gov (United States)

    Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D.

    2013-10-01

    The activation of reactive halogen species - particularly Cl2 - from sea ice and snow surfaces is not well understood. In this study, we used a photochemical snow reactor coupled to a chemical ionization mass spectrometer to investigate the production of Br2, BrCl and Cl2 from NaCl/NaBr-doped artificial snow samples. At temperatures above the NaCl-water eutectic, illumination of samples (λ > 310 nm) in the presence of gas phase O3 led to the accelerated release of Br2, BrCl and the release of Cl2 in a process that was significantly enhanced by acidity, high surface area and additional gas phase Br2. Cl2 production was only observed when both light and ozone were present. The total halogen release depended on [ozone] and pre-freezing [NaCl]. Our observations support a "halogen explosion" mechanism occurring within the snowpack, which is initiated by heterogeneous oxidation and propagated by Br2 or BrCl photolysis and by recycling of HOBr and HOCl into the snowpack. Our study implicates this important role of active chemistry occurring within the interstitial air of aged (i.e. acidic) snow for halogen activation at polar sunrise.

  14. Indoor Air Contaminant Adsorption By Palm Shell Activated Carbon Filter – A Proposed Study

    Directory of Open Access Journals (Sweden)

    Leman A.M

    2016-01-01

    Full Text Available Indoor air contaminant is a public issue. High Volatile Organic Compound (VOC, Carbon monoxide (CO, Carbon dioxide (CO2, and particulate matter is becoming main issue that needs to solve. Therefore, this study focus on improving indoor air quality by using activated carbon (AC for Ventilation and Air-Conditioning (VAC. It investigated because AC is widely explored but developing AC as a filter for VAC is not developed yet. The AC prepared by physical and chemical activation process and combination both of process and it was activated by H3PO4 and NaOH. Characterization and analysis process are consists of water content, ash content, bulk density, adsorption capacity, iodine number and indoor air filtering analysis. Treated activated carbon potential in achieving higher surface area of the structure to the range of 950 to 1150 m2/g for gas phase application. The higher surface area will adsorb more air pollution. Maintained properties of activated carbon such as hardness, density, pore, extractable ash, particle size (12 by 40 mesh and pH are becoming the main concern in achieving high quality of activated carbon.

  15. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  16. Mutagenic activities of a chlorination by-product of butamifos, its structural isomer, and their related compounds.

    Science.gov (United States)

    Kamoshita, Masahiro; Kosaka, Koji; Endo, Osamu; Asami, Mari; Aizawa, Takako

    2010-01-01

    The mutagenic activities of 5-methyl-2-nitrophenol (5M2NP), a chlorination by-product of butamifos, its structural isomer 2-methyl-5-nitrophenol (2M5NP), and related compounds were evaluated by the Ames assay. The mutagenic activities of 5M2NP and 2M5NP were negative or not particularly high. However, those of their chlorinated derivatives were increased in Salmonella typhimurium strain TA100 and the overproducer strains YG1026, and YG1029 in the absence and/or presence of a rat liver metabolic activation system (S9 mix), particularly for YG1029. The mutagenic activities of 6-chloro-2-methyl-5-nitrophenol (6C2M5NP) in YG1029 in the absence and presence of S9 mix were 70000 and 110000 revertants mg(-1), respectively. When nitro functions of 6C2M5NP and 4-chloro-5-methyl-2-nitrophenol (4C5M2NP) were reduced to amino functions, their mutagenic activities were markedly decreased. The mutagenic activities of 5M2NP and 4C5M2NP were lower than those of 2M5NP and 6C2M5NP, respectively. Thus, it was shown that substituent position is a key factor for the mutagenic activities of methylnitrophenols (MNPs) and related compounds. The mutagenic activities of the extracts of 2M5NP in chlorination increased early during the reaction time and then decreased. The main chlorination by-product contributing to the mutagenic activities of the extracts of 2M5NP in chlorination was 6C2M5NP. The results of chlorination of 2M5NP suggested that MNPs were present as their dichlorinated derivatives or further chlorination by-products in drinking water.

  17. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  18. Cellulolytic and xylanolytic activities of common indoor fungi

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Poulsen, Rehab; Hansen, Gustav Hammerich

    2016-01-01

    or no cellulolytic and xylanolytic activities using AZCL-assays. On the other hand, both Cladosporium sphaerospermum and Penicillium chrysogenum showed the highest cellulase, β-glucosidase, mannase, β-galactanase and arabinanase activities and would be good candidates for over-producers of enzymes needed...

  19. Indoor metallic pollution related to mining activity in the Bolivian Altiplano.

    Science.gov (United States)

    Fontúrbel, Francisco E; Barbieri, Enio; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2011-10-01

    The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children.

  20. Education for sustainable development using indoor and outdoor activities

    Science.gov (United States)

    Žigon, Lenka

    2016-04-01

    Environmental education became an important part of our development in the last years. We put a lot of effort into a task how to improve students'values, skills, understanding and how to significantly enhance their learning and achievements regarding ecological problems. At the same time we also know that environmental learning is easier when our students have the opportunity to feel, see, touch, taste and smell the nature. Therefore teachers in my school develop regular access to the outdoors as a learning resource. Students understand the impact of their activities on the environment and they also like to participate in the nature protection. My school (Biotechnical Centre)is an example of educational centre where different research and development programes are strongly oriented to the sustainable development. Students are educated to become experts in biotechnology, agronomy, food technology and horticulture. At the same time they are educated how to care for the nature. The institution itself cooperates with different fields of economy (farms, food - baker industry, floristry, country design etc.). For these reasons the environmental education is an essential dimension of basic education focused on a sphere of interaction that lies at the root of personal and social development. We try to develop different outdoor activities through all the school year. These activities are: analyse the water quality; research waste water treatment plants; exploration of new food sources (like aquaponics - where fish and plants grow together); collecting plants with medical activities; care for the plants in the school yard; growing new plants in the poly tunnel; learning about unknown plants - especially when visiting national and regional parks; selling different things in the school shop - also for local citizens; participating in the world wide activity - "Keep the country tidy" etc. Students and teachers enjoy to participate in different outdoor activities; we both

  1. THE INFLUENCE OF CALCIUM HYPOCHLORITE DOSAGE ADJUSTMENT ON TAPIOCA WASTEWATER PRE-CHLORINATION TOWARD EFFICIENCY OF ACTIVATED SLUDGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Happy Mulyani

    2016-11-01

    Full Text Available The objectives of this research are to study about influence of calcium hypochlorite dosage adjustment on tapioca wastewater chlorination toward efficiency of activated sludge treatment especially at MLVSS profile and percentage of COD removal. This research mainly divided into pre-chlorination and activated sludge treatment. Pre-chlorination taken place for 60 minutes at pH 8. The variation of calcium hypochlorite dosages which used are 58, 59, and 60 mg/L. Pre-chlorination effluent with no free chlorine residual then becomes activated sludge treatment influent. Sampling has done each aeration time interval 0, 2, 4, and 6 hour for analysis of COD and MLVSS content. Research result generally shows that addition of aeration time for each variation of calcium hypochlorite dosage will increase MLVSS and decrease COD content. Smallest value of COD effluent could achieved in the activated sludge treatment with calcium hipochlorite dosage 60 mg/L addition at influent during 4 hours aeration time. Addition of 58 mg/l calcium hypochlorite results highest MLVSS and percentage of COD removal.

  2. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde.

    Science.gov (United States)

    Niu, Song; Yan, Hongxia

    2015-04-28

    Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by (13)C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  3. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.

    Science.gov (United States)

    Guo, Zhanyong; Li, Qing; Wang, Gang; Dong, Fang; Zhou, Haoyuan; Zhang, Jing

    2014-01-01

    A group of novel inulin derivatives containing benzene or chlorinated benzene were synthesized by reaction of chloracetyl inulin (CAIL) with the Schiff bases of 4-amino-pyridine, including (2-pyridyl)acetyl inulin chloride (PAIL), 2-[4-(2-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2CPAIL), 2-[4-(4-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (4CPAIL), and 2-[4-(2,4-dichlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2,4DCPAIL). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro. Of all the synthesized chitosan derivatives, 2,4DCPAIL inhibited the growth of the tested phytopathogens with inhibitory indices of 67%, 47%, and 43% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak and Fusarium oxysporum (schl.) F.sp. niveum (F. oxysporum) respectively at 1.0 mg/mL. The results indicate that all the inulin derivatives have better antifungal activity than inulin, and the inhibitory index is affected by the chlorine atom grafted to the inulin derivatives.

  4. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  5. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    Science.gov (United States)

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm.

  6. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Song, E-mail: niusong84@163.com; Yan, Hongxia, E-mail: hongxiayan@nwpu.edu.cn

    2015-04-28

    Highlights: • A novel silicone-based polymer with active methylene was explored. • Surface tension of liquid paints could be lowered using the polymer. • The polymer was easy to migrate toward the air-coating interface. • Free HCHO could effectively be removed using the polymer. • A lights on HCHO reduction without complicated preparation procedure was shielded. - Abstract: Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by {sup 13}C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4 wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  7. Indoor bioaerosol dynamics.

    Science.gov (United States)

    Nazaroff, William W

    2016-02-01

    Inhaling indoor air is the primary means by which humans are exposed to bioaerosols. Considering bacteria, fungi, and viruses, this study reviews the dynamic processes that govern indoor concentrations and fates of biological particulate material. Bioaerosol behavior is strongly coupled to particle size; this study emphasizes the range 0.1-10 μm in aerodynamic diameter. The principle of material balance allows concentrations to be determined from knowledge of important source and removal processes. Sources reviewed here include outdoor air introduced by air exchange plus indoor emission from occupants, occupant activities, and moldy materials. Important mechanisms that remove bioaerosols from indoor air include air exchange, deposition onto indoor surfaces, and active filtration. The review summarizes knowledge about size-dependent particle deposition in different regions of the respiratory tract, techniques for measuring indoor bioaerosols, and evidence for diseases caused by airborne exposure to bioaerosols. Future research challenges and opportunities are highlighted.

  8. Volumic activities measurements and equivalent doses calculation of indoor 222Rn in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelmajid Choukri

    2015-09-01

    Full Text Available Purpose: As a way of prevention, we have measured the volumic activities of indoor 222Rn and we have calculated the corresponding effective dose in some dwellings and enclosed areas in Morocco. Seasonal variation of Radon activities and Relationships between variation of these activities and some parameters such height, depth and type of construction were also established in this work.Methods: The passive time-integrated method of using a solid state nuclear track detector (LR-115 type II was employed. These films, cut in pieces of 3.4 ´ 2.5 cm2, were placed in detector holders and enclosed in heat-scaled polyethylene bags.Results: The measured volumic activities of radon vary in houses, between 31 and 136 Bq/m3 (0.55 and 2.39 mSv/year with an average value of 80 Bq/m3 (1.41 mSv/year. In enclosed work area, they vary between 60 Bq/m3 (0.38 mSv/year in an ordinary area to 1884 Bq/m3 (11.9 mSv/year at not airy underground level of 12 m. the relatively higher volumic activities of 222Rn in houses were measured in Youssoufia and khouribga towns situated in regions rich in phosphate deposits. Measurements at the geophysical observatory of Berchid show that the volumic activity of radon increases with depth, this is most probably due to decreased ventilation. Conclusion: The obtained results show that the effective dose calculated for indoor dwellings are comparable to those obtained in other regions in the word. The risks related to the volumic activities of indoor radon could be avoided by simple precautions such the continuous ventilation. The reached high value of above 1884 Bq/m3 don't present any risk for workers health in the geophysical observatory of Berchid because workers spend only a few minutes by day in the cellar to control and reregister data.

  9. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain)

    Science.gov (United States)

    Chatuev, B.A.; Peterson, J.W.

    2009-01-01

    Summary Routine surface decontamination is an essential hospital and laboratory procedure, but the list of effective, noncorrosive disinfectants that kill spores is limited. We investigated the sporicidal potential of an aqueous chlorine dioxide solution and encountered some unanticipated problems. Quantitative bacteriological culture methods were used to determine the log10 reduction of Bacillus anthracis (Sterne strain) spores following 3 min exposure to various concentrations of aqueous chlorine dioxide solutions at room temperature in sealed tubes, as well as spraying onto plastic and stainless steel surfaces in a biological safety cabinet. Serial 10-fold dilutions of the treated spores were then plated on 5% sheep blood agar plates, and the survivor colonies were enumerated. Disinfection of spore suspensions with aqueous chlorine dioxide solution in sealed microfuge tubes was highly effective, reducing the viable spore counts by 8 log10 in only 3 min. By contrast, the process of spraying or spreading the disinfectant onto surfaces resulted in only a 1 log10 kill because the chlorine dioxide gas was rapidly vaporised from the solutions. Full potency of the sprayed aqueous chlorine dioxide solution was restored by preparing the chlorine dioxide solution in 5% bleach (0.3% sodium hypochlorite). The volatility of chlorine dioxide can cause treatment failures that constitute a serious hazard for unsuspecting users. Supplementation of the chlorine dioxide solution with 5% bleach (0.3% sodium hypochlorite) restored full potency and increased stability for one week. PMID:20061062

  10. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  11. Neutron-activated determination of chlorine, using the /sup 35/Cl(n,p)/sup 35/S reaction as the basis, in thin coatings of silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Perezhogin, G.A.

    1988-01-10

    The neutron-activation determination of chlorine in thin coatings of silicon dioxide on silicon has been shown to be possible through the use of the /sup 55/Cl(n, P)/sup 35/S reaction. The detection limit of chlorine is 3 x 10/sup -9/ g (5 x 10/sup 13/ atoms).

  12. Measurements of indoor 222RN activity in dwellings and workplaces of Curitiba (Brazil)

    Science.gov (United States)

    Corrêa, Janine N.; Paschuk, Sergei A.; Del Claro, Flávia; Kappke, Jaqueline; Perna, Allan F. N.; Schelin, Hugo R.; Denyak, Valeriy

    2014-11-01

    The present work describes the results of systematic measurements of radon (222Rn) in residential environments and workplaces in the Metropolitan Region of Curitiba (Paraná State, Brazil) during the period 2004-2012. For radon in air activity measurements, polycarbonate Track Etch Detectors CR-39, mounted in diffusion chambers protected by borosilicate glass fiber filters, were used. After being exposed in air, the CR-39 detectors were submitted to a chemical etching in a 6.25 M NaOH solution at 70 °C for 14 h. The alpha particle tracks were identified and manually counted with an optical microscope, and with the results of previously performed calibrations, the indoor activity concentration of 222Rn was calculated. The calibration of CR-39 and the alpha particle tracks chemical development procedures were performed in collaboration the National Institute of Radiological Sciences (NIRS, Japan). The major part of indoor 222Rn concentration in residences was found to be below 100 Bq/m3. In the case of working places, all measurements of 222Rn concentrations were below 100 Bq/m3. These values are considered within the limits set by international regulatory agencies, such as the US EPA and ICRP, which adopt up to 148 and 300 Bq/m3 as upper values for the reference levels for radon gas activity in dwellings, respectively. The latest value of 300 Bq/m3 for radon activity in air is proposed by ICRP considering the upper value for the individual dose reference level for radon exposure of 10 mSv/yr.

  13. Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides †

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2010-11-01

    Full Text Available A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET. 6-Chloro-N-(4-chlorophenylpyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL. The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenylpyrazine-2-carboxamide (MIC = 62.5 μmol/L. 6-Chloro-5-tert-butyl-N-(4-chlorophenylpyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L. chloroplasts (IC50 = 43.0 μmol/L. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed.

  14. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources.

    Science.gov (United States)

    de Blas, Maite; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Gomez, Maria Carmen; Iza, Jon

    2012-06-01

    Indoor air quality (IAQ) has become a very important issue in recent years. As in developed countries people spend more than 90% of their time indoors, besides outdoor pollution assessment, the indoor one is also required. IAQ is not only affected by indoor sources linked to indoor activities, outdoor sources such as road or street traffic and industrial and commercial activities have their role too. Volatile organic compounds (VOCs) frequently show higher indoor mixing ratios with respect to the outdoor ones, and monitoring is required to report their indoor mixing ratios. Many studies have reported average indoor VOCs' mixing ratios in different environments, but their temporal variability has not been well documented. The main objective of this work was to simultaneously measure VOCs' indoor and outdoor mixing ratios with high time-resolution in order to assess the effect of sources inside and outside the building upon indoor mixing ratios of individual VOCs. Simultaneous hourly, continuous, and on-line measurements of C(2)-C(11) VOCs were performed inside and outside the School of Engineering of Bilbao (ETSI) building, located in the city center of Bilbao, an urban area in Northern Spain. The analysis of simultaneous data allowed the classification of VOCs based on their main sources. Some VOCs were mainly emitted by indoor sources (1-pentene, 2-methylpentane, n-hexane, methylcyclopentane, benzene, 1-heptene+2,2,4-trimethylbenzene, and tetrachloroethylene) or by outdoor sources (n-heptane, C(8) alkanes except trimethylpentanes and C(9) aromatics). Other VOCs, such as toluene, were emitted by both indoor and outdoor sources. The isoprene indoor pattern indicated that its main indoor source could be the air exhaled by people occupying the building. Some halocarbons, such as trichloroethylene, tetrachloroethylene, and carbon tetrachloride may be generated from the use inside the building of chlorine bleach containing products.

  15. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  16. Accelerometer measured level of physical activity indoors and outdoors during preschool time in Sweden and the United States

    DEFF Research Database (Denmark)

    Raustorp, Anders; Pagels, Peter; Boldemann, Cecilia

    2012-01-01

    It is important to understand the correlates of physical activity (PA) to influence policy and create environments that promote PA among preschool children. We compared preschoolers' PA in Swedish and in US settings and objectively examined differences boys' and girls' indoor and outdoor PA...

  17. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    Science.gov (United States)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  18. Development of RuO2/TiO2 titanium anodes and a device for in situ active chlorine generation

    Directory of Open Access Journals (Sweden)

    Spasojević Miroslav D.

    2013-01-01

    Full Text Available Chlorine is used worldwide for water disinfection purposes. However, due to its toxicity the EU has imposed a set of standards that must be applied when transporting and storing chlorine. In Serbia, numerous studies have been conducted attempting to develop the technology for the generation of active chlorine disinfectant but with a non-toxic aqueous solution of sodium chloride as the raw material. This study provides an overview of the titanium anodes activated by thermally obtained solid solution of ruthenium and titanium oxide development. It also presents new findings on the effect of the temperature of thermal treatment, the composition, the thickness of an active coating on its microstructural properties, and consequently on the catalytic activity, ion selectivity, and corrosion stability during active chlorine generation through the electrolysis of dilute sodium chloride solutions at room temperature. The study also evaluates the effect of the kinetic and operational parameters of the electrochemical process of active chlorine generation on both current and energy efficiencies. The results obtained were used to determine optimal values of technological parameters of the production process. This comprehensive research resulted in the construction of different types of remote-controlled and fully automated active chlorine generating plants.

  19. Differences in antimicrobial activity of chlorine against twelve most prevalent poultry-associated Salmonella serotypes.

    Science.gov (United States)

    Paul, Narayan C; Sullivan, Tarah S; Shah, Devendra H

    2017-06-01

    Chlorine is the most widely used carcass sanitizer in poultry processing in the USA. The objective of this study was to determine the effects of varying concentrations of organic matter on the susceptibility of twelve most prevalent poultry-associated Salmonella serotypes (MPPSTs) to chlorine. To mimic the microenvironment of the water used for immersion chilling, we manipulated organic matter contamination levels in pre-chilled (pH∼6, T∼4 °C) chlorinated (50 ppm) water using varying concentrations (0, 1, 2, 3, 4, and 5%) of chicken-meat-extract (CME) produced from frozen chicken carcasses. This CME-based in vitro model was challenged with ∼1 × 10(5) CFUs of each MPPST isolate and the bacterial survival was tested at 5, 30, 60 and 90 min post-challenge. In this model, the decimal reduction time (D90-values) of each MPPST was linearly correlated with the concentration of CME. Significant inter-serotype differences in the D90-values were observed. The results show that the pH, concentration of total- and free-chlorine were also linearly correlated with the presence of CME in a concentration-dependent manner. The findings of this study indicate that the serotype and the levels of organic matter contamination significantly influence Salmonella survival and that both variables should be included in models that predict effectiveness of chlorine treatment in immersion chilling.

  20. Myeloperoxidase-Related Chlorination Activity Is Positively Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship with Neurohormonal, Inflammatory, and Nutritional Parameters

    Science.gov (United States)

    Cabassi, Aderville; Binno, Simone Maurizio; Tedeschi, Stefano; Graiani, Gallia; Galizia, Cinzia; Bianconcini, Michele; Coghi, Pietro; Fellini, Federica; Ruffini, Livia; Govoni, Paolo; Piepoli, Massimo; Perlini, Stefano; Regolisti, Giuseppe; Fiaccadori, Enrico

    2015-01-01

    Rationale. Heart failure (HF) is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO) contribute to oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp) has antioxidant function through its ferroxidase I (FeOxI) activity and has recently been proposed as a physiological defense mechanism against MPO inappropriate actions. Objective. We investigated the relationship between plasma MPO-related chlorinating activity, Cp and FeOxI, and nitrosative stress, inflammatory, neurohormonal, and nutritional biomarkers in HF patients. Methods and Results. In chronic HF patients (n = 81, 76 ± 9 years, NYHA Class II (26); Class III (29); Class IV (26)) and age-matched controls (n = 17, 75 ± 11 years, CTR), plasma MPO chlorinating activity, Cp, FeOxI, nitrated protein, free Malondialdehyde, BNP, norepinephrine, hsCRP, albumin, and prealbumin were measured. Plasma MPO chlorinating activity, Cp, BNP, norepinephrine, and hsCRP were increased in HF versus CTR. FeOxI, albumin, and prealbumin were decreased in HF. MPO-related chlorinating activity was positively related to Cp (r = 0.363, P < 0.001), nitrated protein, hsCRP, and BNP and inversely to albumin. Conclusions. Plasma MPO chlorinated activity is increased in elderly chronic HF patients and positively associated with Cp, inflammatory, neurohormonal, and nitrosative parameters suggesting a role in HF progression. PMID:26539521

  1. Myeloperoxidase-Related Chlorination Activity Is Positively Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship with Neurohormonal, Inflammatory, and Nutritional Parameters

    Directory of Open Access Journals (Sweden)

    Aderville Cabassi

    2015-01-01

    Full Text Available Rationale. Heart failure (HF is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO contribute to oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp has antioxidant function through its ferroxidase I (FeOxI activity and has recently been proposed as a physiological defense mechanism against MPO inappropriate actions. Objective. We investigated the relationship between plasma MPO-related chlorinating activity, Cp and FeOxI, and nitrosative stress, inflammatory, neurohormonal, and nutritional biomarkers in HF patients. Methods and Results. In chronic HF patients (n=81, 76 ± 9 years, NYHA Class II (26; Class III (29; Class IV (26 and age-matched controls (n=17, 75 ± 11 years, CTR, plasma MPO chlorinating activity, Cp, FeOxI, nitrated protein, free Malondialdehyde, BNP, norepinephrine, hsCRP, albumin, and prealbumin were measured. Plasma MPO chlorinating activity, Cp, BNP, norepinephrine, and hsCRP were increased in HF versus CTR. FeOxI, albumin, and prealbumin were decreased in HF. MPO-related chlorinating activity was positively related to Cp (r= 0.363, P<0.001, nitrated protein, hsCRP, and BNP and inversely to albumin. Conclusions. Plasma MPO chlorinated activity is increased in elderly chronic HF patients and positively associated with Cp, inflammatory, neurohormonal, and nitrosative parameters suggesting a role in HF progression.

  2. Optimum conditions for the formation of Al13 polymer and active chlorine in electrolysis process with Ti/RuO2-TiO2 anodes

    Institute of Scientific and Technical Information of China (English)

    Chengzhi Hu; Huijuan Liu; Jiuhui Qu

    2012-01-01

    A polyaluminum containing a high concentration of Al13 polymer and active chlorine (PACC) was successfully synthesized by a new electrochemical reactor using Ti/RuO2-TiO2 anodes.PACC can potentially be used as a dual-function chemical reagent for water treatment.The obtained results indicated that the formation of Al13 polymer and active chlorine,were the most active components in PACC responsible for coagulation and disinfection respectively.These components were significantly influenced by electrolyte temperature,current density,and stirring rate.It was observed that high electrolyte temperature favored the formation of Al13.Increasing current density and stirring rate resulted in high current efficiency of chlorine evolution,thus favoring the generation of Al13 and active chlorine in PACC.When the PACC (AlT =0.5 mol/L,basicity =2.3) was prepared at the optimum conditions by electrolysis process,the Al13 polymer and active chlorine in product reached above 70% of AlT and 4000 mg/L,respectively.In the pilot scale experiment with raw polyaluminum chloride used as an electrolyte,PACC was successfully prepared and produced a high content of Al13 and active chlorine products.The pilot scale experiment demonstrated a potential industrial approach of PACC preparation.

  3. Movement and fate of chlorinated solvents in ground water; research activities at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Fusillo, T.V.; Ehlke, T.A.; Martin, Mary

    1987-01-01

    The USGS, through its Toxic Waste--Ground-Water Contamination Program, is undertaking an interdisciplinary research study of contaminants. The purpose of the study is to gain a better understanding of the chemical, physical, and biological processes that affect the movement and fate of these contaminants in groundwater. The study is being conducted at Picatinny Arsenal, New Jersey, where metal plating and metal etching wastes have contaminated part of the glacial stratified drift aquifers. Major areas of research at the site are described, including: (1) distribution and movement of chlorinated solvents in groundwater, (2) behavior of chlorinated solvents in the unsaturated zone, (3) geochemistry of the contaminated groundwater, and (4) microbial transformations of chlorinated solvents. (Author 's abstract)

  4. [Water disinfection: comparative activities of ozone and chlorine on a wide spectrum of bacteria].

    Science.gov (United States)

    Korol, S; Fortunato, M S; Paz, M; Sanahuja, M C; Lazaro, E; Santini, P; D'Aquino, M

    1995-01-01

    Ozone and chlorine are agents that disinfect by destroying, neutralizing or inhibiting the growth of pathogenic microorganisms. The treatment of drinking water with ozone has shown to be more efficient against spores of Bacillus subtilis. It was observed that the ozone already in dose of 0.35 mg/l produced the reduction of at least 5 log in populations of approximately 1 x 10(6) cells/ml of Escherichia coli, Vibrio cholerae, Salmonella typhi, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Listeria monocytogenes and Staphylococcus aureus. With a dose of 0.50 mg/l of chlorine, the reduction was much smaller for the tested microorganisms (except Vibrio cholerae), while the effect of 2 mg/l of chlorine was similar to the ozone treatment. For spores of Bacillus subtilis, the reduction observed with ozone concentrations of 0.35 and 0.70 mg/l was of almost 3 log, while no considerable effect was obtained with chlorine in the tested conditions. Our results have shown that both disinfectans were consumed during the treatment period, probably because of the own water demand and the added bacterial mass.

  5. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    Science.gov (United States)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  6. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  7. Integrated Field-Scale, Lab-Scale, and Modeling Studies for Improving the Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent-Impacted Groundwater Sites

    Science.gov (United States)

    2012-08-01

    16 Soil Gas Monitoring of SF6 ...Radon soil gas concentration contours [pCi/L] ...........................................................15 Figure 13. SF6 in indoor air with a constant...16 Figure 14. SF6 in sub-slab soil gas resulting from constant 5 mL/min indoor release rate ...........17 iii List of Acronyms

  8. Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment.

    Science.gov (United States)

    Ooi, Beng Guat; Branning, Sharon Alyssa

    2016-12-13

    Chlorine dioxide (ClO2) is a potent oxidizing agent used for the treatment of drinking water and decontamination of facilities and equipment. The purpose of this research is to elucidate the manner in which ClO2 destroys proteins by studying the effects of ClO2 on lysozyme. The degree of enzyme activity lost can be correlated to the treatment time and levels of the ClO2 used. Lysozyme activity was drastically reduced to 45.3% of original enzyme activity when exposed to 4.3 mM ClO2 in the sample after 3 h. Almost all activities were lost in 3 h after exposure to higher ClO2 concentrations of up to 16.8 and 21.9 mM. Changes in protein conformation and amount as a result of ClO2 treatment were determined using the Raman spectroscopy and gel electrophoresis. Raman shifts and the alteration of spectral features observed in the ClO2-treated lysozyme samples are associated with loss of the α-helix secondary structure, tertiary structure, and disulfide bond. Progressive degradation of the denatured lysozyme by increasing levels of chlorine dioxide was also observed in gel electrophoresis. Hence, ClO2 can effectively cause protein denaturation and degradation resulting in loss of enzyme activity.

  9. Indoor radon monitoring in Northern Iran using passive and active measurements.

    Science.gov (United States)

    Hadad, Kamal; Doulatdar, R; Mehdizadeh, S

    2007-01-01

    In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.

  10. Indoor radon monitoring in Northern Iran using passive and active measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, Kamal [Department of Nuclear Engineering, Shiraz University, Shiraz 7134851154 (Iran, Islamic Republic of)]. E-mail: hadadk@shirazu.ac.ir; Doulatdar, R. [Shiraz University Nuclear Safety Research Center, Shiraz 7134851154 (Iran, Islamic Republic of); Mehdizadeh, S. [Department of Nuclear Engineering, Shiraz University, Shiraz 7134851154 (Iran, Islamic Republic of)

    2007-06-15

    In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m{sup 3} with medians of 160, 168, 124 and 133 Bq/m{sup 3}, respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m{sup 3} during winter in Ardabil and the minimum concentration was 55 Bq/m{sup 3} during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.

  11. Enhancement of toxicity and enzyme-repressing activity of p-dioxane by chlorination: stereoselective effects.

    Science.gov (United States)

    Woo, Y T; Neuburger, B J; Arcos, J C; Argus, M F; Nishiyama, K; Griffin, G W

    1980-01-01

    The acute toxicity of p-dioxane may be enhanced up to 1000-fold by chlorination of the compound. The effect was stereoselective. Of the stereoisomers tested, tetrachloro-p-dioxane, isomer I (2r, 3t, 5t, 6c) was over 80 times more toxic than isomer II (2r, 3c, 5t, 6t). The latter compound was also a potent repressor of hepatic dimethylnitrosamine-demethylase I (DMN-d) and aryl hydrocarbon hydroxylase (AHH).

  12. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Jalal

    2014-07-01

    Full Text Available Recent advancements in depth video sensors technologies have made human activity recognition (HAR realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  13. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Science.gov (United States)

    Huck, P. E.; Bodeker, G. E.; Kremser, S.; McDonald, A. J.; Rex, M.; Struthers, H.

    2013-03-01

    Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl) into the active forms (here: ClOx = 2×Cl2O2 + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  14. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Directory of Open Access Journals (Sweden)

    P. E. Huck

    2013-03-01

    Full Text Available Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl into the active forms (here: ClOx = 2×Cl2O2 + ClO, and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  15. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    Science.gov (United States)

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications.

  16. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Directory of Open Access Journals (Sweden)

    P. E. Huck

    2012-10-01

    Full Text Available Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl into the active forms (here: ClOx = 2 × Cl2O2 + ClO, and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  17. Spatio-Temporal Analysis of Human Activities in Indoor Environments through Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger

    plants, or airports. For spatially distributed tasks, delays in a single task may propagate to multiple other tasks, causing large amounts of wasted time. The planning and delegation of work tasks has traditionally been performed manually, using historical information on task execution combined...... time estimates, detect transportation modes, and provide information for facility utilization. Although the focus of the evaluations are on hospital settings, we argue that the methods are generalizable to other large-scale indoor logistics operations, such as airports or warehouses....

  18. Indoor aerosols

    DEFF Research Database (Denmark)

    Morawska, L.; Afshari, Alireza; N. Bae, G.;

    2013-01-01

    reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific......Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels...... are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together...

  19. Synthesis of BiVO4/TiO2 composites and evaluation of their photocatalytic activity under indoor illumination.

    Science.gov (United States)

    Longo, Giulia; Fresno, Fernando; Gross, Silvia; Štangar, Urška Lavrenčič

    2014-10-01

    BiVO4/TiO2 composites with different weight ratios have been prepared by coprecipitation-based reactions followed by either thermal or hydrothermal treatment with the aim of evaluating the TiO2 photosensitization by BiVO4. The obtained materials present in all cases the desired monoclinic phase of BiVO4 and anatase phase of TiO2. Visible light absorption increased with increasing amount of bismuth vanadate. XPS results reveal the surface enrichment of Ti with respect to the bulk composition in samples characterised by a higher content of BiVO4. The photocatalytic activity of the prepared materials was tested for the degradation of isopropanol in the gas phase under indoor illumination conditions. Although none of the composites was able to improve the activity of TiO2, the low BiVO4 containing samples appear as more suitable for further synthesis tuning.

