WorldWideScience

Sample records for chlorine 35 reactions

  1. Neutron-activated determination of chlorine, using the /sup 35/Cl(n,p)/sup 35/S reaction as the basis, in thin coatings of silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Perezhogin, G.A.

    1988-01-10

    The neutron-activation determination of chlorine in thin coatings of silicon dioxide on silicon has been shown to be possible through the use of the /sup 55/Cl(n, P)/sup 35/S reaction. The detection limit of chlorine is 3 x 10/sup -9/ g (5 x 10/sup 13/ atoms).

  2. Reaction products of chlorine dioxide.

    Science.gov (United States)

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  3. Muon capture on Chlorine-35

    CERN Document Server

    Arole, S; Gorringe, T P; Hasinoff, M D; Kovash, M A; Kuzmin, V; Moftah, B A; Sedlar, R; Stocki, T J; Tetereva, T

    2002-01-01

    We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

  4. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  5. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  6. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  7. Reactions of aqueous chlorine and chlorine dioxide with model food compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fukayama, M.Y.; Tan, H.; Wheeler, W.B.; Wei, C.

    1986-11-01

    This presentation reviews published information concerning the reactions of chlorine gas (CL/sub 2/(g)), aqueous chlorine, and ClO/sub 2/ with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO/sub 2/. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO/sub 2/ with several food products, including flour and shrimp, have also been characterized. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully.

  8. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    Science.gov (United States)

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  9. Aqueous reactions of chlorine dioxide with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rav-Acha, C.; Choshen, E.

    1987-11-01

    In contrast to mechanisms proposed earlier in the literature, according to which chlorine dioxide (ClO/sub 2/) reacts with various hydrocarbons in aqueous media by abstracting allylic or benzylic hydrogens, it is shown that ClO/sub 2/ reacts with olefins through initial electron transfer. Hydrocarbons that can undergo facile oxidation, such as polycyclic aromatic hydrocarbons (PAH) and some olefins, react with ClO/sub 2/ quite rapidly, while saturated aliphatic hydrocarbons, some aromatic hydrocarbons, and olefins substituted with electron-withdrawing groups remain unreactive. This was substantiated by comparing the reactivities toward ClO/sub 2/ of a variety of hydrocarbons, including aliphatic and aromatic hydrocarbons, saturated and unsaturated acids, PAH, or cyclic and acyclic olefins. The results were supported by a detailed kinetic and product study of the reaction between ClO/sub 2/ and some model compounds.

  10. Reactions of polynuclear aromatic hydrocarbons with chlorine and chlorine dioxide in coal tar lined pipes

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.; Maier, M.; Sacher, F.; Maier, D. [University of Karlsruhe, Karlsruhe (Germany). Engler Bunte Institut

    1997-12-31

    In the presence of disinfectants, PAH are remobilised from the coal tar lining of water distribution mains. Reactions of the PAH with chlorine and chlorine dioxide can lead to chlorinated PAH that might show higher mutagenic effects that the parent PAH. Detection limits in the lower nanogram-per-litre level for the determination of PAH and chlorinated PAH were achieved by using solid phase micro extraction and a gas chromatographic mass spectrometric device. Thus, the reactions of four PAH (anthracene, fluoranthene, fluorene and phenanthrene) with chlorine and chlorine dioxide under conditions and at concentrations of common practice in the drinking water distribution system could be investigated. In batch experiments with demineralised and drinking water at pH 7, the concentrations of fluoranthene, fluorene and phenanthrene remained constant, whereas anthracene reacted quantitatively with both disinfectants. The reaction of anthracene followed by pseudo-first order kinetics. In these reactions no chlorinated products could be detected, only monohydroxyanthracene and anthraquinone were identified. The toxic effect of a set of chlorinated and oxidised PAH was also examined.

  11. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  12. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products.

  13. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.

    Science.gov (United States)

    Kim, Tae-Kyoung; Moon, Bo-Ram; Kim, Taeyeon; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2016-11-01

    We conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction. Chloroform was found as a chlorinated intermediate during the UV/chlorine reaction of both geosmin and 2-MIB. The pH affected both the degradation and chloroform production during the UV/chlorine reaction. The open ring and dehydration intermediates identified during UV/chlorine reactions were 1,4-dimethyl-adamantane, and 1,3-dimethyl-adamantane from geosmin, 2-methylenebornane, and 2-methyl-2-bornene from 2-MIB, respectively. Additionally, 2-methyl-3-pentanol, 2,4-dimethyl-1-heptene, 4-methyl-2-heptanone, and 1,1-dichloro-2,4-dimethyl-1-heptane were newly identified intermediates from UV/chlorine reactions of both geosmin and 2-MIB. These intermediates were degraded as the reaction progressed. We proposed possible degradation pathways during the UV photolysis and UV/chlorine reactions of both compounds using the identified intermediates.

  14. Photochemical reactions among formaldehyde, chlorine, and nitrogen dioxide in air

    Energy Technology Data Exchange (ETDEWEB)

    Hanst, P.L.; Gay, B.W. Jr.

    1977-11-01

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared technique by use of folded light paths up to 504 m. With an excess of NO/sub 2/ over Cl/sub 2/, the reaction products included O/sub 3/, CO, HNO/sub 3/,N/sub 2/O/sub 5/, HCl, and nitryl chloride (ClNO/sub 2/). When chlorine exceeded NO/sub 2/, the principal product was peroxy nitric acid (HOONO/sub 2/). Peroxy formyl nitrate, nitrous acid, and chlorine nitrate were not seen. The nitryl chloride was stable even with the ultraviolet lights on. The peroxy nitric acid disappeared from the cell with a half-life of about 10 min. Formyl radicals (HCO), unlike acetyl radicals, did not combine with O/sub 2/ and NO/sub 2/ by addition. HCO reacted with O/sub 2/ to yield CO and HO/sub 2/. The HO/sub 2/ will then add to NO/sub 2/ to yield HOONO/sub 2/. If NO is present, the HO/sub 2/ will prefer to react with it, oxidizing it to NO/sub 2/.

  15. Chlorine dioxide reaction with selected amino acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Navalon, Sergio; Alvaro, Mercedes [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain); Garcia, Hermenegildo, E-mail: hgarcia@qim.upv.es [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain)

    2009-05-30

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO{sub 2} with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO{sub 2} were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO{sub 2} creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO{sub 2} with ubiquitous amino acids present in natural waters.

  16. Some kinetics aspects of chlorine-solids reactions

    Directory of Open Access Journals (Sweden)

    Kanari, N.

    2010-02-01

    Full Text Available The present paper describes detailed kinetics investigations on some selected chlorine-solid reactions through thermogravimetric measurements. The solids studied in this article include chemical pure oxides and sulfides as well as their natural bearing materials. The chlorinating agents employed are gaseous mixtures of Cl2+N2 (chlorination, Cl2+O2 (oxychlorination, and Cl2+CO (carbochlorination. Results are presented as effects of various parameters on the reaction rate of these solids with these chlorinating agents. It was observed that the reactivity of these solids towards different chlorinating agents varied widely. Sulfides could be chlorinated at room temperature, while carbochlorination of chromium (III oxide was possible only above 500 °C. The variation of the chlorination rate of these complex materials with respect to gas velocity, composition and temperature enabled us to focus some light on the plausible reaction mechanisms and stoichiometries. The obtained results were used for selective removal of iron from chromite concentrates, extraction of valuable metals from sulfide materials, purification of MgO samples, etc.