  20. The Influence of Aerosol Concentration on Changes in the Volumetric Activities of Indoor Radon Short-Term Decay Products

    Directory of Open Access Journals (Sweden)

    Diana Politova

    2011-02-01

    Full Text Available The article describes the influence of aerosol concentration on changes in the volumetric activities of indoor radon short-term decay products. The concentration of aerosol in the air, equilibrium factors and unattached fraction were measured under normal living conditions when the concentration of aerosol increases, i.e. burning a candle or frankincense in accommodations, smoke-filled accommodations, a steamy kitchen etc. It has been established that when the concentration of aerosol in the air rises, the number of free atoms of radon short-term decay products attached to aerosol particles also increases, and therefore higher volumetric activity of alpha particles is fixed. A tight positive connection of the correlation between equilibrium factor (F and aerosol particle concentration in the air of accommodations as well as a negative correlation between unattached fraction and an equilibrium factor have been determined.Article in Lithuanian

  1. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  2. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries.

    Science.gov (United States)

    Sun, Xiuxiu; Bai, Jinhe; Ference, Christopher; Wang, Zhe; Zhang, Yifan; Narciso, Jan; Zhou, Kequan

    2014-07-01

    The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits.

  3. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  4. Activated Persulfate Treatment of 1,4-Dioxane in the Presence of Chlorinated Solvent Co-contaminants

    Science.gov (United States)

    Boving, T. T.; Eberle, D. E. H.; Ball, R.

    2014-12-01

    1,4-dioxane is an emerging groundwater contaminant and a likely human carcinogen. Due to its history as a stabilizer in chlorinated solvents, 1,4-dioxane is often found as a co-contaminant at solvent releases sites such as landfills, solvent recycling facilities, vapor decreasing operations, and fire-training areas. Historically, 1,4-dioxane was not routinely analyzed for at solvent release sites. The lack of analyses and the limitations of the analyses that were performed (i.e. high reporting limits) means that the scale of 1,4-dioxane subsurface contamination is still emerging. With the number of known 1,4-dioxane sites increasing, the need for cost effective 1,4-dioxane remediation technologies is rising as well. Remediation strategies that are capable of treating both 1,4-dioxane as well as chlorinated co-contaminants are of particular importance, especially when treating mixed-waste source zones. In the present study, we examined the fate of 1,4-dioxane during the targeted remediation of aqueous phase volatile organic compounds (VOC) using an activated persulfate based ISCO method (OxyZone®). Bench scale laboratory experiments are used to evaluate the treatability of 1,4-dioxane both as a single compound and in the presence of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA). Possible dependencies on oxidant concentration and reaction kinetics were studied. Preliminary results are promising and show that OxyZone® is persistent and long lived, with oxidation of 1,4-dioxane continuing more than 12 days after initial dosage, even at dilute oxidant concentrations. The oxidative destruction of 1,4-dioxane, TCE and 1,1,1-TCA in single compound batch systems followed pseudo first order reaction kinetics. The rate of oxidation for each contaminant increased linearly with increasing persulfate concentration over the range of oxidant concentrations tested. The rate of oxidative destruction, from most easily degraded to least was: TCE > 1,4-Dioxane > 1

  5. Performance analysis of a modified moving shadow elimination method developed for indoor scene activity tracking

    Science.gov (United States)

    Mitra, Bhargav Kumar; Fiaz, Muhammad Kamran; Kypraios, Ioannis; Birch, Philip; Young, Rupert; Chatwin, Chris

    2008-10-01

    Moving shadow detection is an important step in automated robust surveillance systems in which a dynamic object is to be segmented and tracked. Rejection of the shadow region significantly reduces the erroneous tracking of non-target objects within the scene. A method to eliminate such shadows in indoor video sequences has been developed by the authors. The objective has been met through the use of a pixel-wise shadow search process that utilizes a computational model in the RGB colour space to demarcate the moving shadow regions from the background scene and the foreground objects. However, it has been observed that the robustness and efficiency of the method can be significantly enhanced through the deployment of a binary-mask based shadow search process. This, in turn, calls for the use of a prior foreground object segmentation technique. The authors have also automated a standard foreground object segmentation technique through the deployment of some popular statistical outlier-detection based strategies. The paper analyses the performance i.e. the effectiveness as a shadow detector, discrimination potential, and the processing time of the modified moving shadow elimination method on the basis of some standard evaluation metrics.

  6. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    Science.gov (United States)

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  7. The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC▿ †

    Science.gov (United States)

    Shemesh, Moshe; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms biofilms in response to signals that remain poorly defined. We report that biofilm formation is stimulated by sublethal doses of chlorine dioxide (ClO2), an extremely effective and fast-acting biocide. ClO2 accelerated biofilm formation in B. subtilis as well as in other bacteria, suggesting that biofilm formation is a widely conserved response to sublethal doses of the agent. Biofilm formation depends on the synthesis of an extracellular matrix that holds the constituent cells together. We show that the transcription of the major operons responsible for the matrix production in B. subtilis, epsA-epsO and yqxM-sipW-tasA, was enhanced by ClO2, in a manner that depended on the membrane-bound kinase KinC. Activation of KinC appeared to be due to the ability of ClO2 to collapse the membrane potential. Importantly, strains unable to make a matrix were hypersensitive to ClO2, indicating that biofilm formation is a defensive response that helps protect cells from the toxic effects of the biocide. PMID:20971918

  8. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    Science.gov (United States)

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  9. (-)-Epicatechin regenerates the chlorinating activity of myeloperoxidase in vitro and in neutrophil granulocytes.

    Science.gov (United States)

    Flemmig, Jörg; Remmler, Johannes; Röhring, Fiete; Arnhold, Jürgen

    2014-01-01

    The heme-containing enzyme myeloperoxidase (MPO) is mainly expressed in polymorphonuclear leukocytes (PMNs), the most abundant immune cell type in the blood. Accordingly, MPO is classically attributed to the innate immune response against pathogens. Yet, new results also show immune-regulatory functions of the halogenating MPO activity including the formation of anti-inflammatory mediators. In this work we tested the ability of the flavonoid (-)-epicatechin to regenerate this enzymatic activity both in vitro at the isolated MPO-H2O2-Cl(-) system and ex vivo in human PMNs. For all experiments the non-fluorescent dye aminophenyl fluorescein (APF) was used. Upon oxidation by the MPO, the halogenation product hypochlorous acid (HOCl) fluorescein is formed which can be detected e.g. by flow cytometry. The in vitro- and ex vivo-results concordantly show that (-)-epicatechin is a suitable substrate to overcome a compound II accumulation of MPO which was experimentally forced by applying excess hydrogen peroxide. Thereby concentration-dependent effects of the flavan-3-ol were found in both cases and confirmed the proposed mode of action of (-)-epicatechin. The results are in accordance with previous stopped-flow kinetic studies which showed a high reactivity of the polyphenol with MPO compound II. The obtained data may contribute to the explanation of the well-known health promoting effects of (-)-epicatechin. Moreover, the presented study provides new insights into the role of MPO during inflammation.

  10. Preparation,characterization and photocatalytic activity of visible light driven chlorine-doped TiO2

    Institute of Scientific and Technical Information of China (English)

    LONG Mingce; CAI Weimin; CHEN Heng; XU Jun

    2007-01-01

    A novel chlorine-doped titanium dioxide catalyst with visible light response was prepared by hydrolysis of tetrabutyl titanate in hydrochloric acid.The catalyst samples were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS),and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS).Results showed that the doped element of CI lowered the temperatures of phase transformation of TiO2 from amorphous to anatase and from anatase to rutile.The absorption edge of chlorine-doped TiO2 calcined at 300℃ shifted to visible light region.X-ray photoelectron spectroscopy results proved that chlorine existed in the TiO2 crystal lattice as anion.The photocatalytic degradation of phenol showed that under visible light (λ>400 nm)irradiation,the chlorine-doped TiO2 calcined at 300℃ displayed the best performance,the degradation ratio of phenol was 42.5% after 120min.

  11. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: Does it make a difference?

    Science.gov (United States)

    Ouidir, Marion; Giorgis-Allemand, Lise; Lyon-Caen, Sarah; Morelli, Xavier; Cracowski, Claire; Pontet, Sabrina; Pin, Isabelle; Lepeule, Johanna; Siroux, Valérie; Slama, Rémy

    2015-11-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=-0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=-0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them.

  12. Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.

    2011-01-01

    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds.

  13. Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora.

    Science.gov (United States)

    Huttunen, Kati; Rintala, Helena; Hirvonen, Maija-Riitta; Vepsäläinen, Asko; Hyvärinen, Anne; Meklin, Teija; Toivola, Mika; Nevalainen, Aino

    2008-07-01

    Many building-related health problems coincide with moisture damage and mold growth within a building. Their elimination is assumed to improve indoor air quality. The aim of this study was to follow the success of remediation in two individual buildings by analyzing the microbial flora and immunotoxicological activity of filter samples. We compare results from samples collected from indoor air in the moisture-damaged buildings before and after renovation and results from matched reference buildings and outdoor air. The microbial characteristics of the samples were studied by analyzing ergosterol content and determining the composition of fungal flora with quantitative polymerase chain reaction (QPCR). In addition, the concentrations of particles were monitored with optical particle counter (OPC). The immunotoxicological activity of collected particle samples was tested by exposing mouse macrophages (RAW264.7) for 24 h to particle suspension extracted from the filters, and measuring the viability of the exposed cells (MTT-test) and production of inflammatory mediators (nitric oxide, IL-6 and TNF*) in cell culture medium by enzyme-linked immunoassay (ELISA). The results show that for Location 1 the renovation decreased the immunotoxicological activity of the particles collected from damaged building, whereas no difference was detected in the corresponding samples collected from the reference building. Interestingly, only slight differences were seen in the concentration of fungi. In the Location 2, a decrease was seen in the concentration of fungi after the renovation, whereas no effect on the immunotoxicological responses was detected. In this case, the immunotoxicological responses to the indoor air samples were almost identical to those caused by the samples from outdoor air. This indicates that the effects of remediation on the indoor air quality may not necessarily be readily measurable either with microbial or toxicological parameters. This may be associated

  14. Adsorption of indoor toxic gas by ionic liquid impregnated activated carbons

    Science.gov (United States)

    Rahman, Noraisyah Azeezah Abdul; Leveque, Jean Marc; Mutalib, Mohamed Ibrahim Abdul; Ghani, Noraini Abdul; Thangarajoo, Nanthinie; Mazlan, Faizureen Afzal; Farooq, Amjad; Irfan, Naseem; Duclaux, Laurent; Reinert, Laurence; Ondarts, Michel

    2016-11-01

    Butylpyridinium thiocyanate [BuPyr]SCN ionic liquid was synthesized by metathesis and characterized. NMR spectrum has shown the [BuPyr] cation while FTIR has shown the SCN anion peak which confirms the structure of the synthesized ionic liquid. The ionic liquid was impregnated on activated carbon in order to enhance performance of sulfur dioxide adsorption compared to the non-impregnated raw activated carbon. Two types of activated carbons were used; activated carbon cylindrical granules and cloth. Different percentages of ionic liquid loading (1%, 10% and 20%) were applied. The capacity of the adsorbent for treatment of 10 ppm and 50 ppm SO2 was determined by breakthrough curve analysis whereby optimum breakthrough time was obtained. [BuPyr]SCN impregnated on activated carbon cloth have shown higher adsorption performance.

  15. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  16. Changes in indoor pollutants since the 1950s

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2009-01-01

    Over the past half-century there have been major changes in building materials and consumer products used indoors. Composite-wood, synthetic carpets. polymeric flooring, foam Cushioning, plastic items and scented cleaning agents have become ubiquitous. The same is true for mechanical and electrical...... appliances such as washer/dryers, TVs and Computers. These materials and products emit an array of chemicals including solvents. unreacted monomers, and additives. The consequent changes in emission profiles for indoor pollutants have been accompanied by modifications in building operations. Residences...... changed. Taken together, these changes have altered the kind and concentrations of chemicals that occupants are exposed to in their homes, workplaces and schools. Since the 1950s, levels of certain indoor Pollutants (e.g., formaldehyde, aromatic and chlorinated solvents, chlorinated pesticides, PCBs) have...

  17. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    Science.gov (United States)

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  18. Outdoor-indoor air pollution in urban environment: challenges and opportunity

    OpenAIRE

    Dennis Y.C. eLeung

    2015-01-01

    With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the twenty-first century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollutio...

  19. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity

    Science.gov (United States)

    Segers, Frank J. J.; van Laarhoven, Karel A.; Huinink, Hendrik P.; Adan, Olaf C. G.; Wösten, Han A. B.

    2016-01-01

    ABSTRACT Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw. All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium. Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw. The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). IMPORTANCE Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state

  20. Retrospective assessment of indoor radon exposure by measurements of embedded 210Po activity in glass objects

    Science.gov (United States)

    Ramola, R. C.; Gusain, G. S.; Prasad, Ganesh

    In most of the epidemiological studies contemporary radon measurements have been used as surrogates for radon concentrations in past decades even though changes in radon levels and residence may have occurred. Short-lived radon progeny may deposit on available surfaces in dwellings thus giving rise over time to a build up of long-lived progeny. Airborne radon decay products can be deposited and implanted through alpha recoil into the glass surfaces. On glass surface, activities of 210Po may arise as a result of the decay of recoil implanted activity following the alpha decay of surface deposited 218Po or 214Po. Measurement of 210Po implanted on a household glass is a method that can be employed to retrospectively determine the historic level of radon in dwellings. This method is based on the assumption that levels of recoil implanted 210Po in the glass provide a measure of time integrated radon concentration in the environment in which the glass has been located. The surface deposited activity of the radon progenies, which then become implanted in the glass by alpha recoil, is believed to reflect past exposure to airborne activity. Such retrospective measurements on glass are valuable in estimating the human dose derived from radon during the time of exposure. In this paper an account is given of the principles and some field applications of a retrospective technique, using the alpha track detectors, CR-39 and LR-115, to measure 210Po implanted in glass surfaces (surface traps). By using this CR-LR difference technique, the cumulative radon exposure in a dwelling in past decades may be estimated. This method provides reliable radon exposure data as a support to epidemiological studies concerning the health effects of radon exposure in the living environment.

  1. Influence of the carbohydrate fragment position in the macrocycle of chlorine e6 trimethyl ester glycosylated derivatives on their in vitro photo- induced activity

    Directory of Open Access Journals (Sweden)

    R. I. Yakubovskaya

    2014-01-01

    Full Text Available The physicochemical and photophysical properties, as well as photo-induced activity, of glycoconjugates based on chlorine е6 trimethyl ether with various positions of carbohydrate fragment in the macrocycle have been studied. The photo-induced activity was investigated in the human (HEp2, A549 and HT29 and animal (LLC cell lines. The tested compounds showed in vitro both high photo-induced activity and high stability in the dark. The photosensitizer with galactose in the A pirrole ring demonstrated the highest activity (the half maximal inhibitory concentration (ИК50 varied from 27±2 nM to 75±5 nM in tests on different cell lines. Dyes with sugar substitutes in the C pirrole ring were 5–10 times less active

  2. Halogenase-Inspired Oxidative Chlorination Using Flavin Photocatalysis.

    Science.gov (United States)

    Hering, Thea; Mühldorf, Bernd; Wolf, Robert; König, Burkhard

    2016-04-18

    Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal-catalyzed cross-couplings. Nature chlorinates with chloride anions, FAD-dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket.

  3. INDOOR AIR QUALITY ANALYSIS

    OpenAIRE

    Wang, Xin

    2010-01-01

    With the development of modern architecture, one of the building's interior decoration, furnishings, appliances and equipment have become increasingly demanding, making construction of the indoor environment of increasing pollution, increasing pollution, indoor environmental pollution hazards to human is also a growing the greater. This thesis summarizes the major indoor air pollution sources and major pollutants. Indoor air pollutants are formaldehyde, radon, ammonia, total volatile org...

  4. Indoor multipath mitigation

    DEFF Research Database (Denmark)

    Dragünas, Kostas; Borre, Kai

    2010-01-01

    There are many applications that require continuous positioning in combined outdoor urban and indoor environments. GNSS has been used for a long time in outdoor environments, while indoor positioning is still a challenging task. One of the major degradations that GNSS receivers experience indoors...

  5. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    Science.gov (United States)

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  6. Using Human Panels for Subjective Evaluation of Emissions from Indoor Activities and Materials: Principles and State of Technology

    OpenAIRE

    Cometto-Muñiz, J E

    1995-01-01

    This report addresses the topic of sensory evaluation of indoor air through the use of human subjects. It begins by discussing the chemical senses involved in such evaluation, specifically the senses of smell (olfaction) and chemical sensory irritation (common chemical sense, CCS, now called chemesthesis). An analysis of similarities and differences between these two sensory modalities regarding key measurements and issues follows. Later, the report discusses the quantification of sensory rea...

  7. Persistence and residue activity of deltamethrin on indoor residual spraying surfaces against malaria vectors in southeastern Iran

    Institute of Scientific and Technical Information of China (English)

    Abtahi Mohammad; Shayeghi Mansoreh; Khoobdel Mehdi; Vatandoost Hasan; Abaei Mohammad Reza; Akbarzadeh Kamran

    2011-01-01

    Objective:To evaluate the efficacy of deltamethrin and find a relation between persistence and residue of this insecticide on the prevalent surfaces against malaria vectors in southeastern Iran. Methods:After indoor residual spraying on prevalent surfaces in studied areas (plaster and mud as absorbent surfaces, wood as non absorbent surface and filter paper as control) for malaria control, conical tests as a bioassay method and chromatographic method as an analytical method were used for evolution of persistence and residue of deltamethrin insecticide. Results were investigated statistically by ANOVA and Tukey-HSD tests for determining relations or differences between residue and persistence of deltamethrin. Results:According to the results, there was no significant difference between mortality rates from bioassay tests on different surfaces, and deltamethrin kept its utility to malaria vector control until 120 days after indoor residual spraying on these surfaces. In the case of residue, there was no significant relation between residue amounts and mortality rates on different surfaces, whereas this relation existed between residual amounts on filter papers and mortality rates from bioassay tests. Conclusions: This study shows that measurement of residue in filter papers is a suitable tool for evolution and dictum of efficiency of deltamethrin insecticide in indoor residual spraying for malaria control.

  8. Localization Technologies for Indoor Human Tracking

    CERN Document Server

    Zhang, Da; Yang, Zhuo; Yao, Lin; Zhao, Wenhong

    2010-01-01

    The proliferation of wireless localization technologies provides a promising future for serving human beings in indoor scenarios. Their applications include real-time tracking, activity recognition, health care, navigation, emergence detection, and target-of-interest monitoring, among others. Additionally, indoor localization technologies address the inefficiency of GPS (Global Positioning System) inside buildings. Since people spend most of their time in indoor environments, indoor tracking service is in great public demand. Based on this observation, this paper aims to provide a better understanding of state-of-the-art technologies and stimulate new research efforts in this field. For these purposes, existing localization technologies that can be used for tracking individuals in indoor environments are reviewed, along with some further discussions.

  9. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  10. Development of Electrolytic Active Chlorine Disinfection in Water Treatment%电解活性氯杀菌在水处理中的研究进展

    Institute of Scientific and Technical Information of China (English)

    张化冰; 郦和生

    2014-01-01

    Electrolytic active chlorine disinfection is efficient ,cost -effective and environmental friendly .It works without the addition of chemical compounds to the water ,and its effectiveness of water disinfection is clear without increasing the concentration of chloride ions in water . This article summarizes the disinfection mechanism , electrolytic process and application of this technique .%指出了电解活性氯杀菌是一种高效率、低成本、对环境友好的杀菌技术,该技术无需添加化学药剂,在不增加水中氯离子浓度的情况下,起到杀菌作用。对其杀菌机理、电解工艺和应用情况进行了总结。

  11. Inhalation a significant exposure route for chlorinated organophosphate flame retardants.

    Science.gov (United States)

    Schreder, Erika D; Uding, Nancy; La Guardia, Mark J

    2016-05-01

    Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.

  12. The association between high recreational physical activity and physical activity as a part of daily living in adolescents and availability of local indoor sports facilities and sports clubs

    DEFF Research Database (Denmark)

    Niclasen, B.; Petzold, M.; Schnohr, Christina Warrer

    2012-01-01

    members) in Greenlandic adolescents. Material and methods: Data from the 2006 Health Behaviour in School-aged Children survey including 2,430 children aged 11-17 years was used. Logistic regression models were developed with dichotomous measures on VPA and MVPA as outcomes, number of indoor sports...... facilities and of sports clubs with child members as independent variables, and adjusted for age, gender, family affluence (FAS), and type of habitation (capital, town or village). Results: High VPA increased with access to indoor facilities, while high MVPA was less likely (odds ratio (OR) 0.54 (0...

  13. Bluetooth Indoor Positioning System using Fingerprinting

    DEFF Research Database (Denmark)

    Frost, Christian; Jensen, Casper Svenning; Luckow, Kasper Søe

    2011-01-01

    Indoor Positioning has been an active research area in the last decade, but so far, commercial Indoor Positioning Systems (IPSs) have been sparse. The main obstacle towards widely available IPSs has been the lack of appropriate, low cost technologies, that enable indoor positioning. While Wi-Fi i....... The positioning accuracy is evaluated by using the so-called location fingerprinting technique which is well-known from Wi-Fi positioning literature. The results show that 2 meters median accuracy is achievable - a result that compares favourably to results for Wi-Fi based systems....

  14. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; GAO Tingyao; ZHOU Rongfeng; MA Lumin

    2007-01-01

    The electrochemical reduction characteristies of chlorinated hyrdrocarbons were investigated by cyclic voltammetry technique.The reduction mechanism and activity of the chlorinated hydrocarbons at the copper electrode were explored.The relationship between the structure of chlorinated hydrocarbons and their reductive activity were discussed.The experimental results showed that chlorinated alkanes and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode.However,chlorinated aromatic hydrocarbons were not easy to reduce at the copper electrode.The results provided a theoretical basis for the catalyzed iron inner electrolysis method.

  15. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  16. Indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gold, D.R. (Channing Laboratory, Brigham and Women' s Hospital, Boston, MA (United States))

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  17. Your Indoor Spaces

    Science.gov (United States)

    Exchange: The Early Childhood Leaders' Magazine Since 1978, 2007

    2007-01-01

    In the July 24, 2007 edition of "ExchangeEveryday", readers were asked to submit great indoor space elements from their early childhood programs. Readers sent photographs and brief descriptions of creative elements of their indoor environments. A sampling of ideas are shown on this article.

  18. The pool chlorine hypothesis and asthma among boys.

    LENUS (Irish Health Repository)

    Cotter, A

    2012-01-31

    Swimming pool sanitation has largely been concerned with the microbiological quality of pool water, which is normally treated using a number of chlorine products. Recent studies have pointed to the potential hazards of chlorine by-products to the respiratory epithelium, particularly in indoor, poorly ventilated, pools. The aim of our study was to elucidate whether chronic exposure to indoor chlorinated swimming pools was associated with an increased likelihood of the development of asthma in boys. METHODS: The subjects were boys aged between 6 and 12 years. Data was collected by means of parental responses to a standardized asthma questionnaire (ISAAC: International Study of Asthma and Allergies in Childhood), supplemented with additional questions regarding frequency of attendance, number of years attendance, whether the child is a swimming team member. The questionnaire return rate was 71\\/% (n = 121). 23 boys were excluded on the basis that they had asthma before they started swimming (n = 97). There was a significant association between number of years a boy had been swimming and the likelihood of wheezing in the last 12 months (p = 0.009; OR = 1.351; 95% CI = 1.077-1.693) and diagnosed asthma (p = 0.046; OR = 1.299; 95% CI = 1.004-1.506). The greater the number the number of years a boy had been attending an indoor, chlorinated pool, the greater the likelihood of wheezing in the last 12 months or "had asthma". Age, parental smoking habits and being a swimming team member had no association with any of the asthma variables examined. Swimming pool attendance may be a risk factor in asthma in boys.

  19. 室内移动机器人RFID标定系统开发%Development of Indoor Mobile-robot Calibration System Based on Active RFID

    Institute of Scientific and Technical Information of China (English)

    王殿君

    2013-01-01

    为利用有源RFID信号对室内移动机器人定位,开发了基于有源RFID信号强度的参数标定系统.在阐述RFID的组成及工作原理的基础上,分析信号强度和几何距离的映射关系,确定了RFID参数标定方法.采用有源RFID HR-6020C读写器和WS-HT06电子标签构建RFID标定系统,进行有源RFID的RSSI值采集,计算出机器人定位环境下标定系统参数P(d0)和n,为开发基于RFID信号的室内移动机器人定位系统奠定了基础.%A parameter calibration system based on active RFID ( Radio Frequency Identification) signal strength was developed for indoor mobile-robot localization. On the basis of introducing composition and working principle of RFID system, a parameter calibration method was proposed after analyzing the mapping of signal strength and geometry distance. The parameter calibration system was established with HR-6020C reader and WS-HT06 tags. The system can be used to calculate calibration parameters P(d0) and n by collecting the active tag's signal strength under the mobile-robot environment. It provides foundation for the development of indoor mobile-robot localization system based on RFID signal strength.

  20. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure......This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies...... for measurement and monitoring have allowed a significantly increased number of possible applications, especially in existing buildings. The Guidebook illustrates several cases with the instrumentation of the monitoring and assessment of indoor climate....

  1. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  2. Changes in indoor pollutants since the 1950s

    Science.gov (United States)

    Weschler, Charles J.

    Over the past half-century there have been major changes in building materials and consumer products used indoors. Composite-wood, synthetic carpets, polymeric flooring, foam cushioning, plastic items and scented cleaning agents have become ubiquitous. The same is true for mechanical and electrical appliances such as washer/dryers, TVs and computers. These materials and products emit an array of chemicals including solvents, unreacted monomers, and additives. The consequent changes in emission profiles for indoor pollutants have been accompanied by modifications in building operations. Residences and non-residences are less ventilated than they were decades ago. Air-conditioned buildings are more numerous, especially in certain parts of the world. Most of these recirculate a high fraction of their air. The personal habits of building occupants, including the fraction who smoke indoors, have also changed. Taken together, these changes have altered the kind and concentrations of chemicals that occupants are exposed to in their homes, workplaces and schools. Since the 1950s, levels of certain indoor pollutants (e.g., formaldehyde, aromatic and chlorinated solvents, chlorinated pesticides, PCBs) have increased and then decreased. Levels of other indoor pollutants have increased and remain high (e.g., phthalate esters, brominated flame-retardants, nonionic surfactants and their degradation products). Many of the chemicals presently found in indoor environments, as well as in the blood and urine of occupants, were not present 50 years ago. Given the public's exposure to such species, there would be exceptional value in monitoring networks that provided cross-sectional and longitudinal information regarding pollutants found in representative buildings.

  3. Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China

    Science.gov (United States)

    Li, Qinyi; Zhang, Li; Wang, Tao; Tham, Yee Jun; Ahmadov, Ravan; Xue, Likun; Zhang, Qiang; Zheng, Junyu

    2016-12-01

    The uptake of dinitrogen pentoxide (N2O5) on aerosol surfaces and the subsequent production of nitryl chloride (ClNO2) can have a significant impact on the oxidising capability and thus on secondary pollutants such as ozone. The range of such an impact, however, has not been well quantified in different geographical regions. In this study, we applied the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model to investigate the impact of the N2O5 uptake processes in the Hong Kong-Pearl River Delta (HK-PRD) region, where the highest ever reported N2O5 and ClNO2 concentrations were observed in our recent field study. We first incorporated into the WRF-Chem an aerosol thermodynamics model (ISORROPIA II), recent parameterisations for N2O5 heterogeneous uptake and ClNO2 production and gas-phase chlorine chemistry. The revised model was then used to simulate the spatiotemporal distribution of N2O5 and ClNO2 over the HK-PRD region and the impact of N2O5 uptake and Cl activation on ozone and reactive nitrogen in the planetary boundary layer (PBL). The updated model can generally capture the temporal variation of N2O5 and ClNO2 observed at a mountaintop site in Hong Kong, but it overestimates N2O5 uptake and ClNO2 production. The model results suggest that under average conditions, elevated levels of ClNO2 (> 0.25 ppb within the PBL) are present in the south-western PRD, with the highest values (> 1.00 ppb) predicted near the ground surface (0-200 m above ground level; a.g.l.). In contrast, during the night when very high levels of ClNO2 and N2O5 were measured in well-processed plumes from the PRD, ClNO2 is mostly concentrated within the residual layer ( ˜ 300 m a.g.l.). The addition of N2O5 heterogeneous uptake and Cl activation reduces the NO and NO2 levels by as much as 1.93 ppb ( ˜ 7.4 %) and 4.73 ppb ( ˜ 16.2 %), respectively, and it increases the total nitrate and ozone concentrations by up to 13.45 µg m-3 ( ˜ 57.4 %) and 7.23 ppb ( ˜ 16

  4. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  5. Space subdivision for indoor applications

    NARCIS (Netherlands)

    Zlatanova, S.; Liu, L.; Sithole, G.; Zhao, J.; Mortari, F.

    2014-01-01

    This report makes an overview of 2D, 2,5D and 3D approaches for indoor space subdivision for the purpose of indoor navigation. The report starts with a conceptual framework for indoor space utilisation. We introduce and elaborate on the concepts of indoor space (navigable and non-navigable), agent,

  6. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    OpenAIRE

    Taylor, Robert H; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains wer...

  7. An experimental indoor phasing system based on active optics using dispersed Hartmann sensing technology in the visible waveband

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Gen-Rong Liu; Yue-Fei Wang; Ye-Ping Li; Ya-Jun Zhang; Liang Zhang; Yi-Zhong Zeng; Jie Zhang

    2011-01-01

    A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror,and so the larger version is always pursued by astronomers and astronomical technicians.Instead of using a monolithic primary mirror,more and more large telescopes,which are currently being planned or in construction,have adopted a segmented primary mirror design.Therefore,how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes.The Dispersed Fringe Sensor (DFS),or Dispersed Hartmann Sensor (DHS),is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array.Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method.We introduce the successful design,construction and alignment of our dispersed Hartmann sensor together with its design principles and simulations.We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform.Finally,some conclusions are reached based on the test and correction of experimental results.

  8. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    Science.gov (United States)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  9. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  10. ANTI-MICROORGANISM ACTIVITIES AND APPLICATIONS OF CHLORINE DIOXIDE%化学消毒剂二氧化氯抗微生物作用及应用

    Institute of Scientific and Technical Information of China (English)

    熊中奎; 郎娟; 夏国园

    2011-01-01

    二氧化氯(C102)作为一种高效化学消毒剂,能有效地杀灭或抑制病毒、细菌、真菌和寄生虫等各种病原体,在饮用水处理、食品保鲜防腐、废水处理、室内环境消毒、医疗设备和口腔科消毒等领域都具有广阔的应用前景.但是由于存在一些安全性问题,在一定程度上限制了C102推广应用.%Chlorine dioxide, as a chemical sanitizer, is highly effective for sterilizing or inhibiting many pathogens, such as viruses, bacteria, fungi and parasites, so it illustrates a good prospect of application in drinking water treatment, food preservation, effluent disposal, disinfections of interior space and medical equipments, and antisepsis of medical activities in department of stomatology. To some degrees, it is restricted in application and extension for its security fla13:34 2012-7-25ws.

  11. Exposure to 27 polychlorinated biphenyls in the indoor environment of a workplace

    DEFF Research Database (Denmark)

    Pedersen, Ellen Bøtker; Ebbehøj, N E; Göen, T

    2016-01-01

    PURPOSE: To assess the exposure to a broad-spectrum of polychlorinated biphenyl congeners (PCBs) from the indoor environment through bio-monitoring of people working in a building with PCB-containing materials and elevated PCB levels in the indoor air. METHODS: A cross-sectional study comparing...... the plasma concentration of 27 PCB congeners in 15 people working in a PCB-contaminated building and 30 matched controls. RESULTS: Median concentration of eight low-chlorinated PCB congeners was significantly higher in the exposed than in the control group. The sum of median concentrations of tri + tetra......-chlorinated PCB was almost ten times higher in the exposed group than in the unexposed, and sums of dioxin-like and non-dioxin-like PCB were both relatively increased by 60 % in the exposed group. CONCLUSIONS: The occupational indoor environment may significantly add to PCB exposure, especially to the lower...

  12. CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation.

    Science.gov (United States)

    Siddiqui, M; Jayanti, S; Swaminathan, T

    2012-03-30

    Environmental risks are inherent in the operation of any complex chemical process industry. The indoor release of hazardous chemicals that are denser than air is a topic of special concern, since dense clouds tend to persist at ground level or human breath level which leads to a magnification of their harmful potential. In the present work, we propose a computational fluid dynamics (CFD) based model for indoor risk assessment considering accidental release of a sustained, small, undetected leak of a dense toxic gas (chlorine) in an industrial indoor environment. Results from simulations show that the denser chlorine gas spreads like a liquid and flows all along the floor. At the same time, its concentration at a point away from the ground level increases slowly, thus showing that both stratification and dilution effects are present as the dense gas spreads. The implications of this spreading pattern from a risk assessment and risk mitigation point of view are discussed.