    Este trabajo describe detalladas investigaciones cinéticas en algunas reacciones seleccionadas de cloro-sólido a través de medidas termogravimétricas. Los sólidos estudiados en este artículo incluyen óxidos químicos puros y sulfuros, así como sus materiales naturales de soporte. Los agentes de cloración empleados son mezclas de gases de Cl2+N2 (cloración, Cl2+O2 (oxicloración y Cl2+O2 (carbocloración. Los resultados se presentan como efecto de varios parámetros en el porcentaje de reacción de estos sólidos con los agentes de cloración. Se ha observado que la reactividad de estos sólidos a través de diferentes agentes de cloración varía ampliamente. Los sulfuros se pudieron

  17. Rapid Determination of HAAs Formation Potential of the Reaction of Humic Acid with Chlorine or Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-liang; GE Yuan-xin; ZHANG Rong-hua; MA Hong-mei; HAO Jian-fu

    2007-01-01

    On the basis of gas chromatography(GC) coupled with a short capillary column and an electron capture detector(ECD), a simple and rapid method for the determination of five haloacetic acids(HAAs) in drinking water was developed by the optimization of derivation conditions and the modification of gas chromatographic program. HAAs formation potential(HAAFP) of the reaction of humic acid with chlorine was determined via this method. The major advantages of the method are the simplicity of chromatographic temperature program and the short run time of GC. Dichloroacetic acid(DCAA) and Trichloroacetic acid(TCAA), which were detected in the determination of HAAFP, were rapidly formed in the first 72 h of the reaction of humic acid with chlorine. HAAFP of the reaction of humic acid with chlorine increased with the increase in the concentrations of humic acid and chlorine. The average HAAFP of the reaction of humic acid with chlorine was 39.9 μg/mg TOC under the experimental conditions. When the concentration of humic acid was 4 mg/L, the concentration of HAAs, which were produced in the reaction of humic acid with chorine, may exceed MCL of 60 μg/L HAAs as the water quality standards for urban water supply of China and the first stage of US EPA disinfection/disinfection by-products(D/DBP) rule; when the concentration of humic acid was 2 mg/L, the concentration of HAAs may exceed MCL of 30 μg/L HAAs for the second stage of US EPA D/DBP rule. When humic acid was reacted with chlorine dioxide, only DCAA was detected with a maximum concentration of 3.3 μg/L at a humic acid content of 6 mg/L. It was demonstrated that the substitution of chlorine dioxide for chorine may entirely or partly control the formation of HAAs and effectively reduce the health risk associated with disinfected drinking water.

  18. Imaging the dynamics of chlorine atom reactions with alkenes

    Science.gov (United States)

    Estillore, Armando D.; Visger, Laura M.; Suits, Arthur G.

    2010-08-01

    We report a study of chlorine atom reactions with a series of target monounsaturated alkene molecules: 1-pentene, 1-hexene, 2-hexene, and cyclohexene. These reactions were studied using crossed-beam dc slice ion imaging at collision energies of 4 and 7 kcal/mol. Images of the reactively scattered alkenyl radical products were obtained via single photon ionization at 157 nm. The angular distributions at low collision energy are largely isotropic, suggesting the formation of a complex that has a lifetime comparable to or longer than its rotational period, followed by HCl elimination. At high collision energy, the distributions show a sharp forward peak superimposed on the isotropic component accounting for ˜13% of the product flux. The translational energy distributions peak near zero for the backscattered product, in sharp contrast to the results for alkanes. In the forward direction, the translational energy distributions change dramatically with collision energy. At the high collision energy, a sharp forward peak at ˜80% of the collision energy appears, quite reminiscent of results of our recent study of Cl+pentane reactions. The scattering distributions for all target molecules are similar, suggesting similarity of the reaction dynamics among these molecules. Ab initio calculations of the energetics and ionization energies for the various product channels were performed at the CBS-QB3 level to aid in interpreting the results.

  19. Fly Ash and Mercury Oxidation/Chlorination Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  20. Chlorine

    Science.gov (United States)

    ... but it is also used to make pesticides (insect killers), rubber, and solvents. Chlorine is used in ... the following signs and symptoms may develop: Blurred vision Burning pain, redness, and blisters on the skin ...

  1. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization.

    Science.gov (United States)

    Nam, Seung-Woo; Yoon, Yeomin; Choi, Dae-Jin; Zoh, Kyung-Duk

    2015-03-21

    Metoprolol (MTP), a hypertension depressor, has been increasingly detected even after conventional water treatment processes. In this study, the removal of MTP was compared using chlorination (Cl2), UV-C photolysis, and UV/chlorination (Cl2/UV) reactions. The results showed that the UV/chlorination reaction was most effective for MTP removal. MTP removal during UV/chlorination reaction was optimized under various conditions of UV intensity (1.1-4.4 mW/cm(2)), chlorine dose (1-5 mg/L as Cl2), pH (2-9), and dissolved organic matter (DOM, 1-4 mgC/L) using a two-level factorial design with 16 experimental combinations of the four factors. Among the factors examined, DOM scavenging by OH radicals was the most dominant in terms of MTP removal during UV/chlorination reaction. The established model fit well with the experimental results using to various water samples including surface waters, filtered and tap water samples. The optimized conditions (UV intensity=4.4 mW/cm(2), [Cl2]=5 mg/L, pH 7, and [DOM]=0.8-1.1 mgC/L) of the model removed more than 78.9% of MTP for filtered water samples during UV/chlorination reaction. Using LC-MS/MS, five byproducts of MTP (molecular weight: 171, 211, 309, 313, and 341, respectively) were identified during UV/chlorination reaction. Based on this information, the MTP transformation mechanism during UV/chlorination was suggested. Our results imply that applying UV/chlorination process after filtration stage in the water treatment plant (WTP) would be the most appropriate for effective removal of MTP.

  2. Ion Chromatographic Method with Post-Column Fuchsin Reaction for Measurement of Bromate in Chlorinated Water

    Directory of Open Access Journals (Sweden)

    Homer C. Genuino

    2009-06-01

    Full Text Available An ion chromatographic method that employs a post-column reaction with fuchsin and spectrophotometric detection was optimized for measuring bromate (BrO3- in water. BrO3- is converted to Br2 by sodium metabisulfite and then reacted with acidic fuchsin to form a red-colored product that strongly absorbs at 530 nm. The reaction of BrO3- and fuchsin reagent is optimum at pH 3.5 and 65 oC. The method has a limit of quantitation of 4.5 µg L-1 and is linear up to 150 µg L-1 BrO3-. Recoveries from spiked samples were high ranging from 95 to 102 % using external standard calibration and 87 to 103 % using standard addition method. Intra-batch and inter-batch reproducibility studies of the method resulted to RSD values ranging from 0.62 to 2.01 % and percent relative error of 0.12 to 2.94 % for BrO3- concentrations of 10 µg L-1 and 50 µg L-1. This method is free of interferences from common inorganic anions at levels typically found in chlorinated tap drinking water without preconcentration. The optimized method can be applied to trace analysis of bromate in chlorinated tap drinking water samples.

  3. Chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, Sylvia Smith [ORNL

    2009-01-01

    Following a brief description of the use of chlorine as a chemical warfare agent in World War I, this chapter summarizes physical and chemical data and recent clinical and controlled laboratory studies on the irritant and lethal effects of chlorine. The mechanism of toxicity for both irritation and lethal effects is described. The mathematical relationship between concentration and exposure duration for a set endpoint is given for both an irritancy response and mortality. This information can be used to assist in time-scaling for the set endpoint to other exposure durations. Risk assessment addresses the potential for greater effects in sensitive populations such as asthmatics. A concentration of 0.5 ppm for up to 8 hours is a no-adverse-effect concentration in most sensitive subjects; whereas, a concentration of 1.0 ppm induces some sensory irritation and transient changes in respiratory tract airflow parameters. Treatment and intervention of exposed individuals is dependent upon symptoms

  4. Reactions of phenylurea compounds with aqueous chlorine: Implications for herbicide transformation during drinking water disinfection.

    Science.gov (United States)

    Chusaksri, Sarinma; Sutthivaiyakit, Somyote; Sedlak, David L; Sutthivaiyakit, Pakawadee

    2012-03-30

    Phenylurea herbicides have been known to contaminate surface waters serving as potable supplies. To access the potential for transformation of these compounds during drinking water treatment, reactions of phenylurea compounds with aqueous chlorine at different pHs were investigated. The effect of substitution at the amino-N on the rate of transformation depends upon pH. Under acidic conditions, all of the phenylurea studied except 3,4-dichloro-3'-N-methylphenylurea (3,4-DCMPU) exhibited third-order kinetics, second order with respect to chlorine and first order with respect to phenylurea, while the reactions of 3,4-DCMPU were first order with respect to both chlorine and the organic compound. Under neutral and alkaline conditions, all compounds exhibited second-order kinetics that was first order with respect to chlorine and the organic compound. Apparent second-order rate constants at 25°C and pH 7 were 0.76 ± 0.16, 0.52 ± 0.11, 0.39 ± 0.02, 0.27 ± 0.04 and 0.23 ± 0.05 M(-1)s(-1) for phenylurea, 3, 4-dichlorophenylurea, 3, 4-DCMPU, metoxuron and monuron, respectively. Studies of the chlorination products, monitored by LC/MS/MS, under different pH values indicated the reaction to take place at both N atoms and also at ortho- and para- positions of the phenylurea aromatic group. The main chlorinating species were found to be different in different pH ranges. Under conditions typically encountered in drinking water treatment systems, transformation of these compounds by chlorine will be incomplete.