  13. Reaction products of chlorine dioxide.

    Science.gov (United States)

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  14. Towards Mobile Information Systems for Indoor Space

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Zhang

    2016-01-01

    Full Text Available With the rapid development of Internet of things (IOT and indoor positioning technologies such as Wi-Fi and RFID, indoor mobile information systems have become a new research hotspot. Based on the unique features of indoor space and urgent needs on indoor mobile applications, in this paper we analyze some key issues in indoor mobile information systems, including positioning technologies in indoor environments, representation models for indoor spaces, query processing techniques for indoor moving objects, and index structures for indoor mobile applications. Then, we present an indoor mobile information management system named IndoorDB. Finally, we give some future research topics about indoor mobile information systems.

  15. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Science.gov (United States)

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  16. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-02-01

    Full Text Available Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system.

  17. Great Indoors Awards 2007

    Index Scriptorium Estoniae

    2007-01-01

    Hollandis Maastrichtis jagati 17. XI esimest korda rahvusvahelist auhinda The Great Indoors Award. Aasta sisekujundusfirmaks valiti Masamichi Katayama asutatud Wonderwall. Auhinna said veel Zaha Hadid, Heatherwick Studio, Ryui Nakamura Architects ja Item Idem

  18. Indoor climate seminar. Sisaeilmastoseminaari

    Energy Technology Data Exchange (ETDEWEB)

    Seppaenen, O. (ed.) (Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Heating, Ventilation and Air Conditioning)

    1990-01-01

    The national energy research programme LVIS-2000: Future Building Services is concerned with the control of energy use and indoor climate in buildings of the future. The projects were presented at a one day seminar arranged by the Laboratory of Heating and Ventilation of the Technical Research Centre in Finland which is coordinating the programme. The topics presented at the seminar were: The effect of indoor air on health in office buildings, The effect of air temperature on performance of office work, Emissions from building and interior materials, Experiences of odour panels in indoor climate research, Mould spores and bacteries in the indoor air of rural houses, Ventilation systems in future buildings, Demonstration project of ventilation systems in a block of flats.

  19. Indoor climate seminar; Sisaeilmastoseminaari

    Energy Technology Data Exchange (ETDEWEB)

    Seppaenen, O. [ed.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Heating, Ventilation and Air Conditioning

    1990-12-31

    The national energy research programme LVIS-2000: Future Building Services is concerned with the control of energy use and indoor climate in buildings of the future. The projects were presented at a one day seminar arranged by the Laboratory of Heating and Ventilation of the Technical Research Centre in Finland which is coordinating the programme. The topics presented at the seminar were: The effect of indoor air on health in office buildings, The effect of air temperature on performance of office work, Emissions from building and interior materials, Experiences of odour panels in indoor climate research, Mould spores and bacteries in the indoor air of rural houses, Ventilation systems in future buildings, Demonstration project of ventilation systems in a block of flats.

  20. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  1. [Indoor environments, work and health].

    Science.gov (United States)

    Abbritti, G

    2004-01-01

    Nowadays, the activities of most of the working population are carried out in confined, non-industrial environments such as offices, hospitals, libraries, social and leisure centres and means of transport. Sub-optimal air quality in these confined spaces can lead to discomfort, ailments and even diseases. The impact and diffusion of these effects have led to the organisation and funding of large-scale epidemiological investigations in many countries and the nomination of working parties by governments, health agencies and international scientific societies. Over the past 20 years studies on indoor environments have identified sources of risk of various pollutants, established the levels of potentially dangerous concentrations and, for most of them, have provided effective measures. However, the effects of many biological agents and chemical mixtures still remain to be defined and effective guidelines are needed for high quality indoor air. Identifying and managing indoor risk factors presupposes a specific methodology: the specialist in occupational medicine can play a key role in risk assessment, in the early diagnosis of building-related illnesses and in the prevention of both short- and long-term effects.

  2. Chlorine dioxide and hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.P. (Dartmouth Coll., Hanover, NH (USA). Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  3. Activated Carbons from Flax Shive and Cotton Gin Waste as Environmental Adsorbents for the Chlorinated Hydrocarbon Trichloroethylene

    Science.gov (United States)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as a starting material for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this...

  4. Catalytic Role Of Palladium And Relative Reactivity Of Substituted Chlorines During Adsorption And Treatment Of PCBs On Reactive Activated Carbon

    Science.gov (United States)

    The adsorption-mediated dechlorination of polychlorinated biphenyls (PCBs) is a unique feature of reactive activated cabon (RAC). Here, we address the RAC system, containing a tunable amount of Fe as a primary electron donor coupled with Pd as an electrochemical catalyst to pote...

  5. Radioactivity in the indoor building environment in Serbia.

    Science.gov (United States)

    Todorović, Natasa; Bikit, Istvan; Vesković, Miroslav; Krmar, Miodrag; Mrđa, Dusan; Forkapić, Sofija; Hansman, Jan; Nikolov, Jovana; Bikit, Kristina

    2014-01-01

    Measurement of activity concentrations of radionuclides in building materials and radon in indoor space is important in the assessment of population exposures, as most individuals spend 80 % of their time indoors. This paper presents the results of activity concentration measurements of: radon emanated from the soil, radionuclides (226)Ra, (232)Th and (40)K in the soil, indoor radon in the city of Novi Sad (the capital city of Vojvodina) using charcoal canisters and indoor radon in the Vojvodina region using alpha-track detectors and the radioactivity of some building materials. Influences of floor level, space under the rooms, boarding, and the heating system on indoor radon accumulation in the Vojvodina province, situated in the northern part of Serbia, are also presented in this paper. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials.

  6. My World Indoors: My Health My World.

    Science.gov (United States)

    Tharp, Barbara; Dresden, Judith; Denk, James; Moreno, Nancy

    This curriculum guide for students in grades K-4 is part of the My Health My World series which explores environmental health issues. Focusing on indoor environmental health, it includes (1) an activities guide for teachers which focuses on physical science, life science, and the environment and health, presenting activity based lessons that…

  7. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yanli Zhang; Chunlei Li; Xinming Wang; Hai Guo; Yanli Feng; Jianmin Chen

    2012-01-01

    Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3± 2.1),(38.7 ± 9.0),(19.4 ± 10.1) and (30.0 ± 11.1) μg/m3,respectively; while trichloroethylene (TrCE),tetrachloroethylene (TeCE)and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3),(1.3 ± 0.5),(4.1 ± 1.1),(2.2 ± 1.1) and (1.2 ± 0.3) μg/m3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O)ratios of 1.1-9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.

  8. Foliage Plants for Improving Indoor Air Quality

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  9. Accelerometer Measured Level of Physical Activity Indoors and Outdoors During Preschool Time in Sweden and the United States

    DEFF Research Database (Denmark)

    Raustorp, A.; Pagels, P.; Boldemann, C.

    2012-01-01

    BACKGROUND: It is important to understand the correlates of physical activity in order to influence policy and create environments that promote physical activity among preschool children. We compared preschoolers' physical activity in Swedish and in US settings and objectively examined differences...

  10. Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods.

    Science.gov (United States)

    Lee, Jin; Jun, Myung-Jin; Lee, Man-Ho; Lee, Min-Hwan; Eom, Seog-Won; Zoh, Kyung-Duk

    2010-11-01

    In this study, the concentrations of disinfection byproducts (DBPs), including trihalomethanes (THMs; chloroform, bromodichloromethane, dibromochloromethane, and bromoform), haloacetic acids (HAAs; dichloroacetic acid and trichloroacetic acid), haloacetonitriles (HANs; dichloroacetonitrile, trichloroacetonitrile, bromochloroacetonitrile, and dibromoacetonitrile), and chloral hydrate (CH) were measured in 86 indoor swimming pools in Seoul, Korea, treated using different disinfection methods, such as chlorine, ozone and chlorine, and a technique that uses electrochemically generated mixed oxidants (EGMOs). The correlations between DBPs and other environmental factors such as with total organic carbon (TOC), KMnO(4) consumption, free residual chlorine, pH, and nitrate (NO(3)(-)) in the pools were examined. The geometric mean concentrations of total DBPs in swimming pool waters were 183.1±2.5μg/L, 32.6±2.1μg/L, and 139.9±2.4μg/L in pools disinfected with chlorine, ozone/chlorine, and EGMO, respectively. The mean concentrations of total THMs (TTHMs), total HAAs (THAAs), total HANs (THANs), and CH differed significantly depending on the disinfection method used (P<0.01). Interestingly, THAAs concentrations were the highest, followed by TTHMs, CH, and THANs in all swimming pools regardless of disinfection method. TOC showed a good correlation with the concentrations of DBPs in all swimming pools (chlorine; r=0.82, P<0.01; ozone/chlorine; r=0.52, P<0.01, EGMO; r=0.39, P<0.05). In addition, nitrate was positively correlated with the concentrations of total DBPs in swimming pools disinfected with chlorine and ozone/chlorine (chlorine; r=0.58; ozone/chlorine; r=0.60, P<0.01), whereas was negative correlated with the concentrations of total DBPs (r=-0.53, P<0.01) in the EGMO-treated pools.

  11. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  12. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Karg, F. [HPC Envirotec / France and HPC AG (Germany); Henkler, Ch. [Planreal (Switzerland)

    2005-07-01

    Intrinsic bio-remediation harnesses the ability of indigenous microorganisms to degrade contaminants that are present in soil and groundwater. Over the past decade many environmental regulatory agencies especially in Europe have come to recognize the importance of these natural processes in contaminant attenuation. In order to use in-situ bio-remediation to clean up a site successfully it is necessary to investigate the indigenous microbial population and its potential activity to degrade the contaminants of concern (COCs). The evaluation of naturally-occurring degradative activity in initial screening of soil and groundwater samples using recently developed molecular and microbial methods may allow for the implementation of a contaminant reduction and management program without the need for fully engineered remediation intervention. Limited engineering approaches (nutrient delivery etc.) can be implemented to support naturally-occurring bio-restoration processes to achieve a controlled, dynamic attenuation of COCs. Techniques for monitoring pollutant-degrading microorganisms were previously limited to standard culturing techniques. More recently, techniques based upon detection of genetic elements and metabolic activities have been developed in collaboration with university partners Europe, especially in France. The modern techniques are more sensitive for monitoring microbial populations, metabolic activity and the genetic potential to degrade the COCs, and avoid the need for cultivation of microbes under artificial conditions in the laboratory. Especially the application of PCR-Tests (Polymerase Chain Reaction) are able to quantify the Genetic Potential of Pollutant Microbiological Degradation on a contaminated site. This enables to use very economic in-situ site rehabilitation strategies as for example (Dynamic Natural Attenuation). For this modern application of these new strategies PLANREAL created with HPC Envirotec and together with a French University

  13. Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap.

    Science.gov (United States)

    Song, Young Cheol; Lee, Tai Gyu

    2016-12-01

    This study aimed to develop a mercury (Hg) adsorption trap, which can be used to measure the concentration of elemental Hg in emissions from a Hg discharge facility, and evaluate its adsorption efficiency. The Hg spiking efficiency was compared by impregnating metallic and halogen materials that have high affinity for Hg into activated carbon (AC) to determine an accurate spiking method for Hg on AC. The Hg spiking efficiency was compared according to the type and content of the impregnated substances. AC impregnated with Cl and Au had a 15-20% higher Hg spiking efficiency compared to virgin AC. For Au impregnation at weight ratios of 0-20 wt% of adsorbent, spiking efficiencies of over 97% were observed under certain conditions. The Hg adsorption properties of the above adsorbent were determined experimentally, and the results were used to test the adsorption performance of Hg adsorption traps.

  14. Introduction to Indoor Air Quality

    Science.gov (United States)

    Jump to main content US EPA United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Share ... indoor air pollution. For this reason, it is important to pay attention to the time and place ...

  15. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  16. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  17. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  18. Problems in indoor mapping and modelling

    NARCIS (Netherlands)

    Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q.

    2013-01-01

    Research in support of indoor mapping and modelling (IMM) has been active for over thirty years. This research has come in the form of As-Built surveys, Data structuring, Visualisation techniques, Navigation models and so forth. Much of this research is founded on advancements in photogrammetry, com

  19. 3D Network Analysis for Indoor Space Applications

    Science.gov (United States)

    Tsiliakou, E.; Dimopoulou, E.

    2016-10-01

    Indoor space differs from outdoor environments, since it is characterized by a higher level of structural complexity, geometry, as well as topological relations. Indoor space can be considered as the most important component in a building's conceptual modelling, on which applications such as indoor navigation, routing or analysis are performed. Therefore, the conceptual meaning of sub spaces or the activities taking place in physical building boundaries (e.g. walls), require the comprehension of the building's indoor hierarchical structure. The scope of this paper is to perform 3D network analysis in a building's interior and is structured as follows: In Section 1 the definition of indoor space is provided and indoor navigation requirements are analysed. Section 2 describes the processes of indoor space modeling, as well as routing applications. In Section 3, a case study is examined involving a 3D building model generated in CityEngine (exterior shell) and ArcScene (interior parts), in which the use of commercially available software tools (ArcGIS, ESRI), in terms of indoor routing and 3D network analysis, are explored. The fundamentals of performing 3D analysis with the ArcGIS Network Analyst extension were tested. Finally a geoprocessing model was presented, which was specifically designed to be used to interactively find the best route in ArcScene. The paper ends with discussion and concluding remarks on Section 4.

  20. A comparison of chlorinated organic material produced by chlorine and chlorine dioxide bleaching

    Energy Technology Data Exchange (ETDEWEB)

    McKaque, A.B.; Reeve, D.W. [Univ. of Toronto (Canada)

    1995-12-31

    Chlorine and chlorine dioxide react differently with pulp during bleaching and produce different types of organic by-products. The main differences are the large reduction in the amount of AOX (adsorbable organic halogen) in the effluent and EOX (extractable organic halogen) in the pulp. This talk reviews the differences in the amounts and types of chlorinated organic by-products produced by the two different bleaching agents.

  1. Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles%Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles

    Institute of Scientific and Technical Information of China (English)

    冷瑜婷; 杨帆; 吴养洁; 李克

    2011-01-01

    An efficient and facile protocol for palladacycle-catalyzed chlorination of 2-arylbenzoxazoles was developed. The results represent the first examples involving the palladacycle as the catalyst for such chlorination. This chlori- nation was not a ligand-directed ortho-C--H activation, but an electrophilic substitution process at the para-position of the nitrogen atom in the benzo ring of benzoxazole moiety, the regiochemistry of which had been confirmed by HMBC spectral analysis. The catalytic system could tolerate various halogen atoms, such as F, Cl and Br, affording the corresponding products in moderate to excellent yields.

  2. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    Science.gov (United States)

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  3. 面向移动LBS的智能手机室内定位技术探讨%An Approach of Active Indoor Positioning Using Smartphone for Mobile LBS

    Institute of Scientific and Technical Information of China (English)

    娄路

    2012-01-01

    移动互联网的发展给基于位置的服务(LBS)带来了广泛的应用前景,智能手机的普及使用户定位和获取LBS变得更加方便.目前,手机定位技术特别是室内定位,仍不够成熟,已经成为制约LBS业务发展的技术瓶颈.本文在研究定位技术现状和发展趋势的基础上,提出一种新的室内定位方法,依靠智能手机内置传感器进行图像特征识别和运动状态检测,即可完成室内环境的准确定位,具有成本低、简单方便、灵活易扩展的优点,能够满足移动LBS业务模式发展需求.%Along with the technical progress of the wireless mobile internet, location-based services (LBS) have been developing more rapidly, and the popularity of the smartphone also bring more convenient to access to LBS services for mobile customers. But the mobile position solutions, especially indoor positioning, are still difficult and have become the technical bottleneck. To address the problem of indoor positioning, this paper presents an approach of active indoor positioning that use image feature recognition and motion detection to complete the accurate positioning of the indoor environment based on smartphones built-in sensors only, with the technology advantages of low cost, practicable and flexible frame.

  4. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  5. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  6. Thermal diffusion of chlorine in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S. [Inst. de Physique Nucleaire de Lyon (IPNL), Villeurbanne (France); Martin, P. [Commissariat a l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, Saint-Paul lez Durance (France); Raimbault, L. [Centre d' Informatique Geologique (CIG), Ecole des Mines, Fontainebleau (France); Scheidegger, A.M. [Lab. for Waste Management, Nuclear Energy and Safety Dept. (NES), Paul Scherrer Inst. Villigen PSI (Switzerland)

    2006-07-01

    In a nuclear reactor, isotopes such as {sup 35}Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as {sup 36}Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO{sub 2}. {sup 37}Cl was implanted at a 10{sup 13} at/cm{sup 2} fluence in depleted UO{sub 2} samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain {sup 37}Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO{sub 2} at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO{sub 2} was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  7. Inactivation of Chironomid Larvae with Chlorine Dioxide and Chlorine

    Institute of Scientific and Technical Information of China (English)

    SUN Xin-bin; CUI Fu-yi

    2008-01-01

    Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process.The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some boundary values in practice were determined under conditions of various oxidant dosage,organic precursor concentration and pH value.In addition,removal effect of differmt pre-oxidation combined with coagulation process on Chironomid larvae in law water was evaluated.It was found that chlorine dioxide possessed better inactivation effect than chlorine.Complete inactivation of Chironomid larvae in raw water was resulted by 1.5mg/L of chlorine dioxide with 30min of contact time. Additionally,the ocgallic precursor concentration,pH value had little influence on the inactivation effect.The coagulation jar test showed that Chironomid larvae in the raw water could be completely ronxwed by chlorine dioxide pre-oxidation in combination with the omgulation process at chlorine dioxide dosage of 0.8 mg/L.

  8. Indoor Air Pollution

    OpenAIRE

    Smith, Kirk R.

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  9. Indoor airborne infection

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.L.

    1982-01-01

    Airborne infection from person to person is an indoor phenomenon. The infectious organisms are atomized by coughing, sneezing, singing, and even talking. The smallest droplets evaporate to droplet nuclei and disperse rapidly and randomly throughout the air of enclosed spaces. Droplet nuclei have negligible settling velocity and travel wherever the air goes. Outdoors, dilution is so rapid that the chance of inhaling an infectious droplet nucleus is minimal. Measles and other childhood contagions, the common respiratory virus infections, pulmonary tuberculosis, and Legionnaires' Disease are typically airborne indoors. In analyzing a measles outbreak, the probability that a susceptible person would breathe a randomly distributed quantum of airborne infection during one generation of an outbreak was expressed mathematically. Estimates of the rate of production of infectious droplet nuclei ranged between 93 and 8 per min, and the concentration in the air produced by the index case was about 1 quantum per 5 m/sup 3/ of air. Infectious aiborne particles are thus few and far between. Control of indoor airborne infection can be approached through immunization, therapeutic medication, and air disinfection with ultraviolet radiation.

  10. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...... infrastructure for different symbolic positioning technologies, e.g., Bluetooth and RFID. More specifically, the paper proposes a model of indoor space that comprises a base graph and mappings that represent the topology of indoor space at different levels. The resulting model can be used for one or several...... indoor positioning technologies. Focusing on RFID-based positioning, an RFID specific reader deployment graph model is built from the base graph model. This model is then used in several algorithms for constructing and refining trajectories from raw RFID readings. Empirical studies with implementations...

  11. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  12. Workplace Safety: Indoor Environmental Quality

    Science.gov (United States)

    ... furnishings, perfumes, cigarette smoke, water-damaged building materials, microbial growth (fungal, mold, and bacterial), insects, and outdoor pollutants. Other factors such as indoor temperatures, relative humidity, ...

  13. Indoor Radon Measurement in Van

    Science.gov (United States)

    Kam, E.; Osmanlioglu, A. E.; Dogan, I.; Celebi, N.

    2007-04-01

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  14. 幼儿园室内外活动空间组合形式的研究%The Research into the Space Combining Form of Indoor and Outdoor Activities in Kindergartens

    Institute of Scientific and Technical Information of China (English)

    汤佳; 戴书靓

    2016-01-01

    In the modern preschool education, people always overlook the importance of the activities space in the kindergarten, while the indoor and outdoor activities space actually should be as an important education filed. Educators should pay attention to the site planning of kindergarten and create an appropriate space combining form. Firstly, the definition of indoor and outdoor activities space in kindergarten and the analysis of relationship between space combination and children activities are put forward in this paper, on this basis, studying the way of space combination and the technique of dealing with it, proposing a summary finally.%当今在幼儿教育中,人们常常忽略了对幼儿园活动空间的重视,幼儿园室内外的活动空间应该作为重要的教育场地,设计师应该重点做好幼儿园的场地规划,创造适宜的空间组合形式。本文首先对幼儿园室内外活动空间定义以及空间组合与幼儿行为活动的关系做出分析,在此基础上对空间组合方式和处理组合方式的手法进行研究,最后给予总结。

  15. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  16. Gaseous, chlorine-free chlorine dioxide for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, G. [Miami Univ., Oxford, OH (United States); Rosenblatt, A. [CDG Technology Inc., New York, NY (United States)

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  17. Outbreaks of Short-Incubation Ocular and Respiratory Illness Following Exposure to Indoor Swimming Pools

    Science.gov (United States)

    Bowen, Anna B.; Kile, James C.; Otto, Charles; Kazerouni, Neely; Austin, Connie; Blount, Benjamin C.; Wong, Hong-Nei; Beach, Michael J.; Fry, Alicia M.

    2007-01-01

    Objectives Chlorination destroys pathogens in swimming pool water, but by-products of chlorination can cause human illness. We investigated outbreaks of ocular and respiratory symptoms associated with chlorinated indoor swimming pools at two hotels. Measurements We interviewed registered guests and companions who stayed at hotels X and Y within 2 days of outbreak onset. We performed bivariate and stratified analyses, calculated relative risks (RR), and conducted environmental investigations of indoor pool areas. Results Of 77 guests at hotel X, 47 (61%) completed questionnaires. Among persons exposed to the indoor pool area, 22 (71%) of 31 developed ocular symptoms [RR = 24; 95% confidence interval (CI), 1.5–370], and 14 (45%) developed respiratory symptoms (RR = 6.8; 95% CI, 1.0–47) with a median duration of 10 hr (0.25–24 hr). We interviewed 30 (39%) of 77 registered persons and 59 unregistered companions at hotel Y. Among persons exposed to the indoor pool area, 41 (59%) of 69 developed ocular symptoms (RR = 24; 95% CI, 1.5–370), and 28 (41%) developed respiratory symptoms (RR = 17; 95% CI, 1.1–260) with a median duration of 2.5 hr (2 min–14 days). Four persons sought medical care. During the outbreak, the hotel X’s ventilation system malfunctioned. Appropriate water and air samples were not available for laboratory analysis. Conclusions and relevance to professional practice Indoor pool areas were associated with illness in these outbreaks. A large proportion of bathers were affected; symptoms were consistent with chloramine exposure and were sometimes severe. Improved staff training, pool maintenance, and pool area ventilation could prevent future outbreaks. PMID:17384776

  18. Indoor air quality: The hidden side of the indoor environment

    NARCIS (Netherlands)

    Oliveira Fernandes, E. de; Bluyssen, P.M.; Clausen, G.H.

    1996-01-01

    The physical environment can be defined and understood in manv different ways, both from its nature, e.g., thermal, accoustic, etc., or its dimension, e.g., global, local, urban, indoors. The indoor environment is much more than the space or the light effects; it is the result of a complex concurren

  19. Improved method generates more chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R.W.; Kosinski, A.J.; Baker, R.J.

    1980-10-01

    The addition of acid can greatly improve the chlorine-chlorite process and enhance the use of chlorine dioxide as an alternative to chlorine for disinfection. The process is economical for use in taste and odor control, and for manganese, oxidation. The maximum yield is obtained using no excess chlorine, and the amount of unreacted sodium chlorite and chlorine in the product stream is reduced. (1 diagram, 4 graphs, 9 references)

  20. Test and Analysis on Active Devices in Indoor Distribution System%室内分布系统有源设备质量性能的测试与分析

    Institute of Scientific and Technical Information of China (English)

    鲁登华; 陈悦

    2013-01-01

    针对室分系统日益重要的网络环境,重点选取了武汉市四个指标恶劣、干扰严重的小室分系统进行有源设备质量性能的检测。通过检测,发现了有源设备质量与网络性能之间的关系,采取了替换设备的方式提升网络质量,并给出了有源设备测试指标的修正建议。%As the indoor distribution system becomes more and more important in network, four small indoor distribution systems in Wuhan with bad indicators and serious interference are selected to detect the quality and performance of active devices. The relationship between active device quality and network performance through the detection is found. The device replacement is adopted to improve the network quality, in the meantime, amendment advice of active device test index is given.

  1. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  2. Groundwater treatment as a source of indoor radon.

    Science.gov (United States)

    Jantsikene, Alar; Kiisk, Madis; Suursoo, Siiri; Koch, Rein; Lumiste, Liie

    2014-11-01

    New Viimsi Parish water treatment plant (Northern Estonia) was investigated in order to determine whether the open filter columns serve as a source of (222)Rn generation in the treatment process and whether they influence indoor air (222)Rn activity concentrations. (222)Rn measurements of indoor (222)Rn were performed at different locations of the treatment plant; water samples from incoming raw water, from all the purification stages, consumers water and solid filter material from two filtration stages were analyzed.

  3. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  4. Prompt gamma analysis of chlorine in concrete for corrosion study.

    Science.gov (United States)

    Naqvi, A A; Nagadi, M M; Al-Amoudi, O S B

    2006-02-01

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine gamma-rays and calcium gamma-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine gamma-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  5. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    Science.gov (United States)

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  6. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  7. Emerging developments in the standardized chemical characterization of indoor air quality.

    Science.gov (United States)

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non

  8. Transformation of iopamidol during chlorination.

    Science.gov (United States)

    Wendel, Friedrich M; Lütke Eversloh, Christian; Machek, Edward J; Duirk, Stephen E; Plewa, Michael J; Richardson, Susan D; Ternes, Thomas A

    2014-11-01

    The transformation of the iodinated X-ray contrast media (ICM) iopamidol, iopromide, iohexol, iomeprol, and diatrizoate was examined in purified water over the pH range from 6.5 to 8.5 in the presence of sodium hypochlorite, monochloramine, and chlorine dioxide. In the presence of aqueous chlorine, only iopamidol was transformed. All other ICM did not show significant reactivity, regardless of the oxidant used. Chlorination of iopamidol followed a second order reaction, with an observed rate constant of up to 0.87 M(-1) s(-1) (±0.021 M(-1) s(-1)) at pH 8.5. The hypochlorite anion was identified to be the reactive chlorine species. Iodine was released during the transformation of iopamidol, and was mainly oxidized to iodate. Only a small percentage (less than 2% after 24 h) was transformed to known organic iodinated disinfection byproducts (DBPs) of low molecular weight. Some of the iodine was still present in high-molecular weight DBPs. The chemical structures of these DBPs were elucidated via MSn fragmentation and NMR. Side chain cleavage was observed as well as the exchange of iodine by chlorine. An overall transformation pathway was proposed for the degradation of iopamidol. CHO cell chronic cytotoxicity tests indicate that chlorination of iopamidol generates a toxic mixture of high molecular weight DBPs (LC50 332 ng/μL).

  9. Human response to combined indoor environment exposures

    DEFF Research Database (Denmark)

    Toftum, Jørn

    2002-01-01

    Most thermal comfort standards and guidelines presume sedentary, light activity and a neutral overall thermal sensation when predicting local thermal discomfort. In addition, current standards specify criteria for separate aspects of the indoor environment, e.g. thermal climate, air quality...... or noise, with only little consideration of possible interactions between the different types of exposure. The studies summarized in this article found a clear impact of activity and overall thermal sensation on human sensitivity to air movement, whereas no interaction effects of exposure to several local...... thermal discomfort factors were observed. Limited evidence was found of significant interactions between different aspects of the indoor environment. Only for the effect of air temperature and air humidity on sensory air quality were well-estabished relationships available....

  10. Minimizing indoor odors from products

    NARCIS (Netherlands)

    Walpot, J.I.

    1996-01-01

    Regarding negative perceptions in indoor environments perceived odors are often mentio-ned as indicating factors. At TNO (Organisation for Applied Scientific Research in The Netherlands) a combination of methods is developed and used for the characterisation and quantification of indoor odor problem

  11. How indoor environment affects performance

    DEFF Research Database (Denmark)

    Wyon, David Peter; Wargocki, Pawel

    2013-01-01

    As experienced researchers in the effects of thermal comfort and indoor air quality on performance, we are often asked to give our best estimate of how, and to what extent, performance is affected by different aspects of indoor climate. This article provides a brief summary of our personal opinions...

  12. Indoor Positioning System using Bluetooth

    OpenAIRE

    Sahil Puri

    2015-01-01

    This Paper on Bluetooth Indoor Positioning System is the intersection of Bluetooth Technology and Indoor Positioning Systems. Almost every smartphone today is Bluetooth enabled, making the use of the technology more flexible. We aim at using the RSSI value of Bluetooth signals to track the location of a device.

  13. a Review of Recent Research in Indoor Modelling & Mapping

    Science.gov (United States)

    Gunduz, M.; Isikdag, U.; Basaraner, M.

    2016-06-01

    Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.

  14. A REVIEW OF RECENT RESEARCH IN INDOOR MODELLING & MAPPING

    Directory of Open Access Journals (Sweden)

    M. Gunduz

    2016-06-01

    Full Text Available Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.

  15. Indoor Location Technologies

    CERN Document Server

    Goswami, Subrata

    2013-01-01

    Focusing on the special challenges posed by accurately pinpointing a location indoors, this volume reflects the distance we have come in the handful of decades since the germination of GPS technology. Not only can we locate a signal to within a meter’s accuracy, but we now have this technology in the most basic mobile phone. Tracing recent practical developments in positioning technology and in the market it supplies, the author examines the contributions of the varied research—in silicon, signal and image processing, radio communications and software—to a fast-evolving field. The book looks forward to a time when, in addition to directing your road journey, positioning systems can peer indoors and guide you to an available photocopier in your office building. Featuring standalone chapters each dealing with a specific aspect of the subject, including treatments of systems such as Zebra, Awarepoint, Aeroscout, IEEE 802.11, etc. This study has all the detail needed to get up to speed on a key modern techn...

  16. Personal, indoor and outdoor air pollution levels among pregnant women

    Science.gov (United States)

    Schembari, Anna; Triguero-Mas, Margarita; de Nazelle, Audrey; Dadvand, Payam; Vrijheid, Martine; Cirach, Marta; Martinez, David; Figueras, Francesc; Querol, Xavier; Basagaña, Xavier; Eeftens, Marloes; Meliefste, Kees; Nieuwenhuijsen, Mark J.

    2013-01-01

    AimThe aims of this study were to investigate the relationship between pregnant women's personal exposures to NOx, NO2, PM2.5 concentration and absorbance as a marker for black carbon and their indoor and outdoor concentration levels at their residence, and also to identify predictors of personal exposure and indoor levels using questionnaire and time activity data. MethodWe recruited 54 pregnant women in Barcelona who carried a personal PM2.5 sampler for two days and NOx/NO2 passive badges for one week, while indoor and outdoor PM2.5 and NOx/NO2 levels at their residence were simultaneously measured. Time activity and house characteristics were recorded. Gravimetry determinations for PM2.5 concentration and absorbance measurements were carried out on the PM2.5 filter samples. ResultsLevels of personal exposure to NOx, PM2.5 and absorbance were slightly higher than indoor and outdoor levels (geometric mean of personal NOx = 61.9 vs indoor NOx = 60.6 μg m-3), while for NO2 the indoor levels were slightly higher than the personal ones. Generally, there was a high statistically significant correlation between personal exposure and indoor levels (Spearman's r between 0.78 and 0.84). Women spent more than 60% of their time indoors at home. Ventilation of the house by opening the windows, the time spent cooking and indicators for traffic intensity were re-occurring statistically significant determinants of the personal and indoor pollutants levels with models for NOx explaining the 55% and 60% of the variability respectively, and models for NO2 explaining the 39% and 16% of the variability respectively. Models for PM2.5 and absorbance explained the least of the variability. ConclusionOur findings improve the current understanding of the characterization and inter-associations between personal, indoor and outdoor pollution levels among pregnant women. Variability in personal and indoor NOx and to a lesser extent NO2 levels could be explained well, but not the variability

  17. Indoor Air Quality in Selected Samples of Primary Schools in Kuala Terengganu, Malaysia

    OpenAIRE

    Marzuki Ismail

    2010-01-01

    Studies have found out that indoor air quality affects human especially children and the elderly more compared to ambient atmospheric air. This study aims to investigate indoor air pollutants concentration in selected vernacular schools with different surrounding human activities in Kuala Terengganu, the administrative and commercial center of Terengganu state. Failure to identify and establish indoor air pollution status can increase the chance of long-term and short-term health problems for...