  5. Reactions of phenylurea compounds with aqueous chlorine: Implications for herbicide transformation during drinking water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Chusaksri, Sarinma [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Kasetsart, Bangkok 10900 (Thailand); Sutthivaiyakit, Somyote [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 (Thailand); Sedlak, David L., E-mail: sedlak@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Sutthivaiyakit, Pakawadee, E-mail: fscipws@ku.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Kasetsart, Bangkok 10900 (Thailand)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Mechanism of chlorine reaction with phenylurea compounds has been studied. Black-Right-Pointing-Pointer It depends on both chlorinating species and substitutents on the compounds. Black-Right-Pointing-Pointer Main products were identified using LC-MS/MS and authentic standards. Black-Right-Pointing-Pointer Their transformation under normal drinking water disinfection was predicted. - Abstract: Phenylurea herbicides have been known to contaminate surface waters serving as potable supplies. To access the potential for transformation of these compounds during drinking water treatment, reactions of phenylurea compounds with aqueous chlorine at different pHs were investigated. The effect of substitution at the amino-N on the rate of transformation depends upon pH. Under acidic conditions, all of the phenylurea studied except 3,4-dichloro-3 Prime -N-methylphenylurea (3,4-DCMPU) exhibited third-order kinetics, second order with respect to chlorine and first order with respect to phenylurea, while the reactions of 3,4-DCMPU were first order with respect to both chlorine and the organic compound. Under neutral and alkaline conditions, all compounds exhibited second-order kinetics that was first order with respect to chlorine and the organic compound. Apparent second-order rate constants at 25 Degree-Sign C and pH 7 were 0.76 {+-} 0.16, 0.52 {+-} 0.11, 0.39 {+-} 0.02, 0.27 {+-} 0.04 and 0.23 {+-} 0.05 M{sup -1} s{sup -1} for phenylurea, 3, 4-dichlorophenylurea, 3, 4-DCMPU, metoxuron and monuron, respectively. Studies of the chlorination products, monitored by LC/MS/MS, under different pH values indicated the reaction to take place at both N atoms and also at ortho- and para- positions of the phenylurea aromatic group. The main chlorinating species were found to be different in different pH ranges. Under conditions typically encountered in drinking water treatment systems, transformation of these compounds by chlorine will be

  6. Chlorination of N-methylacetamide and amide-containing pharmaceuticals. Quantum-chemical study of the reaction mechanism.

    Science.gov (United States)

    Šakić, Davor; Šonjić, Pavica; Tandarić, Tana; Vrček, Valerije

    2014-03-27

    Chlorination of amides is of utmost importance in biochemistry and environmental chemistry. Despite the huge body of data, the mechanism of reaction between amides and hypochlorous acid in aqueous environment remains unclear. In this work, the three different reaction pathways for chlorination of N-methylacetamide by HOCl have been considered: the one-step N-chlorination of the amide, the chlorination via O-chlorinated intermediate, and the N-chlorination of the iminol intermediate. The high-level quantum chemical G3B3 composite procedure, double-hybrid B2-PLYPD, B2K-PLYP methods, and global hybrid M06-2X and BMK methods have been employed. The calculated energy barriers have been compared to the experimental value of ΔG(#)298 ≈ 87 kJ/mol, which corresponds to reaction rate constant k(r) ≈ 0.0036 M(-1) s(-1). Only the mechanism in which the iminol form of N-methylacetamide reacts with HOCl is consistent (ΔG(#)298 = 87.3 kJ/mol at G3B3 level) with experimental results. The analogous reaction mechanism has been calculated as the most favorable pathway in the chlorination of small-sized amides and amide-containing pharmaceuticals: carbamazepine, acetaminophen, and phenytoin. We conclude that the formation of the iminol intermediate followed by its reaction with HOCl is the general mechanism of N-chlorination for a vast array of amides.

  7. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  8. Ground State Reactions of nC60 with Free Chlorine in Water.

    Science.gov (United States)

    Wu, Jiewei; Benoit, Denise; Lee, Seung Soo; Li, Wenlu; Fortner, John D

    2016-01-19

    Facile, photoenhanced transformations of water-stable C60 aggregates (nC60) to oxidized, soluble fullerene derivatives, have been described as key processes in understanding the ultimate environmental fate of fullerene based materials. In contrast, fewer studies have evaluated the aqueous reactivity of nC60 during ground-state conditions (i.e., dark conditions). Herein, this study identifies and characterizes the physicochemical transformations of C60 (as nC60 suspensions) in the presence of free chlorine, a globally used chemical oxidant, in the absence of light under environmentally relevant conditions. Results show that nC60 undergoes significant oxidation in the presence of free chlorine and the oxidation reaction rates increase with free chlorine concentration while being inversely related to solution pH. Product characterization by FTIR, XPS, Raman Spectroscopy, TEM, XRD, TOC, collectively demonstrates that oxidized C60 derivatives are readily formed in the presence of free chlorine with extensive covalent oxygen and even chlorine additions, and behave as soft (or loose) clusters in solution. Aggregation kinetics, as a function of pH and ionic strength/type, show a significant increase in product stabilities for all cases evaluated, even at pH values approaching 1. As expected with increased (surface) oxidation, classic Kow partitioning studies indicate that product clusters are relatively more hydrophilic than parent (reactant) nC60. Taken together, this work highlights the importance of understanding nanomaterial reactivity and the identification of corresponding stable daughter products, which are likely to differ significantly from parent material properties and behaviors.

  9. 35Cl NQR spectra of certain chlorine-containing chromium compounds

    Science.gov (United States)

    Kuznetsov, S. I.; Bryukhova, E. V.; Semin, G. K.

    2015-03-01

    The coordination of chlorobenzene to Cr(CO)3 and ClC6H5Cr+ fragments is shown to result in a considerable rise in the NQR frequency of chlorine atoms. The field constant in (chlorobenzene)chromium tricarbonyl was found to grow markedly, relative to pure chlorobenzene.

  10. Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature

    Science.gov (United States)

    Demore, W. B.

    1991-01-01

    The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).

  11. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system

    Science.gov (United States)

    Berenstein, Igal; Muñuzuri, Alberto P.; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M.; Epstein, Irving R.

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  12. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    Science.gov (United States)

    Dolnik, Milos; Epstein, Irving R.

    1993-01-01

    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  13. Laboratory studies on the reactions between chlorine, sulfur dioxide, and oxygen - Implications for the Venus stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Demore, W.B.; Leu, M.T.; Smith, R.H.; Yung, Y.L.

    1985-09-01

    Fourier transform IR spectrophotometry is used to monitor the reactants and products in a Venus stratosphere simulation study involving the photolysis of mixtures of Cl/sub 2/ and SO/sub 2/, with and without O/sub 2/ present in an atmosphere of N/sub 2/. When several speculative reactions inferred from these experiments are incorporated by the Yung and DeMore (1982) model of Venus stratospheric chemistry, it emerges that SO/sub 2/Cl/sub 2/ is a key reservoir species for chlorine, and that the reaction between Cl and SO/sub 2/ furnishes an important cycle for the destruction of O/sub 2/ and the conversion of SO/sub 2/ to H/sub 2/SO/sub 4/, thereby providing a possible solution to the photochemistry of the Venus stratosphere. 17 references.

  14. Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry

    Directory of Open Access Journals (Sweden)

    JUN WANG

    2010-01-01

    Full Text Available As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems.

  15. Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS.