  18. Multi-level Indoor Path Planning Method

    NARCIS (Netherlands)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Du, Z.; Zhang, Y.; Zeng, L.

    2015-01-01

    Indoor navigation is increasingly widespread in complex indoor environments, and indoor path planning is the most important part of indoor navigation. Path planning generally refers to finding the most suitable path connecting two locations, while avoiding collision with obstacles. However, it is a

  19. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  20. Indoor radon survey in the Vojvodina region

    Energy Technology Data Exchange (ETDEWEB)

    Forkapic, S.; Todorovic, N.; Bikit, I.; Mrda, D.; Slivka, J.; Veskovic, M. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad (Serbia)

    2010-07-01

    The results of an indoor radon survey in the Vojvodina region (Serbia) are presented. Long-term average radon measurements in an existing building can be measured relatively simply and inexpensively using a passive device, such as an alpha track detector. Houses in the suburbs were chosen as the target locations of the present investigations. Indoor radon concentrations were measured with CR-39 alpha track detectors at {approx}1000 locations in Vojvodina during the winter period. Effect of floor level, space under the rooms, boarding and the heating system on radon accumulation are discussed in this paper. For the dwellings typical of such regions, we measure a mean annual radon activity concentration of 112 Bq/m{sup 3} (747 measurements using the alpha track detector CR-39). (authors)

  1. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix;

    2010-01-01

    of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity...

  2. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A

    NARCIS (Netherlands)

    Andra, Syam S.; Charisiadis, Pantelis; Arora, Manish; van Vliet-Ostaptchouk, Jana V.; Makris, Konstantinos C.

    2015-01-01

    The high reactivity of bisphenol A (BPA) with disinfectant chlorine is evident in the instantaneous formation of chlorinated BPA derivatives (Cl(x)BPA) in various environmental media that show increased estrogen-activity when compared with that of BPA. The documented health risks associated with BPA

  3. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  4. Problems In Indoor Mapping and Modelling

    Science.gov (United States)

    Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q.

    2013-11-01

    Research in support of indoor mapping and modelling (IMM) has been active for over thirty years. This research has come in the form of As-Built surveys, Data structuring, Visualisation techniques, Navigation models and so forth. Much of this research is founded on advancements in photogrammetry, computer vision and image analysis, computer graphics, robotics, laser scanning and many others. While IMM used to be the privy of engineers, planners, consultants, contractors, and designers, this is no longer the case as commercial enterprises and individuals are also beginning to apply indoor models in their business process and applications. There are three main reasons for this. Firstly, the last two decades have seen greater use of spatial information by enterprises and the public. Secondly, IMM has been complimented by advancements in mobile computing and internet communications, making it easier than ever to access and interact with spatial information. Thirdly, indoor modelling has been advanced geometrically and semantically, opening doors for developing user-oriented, context-aware applications. This reshaping of the public's attitude and expectations with regards to spatial information has realised new applications and spurred demand for indoor models and the tools to use them. This paper examines the present state of IMM and considers the research areas that deserve attention in the future. In particular the paper considers problems in IMM that are relevant to commercial enterprises and the general public, groups this paper expects will emerge as the greatest users IMM. The subject of indoor modelling and mapping is discussed here in terms of Acquisitions and Sensors, Data Structures and Modelling, Visualisation, Applications, Legal Issues and Standards. Problems are discussed in terms of those that exist and those that are emerging. Existing problems are those that are currently being researched. Emerging problems are those problems or demands that are

  5. D Modelling of AN Indoor Space Using a Rotating Stereo Frame Camera System

    Science.gov (United States)

    Kang, J.; Lee, I.

    2016-06-01

    Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  6. 3D MODELLING OF AN INDOOR SPACE USING A ROTATING STEREO FRAME CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    J. Kang

    2016-06-01

    Full Text Available Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  7. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben;

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  8. Sustainable indoor lighting

    CERN Document Server

    Mercatelli, Luca; Farini, Alessandro

    2015-01-01

    Encompassing a thorough survey of the lighting techniques applied to internal illumination characterized by high efficiency, optimized color and architectural integration, a consolidated summary of the latest scientific, technical and architectural research is presented in order to give the reader an overview of the different themes with their interactions and mutual effects.   This book describes light principles, methodologies and realisations for indoor illumination at low consumption. Power efficiency, color characteristics and architectural aspects are analyzed in terms of their  practical application, with the interactions between scientific, technological and architectural features considered in order to supply a complete overview, which can be read both at technical level and at user level. Introducing photometric and radiometric quantities and laws, the book first discusses tests and measurements assessing lighting and color characteristics before examining in detail artificial light sources with p...

  9. Study of indoor radon distribution using measurements and CFD modeling.

    Science.gov (United States)

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.

  10. Lead and cadmium in indoor air and the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Komarnicki, Guenter J.K. [Department of Ecotoxicology, Center of Public Health, Medical University of Vienna, Waehringer Str. 10, A-1090 Vienna (Austria)]. E-mail: guenter.komarnicki@meduniwien.ac.at

    2005-07-15

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM{sub 10}, and PM{sub 2.5} were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM{sub 2.5}, both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals.

  11. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products.

  12. Indoor Environment Program. 1992 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides.

  13. Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (NPCS)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qing; WANG Lian-Sheng

    2007-01-01

    20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G* and 6-311G* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-1gEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -1gEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.

  14. Colorectal cancers and chlorinated water

    Institute of Scientific and Technical Information of China (English)

    Ahmed Mahmoud El-Tawil

    2016-01-01

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers.

  15. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  16. Chlorination byproducts, their toxicodynamics and removal from drinking water.

    Science.gov (United States)

    Gopal, Krishna; Tripathy, Sushree Swarupa; Bersillon, Jean Luc; Dubey, Shashi Prabha

    2007-02-01

    No doubt that chlorination has been successfully used for the control of water borne infections diseases for more than a century. However identification of chlorination byproducts (CBPs) and incidences of potential health hazards created a major issue on the balancing of the toxicodynamics of the chemical species and risk from pathogenic microbes in the supply of drinking water. There have been epidemiological evidences of close relationship between its exposure and adverse outcomes particularly the cancers of vital organs in human beings. Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine. The total concentration of trihalomethanes and the formation of individual THM species in chlorinated water strongly depend on the composition of the raw water, on operational parameters and on the occurrence of residual chlorine in the distribution system. Attempts have been made to develop predictive models to establish the production and kinetics of THM formations. These models may be useful for operational purposes during water treatment and water quality management. It is also suggested to explore some biomarkers for determination of DBP production. Various methods have been suggested which include adsorption on activated carbons, coagulation with polymer, alum, lime or iron, sulfates, ion exchange and membrane process for the removal of DBPs. Thus in order to reduce the public health risk from these toxic compounds regulation must be inforced for the implementation of guideline values to lower the allowable concentrations or exposure.

  17. Indoor fungi: companions and contaminants.

    Science.gov (United States)

    Nevalainen, A; Täubel, M; Hyvärinen, A

    2015-04-01

    This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation-based research has taught us alongside more recent work with cultivation-independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well-being.

  18. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    OpenAIRE

    Korich, D. G.; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactiv...

  19. Disinfectants: Chlorine and chlorine dioxide. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The bibliography contains citations concerning the antimicrobial properties of chlorine and chlorine dioxide. The use of chlorine for the inactivation of viruses, bacteria, and fungi in wastewater treatment plants is discussed, including the mode of action and factors influencing inactivation. The use of chlorine dioxide as an alternative to chlorine disinfection in swimming pools and water supplies, and possible adverse effects are also discussed. (Contains a minimum of 157 citations and includes a subject term index and title list.)

  20. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%.

  1. Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide1

    Science.gov (United States)

    Benarde, Melvin A.; Snow, W. Brewster; Olivieri, Vincent P.; Davidson, Burton

    1967-01-01

    Survival data are presented for a fecal strain of Escherichia coli exposed to three concentrations of chlorine dioxide at four temperatures. Chick's first-order reaction equation is generalized to a pseudo nth-order model. Nonlinear least squares curve-fitting of the survival data to the nth order model was performed on an analogue computer. The data were observed to follow fractional order kinetics with respect to survival concentration, with an apparent activation energy of 12,000 cal/mole. Initial experiments support the thesis that the mechanism of chlorine dioxide kill occurs via disruption of protein synthesis. Images Fig. 1 Fig. 2 Fig. 3 PMID:5339839

  2. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  3. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  4. The Selective Test on Prescription of Sugarbeet Seed Activators and Indoor Germination%甜菜种子活化剂的配方筛选及室内发芽试验

    Institute of Scientific and Technical Information of China (English)

    鲁兆新; 宫国军; 王立峰; 骆成高; 韩立文

    2001-01-01

    通过分析影响甜菜种子发芽的主要因素,选用植物生长调节剂、 维生素、微量元素、盐类、过氧化物等多种药剂,进行甜菜种子活化剂的配方筛选及室内发 芽试验,选出1个效果好的配方制成甜菜种子活化剂。%This paper analyses the main factors to affect sugarbe et seed germination.The plant growth regulator,vitamin,minor element,salt and pe r oxidase so on were selected and ulses,sugarbeet seed activators was made by the optimum prescription and germination test indoor.

  5. Indoor air quality and health

    Science.gov (United States)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  6. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  7. The Automobiles as Indoors.

    Directory of Open Access Journals (Sweden)

    Songul Acar Vaizoglu

    2010-12-01

    Full Text Available In this review we aimed to attract attention to toxic chemicals in cars and their effect on health. People spend most of their times in indoors such as houses, workplaces, malls, sport centers, train, transportation vehicles (train, plane, cars. In US, citizens spend nearly 100 minutes in cars per day. There are safety problems in cars except than seatbelt and airbag. Some of these are seats, furnishing, cushions for arm and head, floor covering, accessories and plastic parts. In a study conducted in Japan, more than 160 volatile organic compounds (VOC had been determined in new cars and a three years old car. Some of the pollutants are formaldehyde, toluen, xylene, ethylbenzene and styrene. Also Polybrominated diphenyl ethers (PBDEs, which may be degradated by sunshine in hot seasons are measured within the outomobiles. There is a big gap of studies about the pollutants in cars and researches have to be conducted. Manufacturers should use nonhazardous material or less toxic chemicals to reduce exposure of VOCs, PBDEs and phthalates. Drivers can reduce the these chemicals by using solar reflectors and avoiding to park under sunlight. [TAF Prev Med Bull 2010; 9(6.000: 665-672

  8. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    Science.gov (United States)

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  9. 活性炭和植物吸收对室内空气甲醛净化的影响%Effect of the Activated Carbon and Plants Uptake on the Formaldehyde Cleaning in Indoor Air

    Institute of Scientific and Technical Information of China (English)

    廖秋实; 李苑; 杨宇婷; 张艳北; 史春玲; 秦红梅; 文静; 江长胜

    2011-01-01

    The indoor air pollution in urban resident is very serious, formaldehyde has become one of the most important indoor air pollutants in China. In this study, ivy (Scinda psusaureu), green dill (Hedera nepalensis van. Sinensis) and activated carbon were selected as the research objects, and the author used the closed chamber technique to study the absorption capacity of plants and chemicals on formaldehyde. The results showed that green dill, ivy and activated carbon were all good for indoor formaldehyde purification. 1 day later, the purifying efficiency decreased in the order as follows: ivy+activated carbon (formaldehyde cleaning rate was 38.27%)>ivy (34.31%)>green dill+activated carbon (32.20%)>green dill (5.61%)>activated carbon (3.73%). 10 days later, the purifying efficiency decreased in the order as follows: ivy+activated carbon (69.91%)>green dill+activated carbon (64.28%)>ivy (60.44%)>activated carbon (57.50%) >green dill (24.99%). Combining the plants and activated carbon had the better efficiency of formaldehyde cleaning rate than using plants or activated carbon singly, and long time had better effect than short time.%城市住宅的室内空气污染十分严重,甲醛已经成为中国目前室内空气中的首要污染物.以绿萝、常春藤与活性炭为研究对象,采用密闭箱法进行净化甲醛能力的研究.结果表明,绿萝、常春藤与活性炭均对室内空气中甲醛具有良好的净化作用,24 h后的甲醛净化能力大小依次为:常春藤+活性炭(甲醛去除率38.27%)>常春藤(34.31%)>绿萝+活性炭(32.20%)>绿萝(5.61%)>活性炭(3.73%);10天后的净化效果排序为:常春藤+活性炭(69.91%)>绿萝+活性炭(64.28%)>常春藤(60.44%)>活性炭(57.50%)>绿萝(24.99%).植物与活性炭联合作用对甲醛净化效果比单一用植物或活性炭效果好,而且长期作用比短期作用效果好.

  10. Environmental factors regulating soil organic matter chlorination

    Science.gov (United States)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  11. Indoor Positioning System Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hamid Mehmood

    2010-01-01

    Full Text Available Problem statement: Location knowledge in indoor environment using Indoor Positioning Systems (IPS has become very useful and popular in recent years. A number of Location Based Services (LBS have been developed, which are based on IPS, these LBS include asset tracking, inventory management and security based applications. Many next-generation LBS applications such as social networking, local search, advertising and geo-tagging are expected to be used in urban and indoor environments where GNSS either underperforms in terms of fix times or accuracy, or fails altogether. To develop an IPS based on Wi-Fi Received Signal Strength (RSS using Artificial Neural Networks (ANN, which should use already available Wi-Fi infrastructure in a heterogeneous environment. Approach: This study discussed the use of ANN for IPS using RSS in an indoor wireless facility which has varying human activity, material of walls and type of Wireless Access Points (WAP, hence simulating a heterogeneous environment. The proposed system used backpropogation method with 4 input neurons, 2 output neurons and 4 hidden layers. The model was trained with three different types of training data. The accuracy assessment for each training data was performed by computing the distance error and average distance error. Results: The results of the experiments showed that using ANN with the proposed method of collecting training data, maximum accuracy of 0.7 m can be achieved, with 30% of the distance error less than 1 m and 60% of the distance error within the range of 1-2 m. Whereas maximum accuracy of 1.01 can be achieved with the commonly used method of collecting training data. The proposed model also showed 67% more accuracy as compared to a probabilistic model. Conclusion: The results indicated that ANN based IPS can provide accuracy and precision which is quite adequate for the development of indoor LBS while using the already available Wi-Fi infrastructure, also the proposed method

  12. Dust exposure in indoor climbing halls.

    Science.gov (United States)

    Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad

    2008-05-01

    The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide

  13. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  14. Effect of Chlorine Dioxide Gas on Fungi and Mycotoxins Associated with Sick Building Syndrome

    Science.gov (United States)

    Wilson, S. C.; Wu, C.; Andriychuk, L. A.; Martin, J. M.; Brasel, T. L.; Jumper, C. A.; Straus, D. C.

    2005-01-01

    The growth of indoor molds and their resulting products (e.g., spores and mycotoxins) can present health hazards for human beings. The efficacy of chlorine dioxide gas as a fumigation treatment for inactivating sick building syndrome-related fungi and their mycotoxins was evaluated. Filter papers (15 per organism) featuring growth of Stachybotrys chartarum, Chaetomium globosum, Penicillium chrysogenum, and Cladosporium cladosporioides were placed in gas chambers containing chlorine dioxide gas at either 500 or 1,000 ppm for 24 h. C. globosum was exposed to the gas both as colonies and as ascospores without asci and perithecia. After treatment, all organisms were tested for colony growth using an agar plating technique. Colonies of S. chartarum were also tested for toxicity using a yeast toxicity assay with a high specificity for trichothecene mycotoxins. Results showed that chlorine dioxide gas at both concentrations completely inactivated all organisms except for C. globosum colonies which were inactivated an average of 89%. More than 99% of ascospores of C. globosum were nonculturable. For all ascospore counts, mean test readings were lower than the controls (P < 0.001), indicating that some ascospores may also have been destroyed. Colonies of S. chartarum were still toxic after treatment. These data show that chlorine dioxide gas can be effective to a degree as a fumigant for the inactivation of certain fungal colonies, that the perithecia of C. globosum can play a slightly protective role for the ascospores and that S. chartarum, while affected by the fumigation treatment, still remains toxic. PMID:16151130

  15. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R L; Cumming, R B; Pitt, W W; Taylor, F G; Thompson, J E; Hartmann, S J

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity.

  16. Personal UV biodosimeter for healthy indoor tanning

    Science.gov (United States)

    Terenetskaya, I. P.; Orlova, T. N.

    2008-04-01

    The practice of indoor tanning has led to the development of a large artificial tanning industry. In addition to psychological benefits, exposure to UVB light helps the body produce the activated form of vitamin D, which is necessary for many cellular functions. But uncontrolled tanning and UV overexposure can increase the risk of skin cancer. For direct checkout of the vitamin D synthetic capacity of a UV source the bio-equivalent UV dosimeter has been developed that is based on the same molecular photochemistry from which vitamin D is photosynthesized in human skin and makes possible both instrumental and visual indication of vitamin D synthesis.

  17. Enabling Indoor Location-Based Services

    DEFF Research Database (Denmark)

    Radaelli, Laura

    positioning system. Second, we propose an implementation of the vision in the form of a prototype that integrates Wi-Fi and video cameras for positioning. Aggregation or abstraction are needed to be able to explore large volumes of indoor trajectory data. We present two contributions to extracting information......Indoor spaces have always attracted interest from different scientific disciplines. Relatively recent interest in indoor settings by computer scientists is driven in part by the increasing use of smartphones, which serve as a platform for service delivery and can generate extensive volumes...... of trajectory data that can be used to study how people actually use indoor spaces. In this dissertation, we contribute partial solutions that address challenges in indoor positioning and indoor trajectory management and analysis. The key enabler of indoor location-based services and indoor movement analysis...

  18. Fatigability in basic indoor mobility in nonagenarians

    DEFF Research Database (Denmark)

    Mänty, Minna Regina; Ekmann, Anette Addy; Thinggaard, Mikael;

    2012-01-01

    To evaluate the prevalence and associated health factors of indoor mobility-related fatigability in nonagenarians.......To evaluate the prevalence and associated health factors of indoor mobility-related fatigability in nonagenarians....

  19. Quality and Indoor Air treatment

    Directory of Open Access Journals (Sweden)

    Cécile HORT

    2008-01-01

    Full Text Available In developed countries, between 70% and 90% of the life time are spent in confined spaces (housing, transport, etc.. Air quality in these closed spaces is generally inferior than outside. Our lifestylesand the growing use of new products and materials create cocktails of chemicals compounds (COV, CIV... that can cause an increase of worrying diseases such as asthma, allergies or even cancer. These pollutants are particularly present in indoor air. These increasing public health problems gives rise to the development of devices for the treatment of indoor air. However, indoor air contains a lot of chemical substances showing very different physicochemical properties. The “Laboratoire de Thermique, Energétique et Procédés” (LaTEP studies the coupling of treatment processes, such as biofiltration coupled to adsorption.

  20. Actividad mutagénica de aguas de consumo humano antes y después de clorar en la planta de Villa Hermosa, Medellín Mutagenic activity of human drinking water before and after chlorination in Villa Hermosa treatment plant

    Directory of Open Access Journals (Sweden)

    Diego Salazar

    2001-03-01

    Full Text Available En este trabajo se encontró que la contaminación y la cloración influyen en la mutagenicidad de las aguas tratadas en la planta de Villa Hermosa. Para evaluar la actividad mutagénica se utilizó el test de Ames con las cepas TA-100 y TA-98 de Salmonella typhimurium. Se observó que la contaminación es la responsable de la alta mutagenicidad indirecta observada en el agua que entra a la planta de tratamiento de Villa Hermosa. El tratamiento de las aguas antes de clorar deja pasar aproximadamente un 30% de los mutágenos indirectos formados por contaminación, los cuales pueden agregarse o potenciar los nuevos mutágenos formados por la cloración del agua (zona 6. La alta mutagenicidad directa en la cepa TA-100 obtenida de esta agua clorada concuerda con el patrón de mutagenicidad producido por los trihalometanos formados en aguas cloradas. We found that pollution and chlorination have effects on mutagenicity of water from Villa Hermosa purification plant. In order to evaluate the mutagenic activity we used Ames‘ test with Salmonella strains TA-100 and TA-98. We observed that anthropogenic pollution and dental industry residues are the origin of the high indirect mutagenicity observed in water which gets into Villa Hermosa treatment plant and that before chlorination water treated in this plant (zone 5 retains about 70% of mutagens derived from pollution, Mutagens that were not retained by treatment may be added or potentiate the new mutagens formed by chlorination of drinking water (zone 6. The very high direct mutagenicity with TA-100 obtained from this chlorinated water is consistent with the type of mutagenicity of thrihalomethanes formed in chlorinated water.

  1. CFD simulation research on residential indoor air quality.

    Science.gov (United States)

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.

  2. Lead and cadmium in indoor air and the urban environment.

    Science.gov (United States)

    Komarnicki, Günter J K

    2005-07-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM(10), and PM(2.5) were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM(2.5), both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality.

  3. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  4. Assessing the Fate and Transformation By-Product Potential of Trenbolone during Chlorination

    Science.gov (United States)

    Chlorine disinfection is an effective means for managing microbiological activity during drinking water treatment and can eliminate a number of known organic contaminants. Trenbolone is an androgenic steroidal hormone used primarily as a growth stimulant in the animal feedstock ...

  5. Reactions of aqueous chlorine and chlorine dioxide with model food compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fukayama, M.Y.; Tan, H.; Wheeler, W.B.; Wei, C.

    1986-11-01

    This presentation reviews published information concerning the reactions of chlorine gas (CL/sub 2/(g)), aqueous chlorine, and ClO/sub 2/ with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO/sub 2/. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO/sub 2/ with several food products, including flour and shrimp, have also been characterized. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully.

  6. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  7. Oxidation of chlorinated olefins by Escherichia coli transformed with dimethyl sulfide monooxygenase genes or cumene dioxygenase genes.

    Science.gov (United States)

    Takami, Wako; Yoshida, Takako; Nojiri, Hideaki; Yamane, Hisakazu; Omori, Toshio

    1999-04-01

    In the present work, it was shown that the dimethyl sulfide (DMS) monooxygenase and the cumene dioxygenase catalyzed oxidation of various chlorinated ethenes, propenes, and butenes. The specific activities of these oxygenases were determined for C(2) to C(4) chlorinated olefins, and the oxidation rates ranged from 0.19 to 4.18 nmol.min(-1).mg(-1) of dry cells by the DMS monooxygenase and from 0.19 to 1.29 nmol.min(-1).mg(-1) of dry cells by the cumene dioxygenase. The oxidation products were identified by gas chromatography-mass spectrometry. Most chlorinated olefins were monooxygenated by the DMS monooxygenase to yield chlorinated epoxides. In the case of the cumene dioxygenase, the substrates lacking any chlorine atom on double-bond carbon atoms were dioxygenated, and those with chlorine atoms attaching to double-bond carbon atoms were monooxygenated to yield allyl alcohols.

  8. Capturing Hotspots For Constrained Indoor Movement

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2013-01-01

    Finding the hotspots in large indoor spaces is very important for getting overloaded locations, security, crowd management, indoor navigation and guidance. The tracking data coming from indoor tracking are huge in volume and not readily available for finding hotspots. This paper presents a graph-...

  9. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based mode...

  10. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  11. Indoor formaldehyde removal over CMK-3

    Science.gov (United States)

    An, Hyung Bum; Yu, Mi Jin; Kim, Ji Man; Jin, Mingshi; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Seung-Soo; Park, Young-Kwon

    2012-01-01

    The removal of formaldehyde at low concentrations is important in indoor air pollution research. In this study, mesoporous carbon with a large specific surface area was used for the adsorption of low-concentration indoor formaldehyde. A mesoporous carbon material, CMK-3, was synthesized using the nano-replication method. SBA-15 was used as a mesoporous template. The surface of CMK-3 was activated using a 2N H2SO4 solution and NH3 gas to prepare CMK-3-H2SO4 and CMK-3-NH3, respectively. The activated samples were characterized by N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The formaldehyde adsorption performance of the mesoporous carbons was in the order of CMK-3-NH3 > CMK-3-H2SO4 > CMK-3. The difference in the adsorption performance was explained by oxygen and nitrogen functional groups formed during the activation process and by the specific surface area and pore structure of mesoporous carbon.

  12. A significant role for nitrate and peroxide groups on indoor secondary organic aerosol.

    Science.gov (United States)

    Carslaw, Nicola; Mota, Tiago; Jenkin, Michael E; Barley, Mark H; McFiggans, Gordon

    2012-09-04

    This paper reports indoor secondary organic aerosol, SOA, composition based on the results from an improved model for indoor air chemistry. The model uses a detailed chemical mechanism that is near-explicit to describe the gas-phase degradation of relevant indoor VOC species. In addition, gas-to-particle partitioning is included for oxygenated products formed from the degradation of limonene, the most ubiquitous terpenoid species in the indoor environment. The detail inherent in the chemical mechanism permits the indoor SOA composition to be reported in greater detail than currently possible using experimental techniques. For typical indoor conditions in the suburban UK, SOA concentrations are ~1 μg m(-3) and dominated by nitrated material (~85%), with smaller contributions from peroxide (12%), carbonyl (3%), and acidic (1%) material. During cleaning activities, SOA concentrations can reach 20 μg m(-3) with the composition dominated by peroxide material (73%), with a smaller contribution from nitrated material (21%). The relative importance of these different moieties depends crucially (in order) on the outdoor concentration of O(3), the deposition rates employed and the scaling factor value applied to the partitioning coefficient. There are currently few studies that report observation of aerosol composition indoors, and most of these have been carried out under conditions that are not directly relevant. This study highlights the need to investigate SOA composition in real indoor environments. Further, there is a need to measure deposition rates for key indoor air species on relevant indoor surfaces and to reduce the uncertainties that still exist in gas-to-particle phase parametrization for both indoor and outdoor air chemistry models.

  13. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  14. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada

    Science.gov (United States)

    Xu, Jing; Szyszkowicz, Mieczyslaw; Jovic, Branka; Cakmak, Sabit; Austin, Claire C.; Zhu, Jiping

    2016-09-01

    Indoor air and outdoor air concentration (I/O) ratio can be used to identify the origins of volatile organic compounds (VOCs). I/O ratios of 25 VOCs in Canada were estimated based on the data collected in various areas in Canada between September 2009 and December 2011. The indoor VOC data were extracted from the Canadian Health Measures Survey (CHMS). Outdoor VOC data were obtained from Canada's National Air Pollution Surveillance (NAPS) Network. The sampling locations covered nine areas in six provinces in Canada. Indoor air concentrations were found higher than outdoor air for all studied VOCs, except for carbon tetrachloride. Two different approaches were employed to estimate the I/O ratios; both approaches produced similar I/O values. The I/O ratios obtained from this study were similar to two other Canadian studies where indoor air and outdoor air of individual dwellings were measured. However, the I/O ratios found in Canada were higher than those in European cities and in two large USA cities, possibly due to the fact that the outdoor air concentrations recorded in the Canadian studies were lower. Possible source origins identified for the studied VOCs based on their I/O ratios were similar to those reported by others. In general, chlorinated hydrocarbons, short-chain (C5, C6) n-alkanes and benzene had significant outdoor sources, while long-chain (C10sbnd C12) n-alkanes, terpenes, naphthalene and styrene had significant indoor sources. The remaining VOCs had mixed indoor and outdoor sources.

  15. LADM and IndoorGML for Support of Indoor Space Identification

    Science.gov (United States)

    Zlatanova, S.; Van Oosterom, P. J. M.; Lee, J.; Li, K.-J.; Lemmen, C. H. J.

    2016-10-01

    Guidance and security in large public buildings such as airports, museums and shopping malls requires much more information that traditional 2D methods offer. Therefore 3D semantically-reach models have been actively investigated with the aim to gather knowledge about availability and accessibility of spaces. Spaces can be unavailable to specific users because of plenty of reasons: the 3D geometry of spaces (too low, too narrow), the properties of the objects to be guided to a specific part of the building (walking, driving, flying), the status of the indoor environment (e.g. crowded, limited light, under reconstruction), property regulations (private areas), security considerations and so on. However, such information is not explicitly avaible in the existing 3D semantically-reach models. IFC and CityGML are restricted to architectural building components and provide little to no means to describe such properties. IndoorGML has been designed to establish a generic approach for space identification allowing a space subdivision and automatic creation of a network for route computation. But currently it also represents only spaces as they are defined by the architectural layout of the building. The Land Administration Domain Model is currently the only available model to specify spaces on the basis of ownership and rights for use. In this paper we compare the principles of IndoorGML and LADM, investigate the approaches to define spaces and suggest options to the linking of the two types of spaces. We argue that LADM space subdivision on basis of properties and rights of use can be used to define to semantically and geometrically available and accessible spaces and therefore can enrich the IndoorGML concept.

  16. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  17. Fuzzy Logic Indoor Positioning System

    Directory of Open Access Journals (Sweden)

    Roberto García Sánz

    2008-12-01

    Full Text Available The GPS system is not valid for positioning indoors, thus positioning systems are designed using Wi-Fi technology that allows location of a device inside buildings. The use of fuzzy logic is argued by the failure to find positioning systems based on this technology, which seeks toobserve how their use in this field

  18. Aerodynamic Simulation of Indoor Flight

    Science.gov (United States)

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  19. Local sampling for indoor flight

    NARCIS (Netherlands)

    De Croon, G.C.H.E.; De Wagter, C.; Remes, B.D.W.; Ruijsink, H.M.

    2009-01-01

    A challenging problem in artificial intelligence is to achieve vision-based autonomous indoor flight with Micro Air Vehicles. Approaches to this problem currently do not make use of image appearance features, because these features generally are computationally expensive. In this article, we deliver

  20. Indoor Domestic environment and asthma

    Directory of Open Access Journals (Sweden)

    Papadimitriou E.

    2010-01-01

    Full Text Available Introduction: Genesis and development of asthma are greatly affected by the indoor environmental quality. Duringrecent years, it is noted an important increase in asthma cases worldwide which is mainly caused by the effects ofpollutants in indoor environments. Purpose: In this study, there has been an effort to show the impact of indoorenvironment on asthma development. Methodology: Reviewing bibliography by information retrieval from thePubmed and TRIP Database.Conclusion: Indoor air pollution is an interdisciplinary subject. The great number ofpollutants, their variety on structure and action, the conditions under which they are developed as well as theirdifferent and disparate ways of treatment and control require knowledge from many scientific fields. By assuming newdimensions in world climate changes, increasing sensitization in allergens, using respiratory irritants, such aspesticides and compounds and chemicals of industrial origin, and at the same time the poor home indoor air qualityand the family history of asthma lead to new asthma cases worldwide. An important number of asthma cases in afamily could be avoided by implementing a better environmental policy inside our homes. Finally, by understandingbetter the link between environment and asthma as well as by explaining the involved gene action, they will bedelivered more effective prevention and treatment programs.

  1. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  2. Characterization of Indoor and Outdoor Aerosols in a Suburban Area of Prague

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, J., E-mail: smolik@icpf.cas.cz; Dohanyosova, P.; Schwarz, J.; Zdimal, V. [Institute of Chemical Process Fundamentals, Laboratory of Aerosol Chemistry and Physics (Czech Republic); Lazaridis, M. [Technical University of Crete, Department of Environmental Engineering (Greece)

    2008-02-15

    The mass, ionic and elemental size distributions of particulate matter (PM) measured indoors and outdoors in an apartment situated in a north-westward suburb of Prague are presented. The PM samples were collected by two Berner type low pressure impactors separating particles into 10 size fractions from 26 nm to 10 {mu}m and were further analyzed by ion chromatography (IC) and proton induced X-ray emission (PIXE). Temperature, pressure and relative humidity were measured both indoors and outdoors parallel to PM sampling. The indoor and outdoor PM dynamics were recorded by two scanning mobility particle sizers (SMPS) and an aerodynamic particle sizer (APS). Finally, the ventilation rate was determined by a radon technique. Ion chromatography showed that the major inorganic components of the fine particle mode are sulfate, nitrate, and ammonium with very low indoor nitrate concentration. Crustal elements (Al, Si, Ca, Ti, Mn, and Fe) were associated with the coarse aerosol mode. The presence of people increased the mass concentration of coarse particles, whereas cooking, smoking, and burning of incense and candles contributed predominantly to the fine particle mode. Smoking and the burning of incense also increased the concentration of potassium, bromine and chlorine content in fine particles.

  3. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  4. The chlorination of cyclopentanone and cyclohexanone

    NARCIS (Netherlands)

    Maatman, Hendrik

    1980-01-01

    In this thesis the results of an investigation of the chlorination of cyclopentanone and cyclohexanone in the solvent carbontetrachloride and catalyzed by hydrogen chloride are described. ... Zie: Summary

  5. High resolution spectrophotometry for identification of chlorine dioxide in concentrated chlorine solutions.

    Science.gov (United States)

    Gauw, R D; Emmert, G L; Bubnis, B; Gordon, G

    1999-12-06

    Electrolyzed salt brine generators hold great promise for water disinfection in small communities and remote locations. Electrolysis cell liquors have been reported to contain chlorine, chlorine dioxide and ozone. High resolution spectrophotometry was used to observe the presence (or absence) of a unique spectral absorbance pattern present in solutions containing 1-2 mg/l chlorine dioxide.

  6. Xerotolerant Cladosporium sphaerospermum Are Predominant on Indoor Surfaces Compared to Other Cladosporium Species.

    Science.gov (United States)

    Segers, Frank J J; Meijer, Martin; Houbraken, Jos; Samson, Robert A; Wösten, Han A B; Dijksterhuis, Jan

    2015-01-01

    Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1α gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (≥ 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (≥ 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species.

  7. Impact of January 2005 solar proton events on chlorine species

    Directory of Open Access Journals (Sweden)

    A. Damiani

    2012-01-01

    Full Text Available Sudden changes in stratospheric chlorine species in the polar northern atmosphere, caused by the Solar Proton Events (SPEs of 17 and 20 January 2005, have been investigated and compared with version 4 of the Whole Atmosphere Community Climate Model (WACCM4. We used Aura Microwave Limb Sounder (MLS measurements to monitor the variability of ClO, HCl, HOCl and Michelson Interferometer for Passive Atmospheric Sounder (MIPAS on ENVISAT to retrieve ClONO2. SPE-induced chlorine activation has been identified. HCl decrease occurred at nearly all the investigated altitudes with the lowest values (of less than 0.25 ppbv on 21 January. HOCl was found to be the main active chlorine species under nighttime conditions (with increases of more than 0.2 ppbv whereas both HOCl and ClO enhancements (about 0.1 ppbv have been observed at the polar night terminator. Further, small ClO decreases (of less than 0.1 ppbv and ClONO2 enhancements (about 0.2 ppbv have been observed at higher latitudes (i.e., at nighttime roughly above 2 hPa.

    While WACCM4 reproduces most of the SPE-induced variability in the chlorine species fairly well, in some particular regions discrepancies between the modeled and measured temporal evolution of the abundances of chlorine species were found. HOCl changes are modelled very well with respect to both magnitude and geographic distribution. ClO decreases are reproduced at high latitudes, whereas ClO enhancements in the terminator region are underestimated and attributed to background variations. WACCM4 also reproduces the HCl depletion in the mesosphere but it does not show the observed decrease below about 2 hPa. Finally, WACCM4 simulations indicate that the observed ClONO2 increase is dominated by background variability, although SPE-induced production might contribute by 0.1 ppbv.

  8. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  9. Enzymatic chlorination and bromination.

    Science.gov (United States)

    van Pée, Karl-Heinz

    2012-01-01

    Our knowledge about the enzymes catalyzing the incorporation of halide ions during the biosynthesis of halometabolites has increased tremendously during the last 15 years. Between 1960 and 1995, haloperoxidases were the only halogenating enzymes known. However, absolute proof for the connection of haloperoxidases to the biosynthesis of halometabolites is still missing. In 1997, FADH(2)-dependent halogenases were identified as the type of halogenating enzymes responsible for the incorporation of chloride and bromide atoms into aromatic and aliphatic compounds activated for electrophilic attack. FADH(2)-dependent halogenases are two-component systems consisting of a flavin reductase providing the FADH(2) required by the halogenase. Elucidation of the three-dimensional structure of FADH(2)-dependent halogenases led to the understanding of the reaction mechanism, which involves the formation of hypohalous acids. Unactivated carbon atoms were found to be halogenated by nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases. The reaction mechanism of this type of halogenase was shown to involve the formation of a substrate radical. These two types of halogenating enzymes, together with the much less common fluorinases, are the major types of halogenating enzymes. However, the existence of other types of halogenating enzymes, yet not detected, cannot be completely ruled out. Here, we describe the detection, purification, characterization, and reaction mechanisms of flavin-dependent halogenases and of nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases.

  10. Suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by bulking; Empleo de la viabilidad celular como herramienta para el control de la dosificacion de cloro sobre un fango activado con problemas de bulking

    Energy Technology Data Exchange (ETDEWEB)

    Montaya Martinez, T.; Zornoza Zornoza, A.; Granell Munoz, P.; Fayos, G.; Fajarddo, V.; Zorrilla, F.; Alonso Molina, J. L.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Martinez Francisco, F. J.

    2009-07-01

    This work demonstrates the suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by the overabundance of the filamentous bacteria (Thiothrix-021N). This technique was used to establish the chlorine dosage according to the observed damages on cellular membranes of both, floc-forming bacteria as well as filamentous bacteria. To identify the filamentous bacteria responsible for the macro-structural alteration of the flocs, several criteria were, met, including morphologic characteristics as well as conventional microbiological stains: Gram, Neisser and polyhydroxy alkanoates. FISH was used to confirm the obtained results, providing a definitive identification of the filamentous bacteria responsible for the alteration. (Author) 11 refs.

  11. Characterization Activities to Evaluate Chlorinated Solvent Discharges to Tims Branch from the A/M Area of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.G.

    2001-02-23

    The objective of this investigation was to identify those regions of plume outcrop along Tims Branch southeast of A/M Area and to establish fixed monitoring points along the seepline to evaluate proposed remediation needs and to support long-term monitoring activities in the vicinity of the seepline. The characterization approach employed in completing these tasks was dynamic and graded. Three stages of characterization were used to evaluate the outcrop region, with the results from each of the previous activities used to direct subsequent characterization.

  12. Sequential flow injection determination of chlorine species using a triiodide-selective electrode detector.

    Science.gov (United States)

    Saad, Bahruddin; Wai, Wan Tatt; Ali, Abdussalam Salhin M; Saleh, Muhammad Idiris

    2006-01-01

    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.

  13. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes.

    Science.gov (United States)

    Li, Tong; Jiang, Yan; An, Xiaoqiang; Liu, Huijuan; Hu, Chun; Qu, Jiuhui

    2016-10-01

    The synergistic effect of ultraviolet light (UV) and chlorine on the structural transformation of Humic Acid (HA) and formation of chloro-disinfection byproducts (DBPs) in water were investigated, with chlorination as a reference. The transformation and mineralization of HA were enhanced upon co-exposure to UV and chlorine. Electron spin resonance (ESR) studies revealed that hydroxyl radical (OH) and chlorine radical (Cl) were predominant active species in a pH range from 4 to 7, while Cl dominated at pH 2 and pH higher than 7. The impact of different radicals on the transformation of HA was investigated by UV254, fluorescence and TOC measurements. OH were found to be responsible for the removal of chromophoric groups and mineralization of HA, while Cl mainly reacted with HA and intermediates from HA degradation. Due to the competitive and synergistic reaction of OH and Cl with HA, higher removal of HA and lower formation of chloro-DBPs appeared in UV-chlorine than chlorination, thus the combined UV-chlorine processes should be a promising method for water purification.

  14. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  15. The photoreactivity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, V. [Univ. of Colorado, Boulder, CO (United States); Simon, J.D. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-06-09

    Determining the detailed photoreactivity of radicals that are of importance in atmospheric processes requires information from both laboratory and field measurements and theoretical calculations. Laboratory experiments and quantum calculations have been used to develop a comprehensive understanding of the photoreactivity of chlorine dioxide (OClO). The photoreactivity is strongly dependent on the medium (gas phase, liquid solution, or cryogenic matrix). These data reveal details of the complex chemistry of OClO. The potential role of this radical in stratospheric ozone depletion is discussed in accord with these laboratory measurements. 53 refs., 4 figs.

  16. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    Energy Technology Data Exchange (ETDEWEB)

    Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.

  17. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    Science.gov (United States)

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water. PMID:2339894

  18. Mutagenic compounds from chlorination of humic substances

    Science.gov (United States)

    Holmbom, Bjarne

    Chlorination of natural humic substances, as well as of lignin, produces a myriad of non-chlorinated and chlorinated compounds. The identification of an important class of strongly mutagenic compounds is reviewed. The most important Ames mutagen in chlorinated drinking waters of various origin is the compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone ("MX"). This compound occurs at neutral pH in the acyclic form, i.e. in the form of Z-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid. Its E-isomer (E-MX) is present in chlorinated drinking waters at a similar concentration, but is less mutagenic in Ames test. Both oxidised and reduced forms of MX and E-MX are also present in chlorinated waters. The present knowledge of the chemistry and toxicology of these mutagens is examined. The formation and possible elimination of the chlorination mutagens is discussed. The need of understanding the mechanisms of formation of these mutagens from humic substances during drinking water chlorination is emphasized.

  19. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  20. Influenza transmission during extreme indoor conditions in a low-resource tropical setting

    Science.gov (United States)

    Tamerius, James; Ojeda, Sergio; Uejio, Christopher K.; Shaman, Jeffrey; Lopez, Brenda; Sanchez, Nery; Gordon, Aubree

    2016-08-01

    Influenza transmission occurs throughout the planet across wide-ranging environmental conditions. However, our understanding of the environmental factors mediating transmission is evaluated using outdoor environmental measurements, which may not be representative of the indoor conditions where influenza is transmitted. In this study, we examined the relationship between indoor environment and influenza transmission in a low-resource tropical population. We used a case-based ascertainment design to enroll 34 households with a suspected influenza case and then monitored households for influenza, while recording indoor temperature and humidity data in each household. We show that the indoor environment is not commensurate with outdoor conditions and that the relationship between indoor and outdoor conditions varies significantly across homes. We also show evidence of influenza transmission in extreme indoor environments. Specifically, our data suggests that indoor environments averaged 29 °C, 18 g/kg specific humidity, and 68 % relative humidity across 15 transmission events observed. These indoor settings also exhibited significant temporal variability with temperatures as high as 39 °C and specific and relative humidity increasing to 22 g/kg and 85 %, respectively, during some transmission events. However, we were unable to detect differences in the transmission efficiency by indoor temperature or humidity conditions. Overall, these results indicate that laboratory studies investigating influenza transmission and virus survival should increase the range of environmental conditions that they assess and that observational studies investigating the relationship between environment and influenza activity should use caution using outdoor environmental measurements since they can be imprecise estimates of the conditions that mediate transmission indoors.

  1. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  2. A Foundation for Efficient Indoor Distance-Aware Query Processing

    DEFF Research Database (Denmark)

    Lu, Hua; Cao, Xin; Jensen, Christian Søndergaard

    2012-01-01

    indoor distances. However, existing indoor space models do not account well for indoor distances. To address this shortcoming, we propose a data management infrastructure that captures indoor distance and facilitates distance-aware query processing. In particular, we propose a distance-aware indoor space...

  3. Indoor plants as air cleaners

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Müller, Renate

    2015-01-01

    Plants have been used decoratively indoors for centuries. For the last 25-30 years, their beneficial abilities to reduce the levels of harmful volatile organic compounds (VOCs) from the indoor air have also been investigated. Previous studies have shown that VOCs are removed by the plant itself......, but also by microorganisms in the soil. Furthermore, the rate of removal is dependent on the plant species and can be influenced by exogenous factors such as light intensity and VOC concentration. The research within this field is, however, limited by the fact that the knowledge gained from laboratory...... be an underestimation of the plants' real potential. The next step will be to use the new system to investigate the effects of the exogenous factors temperature, light intensity and CO2 concentration on VOC removal rates....

  4. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    Science.gov (United States)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  5. Isotopic evidence for quick freshening of magmatic chlorine in the Lesser Antilles arc volcanoes

    Science.gov (United States)

    Li, L.; Jendrzejewski, N.; Aubaud, C. P.; Bonifacie, M.; Crispi, O.; Dessert, C.; Agrinier, P.

    2012-12-01

    Despite numerous geophysical and geochemical monitoring techniques developed over the last 50 years to detect magma activities in volcanoes, it is still challenging to evaluate the state of magmatic activity during its decreasing phase (transitory quiet stage and/or final stage of the magma intrusion which may last for decades) for those infrequent, slow developing, and dangerous explosive eruptive arc volcanoes, attributed to the interaction between the magma and hydrothermal cells at shallow depths to produce complex phreato-magmatic events. Recent studies have implied that chloride in intrusion-induced thermal springs could be a potential sensitive indicator of shallow magma degassing. However, possible contamination from surface chlorine reservoirs, such as seawater, may overprint the magmatic signature and complicate the interpretation of field observation. Here, based on chlorine isotope examination of various water samples from two recently erupted volcanoes in the Lesser Antilles arc (Soufrière in Guadeloupe: phreatic eruption in1976-1977; Montagne Pelée in Martinique: pelean eruption in 1929-1932), we show that magmatic chlorine is isotopically distinct from surface chlorine (seawater, meteoric water, and ground water). A chlorine isotopic survey on thermal springs in Guadeloupe and Martinique indicate that the magmatic chlorine signature is still present in some of the thermal springs in Guadeloupe but completely disappeared in Martinique. This suggests that magmatic chlorine be rapidly flushed from hydrothermal system within < 30 to 80 years after the magmatic eruption. This enables chlorine isotopes to be a sensitive proxy to monitor shallow magmatic activities, particularly practicable at centennial scale.

  6. Occurrence and human exposure of parabens and their chlorinated derivatives in swimming pools.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2015-11-01

    As an emerging group of endocrine-disrupting chemicals, parabens have attracted growing attention due to their potential effects on human health. In the present study, the occurrence and distribution of eight parabens, four chlorinated parabens, and their common hydrolysis product, p-hydroxybenzoic acid (PHBA), were investigated in 39 swimming pools in Beijing, China. Methyl paraben and propyl paraben were the predominant compounds in swimming pools, accounting for 91.2 % of the total parabens. It is noteworthy that octyl paraben, a paraben with longer chain, was firstly detected in this study. There were several factors affecting the levels of parabens among the 39 swimming pools. The concentrations of parabens and chlorinated derivatives detected in indoor pools (144 ng L(-1)) were roughly 20-fold higher than those in outdoor pools (6.78 ng L(-1)). Hotel pools appear to present higher level of target compounds (361 ng L(-1)) than that in health club (228 ng L(-1)), municipal (130 ng L(-1)), school (75.6 ng L(-1)), and community pools (63.0 ng L(-1)). Moreover, the level of these compounds in pools during weekends (174 ng L(-1)) was much higher than that during weekdays (52.3 ng L(-1)). The dynamics of target compounds were also investigated to provide a general trend of the level of parabens in a school indoor swimming pool during a 14-week period. Human exposure assessment was conducted to estimate the potential risk of exposure to parabens and their chlorinated derivatives in swimming pools. Considering the total exposure dose of multiple parabens, human exposure to parabens from the water of swimming pools is negligible. However, the threat of these parabens to children in swimming pool should be concerned.

  7. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  8. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  9. Chlorinated biphenyl quinones and phenyl-2,5-benzoquinone differentially modify the catalytic activity of human hydroxysteroid sulfotransferase hSULT2A1.

    Science.gov (United States)

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M; Robertson, Larry W; Duffel, Michael W

    2013-10-21

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from the oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues, led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2'-chlorophenyl-2,5-benzoquinone (2'-Cl-BQ), 4'-chlorophenyl-2,5-benzoquinone (4'-Cl-BQ), 4'-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4'-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased the catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1.

  10. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  11. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  12. Chlorine sensing properties of zinc oxide resistive gas sensor doped with platinum

    Science.gov (United States)

    Fiedot, M.; Suchorska-Woźniak, P.; Rac, O.; Nawrot, W.; Teterycz, H.

    2016-11-01

    In presented studies resistive chlorine gas sensor with gas sensitive layer in the form of zinc oxide microrods doped with platinum was developed. The growth of active layer was carried out in water solution containing zinc nitrate (V), hexamethylenetetramine and chloroplatinic acid using the chemical bath deposition method. The structure and morphology of obtained sensors was characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). To determine the chlorine gas sensing properties Temperature-Stimulated Conductance method (TSC) was used. During the measurements sensor was tested in a reference atmosphere and an atmosphere with 2, 5 or 8 ppm of chlorine. Obtained results have shown that zinc oxide microrods doped with platinum were obtained. TSC measurements showed that developed sensor allows to detect chlorine with very good sensitivity.

  13. Actions to reduce the impact of construction products on indoor air: Outcomes of the European Project HealthyAir

    NARCIS (Netherlands)

    Bluyssen, P.M.; Richemont, S.de; Crump, D.; Maupetit, F.; Witterseh, T.; Gajdos, P.

    2010-01-01

    The European project - HealthyAir is a network project involving six institutions in Europe on actions and activities that address the effects of construction products on indoor air. Different ways to improve indoor air quality were reviewed, ranging from source control to education of occupants on

  14. Source apportionment of indoor PM10 in Elderly Care Centre.

    Science.gov (United States)

    Almeida-Silva, M; Faria, T; Saraga, D; Maggos, T; Wolterbeek, H T; Almeida, S M

    2016-04-01

    Source contribution to atmospheric particulate matter (PM) has been exhaustively modelled. However, people spend most of their time indoors where this approach is less explored. This evidence worsens considering elders living in Elderly Care Centres, since they are more susceptible. The present study aims to investigate the PM composition and sources influencing elderly exposure. Two 2-week sampling campaigns were conducted-one during early fall (warm phase) and another throughout the winter (cold phase). PM10 were collected with two TCR-Tecora(®) samplers that were located in an Elderly Care Centre living room and in the correspondent outdoor. Chemical analysis of the particles was performed by neutron activation analysis for element characterization, by ion chromatography for the determination of water soluble ions and by a thermal optical technique for the measurement of organic and elemental carbon. Statistical analysis showed that there were no statistical differences between seasons and environments. The sum of the indoor PM10 components measured in this work explained 57 and 53 % of the total PM10 mass measured by gravimetry in warm and cold campaigns, respectively. Outdoor PM10 concentrations were significantly higher during the day than night (p value < 0.05), as well as Ca(2+), Fe, Sb and Zn. The contribution of indoor and outdoor sources was assessed by principal component analysis and showed the importance of the highways and the airport located less than 500 m from the Elderly Care Centre for both indoor and outdoor air quality.

  15. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fan [College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067 (China); Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong (China); Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China); Lee, S.C., E-mail: ceslee@polyu.edu.hk [Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong (China); Wu, Zhongbiao [Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China); Huang, Yu [Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong (China); Fu, Min [College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067 (China); Ho, Wing-Kei [Nano and Advanced Materials Institute Limited, Hosted by The Hong Kong University of Science and Technology, Hong Kong (China); Zou, Shichun [School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275 (China); Wang, Bo [Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong (China)

    2011-11-15

    Graphical abstract: Rose-like monodisperse hierarchical nitrogen doped (BiO){sub 2}CO{sub 3} hollow microspheres fabricated by a one-pot template-free method exhibit excellent visible light photocatalytic activity and photochemical stability in the removal of NO in indoor air. The special hierarchical microstructure, the high charge separation efficiency and two-band-gap structure in all contribute to the outstanding photocatalytic performance. Highlights: {yields} Rose-like monodisperse hierarchical (BiO){sub 2}CO{sub 3} hollow microspheres are fabricated. {yields} The (BiO){sub 2}CO{sub 3} microspheres are self-assembled of single-crystalline nanosheets. {yields} Nitrogen is in situ doped into the lattice of hierarchical (BiO){sub 2}CO{sub 3} microspheres. {yields} The (BiO){sub 2}CO{sub 3} microspheres exhibit outstanding visible light activity for NO removal. {yields} The (BiO){sub 2}CO{sub 3} microspheres also exhibit high photochemical stability. - Abstract: Rose-like monodisperse hierarchical (BiO){sub 2}CO{sub 3} hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO){sub 2}CO{sub 3} superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N{sub 2} adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO){sub 2}CO{sub 3} microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of

  16. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    Science.gov (United States)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  17. Indoor Multi-Dimensional Location GML and Its Application for Ubiquitous Indoor Location Services

    Directory of Open Access Journals (Sweden)

    Qing Zhu

    2016-11-01

    Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML standard provides basic types and a framework for defining geo-informational data models such as CityGML and IndoorGML, which provide standard information models for 3D city modelling and lightweight indoor network navigation. Location information, which is the semantic engine that fuses big geo-information data, is however, discarded in these standards. The Chinese national standard of Indoor Multi-Dimensional Location GML (IndoorLocationGML presented in this study can be used in ubiquitous indoor location intelligent applications for people and robots. IndoorLocationGML is intended as an indoor multi-dimensional location information model and exchange data format standard, mainly for indoor positioning and navigation. This paper introduces the standard’s main features: (1 terminology; (2 indoor location information model using a Unified Modeling Language (UML class diagram; (3 indoor location information markup language based on GML; and (4 use cases. A typical application of the standard is then discussed. This standard is applicable to the expression, storage, and distribution of indoor multi-dimensional location information, and to the seamless integration of indoor–outdoor location information. The reference and basis are therefore relevant to publishers, managers, users, and developers of indoor navigation and location-based services (LBS.

  18. Measurement and improvement of indoor air quality in an information technology classroom

    Directory of Open Access Journals (Sweden)

    Tomić Mladen A.

    2014-01-01

    Full Text Available With the rapid development of information technology equipment and its use in the teaching and learning activities, the working environment (especially indoor air quality in which students and pupils spend a great deal of time in educational institutions has been changing. Therefore, special attention must be paid to indoor air quality and comfort. It is of great importance to maintain indoor air quality in an object, such as information technology classrooms, where a large number of students spend long periods of time. Poor indoor environment can negatively affect scholarly performances and cause discomfort and poor work performance. The problem of indoor air quality in educational institutions can be more serious than in other types of objects, because of the higher concentration of students and information technology equipment. This paper analyzes the changes in air quality in an information technology classrooms, when occupied with students, for the period from March to April. The changes of indoor air temperature, relative humidity, and carbon dioxide concentration are monitored in the classroom, as well as outdoor temperature and relative humidity. Several cases are studied: the classroom with closed windows and doors (closed classroom, the classroom with natural ventilation, the classroom cooled with a split system (cooled classroom. Responses of students are followed for each case. The analysis is performed based on the measurement results and numerical simulations using the computational fluid dynamics package, and measures are proposed to improve the indoor air quality in the considered classroom.

  19. Chlorination of Wastewater, Manual of Practice No. 4.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  20. Electron affinity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, L.M.; Pentecost, T.; Koppenol, W.H. (Louisiana State Univ., Baton Rouge (USA))

    1989-12-14

    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 {plus minus} 0.10 eV was found by bracketing between the electron affinities of HS* and SF{sub 4} as a lower limit and that of NO{sub 2} as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the ClO{sub 2}/ClO{sub 2}{sup {minus}} couple and a Gibbs hydration energy identical with that of SO{sub 2}{sup {sm bullet}{minus}}.

  1. Music and light during indoor cycling.

    Science.gov (United States)

    Shaulov, Naama; Lufi, Dubi

    2009-04-01

    The present research is a field study assessing effects of music and light on physical performance and subjective feelings of 28 participants (14 men, 14 women) in fitness classes using indoor cycling. Participants performed four sessions under different conditions of music and light. Analysis showed a sense of pleasure was significantly higher when music was introduced during the exercise. A significant interaction of music and light indicated that participants experienced less sense of tiredness when they trained with music and lights were dimmed. Light alone had no effect on any of the subjective measures. Physiological measurements showed that light and music did not influence amount of energy exerted (heart rate) or energy expended (calories). Apparently, participants do not work harder when music is present; however, they report more pleasure and less tiredness while exercising with music and dimmed light. It is recommended that music and dimmed light might be used during such activities to heighten pleasure and reduce tiredness while emphasizing fitness achieved.

  2. Phosphate valorization by dry chlorination route

    OpenAIRE

    Kanari N.; Menad N.; Diot F.; Allain E.; Yvon J.

    2016-01-01

    International audience; This work deals with the extraction of phosphorus chlorinated compounds from phosphate materials using chlorination with gaseous chlorine. An industrial sample of dicalcium phosphate dihydrate, after transformation into calcium pyrophosphate (Ca 2 P 2 O 7), is subjected to reactions with Cl 2 +CO+N 2 and Cl 2 +C+N 2 at temperatures ranging from 625 to 950 °C using boat experiments. Gathering results of the thermodynamic predictions and TG/DT analysis with those of SEM ...

  3. Development of industrial catalysts for sustainable chlorine production.

    Science.gov (United States)

    Mondelli, Cecilia; Amrute, Amol P; Moser, Maximilian; Schmidt, Timm; Pérez-Ramírez, Javier

    2012-01-01

    The heterogeneously catalyzed gas-phase oxidation of HCl to Cl(2) offers an energy-efficient and eco- friendly route to recover chlorine from HCl-containing byproduct streams in the chemical industry. This process has attracted renewed interest in the last decade due to an increased chlorine demand and the growing excess of byproduct HCl from chlorination processes. Since its introduction (by Deacon in 1868) and till recent times, the industrialization of this reaction has been hindered by the lack of sufficiently active and durable materials. Recently, RuO(2)-based catalysts with outstanding activity and stability have been designed and they are being implemented for large-scale Cl(2) recycling. Herein, we review the main limiting features of traditional Cu-based catalysts and survey the key steps in the development of the new generation of industrial RuO(2)-based materials. As the expansion of this technology would benefit from cheaper, but comparably robust, alternatives to RuO(2)-based catalysts, a nov el CeO(2)-based catalyst which offers promising perspectives for application in this field has been introduced.

  4. Study of Fungal Contamination of Indoor Public Swimming Pools

    Directory of Open Access Journals (Sweden)

    H Nanbakhsh

    2004-06-01

    Full Text Available Fungi are found in different environments with variable distribution patterns depending on various factors. The aim of this study was determination of fungal contaminants in public swimming pools in Uromia, Iran. The fungal contaminations of four indoor swimming pools were studied by using membrane filtration and swab sampling method. Samples were collected by a manual plastic pump, in a 200 ml sterilized bottle. All samples were collected within 2 hours and then transferred to the laboratory. A total of 384 samples including water and environmental surfaces were collected and tested for the presence of fungi in different seasons within one year. In addition to the above information, some physical and chemical parameters such as temperature, residual chlorine, pH, turbidity of water and the number of swimmers were studied. Findings indicated that, the average temperature, pH, residual chlorine and turbidity of water in the swimming pools within one year were: 29.9°C, 8.1, 0.6 ppm and 0.8 NTU respectively. The most common fungi recovered were as follows: Asepergillus Spp. 56.25%, Candida spp. 22.9%, Rhizopus spp. 4.16 %, other filamentous fungi 16.6% and other yeast species 2.8%. The fungi such as Alternaria, Cladosporium, Philophora and Trichophyton mentagrophytis were isolated from dressing room, bathing room and other places out of pools. According to these results and previous studies on pools, it has been indicated that contamination by fungi in the pools is not significant in water and environment. Presence of dermatophytic fungus from dressing room is probably due to human contact.

  5. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, February 1, 1975--September 15, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.; Goldman, J. C.

    1975-10-01

    Research on the combined effects of chlorine, ammonia, and temperature on marine plankton have been carried out for 7/sup 1///sub 2/ months. Continuous-flow bioassay units have been constructed for larval species, juvenile fish, and phytoplankton. A detailed study on lobster (Homarus americanus) larvae and other studies on killifish (Fundulus heteroclitus) larvae and juveniles, and juvenile scup (Stenotomus versicolor) and winter flounder (Pseudopleuronectes americanus) have been performed. Results to date indicate that there is an apparent and, as yet undetermined, chlorine demand of seawater; there is a differential toxic effect of chlorine and chloramines--lobsters were more sensitive to chloramines, whereas the fish species were more affected by free chlorine; respiration results indicate that significant stress occurs at toxicant levels below the onset of mortality, thus raising questions regarding the applicability of standard bioassay data; temperature elevation exerts a strong synergistic effect on chlorine-chloramine toxicity; and effects of exposure to halogen toxicity appear irreversible as revealed by persistent reductions in metabolic activity. It appears that chlorine toxicity to marine biota can occur even though chlorine residuals cannot be detected by current analytical techniques. These results support the findings of others that chlorine toxicity is a serious environmental pollutant. (auth)

  6. Bank security dye packs: synthesis, isolation, and characterization of chlorinated products of bleached 1-(methylamino)anthraquinone.

    Science.gov (United States)

    Egan, James M; Rickenbach, Michael; Mooney, Kim E; Palenik, Chris S; Golombeck, Rebecca; Mueller, Karl T

    2006-11-01

    Banknote evidence is often submitted after a suspect has attempted to disguise or remove red dye stain that has been released because of an anti-theft device that activates after banknotes have been unlawfully removed from bank premises. Three chlorinated compounds have been synthesized as forensic chemical standards to indicate bank security dye bleaching as a suspect's intentional method for masking a robbery involving dye pack release on banknotes. A novel, facile synthetic method to provide three chlorinated derivatives of 1-(methylamino)anthraquinone (MAAQ) is presented. The synthetic route involved Ultra Clorox bleach as the chlorine source, iron chloride as the catalyst, and MAAQ as the starting material and resulted in a three-component product mixture. Two mono-chlorinated isomers (2-chloro-1-(methylamino)anthraquinone and 4-chloro-1-(methylamino)anthraquinone) and one di-chlorinated compound (2,4-dichloro-1-(methylamino)anthraquinone) of the MAAQ parent molecule were detected by gas chromatography mass spectrometry (GC-MS), and subsequently isolated by liquid chromatography (LC) with postcolumn fraction collection. Although GC-MS is sensitive enough to detect all of the chlorinated products, it is not definitive enough to identify the structural isomers. Liquid-state nuclear magnetic resonance (NMR) spectroscopy was utilized to elucidate structurally the ortho- and para-mono-chlorinated isomers once enough material was properly isolated. A reaction mechanism involving iron is proposed to explain the presence of chlorinated MAAQ species on stolen banknotes after attempted bleaching.

  7. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  8. Position, Location, Place and Area: AN Indoor Perspective

    Science.gov (United States)

    Sithole, George; Zlatanova, Sisi

    2016-06-01

    Over the last decade, harnessing the commercial potential of smart mobile devices in indoor environments has spurred interest in indoor mapping and navigation. Users experience indoor environments differently. For this reason navigational models have to be designed to adapt to a user's personality, and to reflect as many cognitive maps as possible. This paper presents an extension of a previously proposed framework. In this extension the notion of placement is accounted for, thereby enabling one aspect of the `personalised indoor experience'. In the paper, firstly referential expressions are used as a tool to discuss the different ways of thinking of placement within indoor spaces. Next, placement is expressed in terms of the concept of Position, Location, Place and Area. Finally, the previously proposed framework is extended to include these concepts of placement. An example is provided of the use of the extended framework. Notable characteristics of the framework are: (1) Sub-spaces, resources and agents can simultaneously possess different types of placement, e.g., a person in a room can have an xyz position and a location defined by the room number. While these entities can simultaneously have different forms of placement, only one is dominant. (2) Sub-spaces, resources and agents are capable of possessing modifiers that alter their access and usage. (3) Sub-spaces inherit the modifiers of the resources or agents contained in them. (4) Unlike conventional navigational models which treat resources and obstacles as different types of entities, in the proposed framework there are only resources and whether a resource is an obstacle is determined by a modifier that determines whether a user can access the resource. The power of the framework is that it blends the geometry and topology of space, the influence of human activity within sub-spaces together with the different notions of placement in a way that is simple and yet very flexible.

  9. Predictors of indoor absolute humidity and estimated effects on influenza virus survival in grade schools

    Directory of Open Access Journals (Sweden)

    Koep Tyler H

    2013-02-01

    Full Text Available Abstract Background Low absolute humidity (AH has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Humidification of indoor environments may mitigate viral transmission and may be an important control strategy, particularly in schools where viral transmission is common and contributes to the spread of influenza in communities. However, the variability and predictors of AH in the indoor school environment and the feasibility of classroom humidification to levels that could decrease viral survival have not been studied. Methods Automated sensors were used to measure temperature, humidity and CO2 levels in two Minnesota grade schools without central humidification during two successive winters. Outdoor AH measurements were derived from the North American Land Data Assimilation System. Variability in indoor AH within classrooms, between classrooms in the same school, and between schools was assessed using concordance correlation coefficients (CCC. Predictors of indoor AH were examined using time-series Auto-Regressive Conditional Heteroskedasticity models. Classroom humidifiers were used when school was not in session to assess the feasibility of increasing indoor AH to levels associated with decreased influenza virus survival, as projected from previously published animal experiments. Results AH varied little within classrooms (CCC >0.90 but was more variable between classrooms in the same school (CCC 0.81 for School 1, 0.88 for School 2 and between schools (CCC 0.81. Indoor AH varied widely during the winter (range 2.60 to 10.34 millibars [mb] and was strongly associated with changes in outdoor AH (p 2 levels (p  Conclusions During winter, indoor AH in non-humidified grade schools varies substantially and often to levels that are very low. Indoor results are predicted by outdoor AH over a season and CO2 levels (which likely reflects human activity during individual

  10. Indoor and outdoor biomonitoring using lichens at urban and rural primary schools.

    Science.gov (United States)

    Canha, N; Almeida, S M; Freitas, M C; Wolterbeek, H T

    2014-01-01

    Monitoring particulate matter (PM) and its chemical constituents in classrooms is a subject of special concern within the scientific community in order to control and minimize child exposure. Regulatory sampling methods have presented several limitations in their application to larger number of classrooms due to operational and financial constraints. Consequently, passive sampling methodologies using filters were developed for indoor sampling. However, such methodologies could not provide parallel information for outdoors, which is important to identify pollution sources and assess outdoor contribution to the indoors. Therefore, biomonitoring with transplanted lichens, a technique usually applied for outdoor studies, was used both indoor and outdoor of classrooms. Three main objectives were proposed, to (i) characterize simultaneously indoor and outdoor of classrooms regarding inorganic air pollutants, (ii) investigate spatial patterns of lichen conductivity, and (iii) assess pollution sources that contribute to a poor indoor air quality in schools. Lichens Flavoparmelia caperata were transplanted to indoor and outdoor of classrooms for 59 d. After exposure, electric conductivity of lichens leachate was measured to evaluate lichen vitality and cell damage. Outdoors lichen conductivity was higher near the main highways, and indoors there was great variability in levels, which indicates different emissions sources and different ventilation patterns. Chemical content of lichens was assessed by instrumental neutron activation analysis (INAA), and As, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sb, Sc, Sm, Sr, Ta, Th, Yb, and Zn were determined. Element accumulation, crustal enrichment factors, and spatial variability of elements were analyzed and contaminants from anthropogenic sources, such as traffic (As, Sb, and Zn) and indoor chalk (Ca) found. Classrooms with potential indoor air quality problems were identified by presenting higher accumulations of

  11. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  12. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    Science.gov (United States)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Raimbault, L.; Scheidegger, A. M.; Farges, F.; Carlot, G.