    Science.gov (United States)

    Guo, Wei; Hu, Shenghong; Li, Xiaofang; Zhao, Jian; Jin, Shesheng; Liu, Wenjuan; Zhang, Hongfei

    2011-05-15

    Direct determination of trace arsenic in high chlorine food samples by ICP-MS is complicated by the presence of ArCl(+) interferences, and the high first ionization energy of As (9.81 eV) also results in low analytical sensitivity in ICP-MS. In this work, two strategies based on ion-molecule reactions were successfully used to eliminate ArCl spectral interference in a dynamic reaction cell (DRC). The interference ion ((40)Ar(35)Cl(+)) was directly removed by the reaction with methane gas, and the background signal was reduced by up to 100-fold at m/z 75. Alternatively, by using molecule oxygen as the reaction gas, (75)As(+) was effectively converted to (75)As(16)O(+) that could be detected at m/z 91 where the background is low. The poor signal intensity of As or AsO was improved 3-4 times by addition of 4% methanol in the analyzed solutions. The limit of quantitation (LOQ) for (75)As (CH(4)-DRC method) and (75)As(16)O (O(2)-DRC method) was 0.8 and 0.3 ng g(-1) and the analytical results of seaweed and yellow croaker standard reference materials were in good agreement with the certified values. As the routine arsenic monitoring method in our laboratory, it was applied to the accuracy determination of 119 high chlorine food samples from eight different markets of Beijing.

  16. Target Turing patterns and growth dynamics in the chlorine dioxide-iodine-malonic acid reaction.

    Science.gov (United States)

    Preska Steinberg, Asher; Epstein, Irving R; Dolnik, Milos

    2014-04-03

    We study the growth dynamics of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction-diffusion system in response to perturbations with visible light. We describe several mechanisms by which Turing patterns reappear after they are suppressed by illumination with a disc-shaped geometry. We observe that under specific conditions the patterns reorganize from a random configuration of spots and stripes to a set of ordered, concentric rings, which we refer to as target Turing patterns. These patterns closely resemble the unit cells of the Turing hexagonal superlattices known as black eye patterns. However, these target Turing patterns are not part of a larger superlattice structure, and they usually have a larger number of concentric rings. Numerical simulations support the experimental findings.

  17. MERCURY REACTIONS IN THE PRESENCE OF CHLORINE SPECIES: HOMOGENOUS GAS PHASE AND HETEROGENOUS GAS-SOLID PHASE

    Science.gov (United States)

    The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...

  18. Reactions of aquacobalamin and cob(II)alamin with chlorite and chlorine dioxide.

    Science.gov (United States)

    Dereven'kov, Ilia A; Shpagilev, Nikita I; Valkai, László; Salnikov, Denis S; Horváth, Attila K; Makarov, Sergei V

    2016-11-19

    Reactions of aquacobalamin (H2O-Cbl(III)) and its one-electron reduced form (cob(II)alamin, Cbl(II)) with chlorite (ClO2(-)) and chlorine dioxide (ClO 2(•) ) were studied by conventional and stopped-flow UV-Vis spectroscopies and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ClO2(-) does not react with H2O-Cbl(III), but oxidizes Cbl(II) to H2O-Cbl(III) as a major product and corrin-modified species as minor products. The proposed mechanism of chlorite reduction involves formation of OCl(-) that modifies the corrin ring during the course of reaction with Cbl(II). H2O-Cbl(III) undergoes relatively slow destruction by ClO 2(•) via transient formation of oxygenated species, whereas reaction between Cbl(II) and ClO 2(•) proceeds extremely rapidly and leads to the oxidation of the Co(II)-center.

  19. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  20. Persistent brominated and chlorinated dioxin blood levels in a chemist. 35 years after dioxin exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schecter, A.; Ryan, J.J. (Department of Preventive Medicine, College of Medicine, SUNY Health Science Center-Syracuse, NY (United States))

    1992-07-01

    This is the first report on occupational health hazards to dioxin chemists associated with laboratory exposure to 2,3,7,8-tetrabromodibenzodioxin (TBrDD), and further characterizes the human response to 2,3,7,8 tetrachlorodibenzodioxin (TCDD). In this case study the chemist was exposed on two separate occasions. In March 1956, after synthesizing 10 g of TBrDD, the chemist suffered from mild and transient chloracne of the neck and wrists; in September 1956, after synthesizing 16 g of TCDD, he suffered severe chloracne of the entire body, headaches, backache, and leg pain on exertion. His measured 2,3,7,8-TBrDD in 1991 was 625 parts per trillion (ppt) in whole blood lipid, 35 years after initial exposure and 18 ppt TCDD, an elevated level in comparison with the mean 2,3,7,8-TCDD level of 5 ppt in the US population. This is the first reported detection of a brominated dioxin in human tissue. The total halogenated dioxin body burden in September 1956 is estimated to have been between 13,005 ppt and 146,726 ppt. This amount can be considered to be, at least in this person, a strong chloracnegenic dose, and a dose causing human nervous system and muscular or circulatory system responses. This uptake demonstrates an occupational hazard to chemists and chemical workers, and the usefulness of human tissue dioxin measurements to document absorption.

  1. Investigating the phase-dependent photochemical reaction dynamics of chlorine dioxide using resonance Raman spectroscopy

    Science.gov (United States)

    Hayes, Sophia C.; Wallace, Paul M.; Bolinger, Josh C.; Reid, Philip J.

    Recent progress in understanding the phase-dependent reactivity demonstrated by halooxides is outlined. Specifically, resonance Raman intensity analysis (RRIA) and time-resolved resonance Raman (TRRR) studies of chlorine dioxide (OClO) photochemistry in solution are presented. Using RRIA, it has been determined that the excited-state structural evolution that occurs along the asymmetric-stretch coordinate in the gas phase is restricted in solution. The absence of evolution along this coordinate results in the preservation of groundstate symmetry in the excited state. The role of symmetry in defining the reaction coordinate and the solvent-solute interactions responsible for modification of the excited-state potential energy surface are discussed. TRRR studies are presented which demonstrate that geminate recombination of the primary photoproducts resulting in the reformation of ground-state OClO is a central feature of OClO photochemistry in solution. These studies also demonstrate that a fraction of photoexcited OClO undergoes photoisomerization to form ClOO, with the ground-state thermal decomposition of this species resulting in Cl production on the subnanosecond timescale. Finally, time-resolved anti-Stokes experiments are presented which demonstrate that the OClO vibrational-relaxation dynamics are solvent dependent. The current picture of OClO photochemistry derived from these studies is discussed, and future directions for study are outlined.

  2. Turing pattern formation in the chlorine dioxide-iodine- malonic acid reaction-diffusion system

    Science.gov (United States)

    Setayeshgar, Sima

    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry- breaking perturbations (the Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experimental results. We also verify that the two-variable reduction of the chemical model employed in the linear stability analysis is justified. Finally, we present numerical solution of the CDIMA system in two dimensions which is in qualitative agreement with experiments. This result also confirms our linear stability analysis, while demonstrating the feasibility of numerical exploration of realistic chemical models.

  3. Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature

    Science.gov (United States)

    Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    The use of H2SO4 as a catalyst for aerosol production of chlorine compounds in the chemistry of the antarctic stratosphere was investigated in laboratory trials. The experiments involved the gas surface collision rate of a molecule on a given surface during its residence time in a Knudsen cell in molecular flow conditions. Chlorine nitrate gas was made to flow through a chamber exposed to a container holding a 95.6 pct H2SO4 solution. Gas leaving the cell was scanned with a mass spectrometer. A sticking coefficient of 0.00032 was found for the chlorine nitrate, a value five times that previously reported.

  4. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Science.gov (United States)

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction. PMID:22454614

  5. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  6. Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase

    Science.gov (United States)

    Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq

    2013-12-01

    function of temperature (233-298 K) were performed by Dillon et al. [7]. An experimental (laser photolysis/FIL) and theoretical approach (quantum calculation) were realized. This study showed that the oxidation of HA by OH-radicals has a negative temperature coefficient which is explained by an intermediate complex formation. Another study as a function of temperature was conducted by Butkovskaya et al. using the technique of a turbulent flow reactor coupled with a mass spectrometer chemical ionization [8]. This work was purely mechanistic and it shows that the mechanism of this reaction changes with temperature: a temperature increase favors the production yields of methanoic and ethanoic acids and reduces the formation yield of methylglyoxal [8]. Our work is motivated by the fact that the kinetic studies of the reaction of HA with chlorine radicals are rare in comparison with the kinetic studies of the reaction of HA with OH radicals. So far, only one such kinetic study is reported in the literature. It has been carried out by Orlando et al. at 294 K [6]. To the best of our knowledge, this reaction has not yet been studied as a function of temperature. Therefore, to enrich kinetic data concerning this compound, the study of HA with Cl atoms reaction as a function of temperature has been undertaken. Experiments are carried out using the relative technique in a simulation chamber coupled with an infrared Fourier transform (FTIR) spectrometer and a quantum cascade laser in external cavity (ECQCL) at 1 bar with the temperature ranging 277-350 K. Using both FTIR and ECQCL techniques allows comparing the measurements sensitivity and improving the kinetic precision determination. The FTIR spectroscopy is widely used to perform kinetic measurements whereas the ECQCL spectrometer is quite original in kinetic studies. Laser spectrometry indeed presents advantages such as high sensitivity, high resolution, and fast acquisition time compared to the FTIR spectrometer. The ECQCL

  7. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.