    2007-05-01

    In a nuclear reactor, 35Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, 36Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO2. For this purpose, sintered UO2 pellets were implanted with 37Cl at an ion fluence of 1013 cm-2 and successively annealed in the 1175-1475 K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and μ-XAS (at the Cl-K edge) analyses show that: the thermal migration of implanted chlorine becomes significant at 1275 K; this temperature and the calculated activation energy of 4.3 eV points out the great ability of chlorine to migrate in UO2 at relatively low temperatures, the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing, the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I, the comparison between an U2O2Cl5 reference compound and the pristine chlorine environment shows a contribution of the U2O2Cl5 to the pristine chlorine.

  13. Fingerprint Indoor Position System Based

    Directory of Open Access Journals (Sweden)

    José Antonio Gómez Martin

    2013-01-01

    Full Text Available This paper presents a research and a development of a fingerprint-indoor-positioning system using the Received Signal Strength Indication (RSSI of a Wireless Sensor Network (WSN. The WSN implementation is based on two different protocol stacks: BitCloud and OpenMAC, a certified ZigBee Compliant Platform (ZCP and an IEEE 802.15.4 embedded software implementation respectively, both from Atmel, and the system uses two different fingerprint algorithms, Simple and Centroid. A comparative analysis of both algorithms using both protocol stacks implementations have been performed to ascertain the best WSN protocol stack and the best algorithm for positioning purposes.

  14. Differential toxicity of drinking water disinfected with combinations of ultraviolet radiation and chlorine.

    Science.gov (United States)

    Plewa, Michael J; Wagner, Elizabeth D; Metz, Deborah H; Kashinkunti, Ramesh; Jamriska, Katherine J; Meyer, Maria

    2012-07-17

    Alternative technologies to disinfect drinking water such as ultraviolet (UV) disinfection are becoming more widespread. The benefits of UV disinfection include reduced risk of microbial pathogens such as Cryptosporidium and reduced production of regulated drinking water disinfection byproducts (DBPs). The objective of this research was to determine if mammalian cell cytotoxicity and genotoxicity varied in response to different chlorination protocols with and without polychromatic medium pressure UV (MPUV) and monochromatic low pressure UV (LPUV) disinfection technologies. The specific aims were to analyze the mammalian cell cytotoxicity and genotoxicity of concentrated organic fractions from source water before and after chlorination and to determine the cytotoxicity and genotoxicity of the concentrated organic fractions from water samples treated with UV alone or UV before or after chlorination. Exposure of granular activated carbon-filtered Ohio River water to UV alone resulted in the lowest levels of mammalian cell cytotoxicity and genotoxicity. With combinations of UV and chlorine, the lowest levels of cytotoxicity and genotoxicity were observed with MPUV radiation. The best combined UV plus chlorine methodology that generated the lowest cytotoxicity and genotoxicity employed chlorination first followed by MPUV radiation. These data may prove important in the development of multibarrier methods of pathogen inactivation of drinking water, while limiting unintended toxic consequences.

  15. Behavior of chlorine during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  16. Chlorine Salts at the Phoenix Landing Site

    Science.gov (United States)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  17. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  18. Interior Landscape Plants for Indoor Air Pollution Abatement

    Science.gov (United States)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  19. Source apportionment of indoor air pollution

    Science.gov (United States)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  20. Indoor climate optimization with limited resources

    DEFF Research Database (Denmark)

    Santos, A.; Gunnarsen, Lars Bo

    This report presents experimental data and models for optimisation of the indoor climate parameters temperature, noise, draught and window opening. Results are based on experiments with human subjects performed in climate chambers at University of the Philippines. The report may assist building...... designers to balance attention and resources between the parameters of the indoor climate when resources are less than optimal....

  1. Indoor environment and energy efficiency in schools

    CERN Document Server

    Bellia, Laura; Boerstra, Atze; Dijken, Froukje van; Ianniello, Elvira; Lopardo, Gino; Minichiello, Francesco; Romagnoni, Piercarlo; Gameiro da Silva, Manuel Carlos

    2010-01-01

    School buildings represent a significant part of the building stock and also a noteworthy part of the total energy use. Indoor and Energy Efficiency in Schools Guidebook describes the optimal design and operation of schools with respect to low energy cost and performance of the students. It focuses particularly on energy efficient systems for a healthy indoor environment.

  2. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  3. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    Science.gov (United States)

    1994-09-01

    chemically with each other, and with living organisms, particularly bacteria ( Manahan , 1991:435). To ensure effective disinfection, to meet the CWA...halogens are strong oxidants and are highly reactive ( Manahan , 1991:504). Chlorine is never found uncombined in nature, it exists only as the...HOCI) according to the following reaction: Cl2 (gas) + H20 =• HOC1 + H+ + Cl The hydrogen is oxidized and the chlorine gas is reduced ( Manahan , 1991

  4. Providing better indoor environmental quality brings economicbenefits

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Seppanen, Olli

    2007-06-01

    This paper summarizes the current scientific evidence that improved indoor environmental quality can improve work performance and health. The review indicates that work and school work performance is affected by indoor temperature and ventilation rate. Pollutant source removal can sometimes improve work performance. Based on formal statistical analyses of existing research results, quantitative relationships are provided for the linkages of work performance with indoor temperature and outdoor air ventilation rate. The review also indicates that improved health and related financial savings are obtainable from reduced indoor tobacco smoking, prevention and remediation of building dampness, and increased ventilation. Example cost-benefit analyses indicate that many measures to improve indoor temperature control and increase ventilation rates will be highly cost effective, with benefit-cost ratios as high as 80 and annual economic benefits as high as $700 per person.

  5. Indoor fungi and their ciliostatic metabolites.

    Science.gov (United States)

    Piecková, Elena; Kunová, Zuzana

    2002-01-01

    According to epidemiological studies, it is possible that some secondary metabolites of indoor airborne fungi could be responsible for health troubles which occupants suffer from. In our previous experiments, a model with tracheal rings of 1-day-old chicks in vitro was shown to be a very suitable method to study the ciliostatic chloroform-extractable endo- and/or exometabolites of filamentous fungi. In this study we isolated the filamentous fungi from walls of "mouldy" dwellings and schools (cultivation on dichloran 18% glycerol agar at 25 and 37 degrees C for 10 d) in Slovakia. We studied the ciliostatic effect of the chloroform-extractable endo- and exometabolites of 96 representative isolates (stationary cultivation on the liquid medium with 2% of yeast extract and 10% of sucrose at 25 degrees C for 10 days) on the cilia movement in tracheal organ cultures of 1-day-old chickens in vitro after 24, 48 and 72 hrs (incubation in the minimal essential medium according to Eagle with Earl s salts and 20 microg of extract of metabolites dissolved in dimethylsulfoxide per 1 mL). Strains of Penicillium Link: Fr. sp., Aspergillus versicolor (Vuill.) Tiraboschi, A. flavus Link, Cladosporium sphaerospermum Penzig and C. cladosporioides (Fres.) de Vries were isolated most frequently. Two A. flavus isolates were able to produce aflatoxins B1, B2, G1, G2 in vitro after cultivation on the liquid medium with 20% sucrose and 2% yeast extract. This is the first isolation of aflatoxigenic A. flavus strains from dwellings in Slovakia. All frequently isolated strains produced secondary metabolites with the strongest ciliostatic activity -- their exo- and endometabolites stopped tracheal ciliary movement in chicks till 24 h. There are some toxic fungal metabolites in the indoor air not only with the ability to destroy ciliary movement in the upper airways in vitro but, probably, during long-lasting exposure to cause general intoxication of macroorganism via lung tissue.

  6. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  7. An experimental method for quantitatively evaluating the elemental processes of indoor radioactive aerosol behavior.

    Science.gov (United States)

    Yamazawa, H; Yamada, S; Xu, Y; Hirao, S; Moriizumi, J

    2015-11-01

    An experimental method for quantitatively evaluating the elemental processes governing the indoor behaviour of naturally occurring radioactive aerosols was proposed. This method utilises transient response of aerosol concentrations to an artificial change in aerosol removal rate by turning on and off an air purifier. It was shown that the indoor-outdoor exchange rate and the indoor deposition rate could be estimated by a continuous measurement of outdoor and indoor aerosol number concentration measurements and by the method proposed in this study. Although the scatter of the estimated parameters is relatively large, both the methods gave consistent results. It was also found that the size distribution of radioactive aerosol particles and hence activity median aerodynamic diameter remained not largely affected by the operation of the air purifier, implying the predominance of the exchange and deposition processes over other processes causing change in the size distribution such as the size growth by coagulation and the size dependence of deposition.

  8. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    Science.gov (United States)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  9. RF Localization in Indoor Environment

    Directory of Open Access Journals (Sweden)

    M. Stella

    2012-06-01

    Full Text Available In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment, and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained.

  10. Indoor air and allergic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, G.; Rudolph, R.; Muckelmann, R.

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infections of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chemico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  11. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    Science.gov (United States)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  12. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    Science.gov (United States)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  13. Determining indoor air quality and identifying the origin of odour episodes in indoor environments

    Institute of Scientific and Technical Information of China (English)

    Eva Gallego; Xavier Roca; Jose Francisco Perales; Xavier Guardino

    2009-01-01

    A methodology for identifying volatile organic compounds (VOC) and determining air quality of indoor air has been developed. The air samples are collected using pump samplers by the inhabitants when they perceive odorous and/or discomfort episodes. Glass multi-sorbent tubes are connected to the pump samplers for the retention of VOC. The analysis is performed by automatic thermal desorption (ATD) coupled with gas chromatography-mass spectrometry (GC/MS). This methodology can be applied in cases of sick building syndrome (SBS) evaluation, in which building occupants experience a series of varied symptoms that appear to be linked to time spent in the building. Chemical pollutants concentrations (e.g., VOC) have been described to contribute to SBS. To exemplify the methodology, a qualitative determination and an evaluation of VOC present were performed in a dwelling where the occupants experienced the SBS symptoms. Higher total VOC (TVOC) value was detected in episodes in indoor air (1.33 ( 1.53 mg/m3) compared to outdoor air (0.71 ( 0.46 mg/m3). The concentrations of individual VOCs, such as ethanol, acetone, isopropanol, 1-butanol, acetic acid, acetonitrile and 1-metoxy-2-propanol, were also higher than the expected for a standard dwelling. The external source of VOC was found to be a not declared activity of storage and manipulation of solvents located at the bottom of a contiguous building.

  14. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  15. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  16. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable.

  17. Maxillofacial prostheses of chlorinated polyethylene.

    Science.gov (United States)

    May, P D

    1978-05-01

    There is clearly a need for maxillofacial prosthetic materials with improved properties. The chlorinated polyethylenes are thermoplastic elastomers which have particularly promising properties, and were used by us to prepare improved maxillofacial prostheses. Suitable CPE resins were compounded with other polymers and with pigments on a heated rubber mill to form thin sheets in a variety of shades. These were heated at 190 degrees C for 10 min and placed between heated linotype mold halves. The prosthesis was formed in a hand press. Sometimes heating and pressing were repeated. After cooling in water, the prosthesis was removed and hand-shaded with oil-soluble dyes. Physical properties were evaluated using standard techniques; skin irritation studies were conducted by 14-day insult patch tests on rabbits. Clinical evaluations were conducted on human volunteers. Parallel evaluations were conducted on commerically available materials for comparison. The CPE was superior to all of the three commerical materials in most properties, and comparable to the better of the three in the remaining properties. On balance, CPE was significantly superior. Early results indicate that the materials and techniques required are easily handled in the dental lab and that the final prosthesis has excellent aesthetic and patient acceptability.

  18. Chlorine Abundances in Cool Stars

    CERN Document Server

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  19. Improving HSDPA Indoor Coverage and Throughput by Repeater and Dedicated Indoor System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The target of the paper is to provide guidelines for indoor planning and optimization using an outdoor-to-indoor repeater or a dedicated indoor system. The paper provides practical information for enhancing the performance of high-speed downlink packet access (HSDPA in an indoor environment. The capabilities of an outdoor-to-indoor analog WCDMA repeater are set against a dedicated indoor system and, furthermore, compared to indoor coverage of a nearby macrocellular base station. An extensive measurement campaign with varying system configurations was arranged in different indoor environments. The results show that compared to dedicated indoor systems, similar HSDPA performance can be provided by extending macrocellular coverage inside buildings using an outdoor-to-indoor repeater. According to the measurements, the pilot coverage planning threshold of about −80 dBm ensures a 2500 kbps throughput for shared HSDPA connections. Improving the coverage above −80 dBm seems to provide only small advantage in HSDPA throughput. Of course, the pilot planning thresholds may change if different channel power allocations are used. In addition, network performance can be further improved by increasing the antenna density in the serving distributed antenna system. Finally, good performance of repeater implementation needs careful repeater gain setting and donor antenna siting.

  20. Improving HSDPA Indoor Coverage and Throughput by Repeater and Dedicated Indoor System

    Directory of Open Access Journals (Sweden)

    Isotalo Tero

    2008-01-01

    Full Text Available Abstract The target of the paper is to provide guidelines for indoor planning and optimization using an outdoor-to-indoor repeater or a dedicated indoor system. The paper provides practical information for enhancing the performance of high-speed downlink packet access (HSDPA in an indoor environment. The capabilities of an outdoor-to-indoor analog WCDMA repeater are set against a dedicated indoor system and, furthermore, compared to indoor coverage of a nearby macrocellular base station. An extensive measurement campaign with varying system configurations was arranged in different indoor environments. The results show that compared to dedicated indoor systems, similar HSDPA performance can be provided by extending macrocellular coverage inside buildings using an outdoor-to-indoor repeater. According to the measurements, the pilot coverage planning threshold of about −80 dBm ensures a 2500 kbps throughput for shared HSDPA connections. Improving the coverage above −80 dBm seems to provide only small advantage in HSDPA throughput. Of course, the pilot planning thresholds may change if different channel power allocations are used. In addition, network performance can be further improved by increasing the antenna density in the serving distributed antenna system. Finally, good performance of repeater implementation needs careful repeater gain setting and donor antenna siting.

  1. Reactions of polynuclear aromatic hydrocarbons with chlorine and chlorine dioxide in coal tar lined pipes

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.; Maier, M.; Sacher, F.; Maier, D. [University of Karlsruhe, Karlsruhe (Germany). Engler Bunte Institut

    1997-12-31

    In the presence of disinfectants, PAH are remobilised from the coal tar lining of water distribution mains. Reactions of the PAH with chlorine and chlorine dioxide can lead to chlorinated PAH that might show higher mutagenic effects that the parent PAH. Detection limits in the lower nanogram-per-litre level for the determination of PAH and chlorinated PAH were achieved by using solid phase micro extraction and a gas chromatographic mass spectrometric device. Thus, the reactions of four PAH (anthracene, fluoranthene, fluorene and phenanthrene) with chlorine and chlorine dioxide under conditions and at concentrations of common practice in the drinking water distribution system could be investigated. In batch experiments with demineralised and drinking water at pH 7, the concentrations of fluoranthene, fluorene and phenanthrene remained constant, whereas anthracene reacted quantitatively with both disinfectants. The reaction of anthracene followed by pseudo-first order kinetics. In these reactions no chlorinated products could be detected, only monohydroxyanthracene and anthraquinone were identified. The toxic effect of a set of chlorinated and oxidised PAH was also examined.

  2. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Bormate (BrO3-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions,particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and,simultaneously, 6.6%-32% of Br- was oxidized to BrO3-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.

  3. Impact of January 2005 solar proton events on chlorine species

    Directory of Open Access Journals (Sweden)

    A. Damiani

    2012-05-01

    Full Text Available Sudden changes in stratospheric chlorine species in the polar northern atmosphere, caused by the Solar Proton Events (SPEs of 17 and 20 January 2005, have been investigated and compared with version 4 of the Whole Atmosphere Community Climate Model (WACCM4. We used Aura Microwave Limb Sounder (MLS measurements to monitor the variability of ClO, HCl, HOCl and Michelson Interferometer for Passive Atmospheric Sounder (MIPAS on ENVISAT to retrieve ClONO2. SPE-induced chlorine activation has been identified. HCl decrease occurred at nearly all the investigated altitudes (i.e., 10–0.5 hPa with the strongest decrease (of about 0.25 ppbv on 21 January. HOCl was found to be the main active chlorine species under nighttime conditions (with increases of more than 0.2 ppbv whereas both HOCl and ClO enhancements (about 0.1 ppbv have been observed at the polar night terminator. Further, small ClO decreases (of less than 0.1 ppbv and ClONO2 enhancements (about 0.2 ppbv have been observed at higher latitudes (i.e., at nighttime roughly above 2 hPa.

    While WACCM4 reproduces most of the SPE-induced variability in the chlorine species fairly well, in some particular regions discrepancies between the modeled and measured temporal evolution of the abundances of chlorine species were found. HOCl changes are modelled very well with respect to both magnitude and geographic distribution. ClO decreases are reproduced at high latitudes, whereas ClO enhancements in the terminator region are underestimated and attributed to background variations. WACCM4 also reproduces the HCl depletion in the mesosphere but it does not show the observed decrease below about 2 hPa. Finally, WACCM4 simulations indicate that the observed ClONO2 increase is dominated by background variability, although SPE-induced production might contribute by 0.1 ppbv.

  4. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  5. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  6. Research of indoor smoke warning and air purification equipment

    Institute of Scientific and Technical Information of China (English)

    Wangronglong; Zhaoyexing; Fuyunhua

    2015-01-01

    In order to reduce indoor smoke concentration and improve indoor air quality,we put forward the intelligent indoor smoke warning and air purification device. This device can quickly reduce the concentration of indoor smoke by the air purification and fire alarm function. It provides a suitable living environment for people.

  7. Chlorine dioxide treatment for zebra mussel control

    Energy Technology Data Exchange (ETDEWEB)

    Rybarik, D. [Dairyland Power Cooperative, La Crosse, WI (United States); Byron, J. [Nalco Chemical Company, Naperville, IL (United States); Germer, M. [Rio Linda Chemical Company, Sacramento, CA (United States)

    1995-06-01

    Chlorine is recognized and commonly used biocide for power plant cooling water and service water treatment programs, including the control of zebra mussels. Chlorine dioxide has recently become a popular method of zebra mussel control because of its economy, safety, environmental acceptability, and effectiveness when compared to other mussel control methods. This control technique was recently demonstrated at Dairyland Power Cooperative`s Alma Generating Station on the east bank of the upper Mississippi River in Alma, Wisconsin. The project was assisted with EPRI Tailored Collaboration Program funds. The Dairyland Power Alam Generating Station consists of five generating units that utilize raw, untreated Mississippi River water for condenser, circulating, and service water supplies. The first units were built in 1947, with the final and largest unit being completed in 1960. Total station generating capacity is 200 MW. Because of recent increases in the zebra mussel density at the station intake, Dairyland Power selected the team of Nalco and Rio Linda to perform a chlorine dioxide treatment of the station`s new water systems to eradicate and control the mussels before their presence created operational difficulties. This paper will present the results of the treatment including treatment theory, design and construction of the treatment system, the method of chlorine dioxide generation, treatment concentration, analytical methods o monitoring chlorine dioxide generation, residuals and trihalomethane (THM) concentrations, protocol for monitoring treatment mortality, and the effects of chlorine dioxide and detoxification on other water chemistry parameters and equipment materials. The goal of this paper is to inform and assist users with establishing consistent and uniform practices for safely utilizing and monitoring chlorine dioxide in the eradication and control of zebra mussels.

  8. Indoor air quality – buildings design

    Directory of Open Access Journals (Sweden)

    Juhásová Šenitková Ingrid

    2017-01-01

    Full Text Available Growing attention is being paid to indoor air quality as one of the main health and well-being factors. The indoor research is concerned mostly to indoor air chemicals within indoor engineering related to building design. The providing good indoor air quality can be achieved effectively by avoiding or reducing indoor air pollution sources and by selecting low-polluting building materials, both being low-cost and energyefficient solutions. On the base of the last large experimental monitoring results, it was possible to know the level of selected indoor chemicals occurrence, rank them as well as to predict the tendencies of occurrence and establish the priorities for the future. There has been very limited attention to rigorous analysis of buildings actual environmental impacts to date. Healthy/green/sustainable building practices are typically applied in unsystematic and inconsistent ways often without resolution of inherent conflicts between and among such practices. Designers, products manufacturers, constructors, and owners declare their buildings and the applied technologies to be beneficial to the environment without validating those claims.

  9. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine

    Institute of Scientific and Technical Information of China (English)

    Meiquan Cai; Liqiu Zhang; Fei Qi; Li Feng

    2013-01-01

    Owing to its low cost,free chlorine is one of the most common disinfectants for wastewater and drinking water treatment.However,the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades.Antipyrine (ANT),an anti-inflammatory analgesic,has been frequently detected in the aquatic environment.In this work.the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments.The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L,free chlorine dosage from 0.30 to 1.31 mg/L,and pH from 1.5 to 9.0.The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry.The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L,ANT 0.5 mg/L,pH 7.0).Higher oxidant dosage,lower ANT initial concentration and low pH favor the ANT removal.The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro1,5-dimethyl-2-phenyl-3H-pyrazol-3-one),which can be further chlorinated by free chlorine.In addition,the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  10. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    Science.gov (United States)

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  11. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  12. Assessment of indoor environment of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.; Kovanen, K. [VTT Building Technology, Espoo (Finland). Indoor Environment and Systems

    1995-12-31

    The synthetical assessment of indoor environment has become world-wide topic in recent years. Many research evidences have shown that the quality of indoor air is a multi-factor influenced issue. Building Research Establishment (BRE) in United Kingdom has worked out a series of assessing methods for different kinds of buildings. Whereas, in Finland, National Building Code of Finland has been used for many years. The comparison between the two approaches in assessing indoor air quality will be addressed in this presentation. Each issue considered in the above two approaches is discussed by referring the recent research highlights. (author)

  13. Simulation Analysis of Indoor Gas Explosion Damage

    Institute of Scientific and Technical Information of China (English)

    钱新明; 陈林顺; 冯长根

    2003-01-01

    The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.

  14. Indoor localisation with Android devices

    OpenAIRE

    Magaz Graça, Alexandre

    2013-01-01

    This project analyses WiFiSLAM, an indoor positioning system for mobile phones that tries to estimate the position by analysing WiFi signals. Este proyecto analiza WiFiSLAM, un sistema de posicionamiento en interiores para teléfonos móviles que trata de estimar la posición mediante el análisis de señales WiFi. Aquest projecte analitza WiFiSLAM, un sistema de posicionament en interiors per a telèfons mòbils que tracta d'estimar la posició mitjançant l'anàlisi de senyals WiFi.

  15. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  16. Distribution, identification, and quantification of residues after treatment of ready-to-eat salami with 36Cl-labeled or nonlabeled chlorine dioxide gas

    Science.gov (United States)

    Chlorine dioxide gas actively eliminates a variety of food-borne pathogens and rot organisms, including Listeria monocytogenes on food and food preparation surfaces. However the disposition and fate of chlorine dioxide gas on ready-to-eat meat products has not been previously described. When ready-t...

  17. Chlorination of organophosphorus pesticides in natural waters.

    Science.gov (United States)

    Acero, Juan L; Benítez, F Javier; Real, Francisco J; González, Manuel

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 degrees C and pH 7 were determined to be 110.9, 0.004 and 191.6 M(-1) s(-1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L(-1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  18. Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing.

    Directory of Open Access Journals (Sweden)

    Lihui Huang

    Full Text Available Ambient fine particulate matter (PM2.5 pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing.In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration.Hourly ambient PM2.5 mass concentrations were 3-280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4-193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r ≥ 0.90, p < 0.0001, and the ambient data explained ≥ 84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations.PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as exposure surrogates. PM2

  19. Disinfection of football protective equipment using chlorine dioxide produced by the ICA TriNova system

    Directory of Open Access Journals (Sweden)

    DuBois John D

    2009-09-01

    Full Text Available Abstract Backround Community-associated methicillin-resistant Staphylococcus aureus outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to eliminate bacteria contamination of helmets and pads used by individuals engaged in football. Methods In field studies, the number of bacteria associated with heavily used football helmets and shoulder pads was determined before and after overnight treatment with chlorine dioxide gas. Bacteria were recovered using cotton swabs and plated onto trypticase soy agar plates. In laboratory studies, Staphylococcus aureus was applied directly to pads. The penetration of bacteria into the pads was determined by inoculating agar plates with portions of the pads taken from the different layers of padding. The ability to eliminate bacteria on the pad surface and underlying foam layers after treatment with chlorine dioxide was also determined. Results Rates of recovery of bacteria after treatment clearly demonstrated that chlorine dioxide significantly (p 3 recoverable bacteria colonies before chlorine dioxide treatment and 1.3 × 102 recoverable colonies after treatment. In addition, the gas was capable of penetrating the mesh surface layer and killing bacteria in the underlying foam pad layers. Here, 7 × 103 to 4.5 × 103 laboratory applied S. aureus colonies were recovered from underlying layers before treatment and 0 colonies were present after treatment. Both naturally occurring bacteria and S. aureus were susceptible to the treatment process. Conclusion Results of this study have shown that chlorine dioxide can easily and safely be used to eliminate bacteria

  20. Non-destructive analysis of chlorine in fly ash cement concrete

    Science.gov (United States)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  1. On the chemical nature of boundary lubrication of stainless steel by chlorine - and sulfur-containing EP-additives

    DEFF Research Database (Denmark)

    Petrushina, Irina; Christensen, Erik; Bergqvist, Rene Stig

    2000-01-01

    The nature of the extreme pressure CEP) effect of the dialkylpolysulfides and chlorinated paraffins during the ironing of stainless steel AISI 304 has been studied. A strip reduction test was used in combination with differential thermal analysis (DTA), profilometry, X-ray photoelectron...... was equally active with iron, chromium and nickel. The better lubrication performance demonstrated by chlorinated paraffin compared to dialkylpolysulfides was attributed to the chemical activity of the chlorinated paraffin with all the main components of stainless steel. The depth profiles of the stainless...... steel strips were examined before and after strip reduction by use of AES sputter profiling. Results imply that the chlorine containing lubricant enforces the formation of a thick oxide layer. (C) 2000 Elsevier Science S.A. All rights reserved....

  2. Many College Women Ignore Indoor Tanning's Risks

    Science.gov (United States)

    Skip navigation U.S. National Library of Medicine Menu ... Ignore Indoor Tanning's Risks 7 out of 10 surveyed overlook connection to skin cancer To use the sharing features on this page, please enable ...

  3. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    Skip Navigation National Library of Medicine Environmental Health Student Portal Connecting Middle School Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air ...

  4. Indoor Positioning using Wi-Fi

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Krarup, Mads Vering; Stisen, Allan;

    The past decade has witnessed substantial research on methods for indoor Wi-Fi positioning. While much effort has gone into achieving high positioning accuracy and easing fingerprint collection, it is our contention that the general problem is not sufficiently well understood, thus preventing...... deployments and their usage by applications to become more widespread. Based on our own and published experiences on indoor Wi-Fi positioning deployments, we hypothesize the following: Current indoor Wi-Fi positioning systems and their utilization in applications are hampered by the lack of understanding...... of the requirements present in the real-world deployments. In this paper, we report findings from qualitatively studying organisational requirements for indoor Wi-Fi positioning. The studied cases and deployments cover both company and public-sector settings and the deployment and evaluation of several types...

  5. Monocular Vision SLAM for Indoor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Koray Çelik

    2013-01-01

    Full Text Available This paper presents a novel indoor navigation and ranging strategy via monocular camera. By exploiting the architectural orthogonality of the indoor environments, we introduce a new method to estimate range and vehicle states from a monocular camera for vision-based SLAM. The navigation strategy assumes an indoor or indoor-like manmade environment whose layout is previously unknown, GPS-denied, representable via energy based feature points, and straight architectural lines. We experimentally validate the proposed algorithms on a fully self-contained microaerial vehicle (MAV with sophisticated on-board image processing and SLAM capabilities. Building and enabling such a small aerial vehicle to fly in tight corridors is a significant technological challenge, especially in the absence of GPS signals and with limited sensing options. Experimental results show that the system is only limited by the capabilities of the camera and environmental entropy.

  6. Comprehensive Smokefree Indoor Air PDF Slides

    Data.gov (United States)

    U.S. Department of Health & Human Services — Download the comprehensive smokefree indoor air slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found at:...

  7. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, W.E. Jr. [Alabama Power Co./GSC No. 8, Birmingham, AL (United States); Laylor, M.M. [Univ. of Alabama, Birmingham, AL (United States)

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  8. Microbiological aspects of the removal of chlorinated hydrocarbons from air

    NARCIS (Netherlands)

    Dolfing, Jan; Wijngaard, Arjan J. van den; Janssen, Dick B.

    1993-01-01

    Chlorinated hydrocarbons are widely used synthetic chemicals that are frequently present in industrial emissions. Bacterial degradation has been demonstrated for several components of this class of compounds. Structural features that affect the degradability include the number of chlorine atoms and

  9. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara;

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  10. The Study on Using Passive RFID Tags for Indoor Positioning

    Directory of Open Access Journals (Sweden)

    S.L. Ting

    2011-02-01

    Full Text Available Radio frequency identification (RFID is the technology that put an RFID tag on objects or people, so that they can be identified, tracked, and managed automatically. With its wide application in the automobile assembly industry, warehouse management and the supply chain network, RFID has been recognized as the next promising technology in serving the positioning purpose. Existing positioning technologies such as GPS are not available indoors as the terminal cannot get the signal from satellites. To enhance the availability of the positioning systems for indoors, the development of RFID positioning system for locating objects or people have became a hot topic in recent research. Compared with conventional active and high‐cost solutions, this paper studied the feasibility of using passive RFID tags for indoor positioning and object location detection to provide real time information for tracking movement. Results of experiment show that readability of the passive RFID positioning system is satisfactory, and it is a more cost effective solution when compared with other positioning technologies.

  11. Predicting indoor pollutant concentrations, and applications to air quality management

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  12. Indoor Air Pollution by Methylsiloxane in Household and Automobile Settings.

    Science.gov (United States)

    Meng, Fanyong; Wu, Hao

    2015-01-01

    This study examines characteristics of atmospheric methylsiloxane pollution in indoor settings where interior renovation/redecoration is being undertaken, in addition to ordinary family homes and inside family cars. Concentrations of atmospheric methylsiloxane in these locations were approximately one order of magnitude higher than that in outdoor areas. The average indoor concentration of methylsiloxane where renovation was being undertaken was 9.4 μg/m3, which is slightly higher than that in an ordinary family home (7.88 μg/m3), while samples from family cars showed lower concentration (3.10 μg/m3). The indoor atmospheric concentration during renovation/redecoration work was significantly positively correlated with the duration of the work. The structure of atmospheric methylsiloxane pollution is basically the same in these three venues. The concentration of annulus siloxane was much higher than that of linear compounds (85% of the total methylsiloxane concentrations). Household dust in average family homes showed total methylsiloxane concentration of 9.5 μg/m3 (average); the structure mainly consisted of linear siloxane (approximately 98% of total concentration), thereby differing from that of atmospheric methylsiloxane pollution. The comparatively high concentration of methylsiloxane in these three venues indicates that interior renovation and decoration work, and even travelling in cars, can involve exposure to more serious siloxane contamination during everyday activities.

  13. Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Erkelens, Corrie; Galan, L.

    1985-01-01

    The chlorination of terrestrial humic acid was studied at pH 7. 2 with varying chlorine to carbon ratios. The principal products are chloroform, di- and trichloroacetic acid, and chlorinated C-4 diacids. At a high chlorine dose many new chlorination products were detected, among them chlorinated aro

  14. Indoor Climate and Air Quality Problems

    DEFF Research Database (Denmark)

    Valbjørn, O.; Hagen, H.; Kukkonen, E.;

    This report presents a stepwise method for the investigation of and remedial actions for indoor climate and air quality problems. The report gives the basis for evaluation of the prevalence and causes of building related symptoms like mucosal irritation and headache. The report adresses members...... of occupational health and safety organisations, consulting engineers and architects, and also the people responsible for the operation of buildings and installations which is essential for the indoor climate and air quality....

  15. Risk of Lung Cancer and Indoor Radon Exposure in France

    Energy Technology Data Exchange (ETDEWEB)

    Baysson, H.; Tirmarche, M.; Tymen, G.; Ducloy, F.; Laurier, D.

    2004-07-01

    It is well established that radon exposure increases risks of lung cancer among underground miners. to estimate the lung cancer risk linked to indoor radon exposure, a hospital based case-control study was carried out in France, With a focus on precise reconstruction of past indoor radon exposure over the 30 years preceding the lung cancer diagnosis. The investigation rook place from 1992 to 1998 in four regions of France: Auvergne, Brittany, Languedoc and Limousin. During face-to-face interviews a standardized questionnaire was used to ascertain demographic characteristics, information on active and passive smoking, occupational exposure, medical history as well as extensive details on residential history. Radon concentrations were measured in the dwellings where subjects had lived at least one year during the 5-30 year period before interview. Measurements of radon concentrations were performed during a 6-month period, using two Kodalpha LR 115 detectors, one in the living room and one in the bedroom. The time-weighted average (TWA) radon concentration for a subject during the 5-30 year period before interview was based on radon concentrations over all addresses occupied by the subject weighted by the number of years spent at each address. For the time intervals without available measurements, we imputed the region-specific arithmetic average of radon concentrations for measured addresses of control subjects. Lung cancer risk was examined in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking and occupational exposure. The estimated relative a risk per 100 Bq/m''3 was 1.04, at the borderline of statistical significance (95 percent Confidence Interval: 0.99, 1..1). These results are in agreement with results from other indoor radon case-control studies and with extrapolations from underground miners studies. (Author) 31 refs.

  16. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    Science.gov (United States)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  17. Chlorine: Undergraduate Research on an Element of Controversy

    Science.gov (United States)

    Chang, Hasok

    2009-04-01

    If chemical elements were people, chlorine would be a celebrity. Although intrinsically no more or less important than any other element, chlorine has had a knack of making headlines. The genre of "object biography" has been quite successful in popular science recently. We took this opportunity to write a "biographical" study of chlorine. Chlorine's wide range of interesting controversies is well suited for attracting and maintaining the enthusiasm of the diverse range of students we teach in our department.

  18. Comparing a microbial biocide and chlorine as zebra mussel control strategies in an Irish drinking water treatment plant

    Directory of Open Access Journals (Sweden)

    Sara Meehan

    2013-06-01

    Full Text Available A need exists for an environmentally friendly mussel control method to replace chlorine and other traditional control methods currentlyutilised in drinking water plants and other infested facilities. Zequanox® is a newly commercialised microbial biocide for zebra and quaggamussels comprised of killed Pseudomonas fluorescens CL145A cells. The objective of this study was to compare the efficacy of adevelopmental formulation of Zequanox (referred to as MBI 401 FDP and chlorine treatments on adult and juvenile zebra mussels byrunning a biobox trial in conjunction with chlorine treatments at an infested Irish drinking water treatment plant. Since 2009, the plantmanagement has used a residual chlorine concentration of 2 mg/L in autumn to control both adult zebra mussels and juvenile settlement intheir three concrete raw water chambers. Juvenile mussel settlement was monitored in three bioboxes as well as in three treatment chambersin the plant for three months prior to treatment. Adult mussels were seeded into the chambers and bioboxes four days before treatment. InOctober 2011, the bioboxes were treated with MBI 401 FDP at 200 mg active substance/L, while chlorine treatment took place in the waterchambers. The MBI 401 FDP treatment lasted only 8 hours while chlorine treatment lasted seven days. Juvenile numbers were reduced tozero in both the bioboxes and treated chambers within seven days. Adult mussel mortality reached 80% for both the chlorine and MBI 401FDP treatment; however, mortality was achieved faster in the chlorine treatment. These results provided important insights into zebra musselcontrol alternatives to chlorine and supported further development of the now commercial product, Zequanox.

  19. Determination of chlorine in silicate rocks

    Science.gov (United States)

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  20. INDOOR ENVIRONMENTAL COMFORT IN MALAYSIAN URBAN HOUSING

    Directory of Open Access Journals (Sweden)

    Yaik-Wah Lim

    2013-01-01

    Full Text Available In Malaysia, terraced houses have been rapidly constructed since 50 years ago and account for 44% of the existing urban housings. However, these houses have very limited use of natural ventilation and daylighting due to openings with small window-to-floor ratio. The deep plan design causes gloomy indoor spaces, low air change rate and poor indoor air quality. Studies showed that indoor environments have major impact on occupants’ well-being. Thereby this study evaluates the effects of indoor comforts on occupants’ perceived health in Malaysian typical terraced houses. Survey of terraced houses in Johor Bahru, Malaysia was conducted using questionnaire. Various terraced houses were studied to identify the critical comfort and health issues in terraced housing. The relationships among occupants’ perceived comforts, health and behavior were studied. The variance of types of terraced house was also analyzed. The findings demonstrated significant linear relationships between indoor comfort and health. However, occupants’ behavior did not give significant impact on thermal comfort. This study concludes that it is very essential to improve indoor comfort in Malaysian typical terraced houses through tropical design strategies to enhance occupants’ well-being.

  1. Indoor environment program - 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.

    1996-06-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  2. NFC internal: an indoor navigation system.

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-03-27

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  3. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  4. Indoor environment program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  5. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution

    Directory of Open Access Journals (Sweden)

    Jui-Wen Ma

    2017-03-01

    Full Text Available In this study, a chlorine dioxide solution (UC-1 composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50 of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.

  6. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution

    Science.gov (United States)

    Ma, Jui-Wen; Huang, Bin-Syuan; Hsu, Chu-Wei; Peng, Chun-Wei; Cheng, Ming-Long; Kao, Jung-Yie; Way, Tzong-Der; Yin, Hao-Chang; Wang, Shan-Shue

    2017-01-01

    In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports. PMID:28327506

  7. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water

    Institute of Scientific and Technical Information of China (English)

    Veeriah Jegatheesan; Seung Hyun Kim; C. K. Joo; GAO Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong river that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand due to FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  8. Thermal electron attachment to chlorinated alkenes in the gas phase

    Science.gov (United States)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  9. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  10. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    Science.gov (United States)

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  11. 甲醛污染对3种室内观叶植物叶片保护酶活性的影响%Effects of Formaldehyde Pollution on Leaf Protective Enzymatic Activities of 3 Kinds of Indoor Leaf-viewed Plant

    Institute of Scientific and Technical Information of China (English)

    赵辉; 郝振萍; 金潇潇; 刘薇萍

    2009-01-01

    The purification abilities of ivy, Sansevieria trifasciata 'Laurentii'and Chlorophytum comosum on formaldehyde pollution and the change of leaf protective enzymatic activities of the 3 kinds of indoor leaf-viewed plant were studied. The results showed that the purification ability of 3 kinds of indoor leaf-viewed plant on formaldehyde pollution from big to small in order was ivy > S. trifasciata 'Laurentii'>Chlorophytum comosum. Formaldehyde pollution could increase the MDA contents and SOD activities of the leaves of 3 kinds of plant.%研究了常春藤、金边虎尾兰和吊兰对甲醛污染的净化能力及其保护酶活性的变化.结果表明,3种植物对甲醛污染的净化能力依次为常春藤>金边虎尾兰>吊兰;甲醛污染造成3种植物叶片MDA含量和SOD活性上升.

  12. Acute toxicity evaluation for quinolone antibiotics and their chlorination disinfection processes.

    Science.gov (United States)

    Li, Min; Wei, Dongbin; Du, Yuguo

    2014-09-01

    Acute toxicity of 21 quinolone antibiotics was monitored using photobacterium Vibrio fischeri assay. The minimum IC20 (inhibitory concentration for 20% luminescence elimination) was obtained at the least 18.86μmol/L for the tested quinolones. A quantitative structure-activity relationship model was established to investigate the possible mechanism for the acute toxicity. The critical physicochemical descriptors, describing σ and π atom electronegativity, implied that the electron transfer might occur between the quinolones and photobacterium V. fischeri. Although the quinolones exhibited limited acute toxicity to photobacterium, toxicity elevation was detected after their chlorination. Hence, chlorination disinfection treatment of quinolone-containing water should be of concerns.

  13. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies.

  14. Prompt gamma ray evaluation for chlorine analysis in blended cement concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Kalakada, Zameer; Al-Amoudi, O S B

    2014-12-01

    Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

  15. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  16. Indoor biological pollution; L'inquinamento ambientale negli ambienti indoor

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy)

    2000-06-01

    Inside buildings - besides the umpteen toxic substances emanating from materials and appliances used daily for the most assorted activities - there are may be a number of different pathogenic micro-organisms able to cause diseases and respiratory system infections. Indoor pollution caused by biological agents may be due not only to living microorganisms, but also to dead ones or to the produce of their metabolism as well as to allergens. The most efficient precautionary measure against biological agents is to ventilate the rooms one lives in. In case of air-conditioning, it's good rule to keep air pipes dry and clean, renewing filters at regular intervals in order to avoid fungi and bacteria from settling in. [Italian] All'interno degli edifici oltre alle innumerevoli sostanze tossiche che si sprigionano da materiali e apparecchiature impiegate nelle piu' svariate attivita' quotidiane vi possono essere diversi microorganismi patogeni in grado di provocare malattie ed infezioni dell'apparato respiratorio. L'inquinamento indoor da agenti biologici puo' essere dovuto non solo ai microorganismi viventi ma anche a quelli morti, oppure ai prodotti del loro metabolismo ed anche agli allergeni. Il mezzo di prevenzione piu' efficace nel confronto degli agenti biologici consiste nel ricambio di aria all'interno dei locali in cui si vive. In presenza di impianti di climatizzazione, una buona regola e' quella di mantenere pulite e asciutte le condotte dell'aria, sostituendo periodicamente i filtri per evitare l'insediamento di funghi e batteri.

  17. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  18. Method and apparatus for producing chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Santillie, P.W.; Ramras, D.M.

    1984-05-29

    A continuous method and apparatus are described for the efficient production of gaseous chlorine dioxide by the reaction between gaseous sulfur dioxide and an aqueous solution of a metallic chlorate. The chlorate solution and a highly concentrated sulfur dioxide gas are introduced into a packed columnar chamber at closely adjacent locations at the bottom of the chamber so as to flood the chamber and maximize both the contact area and contact time of the two reactants. Throughout the reaction the chamber is subjected to high vacuum imposed by an eductor which exhausts the chlorine dioxide gas and spent reactants. For use of the chlorine dioxide to produce potable water or treat foodstuffs, the chlorine dioxide and spent reactants are exhausted from the chamber separately by respective eductors substantially balanced with respect to each other to impose comparable vacuums upon the chamber. Because of the high efficency of the reaction, substantial heat is generated therefrom which is absorbed by a coolant flowing through a jacket surrounding the chamber. The flow rate of the coolant and flow rate of the reactants into the chamber are porportional due to the dependency of the reactant flow rate on the coolant flow rate.

  19. Photoabsorption and photoionization of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Flesch, R.; Ruehl, E.; Hottmann, K.; Baumgaertel, H. (Freie Universitaet Berlin (Germany))

    1993-01-28

    Photoprocesses of chlorine dioxide in the near-UV have become highly important for stratospheric photoprocesses at high latitudes, especially in Antarctica. Chlorine dioxide has been identified among other absorbers because of its specific absorption cross section in the near-UV. Possible contributions of chlorine dioxide photochemistry to polar ozone depletion have been discussed recently. The high-resolution He I photoelectron spectrum and the absolute (vacuum-UV) absorption cross section (6-25 eV) as well as the ionic fragmentation of chlorine dioxide (OCIO) are reported. The photoelectron spectrum is interpreted in terms of exchange splitting effects of the various singlet and triplet cation states as well as by comparison to chemically related molecules. The vacuum-UV absorption spectrum shows different Rydberg series converging to the cation states. These Rydberg series and their vibrational progressions are assigned by term value arguments, dipole selection rules, and comparison with the photoelectron spectrum. Photoionization mass spectrometry is used for measurements of the ionization and fragmentation threshold of OCIO. The major fragment is ClO[sup +] which occurs above 13.4 eV. Thermomechanical data such as heats of formation and bond dissociation energies are derived. No evidence for isomerization of OClO[sup +] is found, as observed for the electronically excited neutral molecule. 54 refs., 6 figs., 7 tabs.

  20. Inhibitor treatment program for chlorine dioxide corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, J.G.; Holder, E.P.

    1991-11-12

    This patent describes a method of inhibiting corrosion by chlorine dioxide in oil field waterflood systems by adding a sufficient amount of a corrosion inhibiting composition. It comprises a phosphonate, a copolymer consisting of repeating units of acrylic acid/allyl hydroxy propyl sulfonate ether, and a permangante.

  1. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    Science.gov (United States)

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.

  2. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  3. Indoor Air Quality in Selected Samples of Primary Schools in Kuala Terengganu, Malaysia

    Directory of Open Access Journals (Sweden)

    Marzuki Ismail

    2010-01-01

    Full Text Available Studies have found out that indoor air quality affects human especially children and the elderly more compared to ambient atmospheric air. This study aims to investigate indoor air pollutants concentration in selected vernacular schools with different surrounding human activities in Kuala Terengganu, the administrative and commercial center of Terengganu state. Failure to identify and establish indoor air pollution status can increase the chance of long-term and short-term health problems for these young students and staff; reduction in productivity of teachers; and degrade the youngsters learning environment and comfort. Indoor air quality (IAQ parameters in three primary schools were conducted during the monsoon season of November 2008 for the purposes of assessing ventilation rates, levels of particulate matter (PM10 and air quality differences between schools. In each classroom, carbon monoxide (CO, CO2, air velocity, relative humidity and temperature were performed during school hours, and a complete walkthrough survey was completed. Results show a statistically significant difference for the five IAQ parameters between the three schools at the 95.0% confidence level. We conclude our findings by confirming the important influence of surrounding human activities on indoor concentrations of pollutants in selected vernacular schools in Kuala Terengganu.

  4. Effect of chimneys on indoor air concentrations of PM10 and benzo(a)pyrene in Xuan Wei, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, L.W.; Lan, Q.; Yang, D.; He, X.Z.; Yu, I.T.S.; Hammond, S.K. [Chinese University of Hong Kong, Hong Kong (China). School for Public Health

    2009-07-15

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 {mu} m or less (PM10) and of benzo(a)pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 mu m or less (PM10) by 66% and of benzo(a)pyrene (BaP) by 84%. The average BaP content of PM10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  5. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L.

    Isotopic ratios of boron and chlorine were measured in the upper 2000 m water column of the Central Indian Ridge from two tectonically active areas, one at 5°S and other at 10°S which coincided with the spreading regime of the Central Indian Ridge...

  6. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    Directory of Open Access Journals (Sweden)

    Mireille Guay

    2010-08-01

    Full Text Available Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.

  7. Mobile Augmented Reality enhances indoor navigation for wheelchair users

    Directory of Open Access Journals (Sweden)

    Luciene Chagas de Oliveira

    Full Text Available Introduction: Individuals with mobility impairments associated with lower limb disabilities often face enormous challenges to participate in routine activities and to move around various environments. For many, the use of wheelchairs is paramount to provide mobility and social inclusion. Nevertheless, they still face a number of challenges to properly function in our society. Among the many difficulties, one in particular stands out: navigating in complex internal environments (indoors. The main objective of this work is to propose an architecture based on Mobile Augmented Reality to support the development of indoor navigation systems dedicated to wheelchair users, that is also capable of recording CAD drawings of the buildings and dealing with accessibility issues for that population. Methods Overall, five main functional requirements are proposed: the ability to allow for indoor navigation by means of Mobile Augmented Reality techniques; the capacity to register and configure building CAD drawings and the position of fiducial markers, points of interest and obstacles to be avoided by the wheelchair user; the capacity to find the best route for wheelchair indoor navigation, taking stairs and other obstacles into account; allow for the visualization of virtual directional arrows in the smartphone displays; and incorporate touch or voice commands to interact with the application. The architecture is proposed as a combination of four layers: User interface; Control; Service; and Infrastructure. A proof-of-concept application was developed and tests were performed with disable volunteers operating manual and electric wheelchairs. Results The application was implemented in Java for the Android operational system. A local database was used to store the test building CAD drawings and the position of fiducial markers and points of interest. The Android Augmented Reality library was used to implement Augmented Reality and the Blender open source

  8. The effects of evaporating essential oils on indoor air quality

    Science.gov (United States)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  9. In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential.

    Science.gov (United States)

    Tafazoli, M; Baeten, A; Geerlings, P; Kirsch-Volders, M

    1998-03-01

    Using the micronucleus (MN) test and the alkaline single cell gel electrophoresis (Comet) assay, potential mutagenicity (MN formation), genotoxicity (DNA breakage capacity) and cytotoxicity (cell proliferation reduction) of five chlorinated hydrocarbons (carbon tetrachloride, hexachloroethane, 1,2-dichloroethane, 1-chlorohexane and 2,3-dichlorobutane) have been evaluated in isolated human lymphocytes. With the MN test a low but statistically significant mutagenic activity was detected for all tested substances (except 2,3-dichlorobutane) with one out of the two donors and in the presence or absence of an exogenous metabolic activation system (S9 mix). However, at the concentration ranges tested none of the positive compounds induced a clear dose-dependent mutagenic effect. The Comet assay detected a strong DNA damaging effect for 1-chlorohexane, 2,3-dichlorobutane and 1,2-dichloroethane, but not for carbon tetrachloride and hexachloroethane. The influence of metabolism on the genotoxic activity of the chemicals was more clear in the Comet assay than in the MN test. The experimental genotoxicity and cytotoxicity data obtained in this study, together with data on five more related chemicals previously investigated, and their physico-chemical descriptors or electronic parameters have been used for QSAR analysis. The QSAR analysis high-lighted that the toxicity of the tested compounds was influenced by different parameters, like lipophilicity (logP), electron donor ability (charge) and longest carbon-chlorine (LBC-Cl) bond length. In addition, steric parameters, like molar refractivity (MR) and LBC-Cl, and electronic parameters, like ELUMO (energy of the lowest unoccupied molecular orbital, indicating electrophilicity), were predominant factors discriminating genotoxins from non-genotoxins in the presence but not in the absence of S9 mix. Although a limited number of compounds have been examined and cytotoxicity and genotoxicity were identified in two different

  10. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  11. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.

    Science.gov (United States)

    Levy, Jonathan I; Clougherty, Jane E; Baxter, Lisa K; Houseman, E Andres; Paciorek, Christopher J

    2010-12-01

    Previous studies have identified associations between traffic exposures and a variety of adverse health effects, but many of these studies relied on proximity measures rather than measured or modeled concentrations of specific air pollutants, complicating interpretability of the findings. An increasing number of studies have used land-use regression (LUR) or other techniques to model small-scale variability in concentrations of specific air pollutants. However, these studies have generally considered a limited number of pollutants, focused on outdoor concentrations (or indoor concentrations of ambient origin) when indoor concentrations are better proxies for personal exposures, and have not taken full advantage of statistical methods for source apportionment that may have provided insight about the structure of the LUR models and the interpretability of model results. Given these issues, the primary objective of our study was to determine predictors of indoor and outdoor residential concentrations of multiple traffic-related air pollutants within an urban area, based on a combination of central site monitoring data; geographic information system (GIS) covariates reflecting traffic and other outdoor sources; questionnaire data reflecting indoor sources and activities that affect ventilation rates; and factor-analytic methods to better infer source contributions. As part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and/or outdoor 3-to-4 day samples of nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter or = 2.5 pm (PM2.5) at 44 residences during multiple seasons of the year from 2003 through 2005. We performed reflectance analysis, x-ray fluorescence spectroscopy (XRF), and high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) on particle filters to estimate the concentrations of elemental carbon (EC), trace elements, and water-soluble metals, respectively. We derived

  12. Indoor Air Quality in Brazilian Universities

    Directory of Open Access Journals (Sweden)

    Sonia R. Jurado

    2014-07-01

    Full Text Available This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC (n = 15 and naturally ventilated (NV (n = 15 classrooms. The parameters of interest were indoor carbon dioxide (CO2, temperature, relative humidity (RH, wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively. The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3 in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively. The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  13. Phenomenology and psychopathology of excessive indoor tanning.

    Science.gov (United States)

    Petit, Aymeric; Karila, Laurent; Chalmin, Florence; Lejoyeux, Michel

    2014-06-01

    Excessive indoor tanning, defined by the presence of an impulse towards and repetition of tanning that leads to personal distress, has only recently been recognized as a psychiatric disorder. This finding is based on the observations of many dermatologists who report the presence of addictive relationships with tanning salons among their patients despite being given diagnoses of malignant melanoma. This article synthesizes the existing literature on excessive indoor tanning and addiction to investigate possible associations. This review focuses on the prevalence, clinical features, etiology, and treatment of this disorder. A literature review was conducted, using PubMed, Google Scholar, EMBASE and PsycINFO, to identify articles published in English from 1974 to 2013. Excessive indoor tanning may be related to addiction, obsessive-compulsive disorder, impulse control disorder, seasonal affective disorder, anorexia, body dysmorphic disorder, or depression. Excessive indoor tanning can be included in the spectrum of addictive behavior because it has clinical characteristics in common with those of classic addictive disorders. It is frequently associated with anxiety, eating disorders, and tobacco dependence. Further controlled studies are required, especially in clinical psychopathology and neurobiology, to improve our understanding of excessive indoor tanning.

  14. Risk of HIV infection among indoor and street sex workers and their use of health services in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Ilić Dragan

    2010-01-01

    Full Text Available Introduction. HIV in Serbia is most often transmitted through sexual contact, and therefore numerous prevention activities are geared towards sex workers (SW. Objective. To analyze the differences in knowledge, attitudes and risky behaviour between indoor and street SW in Belgrade; to examine the accessibility of health services to this vulnerable group. Methods. In this behavioural cross-sectional study, 113 street and 78 indoor SW were included. The sampling method used was snowball samples. Data were gathered through structured questionnaires. Results. Around 15% of respondents used drugs intravenously. Around 60% of SW used a condom during the last sexual intercourse with their private partner, and around 90% with a commercial partner. Indoor SW had lower levels of education more often than outdoor SW, and they used marijuana, sedatives and painkillers on a daily basis. A significantly higher number of indoor SW were informed about HIV, HBV and HCV testing, and that the risk for HIV infection is not lower if a condom is used exclusively for vaginal sex. Indoor SW reported using health services and testing and counseling for HIV, HBV and HCV more frequently than outdoor SW. Outdoor SW had significantly more sex partners in the previous month than indoor SW. Indoor SW recognized more frequently that providing sex services posed a higher risk for HIV infection. Conclusion. The results of this research study show that even though outdoor SW had higher levels of education than indoor SW, their level of knowledge about HIV transmission was lower and they reported more risky behaviour than indoor SW. Data show that both groups reported not taking care of their health.

  15. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Directory of Open Access Journals (Sweden)

    Stanislav Věchet

    2013-11-01

    Full Text Available The present paper considers issues related to navigation by autonomous mobile robots in overcrowded dynamic indoor environments (e.g., shopping malls, exhibition halls or convention centers. For robots moving among potentially unaware bystanders, safety is a key issue. A navigation method based on mixed potential field path planning is proposed, in cooperation with active artificial landmarks-based localization, in particular the bearing of infrared beacons placed in known coordinates processed via particle filters. Simulation experiments and tests in unmodified real-world environments with the actual robot show the proposed navigation system allows the robot to successfully navigate safely among bystanders.

  16. Respiratory and ocular symptoms among employees of a hotel indoor waterpark resort--Ohio, 2007.

    Science.gov (United States)

    2009-02-06

    During January--March 2007, the Warren County Combined Health District (WCCHD) received 665 reports of respiratory and eye irritation from patrons and lifeguards at a hotel indoor waterpark resort in Ohio. Tests revealed normal water chemistry and air chlorine concentrations, and exposure to airborne trichloramine in the waterpark was suspected as the cause of the symptoms. Because of the number of symptom reports and WCCHD's limited ability to measure trichloramine, the district requested an investigation by CDC's National Institute for Occupational Safety and Health (NIOSH). This report describes the results of that investigation, which revealed that trichloramine concentrations in the waterpark ranged from below the limit of detection to 1.06 mg/m3, and some concentrations were at levels that have been reported to cause irritation symptoms (>/=0.5 mg/m3). Lifeguards reported significantly more work-related symptoms (e.g., cough, wheezing, shortness of breath, chest tightness, and eye irritation) than unexposed hotel employees. Lifeguards also reported significantly more eye irritation and cough on days when hotel occupancy was high versus low. Insufficient air movement and distribution likely led to accumulation of trichloramine and exacerbation of symptoms. Based on recommendations to increase air movement and distribution at pool deck level, hotel management modified the ventilation system extensively, and subsequently no new cases were reported to WCCHD. The results of this investigation emphasize the importance of appropriate design and monitoring of ventilation and water systems in preventing illness in indoor waterparks.

  17. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  18. Indoor Positioning with Radio Location Fingerprinting

    CERN Document Server

    Kjærgaard, Mikkel Baun

    2010-01-01

    An increasingly important requirement for many novel applications is sensing the positions of people, equipment, etc. GPS technology has proven itself as a successfull technology for positioning in outdoor environments but indoor no technology has yet gained a similar wide-scale adoption. A promising indoor positioning technique is radio-based location fingerprinting, having the major advantage of exploiting already existing radio infrastructures, like IEEE 802.11, which avoids extra deployment costs and effort. The research goal of this thesis is to address the limitations of current indoor location fingerprinting systems. In particular the aim is to advance location fingerprinting techniques for the challenges of handling heterogeneous clients, scalability to many clients, and interference between communication and positioning. The wireless clients used for location fingerprinting are heterogeneous even when only considering clients for the same technology. Heterogeneity is a challenge for location fingerpr...

  19. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  20. Indoor environment quality in the university dormitory

    Institute of Scientific and Technical Information of China (English)

    WUXiangsheng; YANGJia; AOLu; ZHENGZhiyong

    2003-01-01

    The indoor environment quality(IEQ) in the dormitory of 9 universities has been investigated by the questionnaire for three times. The results indicate that the indoor air quality (IAQ) of the dormitory is very poor and it is far beyond the acceptable standard of the IAQ. The discontentment rate of the IEQ in the dorm is rather high, and the factors affecting the IEQ concentrates on the air pollution, awful smell, thermal comfort, narrow individual space, etc. Also the spot tests were done in a university in Chongqing, and the results indicate that the 6 indexes, such as indoor temperature, humidity, the density of CO2, SO2 and dust,the total bacterium, etc, are far beyond the correlative standard.

  1. A proposed UAV for indoor patient care.

    Science.gov (United States)

    Todd, Catherine; Watfa, Mohamed; El Mouden, Yassine; Sahir, Sana; Ali, Afrah; Niavarani, Ali; Lutfi, Aoun; Copiaco, Abigail; Agarwal, Vaibhavi; Afsari, Kiyan; Johnathon, Chris; Okafor, Onyeka; Ayad, Marina

    2015-09-10

    Indoor flight, obstacle avoidance and client-server communication of an Unmanned Aerial Vehicle (UAV) raises several unique research challenges. This paper examines current methods and associated technologies adapted within the literature toward autonomous UAV flight, for consideration in a proposed system for indoor healthcare administration with a quadcopter. We introduce Healthbuddy, a unique research initiative towards overcoming challenges associated with indoor navigation, collision detection and avoidance, stability, wireless drone-server communications and automated decision support for patient care in a GPS-denied environment. To address the identified research deficits, a drone-based solution is presented. The solution is preliminary as we develop and refine the suggested algorithms and hardware system to achieve the research objectives.

  2. Combustion-generated indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, C.D.; Budnitz, R.J.; Traynor, G.W.

    1976-12-01

    It is obvious from this study that elevated levels of gaseous air pollutants (CO, NO, NO/sub 2/, and SO/sub 2/) and particulate sulfur and nitrogen compounds are present in indoor environments with gas cooking and heating appliances. High levels of CO and NO/sub 2/ approach or exceed promulgated and proposed ambient air quality standards. Such findings certainly indicate a potential impact of combustion-generated indoor air pollution on human health; and if borne out by further work, they may ultimately have a large impact on the future design of epidemiological studies, on energy conservation strategies for buildings, and on the need for more stringent control of air pollution from indoor combustion sources.

  3. One Advanced Indoor Localization Algorithm for Improving Localization Accuracy

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Chao

    2013-01-01

    The indoor localization technology has very important practical value for real-time monitoring and management of indoor materials.In order to achieve localization for indoor substances,a model of indoor localization algorithm based on distances is established,meanwhile,DFP algorithm is introduced to further refine the positioning coordinates and improve the localization accuracy.The main idea is using the least squares estimation method and cubic spline interpolation to

  4. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    Energy Technology Data Exchange (ETDEWEB)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  5. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.; Rajamohan, R.; Harinath, Y.V.; Mohan, T.V.K.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil nadu (India)

    2010-07-01

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L{sup -1} TRO) and chlorine dioxide (0.4 - 0.5 mg L{sup -1}) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  6. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.

    Science.gov (United States)

    Acero, Juan L; Piriou, Philippe; von Gunten, Urs

    2005-08-01

    Halophenols are often reported as off-flavor causing compounds responsible for medicinal taste and odor episodes in drinking water. To better understand and minimize the formation of 2-bromophenol and 2,6-dibromophenol which have low odor threshold concentrations (OTCs, 30 and 0.5 ng/L, respectively) a kinetic data base for the chlorination and bromination of phenols was established by combination of kinetic measurements and data from literature. Second-order rate constants for the reactions of chloro- and bromophenols with chlorine and bromine were determined over a wide pH range. The second-order rate constants for bromination of phenols are about three orders of magnitude higher than for chlorination. A quantitative structure activity relationship (QSAR) showed a good comparability of second-order rate constants from this study with those published previously for different phenol derivatives. The quantification of product distribution of the formed halophenols demonstrated that chlorine or bromine attack in ortho position is favored with respect to the para position. A kinetic model was formulated allowing us to investigate the influence of chlorine dose and some water quality parameters such as the concentration of phenol, ammonia, bromide and the pH on the product distribution of halophenols. The kinetic model can be applied to optimize drinking water chlorination with respect to phenol-born taste and odor problems. In general, high chlorine doses lead to low concentrations of intermediate odorous chlorophenols and bromophenols. An increase in the ammonia or phenol concentration leads to a higher consumption of HOCl and therefore greater final concentration of intermediate bromophenols. The presence of higher bromide than phenol concentration also facilitates the rapid bromination pathway which leads to further bromination of 2,6-dibromophenol to higher brominated phenols. Laboratory-scale experiments on taste and odor formation due to the chlorination of

  7. Indoor air quality : Tools for schools action kits for Canadian schools

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Few people realize that indoor air pollution can contribute to health effects like asthma. Several agencies, notably the United States Environmental Protection Agency (EPA), have indicated that levels of indoor pollutants can be significantly higher than those found outside. As such, poor indoor air quality (IAQ) could impact the health of students and staff, as well as the educational process and costs. Many factors can influence IAQ, including building materials, furnishings, cleaning agents, pesticides, printing and copying devices, and more. Reduction in IAQ can also result from tighter buildings and reduced ventilation. This kit was developed by Health Canada in collaboration with the Indoor Air Quality Working Group of the Federal-Provincial-Territorial Committee on Environmental and Occupational Health (CEOH) to provide school officials with the tools to prevent, identify, assess, and address most indoor air problems while minimizing cost and involvement. It was suggested that trained professionals should perform the limited and well-defined set of operations and maintenance activities described in the kit.