    Science.gov (United States)

    Yeh, Ellen; Cole, Lindsay J; Barr, Eric W; Bollinger, J Martin; Ballou, David P; Walsh, Christopher T

    2006-06-27

    The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).

  8. Multifold Increases in Turing Pattern Wavelength in the Chlorine Dioxide-Iodine-Malonic Acid Reaction-Diffusion System

    Science.gov (United States)

    Gaskins, Delora K.; Pruc, Emily E.; Epstein, Irving R.; Dolnik, Milos

    2016-07-01

    Turing patterns in the chlorine dioxide-iodine-malonic acid reaction were modified through additions of sodium halide salt solutions. The range of wavelengths obtained is several times larger than in the previously reported literature. Pattern wavelength was observed to significantly increase with sodium bromide or sodium chloride. A transition to a uniform state was found at high halide concentrations. The observed experimental results are qualitatively well reproduced in numerical simulations with the Lengyel-Epstein model with an additional chemically realistic kinetic term to account for the added halide and an adjustment of the activator diffusion rate to allow for interhalogen formation.

  9. Galerkin analysis of light-induced patterns in the chlorine dioxide-iodine-malonic acid reaction-diffusion system

    Science.gov (United States)

    Ghosh, Pushpita; Sen, Shrabani; Riaz, Syed Shahed; Ray, Deb Shankar

    2009-05-01

    The photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system has been an experimental paradigm for the study of Turing pattern over the last several years. When subjected to illumination of varied intensity by visible light the patterns undergo changes from spots to stripes, vice versa, and their mixture. We carry out a nonlinear analysis of the underlying model in terms of a Galerkin scheme with finite number of modes to explore the nature of the stability and existence of various modes responsible for the type and crossover of the light-induced patterns.

  10. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    Science.gov (United States)

    Li, Na; Shi, Laishun; Wang, Xiaomei; Guo, Fang; Yan, Chunying

    2011-01-01

    The mole ratio r(r = [I−]0/[ClO2]0) has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r = 6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0. PMID:21808646

  11. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Na Li

    2011-01-01

    Full Text Available The mole ratio r(r=[I−]0/[ClO2]0 has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r=6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0.

  12. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  13. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  14. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light.

    Science.gov (United States)

    Nagao, Raphael; Epstein, Irving R; Dolnik, Milos

    2013-09-26

    We investigate the sensitivity of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction to illumination by strong white light. Intense illumination results in an increase of [I(-)], in contrast to previous studies, which found only decreased [I(-)] for weak and intermediate intensities of illumination. We propose an expanded mechanism to explain the experimental observations. Both experimental and numerical results suggest that [ClO2] is the key parameter that determines whether the high iodide state is obtained under strong illumination. When strong illumination is applied through a spatially periodic mask with black and white stripes, a dark state with high [I(-)] is produced in the illuminated domain and a light state with low [I(-)] forms in the nonilluminated domain. Depending on the black:white ratio of the mask and its wavelength, Turing patterns can coexist with either the light or the dark state in the nonilluminated domain.

  15. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    Institute of Scientific and Technical Information of China (English)

    于海涛; 付宏刚; 等

    2003-01-01

    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  16. Kinetic studies of the infrared-induced reaction between atomic chlorine and solid parahydrogen

    Science.gov (United States)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2015-04-01

    We present Fourier-transform infrared (FTIR) spectroscopic studies of the IR-induced Cl + H2(v = 1) → HCl + H reaction in a parahydrogen (pH2) matrix aimed at distinguishing between two proposed reactions mechanisms; direct-IR and vibron-mediated. The Cl atom reactants are produced via 355 nm in situ photolysis of a Cl2 doped pH2 matrix. After photolysis is complete, a long-pass IR filter in the FTIR beam is removed and we measure the ensuing IR-induced reaction kinetics using rapid scan FTIR spectroscopy. We follow both the decay of the Cl atom reactant and growth of the HCl product using the Cl spin-orbit (SO) + Q1(0) and HCl R1(0) transitions, respectively. We show the IR-induced reaction mechanism depends on the spectral profile of the IR radiation; for IR spectral profiles that have significant IR intensities between 4000 and 5000 cm-1 we observe first-order kinetics that are assigned to a vibron-mediated mechanism and for spectral profiles that have significant IR intensities that include the Cl SO + Q1(0) transition near 5094 cm-1 we observe bi-exponential kinetics that are dominated by the direct-IR mechanism at early reaction times. We can distinguish between the two mechanisms using the observed kinetics. We investigate the reaction kinetics for different FTIR optical setups, for a range of sample conditions, and start and stop the IR-induced reaction to investigate the importance of secondary H atom reactions. We also study the IR-induced reaction in Br/Cl co-doped pH2 samples and show the presence of the Br atom quenches the vibron-mediated reaction kinetics presumably because the Br-atoms serve as efficient vibron traps. This paper indicates that in a highly enriched pH2 matrix the H atoms that are produced by the IR-induced Cl atom reaction likely do not play a significant role in the measured reaction kinetics which implies these secondary H atom reactions are highly selective.

  17. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system.

    Science.gov (United States)

    Gao, Zhengyang; Lv, Shaokun; Yang, Weijie; Yang, Pengfei; Ji, Shuo; Meng, Xinxin

    2015-06-01

    Ab initio calculations were performed to study the quantum chemistry reactions mechanisms among Hg(0), elemental halogen and O3. The geometry of reactions, transition states (TS), intermediates (M) and products were optimized using the MP2 method at the SDD basis function level for Hg, and using 6-311++G (3df, 3pd) for other species. Molecular energies were calculated at QCISD (T) level with zero point energy. Activation energies were calculated along with pre-exponential factors . The reaction rate constants within 298-1800 K were calculated according to transition state theory (TST). The influences of O3 on the reaction of Hg(0) with halogen are discussed. Hg(0) can be oxidized to Hg(1+) by halogen and O3, and halogen and O3 can be arranged in decreasing order as: Br2 > BrO > O3 > Br > Cl, BrCl > HBr > HCl, Br2 > Cl2 according to reaction rate constants. When O3 is presented, Br2, HBr, BrCl, Cl2 and HCl react with O3 and are initially converted to BrO and ClO. O3 is unfavorable for oxidation of Hg(0) by Br2. The mixture of HBr and O3 has better oxidizing Hg(0) performance than HBr and O3. Cl is less effective than Br for oxidation of Hg(0).

  18. Reaction Kinetic Studies of Waste Polymer and Hydrolytic Chlorine in EOCN Production

    Institute of Scientific and Technical Information of China (English)

    Koyo Murakami

    2005-01-01

    @@ 1Results and Discussion EOCNs are widely used by electric and electronics industries and coating and adhesive fields(see Tab. 1 ). EOCNs( =Epoxy O-Cresol Novolac)can be produced commercially in a two-step reaction, which consistsmainly of a novolac reaction step of o-cresol with formalin and an epoxidising step of the the novolac resins with epichlorohydrine in the presence of alkari hydroxide such as caustic soda, byproducing waste polymers which affect adversely fromthe viewpoint of process economy.

  19. Spectroscopy of $^{35}$P using the one-proton knockout reaction

    CERN Document Server

    Mutschler, A; Lemasson, A; Bazin, D; Borcea, C; Borcea, R; Gade, A; Iwasaki, H; Khan, E; Lepailleur, A; Recchia, F; Roger, T; Rotaru, F; Stanoiu, M; Stroberg, R; Tostevin, J A; Vandebrouck, M; Weisshaar, D; Wimmer, K

    2016-01-01

    The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $\\gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of $^{35}$P was deduced up to 7.5 MeV using$\\gamma-\\gamma$ coincidences. The observed levels were attributed to protonremovals from the $sd$-shell and also from the deeply-bound $p\\_{1/2}$ orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual ($\\gamma$-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, $C^2S$, derived from the$^{36}$S $(-1p)$ knockout reaction agree with those obtained earlier from$^{36}$S($d$,\

  20. Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine, and bromine

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, R.S.; Ratajczak, E.; Gutman, D.

    1988-02-11

    The gas-phase kinetics of the reactions of HCO with four molecules (O/sub 2/, NO/sub 2/, Cl/sub 2/, and Br/sub 2/) have been studied as a function of temperature in a tubular reactor coupled to photoionization mass spectrometer. Rate constants for each reaction were determined at a minimum of five temperatures to obtain Arrhenius parameters (k = A exp(-E/sub a//RT)). The results obtained are as follows (the numbers in the brackets are log A/(cm/sup 3/ molecule/sup -1/ s/sup -1/), E/sub a//(kJ mol/sup -1/), and the temperature ranges covered): HCO + O/sub 2/ )-10.9 (+/-0.3), 1.7 (+/-1.5), 295-713 K); HCO + NO/sub 2/ )-10.6 (+/-0.3), -1.8 (+/-2.0), 294-713 K); HCO + Cl/sub 2/ )-11.2 (+/-0.3), 0.3 (+/-2.0), 296-582 K); HCO + Br/sub 2/ )-10.8 (+/-0.3), -3.7 (+/-2.0), 296-669K). The reactivity of HCO was found to be between that of CH/sub 3/ and C/sub 2/H/sub 5/ in the reactions of these radicals with Cl/sub 2/ and Br/sub 2/, which is consistent with proposed correlations of reactivity in exothermic reactions based on free-radical ionization potentials.

  1. Atmospheric reactions of (H)- and (D)-fluoroalcohols with chlorine atoms.

    Science.gov (United States)

    Garzón, Andrés; Moral, Mónica; Notario, Alberto; Ceacero-Vega, Antonio A; Fernández-Gómez, Manuel; Albaladejo, José

    2010-02-01

    The reactions of Cl with a series of fluoroalcohols and deuterated fluoroalcohols, CF(3)CH(2)OH (k(4)), CF(3)CH(OH)CH(3) (k(5)), CF(3)CH(OH)CF(3) (k(6)), CF(3)CH(OD)CF(3) (k(7)) and CF(3)CD(OD)CF(3) (k(8)), are investigated as a function of temperature in the range of 268-378 K by laser photolysis-resonance fluorescence. To our knowledge, only the CF(3)CH(2)OH + Cl reaction has been previously studied from a kinetic point of view. The derived Arrhenius expressions obtained using our kinetic data are: k(4) = (1.79+/-0.17) x 10(-13) exp[(410+/-26)/T], k(5) = (1.20+/-0.11) x 10(-12) exp[(394+/-14)/T], k(6) = (2.32+/-0.18) x 10(-13) exp[-(740+/-12)/T], k(7) = (6.45+/-1.87) x 10(-13) exp[-(1136+/-94)/T] and k(8) = (4.19+/-1.09) x 10(-13) exp[-(1378+/-81)/T] (in units of cm(3) molecule(-1) s(-1) and where errors are +/-sigma). Moreover, a theoretical insight into the mechanisms of these reactions is pursued through ab initio Möller-Plesset second-order perturbation treatment calculations with the 6-311G** basis set. Optimized geometries are obtained for reagents, transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies are calculated at the quadratic configuration interaction with single, double and triple excitations [QCISD(T)] level to obtain an estimation of the activation energies. Finally, the rate constants are calculated through transition-state theory using Wigner's transmission coefficient in order to include the tunnelling-effect corrections.

  2. Oxidation of MC-LR and -RR with chlorine and potassium permanganate: toxicity of the reaction products.

    Science.gov (United States)

    Rodríguez, Eva M; Acero, Juan L; Spoof, Lisa; Meriluoto, Jussi

    2008-03-01

    Toxin-producing cyanobacteria are abundant in surface waters used as drinking water resources. Microcystins (MC) produced by certain cyanobacteria present acute and chronic toxicity, and their removal in drinking water treatment processes is of increasing concern. Previous studies have demonstrated that chlorine and potassium permanganate are feasible oxidants for the removal of MCs present in drinking water resources, although the oxidation might lead to toxic oxidation products. In this paper, the toxicity of the oxidation products of MC-LR and -RR has been studied using protein phosphatase 1 inhibition assay (PPIA). The HPLC and ELISA analyses correlated with the PPIA results for both toxins. The samples containing the oxidation products were fractionated by HPLC and the toxicity of the fractions was tested with PPIA. The results revealed that protein phosphatase 1 inhibition emerged only from intact MC, while the oxidation products were non-toxic. Similar results were obtained in experiments performed in natural waters: no reaction products or interactions exhibiting protein phosphatase 1 inhibition were detected.

  3. Production of singlet oxygen by the reaction of non-basic hydrogen peroxide with chlorine gas.

    Science.gov (United States)

    Tian, Wenming; Shi, Wenbo; Yang, Heping; Cui, Rongrong; Deng, Liezheng

    2012-10-14

    Non-basic hydrogen peroxide was found to be very easy to react with Cl(2) to produce singlet oxygen O(2)(a(1)Δ(g)) (i.e. the molecular oxygen in its first electronic excited state) when an H(+) absorbent such as C(5)H(5)N, CH(3)COONH(4), HCOONH(4) or NH(4)F was added into H(2)O(2) aqueous solution, and the long concealed fact that molecular H(2)O(2) can react with Cl(2) to produce O(2)(a(1)Δ(g)) was then uncovered. It is only when an H(+) absorbent has provided a stronger base than H(2)O to absorb the H(+) produced during the reaction that O(2)(a(1)Δ(g)) can be produced.

  4. Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line

    CERN Document Server

    Jeltema, Tesla E

    2014-01-01

    We examine the claimed excess X-ray line emission near 3.5 keV with a new analysis of XMM-Newton observations of the Milky Way center and with a re-analysis of the data on M31 and clusters. In no case do we find conclusive evidence for an excess. We show that known plasma lines, including in particular K XVIII lines at 3.48 and 3.52 keV, provide a satisfactory fit to the XMM data from the Galactic center. We assess the expected flux for the K XVIII lines and find that the measured line flux falls squarely within the predicted range based on the brightness of other well-measured lines in the energy range of interest. We then re-evaluate the evidence for excess emission from clusters of galaxies, including a previously unaccounted for Cl XVII line at 3.51 keV, and allowing for systematic uncertainty in the expected flux from known plasma lines and for additional uncertainty due to potential variation in the abundances of different elements. We find that no conclusive excess line emission is present within the s...

  5. Combining Low-Energy Electrical Resistance Heating with Biotic and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL Source Area

    Science.gov (United States)

    2012-12-01

    treatment zones using pneumatic injection. In: Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup; Henry, S.M...source areas”. In: S. M. Henry, and S. D. Warner (eds), Innovative strategies for the remediation of chlorinated solvents and DNAPLs in the subsurface...8217s ond -- -j,O - e ,, , tt’ J?5s I -- o-8 3’ W of- ISB-mw 2- -- f-- {).Jif"’f ,ruo~/wood_1 bric ~ f-- I f-z,o - 8 {2.1111 2 .. \\ r-- {Flu) ~,c/ r

  6. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    Science.gov (United States)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  7. Alkylation reaction by propene of benzene on the high-temperature chlorination alumina catalyst; Koonensoshori arumina shokubaijo deno benzen no puropen nioru arukiruka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Kazuhiro; Inui, Kanichiro; Honda, Kazuki; Shobu, Akinori

    1999-09-01

    Alkylation reaction by propene of benzene on alumina catalyst (AmLSA) chlorinated at 1073K was carried out using semibatch reactor (liquid phase catalytic reaction) and fixed bed flow reactor (vapor phase catalytic reaction) at atmospheric pressure 303K and 303-623K respectively. Products in liquid phase catalytic reaction were isopropyl benzene (IPB), diisopropyl benzene (di-IPB), triisopropyl benzene (tri-IPB), and the dissolution of the catalytic activity kind to the organic solvent was not observed. It was estimated, when propene was made to adsorb on Am LSA, because the generation of isopropylidene and 2 - propylene cation which coordinated in a strong Lewis acid point was observed, isopropyl reaction these cation benzene - complex. The generation of the high order substitute was promoted, when sodium was added to the catalyst, and the meta/para ratio of di-IPB increased. In vapor phase catalytic reaction, tetraisopropyl benzene (tetra-IPB) was also formed, and in the temperature of 473K or less, it was promoted further than the case in which the generation of tetra-IPB and di, tri was liquid phase catalytic reaction. IPB selectivity and selectivity of total replacement arthroplasty benzenes of consumed propene standard increased, when benzene/propene ratio in the raw material gas increased. In addition, at all reaction temperatures, the oligomerization of propene was generated, and the deactivation of the catalyst was caused. (translated by NEDO)

  8. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    Science.gov (United States)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  9. Molecular Modeling of Chem-Bio (CB) Contaminant Sorption/Desorption and Reactions in Chlorinated Water Systems

    Science.gov (United States)

    2012-05-01

    protection of enmeshed spores from chlorine (De Beer et al. 1994; Szabo et al. 2006). Interestingly, the biofilms that developed in both the 0.5 mg/L and...Sodium Hypochlorite and Hydrogen Peroxide in Killing and Removing Pseudomonas Aeruginosa Biofilms from Surfaces.” Journal of Applied Microbiology 103...Role of Biofilms in the Survival of Legionella Pneumophila in a Model Potable Water System.” Microbiology 147 (11): 3121–3126. Ndiongue, S., P. M

  10. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process.

    Science.gov (United States)

    Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo

    2016-07-01

    Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB.

  11. Synthesis and chlorination of manganese-columbine by means of a solid-gas reaction. Determination of crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, J.; Ruiz, M. del C. [Universidad Nacional de San Luis (Argentina). Inst. de Investigaciones en Tecnologia Quimica

    1997-12-31

    Full text. The synthesis of mangano-columbite was carried out as follows: Mixing of N B 203 and Mn Cl 2 with an 10% weight excess of the latter in order to compensate for losses due to volatilization; grinding of the mixture in an agate mortar with agate handle in order to achieve close contact between the two solids; calcination of the sample in a quartz crucible at temperatures between 610 and 620 C (fusion temperature for Mn Cl2) in N2 current for six hours. After this time, temperature was increased at a eat of 50 C/h until reaching 800 C. This temperature was maintained for two hours in order to eliminate Mn Cl2 excess; cooling of the obtained product in N2 current. XRD analysis showed that the obtained products is a mangano-columbite. The mineral in natural state presents and orthorhombic structure. The structure of the synthesized product, though corresponding to mangano-columbite according to DRX, should be confirmed by means of an additional technique such as EXAFS. Th mangano-columbite obtained was subsequently chlorinated at 900 deg C for two hours to obtain conversions close to 50%, at 101 kPa, with a chlorine molar fraction of 1 and a flow of 50 cm3/min. By XRD it can be observed that the chlorination residue presents unreacted mangano-columbite and niobium oxide in an unknown phase, whose crystalline structure is currently under study. Measurements to be performed by means Synchrotron Radiation (EXAFS and XANES) might help elucidate this new structure. (author)

  12. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10/sup -5/ %, of chlorine- 1x10/sup -4/% in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10/sup -4/ - nx10/sup -3/ mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine.

  13. Chlorine and antibiotic-resistant bacilli isolated from an effluent treatment plant - doi: 10.4025/actascitechnol.v35i1.12951

    Directory of Open Access Journals (Sweden)

    Suzana Cláudia Silveira Martins

    2013-01-01

    Full Text Available Resistance to different concentrations of chlorine and the susceptibility to antibiotics by bacteria isolated from the final effluent of the Pici Campus wastewater treatment plant of the Federal University of Ceará (UFC is evaluated. Twelve strains, morphologically and biochemically identified as belonging to the genus Bacillus, were selected. The strains were submitted to sodium hypochlorite at different contact times and tested against the antibiotics amoxicillin, erythromycin, chloramphenicol, tetracycline, and vancomycin. All strains were resistant to concentration 0.1 ppm chlorine up to 30 minutes, but bacteria resistant to concentrations up to 5,000 ppm for 10 minutes were detected. Bacterial growth was impaired in 10,000 ppm concentration. The strains presented three antibiotic resistance profiles, 50% were sensitive to all antibiotics, 25% were resistant to one antibiotic and 25% were resistant to two antibiotics.  

  14. An elementary reaction kinetic model of the gas-phase formation of polychlorinated dibenzofurans from chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Dellinger, B.; Khachatryan, L. [Louisiana State Univ., Baton Rouge, LA (United States); Asatryan, R. [State Medical Univ., Yerevan (Armenia)

    2004-09-15

    Combustion and thermal processes are generally recognized as the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F or simply ''dioxins'') in the environment. A previously developed, simple mechanism of gas-phase formation of PCDD from chlorinated phenols suggested that the gas-phase formation pathway was too slow to account for concentrations of PCDD observed in full-scale combustors. As a result, most research on formation of PCDD/F in combustion sources focused on surface-mediated formation. In this manuscript, we report the development of a modified model for the purely gas-phase formation of polychlorinated dibenzofurans (PCDFs) that is based on the experimentally observed formation of PCDF from the oxidation of 2,4,6-trichlorophenol (TCP) in the presence of hexane.

  15. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study.

    Science.gov (United States)

    Han, You; Sun, Mengxia; Li, Wei; Zhang, Jinli

    2015-03-28

    The catalytic mechanism of Ru-based catalysts in the acetylene hydrochlorination reaction has been investigated via the density functional theory (DFT) method. To study the effect of the chlorine coordination number on the catalytic mechanism, Ru3Cl9, Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 clusters were chosen as the catalytic models. Our results show that the energy barrier for acetylene hydrochlorination on Ru3Cl9 was as high as 1.51 eV at 458 K. When the chlorine coordination number decreased, the energy barriers on Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 were 1.29, 0.89, 1.01 and 1.42 eV, respectively. On Ru3Cl9, the H and Cl atoms of HCl were simultaneously added to C2H2 to form C2H3Cl, while the reaction was divided into two steps on Ru3Cl7, Ru3Cl3 and Ru3 clusters. The first step was the addition of H atom of HCl to C2H2 to form C2H3˙, and the second step was the addition of Cl atom to C2H3˙ to form C2H3Cl. The step involving the addition of Cl was the rate-controlling step during the whole reaction. On Ru5Cl7 cluster, there was an additional step before the steps involving the addition of H and Cl: the transfer of H atom from HCl to Ru atom. This step was the rate-controlling step during the reaction of acetylene hydrochlorination on Ru5Cl7 and its energy barrier was the lowest among all the above-mentioned catalytic models. Therefore, the Ru5Cl7 cluster played the most predominant role in acetylene hydrochlorination with the largest reaction rate constant kTST of 10(3).

  16. 35例奥美拉唑不良反应分析%Analyse 35 Cases of Adverse Reactions in Omeprazole

    Institute of Scientific and Technical Information of China (English)

    郭晶

    2015-01-01

    目的:探讨奥美拉唑不良反应(ADR)的发生规律和特点,为临床合理用药提供参考。方法对2013年4月~2014年10月我院发生的35例奥美拉唑所致不良反应进行分类与分析。结果奥美拉唑不良反应的临床表现包括白细胞减少、变态反应、过敏性休克、乳腺增生,及血液系统、内分泌系统、消化系统、皮肤等。结论应加强对奥美拉唑用药后的监测,应重视其不良反应,以保障患者的用药安全。%Objective To investigate the regular pattern and characteristic caused by the adverse drug reactions(ADR)in omeprazole,in order to provide reference for rational clinical drug use. Methods Analyzed the 35 patients’cases caused by the adverse drug reactions(ADR)in omeprazole which were chosen from April 2013 to Oct. 2014. Results The adverse reactions of omeprazole included leukopenia,al ergy,anaphylactic shock,hyperplasia of mammary glands,and the blood system,endocrine system,digestive system,skin,etc. Conclusion To strengthen the monitoring of the drug omeprazole,more attention should be paid on its adverse reactions in order to ensure the patients' medication safety.

  17. Synthesis and Biological Activity of Some 3,5-Diaryl-1-Benzothiazolopyrazoline Derivatives: Reaction of Chalcones with 2-Hyrazinobenzothiazoles

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2009-01-01

    Full Text Available A series of 3,5-diaryl-1-benzothiazolopyrazoline derivatives were synthesized by the reaction of appropriately substituted chalcones and 2-hydrazinobenzothiazole in ethanol. The synthesized heterocycles have been characterized on the basis of their chemical properties and spectroscopic data. These compounds were tested for biological activity against a variety of test organisms.

  18. REACTION MECHANISM AND DYNAMICS OF H2O2-BASED CHLORINE DIOXIDE PRODUCTION%过氧化氢法制备二氧化氯的反应机理及动力学

    Institute of Scientific and Technical Information of China (English)

    钱宇; 陈赟; 江燕斌; 纪红兵

    2004-01-01

    To develop a cleaner production process of H2O2-based chlorine dioxide, this paper presents a study on reaction mechanism and dynamics of the process. It is shown that a complex H2ClO2-ClO3 exists as an intermediate in the process. A rational reaction process is proposed, which unifies several reaction mechanisms reported by different researchers in a wider range of reaction temperature. A theoretical model of the dynamics is presented, and parameters of the model are experimentally estimated and verified.

  19. Experimental Study on Reaction Energy Release Characteristics of Hydrocarbon and Chlorine Trifluoride%三氟化氯与碳氢燃料反应放能试验研究

    Institute of Scientific and Technical Information of China (English)

    高洪泉; 卢芳云; 王少龙; 罗永锋; 闫华; 刘志勇

    2011-01-01

    Using a designed experimental device,explosion experiments of hydrocarbon with chlorine trifluoride in confined space were carried out,based on the analysis of the hydrocarbon and chlorine trifluoride reaction mechanism. The energy released from the reaction of hydrocarbon and chlorine trifluoride without oxygen was calculated based on experimental results. Results show that (1) The reaction of hydrocarbon and chlorine trifluoride accompanies an intense release of great deal of energy,so that part of the hydrocarbon is vaporized and dispersed,a violent deflagrating would be ignited once the vaporized hydrocarbon be mixed with the air. (2) The TNT equivalence of the explosion reaction of hydrocarbon and chlorine trifluoride without oxygen is about 1.8.%在对三氟化氯与碳氢燃料反应机理进行分析的基础上,进行了密闭环境下三氟化氯与碳氢燃料的反应放能试验研究.结果表明:三氟化氯与碳氢燃料可以发生剧烈反应,释放大量的能量,将碳氢燃料部分雾化并喷出密闭空间,激活的碳氢燃料一旦接触空气,便诱发碳氢燃料的剧烈爆燃;在无氧条件下,三氟化氯与碳氢燃料爆炸反应所释放的能量相当于1.8倍TNT当量.

  20. Theoretical Study on Proton-Transfer Reaction of Intracellular Second-messenger 3',5'-Cyclic Nucleotide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-Hua; YANG Bao-Hua; LI Zong-He

    2008-01-01

    The gas-phase proton-transfer reaction mechanism of intracellular second-messenger 3',5'-cyclic nucleotide (cAMPm) has been theoretically investigated at the B3LYP/6-31G** level. One or two H2O molecules have been used to simulate the catalyst. It is found that H shift reaction between conformation Bm and conformation Dm of cAMPm involves a cyclic transition state with one or two water molecules as a shuttle. Furthermore, H shift reac- tion proceeds easily with the participation of two water molecules. The results provide evidence in theory to study proton-transfer reaction mechanism of related phosphodiesters. Our present calculations have rationalized all the possible reaction channels.

  1. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    Science.gov (United States)

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-03-14

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, (35)Cl/(37)Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  2. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  3. Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles

    Indian Academy of Sciences (India)

    Alireza Najafi Chermahini; Abbas Teimouri

    2014-01-01

    The inter and intra molecular proton transfer reactions of a series of pyrazole derivatives have been studied by using density functional theory (DFT) andMP2 methods implementing 6-311++G(d,p) atomic basis set. The substituents have been selected to cover a wide range of electronic effects. Proton transfer process was studied for mechanisms including single proton transfer, double proton transfer and proton transfer assisted by a water or ammonia molecule. The results showed single proton transfer reactions for interconversion pyrazole derivatives need highest activation energies in the range of 45.7−51.59 and 49.4−53.96 kcal/mol at B3LYP and MP2 levels, respectively. It was found that for the 3-substituted pyrazoles, electron withdrawing groups form stronger dimers but in the 5-substituted tautomers electron donating groups form stronger hydrogen bond. The double proton transfer reactions between dimers were studied and transition states calculated. The ranges of activation energies were found to be 17.51−19.36 and 17.02−17.80 kcal/mol for the C → E and D → D reactions respectively. In addition, the activation energies for the proton transfer reaction assisted by water or ammonia molecules were found to be in the range of 26.62−31.78 and 17.25−22.46 kcal/mol, respectively, calculated at MP2/6-311++G(d,p) level of theory.

  4. A Novel Approach to Prepare Well-Defined Silica-Supported Polyoxometalate Species by Reaction with a Chlorinated Support

    Directory of Open Access Journals (Sweden)

    Eva Grinenval

    2013-01-01

    Full Text Available Polyoxometalates were grafted covalently on SBA-15 by a two-step procedure. The dehydroxylated mesoporous silica was first modified by reaction with methyltrichlorosilane in presence of triethylamine. The resulting solid was fully characterized and contained a mixture of mono- and digrafted species . These surface Si–Cl bonds can react with lacunary polyoxometalates as in solution, yielding to a ≡Si–O–POM linkage. However, solid state MAS NMR shows that only the digrafted species react with the polyoxometalate. This new grafting method opens the way to the synthesis of a new class of catalysts which could operate in solution without leaching.

  5. Effect of the reaction time on the microstructure and porous texture of carbon materials obtained by chlorination of Ti(C{sub 5}H{sub 5})Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Araujo-Pérez, D.J. [Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, 94294, Boca del Río, Veracruz (Mexico); González-García, P., E-mail: pedro.gonzalez@cidesi.edu.mx [CONACYT Research Fellow – Centro de Ingeniería y Desarrollo Industrial, 76130, Querétaro, Querétaro (Mexico); Poisot, M. [Instituto de Química Aplicada, Universidad del Papaloapan, 68301, San Juan Bautista Tuxtepec, Oaxaca (Mexico); García-González, L. [Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, 94294, Boca del Río, Veracruz (Mexico)

    2015-09-15

    Carbon materials have been obtained by the chlorination reaction of Ti(C{sub 5}H{sub 5})Cl{sub 2} at 900 °C, varying the reaction time at 30, 60, 90 and 120 min. The average microstructure, studied by X ray powder diffraction, suggest that these materials consist mainly of disordered carbon with low graphitization degree (from 13.5 to 16.5%). These results are in agreement with the Raman data since the D band (at ≈ 1350 cm{sup −1}) indicates that disordered carbon networks have appeared. The calculated in-plane correlation length increases from 4.04 to 4.70 nm as the chlorination time increases from 30 to 120 min. The textural analyses reveal adsorption isotherms type 1 with hysteresis H4, microporous areas as high as 855 m{sup 2}/g and pore volume of 0.55 cm{sup 3}/g. Additionally, an important contribution of mesoporosity, around 3.6 nm, was also detected. - Highlights: • Micro-mesoporous carbon materials were obtained by chlorination of Ti(C{sub 5}H{sub 5}){sub 2}Cl{sub 2} at 900 °C. • The effect of chlorination exposure time on the microstructure and textural properties was studied. • Microstructural analysis by XRD and Raman showed that carbon samples are mainly disordered. • N{sub 2} adsorption/desorption isotherms showed isotherms type 1 with hysteresis H4. • Micropore size increases at longer chlorination time; in contrast, pore volume decreases.

  6. Reply to Two Comments on "Dark matter searches going bananas the contribution of Potassium (and Chlorine) to the 3.5 keV line"

    CERN Document Server

    Jeltema, Tesla

    2014-01-01

    We respond to two comments on our recent paper, Jeltema & Profumo (2014). The first comment by Boyarsky et al. confirms the absence of a line from M31 in the 3-4 keV energy range, but criticizes the energy range for spectral fitting