  8. Indoor Environmental Control Practices and Asthma Management.

    Science.gov (United States)

    Matsui, Elizabeth C; Abramson, Stuart L; Sandel, Megan T

    2016-11-01

    Indoor environmental exposures, particularly allergens and pollutants, are major contributors to asthma morbidity in children; environmental control practices aimed at reducing these exposures are an integral component of asthma management. Some individually tailored environmental control practices that have been shown to reduce asthma symptoms and exacerbations are similar in efficacy and cost to controller medications. As a part of developing tailored strategies regarding environmental control measures, an environmental history can be obtained to evaluate the key indoor environmental exposures that are known to trigger asthma symptoms and exacerbations, including both indoor pollutants and allergens. An environmental history includes questions regarding the presence of pets or pests or evidence of pests in the home, as well as knowledge regarding whether the climatic characteristics in the community favor dust mites. In addition, the history focuses on sources of indoor air pollution, including the presence of smokers who live in the home or care for children and the use of gas stoves and appliances in the home. Serum allergen-specific immunoglobulin E antibody tests can be performed or the patient can be referred for allergy skin testing to identify indoor allergens that are most likely to be clinically relevant. Environmental control strategies are tailored to each potentially relevant indoor exposure and are based on knowledge of the sources and underlying characteristics of the exposure. Strategies include source removal, source control, and mitigation strategies, such as high-efficiency particulate air purifiers and allergen-proof mattress and pillow encasements, as well as education, which can be delivered by primary care pediatricians, allergists, pediatric pulmonologists, other health care workers, or community health workers trained in asthma environmental control and asthma education.

  9. Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water.

    Science.gov (United States)

    Hang, Chen; Zhang, Beibei; Gong, Tingting; Xian, Qiming

    2016-02-01

    Swimming pool disinfection byproducts (DBPs) have become a concern in many countries all over the world. In this study, the concentrations of several categories of DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs) and trichloronitromethane (TCNM), in 13 public indoor swimming pools in Nanjing, China were determined, the correlations between DBPs and water quality parameters as well as between different DBP categories were evaluated, and the health risks of the DBPs to human were examined. The results indicate that the DBP levels in the swimming pools in Nanjing were relatively high, with HAAs as the most dominant category, followed by THMs, HANs, HKs and TCNM sequentially. Bromochloroacetic acid (BCAA), trichloromethane (TCM), dichloroacetonitrile (DCAN), and 1,1,1-trichloropropanone (1,1,1-TCP) were the most dominant species among HAAs, THMs, HANs, and HKs, respectively. For all the different categories of DBPs, the concentrations in the pool disinfected with ozonation/chlorination were lower than those in the pool disinfected with chlorination. The DBP levels were generally not affected by the number of swimmers and the DBP levels on different dates were relatively stable. Besides, the chlorine residual seemed to be a critical concern in most of the swimming pools in this study. Moreover, there were some correlations between DBPs and water quality parameters as well as between different DBP categories. It is to be noted that the predicted cancer and health risks of the DBPs in these swimming pools were generally higher than the regulatory limits by USEPA, and thus DBPs in these swimming pools should be concerned.

  10. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  11. Sporicidal/bactericidal textiles via the chlorination of silk.

    Science.gov (United States)

    Dickerson, Matthew B; Lyon, Wanda; Gruner, William E; Mirau, Peter A; Slocik, Joseph M; Naik, Rajesh R

    2012-03-01

    Bacterial spores, such as those of the Bacillus genus, are extremely resilient, being able to germinate into metabolically active cells after withstanding harsh environmental conditions or aggressive chemical treatments. The toughness of the bacterial spore in combination with the use of spores, such as those of Bacillus anthracis, as a biological warfare agent necessitates the development of new antimicrobial textiles. In this work, a route to the production of fabrics that kill bacterial spores and cells within minutes of exposure is described. Utilizing this facile process, unmodified silk cloth is reacted with a diluted bleach solution, rinsed with water, and dried. The chlorination of silk was explored under basic (pH 11) and slightly acidic (pH 5) conditions. Chloramine-silk textiles prepared in acidified bleach solutions were found to have superior breaking strength and higher oxidative Cl contents than those prepared under caustic conditions. Silk cloth chlorinated for ≥1 h at pH 5 was determined to induce >99.99996% reduction in the colony forming units of Escherichia coli, as well as Bacillus thuringiensis Al Hakam (B. anthracis simulant) spores and cells within 10 min of contact. The processing conditions presented for silk fabric in this study are highly expeditionary, allowing for the on-site production of protein-based antimicrobial materials from a variety of agriculturally produced feed-stocks.

  12. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  13. Marketing the indoor environment: standardization or performance on demand

    NARCIS (Netherlands)

    Bluyssen, P.M.; Adan, O.C.G.

    2006-01-01

    Health problems and complaints with the indoor environment are numerous, even though all available standards are met. For decades now, the standardization of indoor environments is under discussion. Do we approach it via the components of the indoor environment, resulting in standards for lighting,

  14. Accurate estimation of indoor travel times

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Stisen, Allan

    2014-01-01

    the InTraTime method for accurately estimating indoor travel times via mining of historical and real-time indoor position traces. The method learns during operation both travel routes, travel times and their respective likelihood---both for routes traveled as well as for sub-routes thereof. In...... are collected within the building complex. Results indicate that InTraTime is superior with respect to metrics such as deployment cost, maintenance cost and estimation accuracy, yielding an average deviation from actual travel times of 11.7 %. This accuracy was achieved despite using a minimal-effort setup...

  15. Removal of ultrafine particles from indoor environment

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi

    technologies in order to improve indoor air quality. The objective of this study is to determine the effectiveness of portable air cleaners and to investigate the approaches of using these devices aiming at reducing the concentration of UFPs in the indoor environment. Experimental investigations...... and computational fluid dynamics (CFD) simulations were performed parallel in order to investigate the possibilities, limitations and possible applications to reach this aim. The Danish market was searched for portable air cleaners to be evaluated in the experiments. Five technologies were selected: Non Thermal...

  16. Deterministic simulation of UWB indoor propagation channel

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Zhang Naitong; Zhang Qinyu; Zhang Zhongzhao

    2008-01-01

    A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.

  17. Barcode based localization system in indoor environment

    Directory of Open Access Journals (Sweden)

    Ľubica Ilkovičová

    2014-12-01

    Full Text Available Nowadays, in the era of intelligent buildings, there is a need to create indoornavigation systems, what is steadily a challenge. QR (Quick Response codesprovide accurate localization also in indoor environment, where other navigationtechniques (e.g. GPS are not available. The paper deals with the issues of posi-tioning using QR codes, solved at the Department of Surveying, Faculty of CivilEngineering SUT in Bratislava. Operating principle of QR codes, description ofthe application for positioning in indoor environment based on OS Android forsmartphones are described.

  18. Indoor radon measurements in Turkey dwellings.

    Science.gov (United States)

    Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak

    2015-12-01

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.

  19. The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Tabata, A; Watanabe, N; Yamamoto, I; Ohnishi, Y; Itoh, M; Kamei, T; Magara, Y; Terao, Y

    2004-01-01

    2,2-bis (4-hydroxyphenyl) propane or Bisphenol A (BPA), has been reported to behave as an endocrine disrupter below acute toxic levels, and is widely present in the water environment. Although BPA is easily chlorinated, very little is reported on the effect of chlorinated BPA to the aquatic organisms. In this study, the estrogenic activities of BPA and its chlorinated derivatives were evaluated by the induction of vitellogenin (VTG) in the serum of mature male Japanese medaka. In addition, the effect of sodium hypochlorite on the decomposition of BPA was tested. The relative potencies of estrogenic activities of chlorinated BPA descended in the order 3,3'-diCIBPA>BPA> or =3-CIBPA>3,3',5-triCIBPA, and no estrogenic activity was observed in 3,3',5,5'-tetraCIBPA. Lowest Observed Effect Concentration (LOEC) and No Observed Effect Concentration (NOEC) for both 3-CIBPA and 3,3'-diCIBPA were 500 microg/L and 200 microg/L, respectively. LOEC for 3,3',5-triCIBPA was >500 microg/L. When BPA was reacted with sodium hypochlorite (24 hours; residual chlorine at 1 ppm), however, complete decomposition of BPA and its chlorinated derivatives was observed. The decrease in BPA and its chlorinated derivatives paralleled the decrease in estrogenic potency evaluated by the induction of vitellogenin (VTG) in the serum of mature male Japanese medaka.

  20. Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory.

    Science.gov (United States)

    Faridi, Sasan; Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Yunesian, Masud; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Kashani, Homa; Gholampour, Akbar; Niazi, Sadegh; Zare, Ahad; Nazmara, Shahrokh; Alimohammadi, Mahmood

    2015-06-01

    The concentrations of bacterial and fungal bioaerosols were measured in a retirement home and a school dormitory from May 2012 to May 2013. In the present work, two active and passive methods were used for bioaerosol sampling. The results from the present work indicated that Bacillus spp., Micrococcus spp., and Staphylococcus spp. were the dominant bacterial genera, while the major fungal genera were Penicillium spp., Cladosporium spp., and Aspergillus spp. The results also indicated that the indoor-to-outdoor (I/O) ratios for total bacteria were 1.77 and 1.44 in the retirement home and the school dormitory, respectively; the corresponding values for total fungal spores were 1.23 and 1.08. The results suggested that in addition to outdoor sources, indoor sources also played a significant role in emitting bacterial and fungal bioaerosols in the retirement home and the school dormitory indoor.

  1. Indoor-outdoor relationship of fungal aerosols in domestic homes situated in humid-warm climate

    Energy Technology Data Exchange (ETDEWEB)

    ACeron Palma, I. M.; Lopez Pacheco, M.; Perez Sanchez, M. M.; Quintal Franco, C.; Giacoman Vallejos, G.; Ponce Caballero, C.

    2009-07-01

    Among the different kinds of bio aerosols, fungi represent a heterogeneous group, which plays an important role in human pathology. These microorganisms can be the cause of a variety of infectious diseases as well as allergic and toxic effects. Therefore, it is necessary to assess their composition and concentrations indoors, outdoors and in domestic environments. The study of indoor-air quality is a relatively new activity in the world, and very recent in Mexico. The aim of this study was to establish the relation between indoors and outdoors fungal aerosols in domestic homes. Air samples were collected, using the 6-stage Andersen impactor, inside and outside thirty domestic homes of Merida city, in Yucatan, Mexico. (Author)

  2. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin;

    2016-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected...... at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due...... to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year....

  3. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    Directory of Open Access Journals (Sweden)

    Charles Owens

    2015-12-01

    Full Text Available We report on the degradation of organic photovoltaic (OPV cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year.

  4. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    Science.gov (United States)

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements.

  5. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  6. Revisiting the thermochemistry of chlorine fluorides

    CERN Document Server

    Sánchez, H R

    2016-01-01

    In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClF$_n$, n=1--7; Cl$_2$F and Cl$_3$F$_2$) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. In order to complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods.

  7. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista de Duffard, A.M.; Duffard, R. [Laboratorio de Toxicologia Experimental, Santa Fe (Argentina)

    1996-04-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  8. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

    Science.gov (United States)

    Zhang, Tian-Yang; Xu, Bin; Hu, Chen-Yan; Lin, Yi-Li; Lin, Lin; Ye, Tao; Tian, Fu-Xiang

    2015-01-01

    This study compared the formation of iodinated trihalomethanes (I-THMs) from iodide-containing raw waters oxidized by chlorine, chlorine dioxide (ClO₂) and potassium permanganate (KMnO₄) at different oxidant concentrations, reaction times, pHs, initial iodide concentrations and bromide to iodide mass ratios. Among the six investigated I-THMs, iodoform was the major species formed during the oxidation using chlorine, ClO₂ and KMnO₄. When oxidant concentration increased from 0.1 to 3.0 mg/L, the formation of I-THMs increased and then decreased for chlorine and ClO₂, but kept increasing for KMnO₄. As the reaction time went by, I-THM concentration increased to a plateau within 10 h (ClO₂ within only 1 h, especially) for all the three oxidants. I-THM formation gradually increased from pH 3.0 to 9.0 and remained stable at pH values higher than 7.5 for chlorine; however, for ClO₂ and KMnO₄ the highest I-THM formation showed at pH 7.0 and 7.5, respectively. As initial iodide concentration increased from 20 to 800 μg/L, the total amount and species of I-THMs increased for the three oxidants. Iodide contributed to I-THM formation much more significantly than bromide.

  9. Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide.

    Science.gov (United States)

    Kim, J; Marshall, M R; Du, W X; Otwell, W S; Wei, C I

    1999-09-01

    The use of chlorine dioxide (ClO(2)) as a potential substitute for aqueous chlorine to improve the quality of seafood products has not been approved by regulatory agencies due to health concerns related to the production of chlorite (ClO(2)(-)) and chlorate (ClO(3)(-)) as well as possible mutagenic/carcinogenic reaction products. Cubes of Atlantic salmon (Salmo salar) and red grouper (Epinephelus morio) were treated with 20 or 200 ppm aqueous chlorine or ClO(2) solutions for 5 min, and extracts of the treated fish cubes and test solutions were checked for mutagenicity using the Ames Salmonella/microsome assay. No mutagenic activity was detected in the treated fish samples or test solutions with ClO(2). Only the sample treated with 200 ppm chlorine showed weak mutagenic activity toward S. typhimurium TA 100. No chlorite residue was detected in sea scallops, mahi-mahi, or shrimp treated with ClO(2) at 3.9-34.9 ppm. However, low levels of chlorate residues were detected in some of the treated samples. In most cases, the increase in chlorate in treated seafood was time- and dose-related.

  10. The gas phase chlorination of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Olsbye, Unni; Myhrvold, Elisabeth M.; Slagtern, Aase; Dahl, Ivar M. [SINTEF Applied Chemistry, Oslo (Norway)

    1999-07-01

    Light alkanes are dehydrogenated to their corresponding olefins before further reactions to more valuable chemicals. The conversion of ethane to ethene in a steam cracker requires the addition of a substantial amount of heat (90 kJ/mol). Oxidative processes for ethane dehydrogenation could in principle be carried out adiabatically, however, the oxidation selectivity towards hydrogen is too low in existing systems, which leads to low ethene selectivities. This paper discusses the potential for light alkane derivatization through chlorination.

  11. Hydraulic fracturing with chlorine dioxide cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.A.; Newlove, J.C.; Horton, R.L.

    1990-10-23

    This patent describes a method for fracturing a subterranean formation penetrated by a wellbore. It comprises: injecting a fracturing fluid into the formation to form a vertical fracture therein, the fracturing fluid being gelled with a polymer selected from guar, guar derivatives, acrylamide, acrylamide derivatives, cellulose, cellulose derivatives, and mixtures thereof and crosslinked with an organometallic crosslinking compound and having temperature stability above about 175{degrees} F.; packing the fracture with particulate propping agent; backflowing fluids from the formation through the propped fracture to remove a portion of the polymer; injecting at matrix rates sufficient aqueous solution of chlorine dioxide down the wellbore and into the propped fracture to penetrate at least 60 feet of the propped fracture length and contact polymer in the fracturing fluid and polymer residue in the propped fracture and on the fracture walls, the amount of the chlorine dioxide in the aqueous medium being sufficient to degrade polymer in the fracturing fluid and polymer residue; permitting the chlorine dioxide to remain in contact with the polymer in the fracturing fluid and with the polymer residue on the fracture walls and in the fracture for sufficient time to degrade the polymer thereby reducing the fracturing fluid viscosity and dissolving portions of the polymer residue; and flowing formation fluid from the formation through the propped fracture and into the wellbore to remove substantial portions of the polymer and degraded polymer from the fracture.

  12. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    Science.gov (United States)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  13. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China.

    Science.gov (United States)

    Liu, Yanzhong; Ma, Junwei; Yan, Hongxia; Ren, Yuqing; Wang, Beibei; Lin, Chunye; Liu, Xitao

    2016-04-01

    Incidental oral ingestion is the main exposure pathway by which human intake contaminants in both soil and indoor dust, and this is especially true for children as they frequently exhibit hand-to-mouth behaviour. Research on comprehensive health risk caused by incidental ingestion of both soil and indoor dust is limited. The aims of this study were to investigate the arsenic concentration and to characterize the health risks due to arsenic (As) exposure via soil and indoor dust in rural and urban areas of Hubei province within central China. Soil and indoor dust samples were collected from schools and residential locations and bioaccessibility of arsenic in these samples was determined by a simplified bioaccessibility extraction test (SBET). The total arsenic content in indoor dust samples was 1.78-2.60 times that measured in soil samples. The mean As bioaccessibility ranged from 75.4% to 83.2% in indoor dust samples and from 13.8% to 20.2% in soil samples. A Pearson's analysis showed that As bioaccessibility was significantly correlated with Fe and Al in soil and indoor dust, respectively, and activity patterns of children were utilised in the assessment of health risk via incidental ingestion of soil and indoor dust. The results suggest no non-carcinogenic health risks (HQ<1) or acceptable carcinogenic health risks (1×10(-6)Indoor activities comprised between 64.0% and 92.7% of the total health risk incurred during daily indoor and outdoor activities. The HQ and CR values for children in urban areas were 1.59-1.95 times those for children in rural areas. The HQ and CR values for children three to five years of age were 1.40-1.47 times those for children six to nine years of age. The health risk accounting for bioaccessibility was only 50.8-59.8% of that obtained without consideration of bioaccessibility.

  14. Characterization of the indoor particles and their sources in an Antarctic research station.

    Science.gov (United States)

    Pagel, Érica Coelho; Costa Reis, Neyval; de Alvarez, Cristina Engel; Santos, Jane Méri; Conti, Melina Moreira; Boldrini, Ricardo Salvador; Kerr, Américo Sansigolo

    2016-03-01

    Many studies have been carried out on the environmental impact of the research stations on the Antarctic continent. However, the assessment of indoor air quality in these confined environments has been neglected. The main objectives of this study are to investigate the granulometric distribution of the indoor particles in the different compartments of the Brazilian Antarctic Station, to examine the number and mass concentration of the indoor particles, to conduct chemical and morphological analyses of the indoor PM2.5, and to identify the possible sources of the PM. The results showed that Na, K, Cl, Fe, Zn, S and Si were the main elements detected. High levels of black carbon were recorded in the workshop, which may be associated with the use of diesel vehicles. To identify the human activities related to the indoor particle emission in the station, the size distribution of the particles in the living room was monitored for seven consecutive days, during normal station operation. It was possible to identify the influence of individual processes, such as incineration, cooking and the movement of people, upon the particle size number concentration. The indoor/outdoor (I/O) ratio for the total suspended particles (TSP), PM10, PM2.5 and PM1 measured was significantly larger than those reported for urban buildings. In general, the I/O ratio distribution for all the compartments shows peak values between 2.5 and 10 μm, which is often related to human activity, such as cleaning, personnel circulation or clothing surfaces. The maximum I/O ratio at this range varied from 12 to 60. In addition, the compartments affected by combustion processes tend to present a significant number of submicron particles.

  15. Inactivation dynamics of Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes.

    Science.gov (United States)

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Lyu, Shuxia; Wang, Qin

    2015-09-01

    Maintaining effective sanitizer concentration is of critical importance for preventing pathogen survival and transference during fresh-cut produce wash operation and for ensuring the safety of finished products. However, maintaining an adequate level of sanitizer in wash water can be challenging for processors due to the large organic load in the wash system. In this study, we investigated how the survival of human pathogens was affected by the dynamic changes in water quality during chlorine depletion and replenishment in simulated produce washing operations. Lettuce extract was added incrementally into water containing pre-set levels of free chlorine to simulate the chlorine depletion process, and sodium hypochlorite was added incrementally into water containing pre-set levels of lettuce extract to simulate chlorine replenishment. Key water quality parameters were closely monitored and the bactericidal activity of the wash water was evaluated using three-strain cocktails of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes. In both chlorine depletion and replenishment processes, no pathogen survival was observed when wash water free chlorine level was maintained above 3.66 mg/L, irrespective of the initial free chlorine levels (10, 50, 100 and 200 mg/L) or organic loading (chemical oxidation demand levels of 0, 532, 1013 and 1705 mg/L). At this free chlorine concentration, the measured ORP was 843 mV and pH was 5.12 for the chlorine depletion process; the measured ORP was 714 mV and pH was 6.97 for the chlorine replenishment process. This study provides quantitative data needed by the fresh-cut produce industry and the regulatory agencies to establish critical operational control parameters to prevent pathogen survival and cross-contamination during fresh produce washing.

  16. Measurements of MIMO Indoor Channels at 1800 MHz with Multiple Indoor and Outdoor Base Stations

    Directory of Open Access Journals (Sweden)

    Jaldén Niklas

    2007-01-01

    Full Text Available This paper proposes several configurations for multiple base stations in indoor MIMO systems and compares their performance. The results are based on channel measurements realized with a MIMO testbed. The receiver was moved along several routes and floors on an office building. Both outdoor and indoor locations are considered for the transmitters or base stations, which allow the analysis of not only indoor but also outdoor-to-indoor environment. The use of 2 base stations with different system level combinations of the two is analyzed. We show that the configuration with base station selection provides almost as good performance as a full water-filling scheme when the 2 base stations are placed at different locations. Also the spatial correlation properties for the different configurations are analyzed and the importance of considering path loss when evaluating capacity is highlighted.

  17. Indoor air and human health: major indoor air pollutants and their health implications

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  18. SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES

    Science.gov (United States)

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...

  19. Two Persons with Multiple Disabilities Use Orientation Technology with Auditory Cues to Manage Simple Indoor Traveling

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Campodonico, Francesca; Oliva, Doretta

    2010-01-01

    This study was an effort to extend the evaluation of orientation technology for promoting independent indoor traveling in persons with multiple disabilities. Two participants (adults) were included, who were to travel to activity destinations within occupational settings. The orientation system involved (a) cueing sources only at the destinations…

  20. Biochars made from agro-industrial by-products remove chlorine and lower water toxicity

    Science.gov (United States)

    Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.

    2016-04-01

    Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0

  1. Electric plasma discharge combustion synthesis of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, R. L.; Geren, G. W.

    1984-09-18

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent.

  2. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France)]. E-mail: pipon@ipnl.in2p3.fr; Toulhoat, N. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Commissariat l' Energie Atomique (CEA), DEN/Saclay, 91191 Gif s/Yvette Cedex (France); Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Raimbault, L. [Centre d' Informatique Geologique (CIG), Ecole des Mines, 35 rue Saint Honore, F-77305 Fontainebleau cedex (France); Scheidegger, A.M. [Laboratory for Waste Management, Nuclear Energy and Safety Department (NES), Paul Scherrer Institut CH-5232 Villigen PSI (Switzerland); Farges, F. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Bd Descartes-Champs S/Marne, 77454 Marne la Vallee cedex 2 (France); Carlot, G. [Commissariat l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, 13108 Saint-Paul lez Durance (France)

    2007-05-31

    In a nuclear reactor, {sup 35}Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, {sup 36}Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO{sub 2}. For this purpose, sintered UO{sub 2} pellets were implanted with {sup 37}Cl at an ion fluence of 10{sup 13}cm{sup -2} and successively annealed in the 1175-1475K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and {mu}-XAS (at the Cl-K edge) analyses show that: (1) the thermal migration of implanted chlorine becomes significant at 1275K; this temperature and the calculated activation energy of 4.3eV points out the great ability of chlorine to migrate in UO{sub 2} at relatively low temperatures; (2) the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing; (3) the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I; (4) the comparison between an U{sub 2}O{sub 2}Cl{sub 5} reference compound and the pristine chlorine environment shows a contribution of the U{sub 2}O{sub 2}Cl{sub 5} to the pristine chlorine.

  3. Indoor Positioning with Radio Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    An increasingly important requirement for many novel applications is sensing the positions of people, equipment, animals, etc. GPS technology has proven itself as a successfull technology for positioning in outdoor environments but indoor no technology has yet gained a similar wide-scale adoption...

  4. Indoor environment in Swedish passive houses

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Langer, Sarka; Bloom, Erica Bloom

    2014-01-01

    The purpose of this study was to evaluate the indoor air quality (IAQ) in newly built low energy houses. Measurements were performed in 22 passive houses and 21 conventional buildings during 2012-2013 and 2013-2014 heating seasons. The measured parameters were temperature, relative humidity...... to be relatively good with regard to the parameters measured in this study....

  5. 9 CFR 3.26 - Facilities, indoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.26 Section 3.26 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...

  6. 9 CFR 3.102 - Facilities, indoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.102 Section 3.102 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation...

  7. 9 CFR 3.51 - Facilities, indoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.51 Section 3.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of...

  8. Method of improving formation permeability using chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, L.A.; Williams, D.A.

    1991-07-16

    This patent describes a method of treating a sandstone formation containing clays or silicates. It comprises injection a treating liquid into the formation comprising an aqueous solution of: from 50 to 4,200 ppm chlorine dioxide and from 1 to 85 volume percent of carbon dioxide; permitting the chlorine dioxide to react with material in the formation; and thereafter injecting into the formation an acid solution capable of dissolving the reaction products of chlorine dioxide and the clays and silicates.

  9. Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

    OpenAIRE

    Buffin, Lisa Webster

    1992-01-01

    Chlorine (C12(sq»' chlorine dioxide (Cl02 ) and potassium permanganate (KMn04) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The ef...

  10. The right to healthy indoor air: Status by 2002

    DEFF Research Database (Denmark)

    Mølhave, Lars; Krzyzanowski, M.

    2003-01-01

    One of the reasons for the inadequate quality of indoor air arises from the poor articulation, appreciation and understanding of basic principles underlying the policies and actions related to indoor air quality. A WHO Working Group derived nine statements on rights to healthy indoor air. The dis......One of the reasons for the inadequate quality of indoor air arises from the poor articulation, appreciation and understanding of basic principles underlying the policies and actions related to indoor air quality. A WHO Working Group derived nine statements on rights to healthy indoor air....... The discussions and statements are available as a WHO report. It informs the individuals and groups responsible for healthy indoor air about their rights and obligations, and empowers the general public by making people familiar with those rights. One year after their publication the statements have been adopted...

  11. Passive sampling of polychlorinated biphenyls (PCB) in indoor air

    DEFF Research Database (Denmark)

    Vorkamp, Katrin; Mayer, Philipp

    two phases and comments from experts in the field of PCB containing construction materials, a kinetic sampler (petri dish with silicone) and a potential equilibrium sampler (silicone-coated paper) were tested in buildings. Calibration and validation were based on conventional active sampling, for both...... methods in their kinetic sampling phase. The methods were sensitive and precise, but tended to overestimate the concentration obtained by active sampling. More work will be needed to test the silicone-coated paper under equilibrium sampling conditions.......PCBs were widely used in construction materials in the 1906s and 1970s, a period of high building activity in Denmark. The objective of this study was therefore to use passive sampling techniques to develop a simple and cost-effective screening tool for PCBs in indoor air. The study proceeded...

  12. Genotoxicity of quinolone antibiotics in chlorination disinfection treatment: formation and QSAR simulation.

    Science.gov (United States)

    Li, Min; Wei, Dongbin; Du, Yuguo

    2016-10-01

    Lots of unexpected disinfection by-products were formed during the chlorination disinfection of contaminated water bodies, leading to a potential threat to human health and ecological safety. In this study, SOS/umu assay was used to trace the genotoxicity variation of 20 quinolone compounds during the chlorination disinfection. Furthermore, two- and three-dimensional quantitative structure-activity relationship models were developed based on the electronic and hydrophobic properties of the quinolones, which were used to quantify the impact of the different structural features of the compounds on their genotoxicity variation. The results revealed that quinolones bearing hydrophilic substituents with less H-bond donors and negative charge at the 1-position of the quinolone ring exhibited a positive correlation with genotoxicity elevation. More notably, the chlorination of quinolones in both ultrapure water and secondary effluent matrices provided comparable levels of genotoxicity, indicating that our research could potentially be used to evaluate the environmental risk of quinolone antibiotics in chlorination disinfection treatment.

  13. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  14. Simultaneous Recovery of Hydrogen and Chlorine from Industrial Waste Dilute Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    N. Paidimarri

    2016-01-01

    Full Text Available Recovery of chlorine from byproduct HCl has inevitable commercial importance in industries lately because of insufficient purity or too low concentration to recycle it. Instead it is being neutralized in industries before disposing to meet stringent environmental conditions. Although recovery through catalytic oxidation processes is studied since the 19th century, their high operating conditions combined with sluggish reaction kinetics and low single pass conversions make electrolysis a better alternative. The present motive of this work is to develop a novel electrolysis process which in contrast to traditional processes effectively recovers both hydrogen and chlorine from dilute HCl. For this, an electrolytic cell with an Anionic Exchange Membrane has been designed which only allows the passage of chlorine anions from catholyte to anolyte separating the gasses in a single step. The catholyte can be as low as 3.59 wt% because of fixed anolyte concentration of 1.99 wt% which minimizes oxygen formation. Preliminary results show that the simultaneous recovery of hydrogen and chlorine is possible with high conversion up to 98%. The maximum current density value for 4.96 cm2 membrane surface area (70% active surface area is 2.54 kAm−2, which is comparable with reported commercial processes. This study is expected to be useful for process intensification of the same in a continuous process environment.

  15. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.; Clement, T P.

    2006-07-25

    RT3D (Reactive Transport in 3-Dimensions) is a reactive transport code that can be applied to model solute fate and transport for many different purposes. This document specifically addresses application of RT3D for modeling related to evaluation and implementation of Monitored Natural Attenuation (MNA). Selection of MNA as a remedy requires an evaluation process to demonstrate that MNA will meet the remediation goals. The U.S. EPA, through the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4?17P, provides the regulatory context for the evaluation and implementation of MNA. In a complementary fashion, the context for using fate and transport modeling as part of MNA evaluation is described in the EPA?s technical protocol for chlorinated solvent MNA, the Scenarios Evaluation Tool for Chlorinated Solvent MNA, and in this document. The intent of this document is to describe (1) the context for applying RT3D for chlorinated solvent MNA and (2) the attenuation processes represented in RT3D, (3) dechlorination reactions that may occur, and (4) the general approach for using RT3D reaction modules (including a summary of the RT3D reaction modules that are available) to model fate and transport of chlorinated solvents as part of MNA or for combinations of MNA and selected types of active remediation.

  16. Indoor metallic pollution and children exposure in a mining city

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Enio, E-mail: enniobg@gmail.com [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Fontúrbel, Francisco E. [Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile (Chile); Herbas, Cristian [Instituto IGEMA, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of); Barbieri, Flavia L. [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andrés, SELADIS (Instituto de Servicios de Laboratorio para el Diagnóstico e Investigación en Salud), La Paz (Bolivia, Plurinational State of); Berlin School of Public Health, Charité Universitätsmedizin, Berlin (Germany); Gardon, Jacques [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andrés, SELADIS (Instituto de Servicios de Laboratorio para el Diagnóstico e Investigación en Salud), La Paz (Bolivia, Plurinational State of); IRD, HSM, Montpellier (France)

    2014-07-01

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P = 0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P = 0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior. - Highlights: • Mining activities are an important source of environmental pollution. • Mining pollution contaminated also indoor homes, creating a risk to population. • Indoor dust and hair concentrations

  17. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    Directory of Open Access Journals (Sweden)

    C. R. Thompson

    2014-11-01

    Full Text Available The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, detection of atmospheric I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7 day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our base model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential

  18. Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image

    Science.gov (United States)

    Baligh Jahromi, Ali; Sohn, Gunho

    2016-06-01

    Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D

  19. Sources of variation for indoor nitrogen dioxide in rural residences of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mekonen Eyassu

    2009-11-01

    Full Text Available Abstract Background Unprocessed biomass fuel is the primary source of indoor air pollution (IAP in developing countries. The use of biomass fuel has been linked with acute respiratory infections. This study assesses sources of variations associated with the level of indoor nitrogen dioxide (NO2. Materials and methods This study examines household factors affecting the level of indoor pollution by measuring NO2. Repeated measurements of NO2 were made using a passive diffusive sampler. A Saltzman colorimetric method using a spectrometer calibrated at 540 nm was employed to analyze the mass of NO2 on the collection filter that was then subjected to a mass transfer equation to calculate the level of NO2 for the 24 hours of sampling duration. Structured questionnaire was used to collect data on fuel use characteristics. Data entry and cleaning was done in EPI INFO version 6.04, while data was analyzed using SPSS version 15.0. Analysis of variance, multiple linear regression and linear mixed model were used to isolate determining factors contributing to the variation of NO2 concentration. Results A total of 17,215 air samples were fully analyzed during the study period. Wood and crop were principal source of household energy. Biomass fuel characteristics were strongly related to indoor NO2 concentration in one-way analysis of variance. There was variation in repeated measurements of indoor NO2 over time. In a linear mixed model regression analysis, highland setting, wet season, cooking, use of fire events at least twice a day, frequency of cooked food items, and interaction between ecology and season were predictors of indoor NO2 concentration. The volume of the housing unit and the presence of kitchen showed little relevance in the level of NO2 concentration. Conclusion Agro-ecology, season, purpose of fire events, frequency of fire activities, frequency of cooking and physical conditions of housing are predictors of NO2 concentration. Improved

  20. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    Directory of Open Access Journals (Sweden)

    Hai-Han Zhang

    2015-10-01

    Full Text Available The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before” in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”. The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01. Heatmap fingerprints and principle component analyses (PCA revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods.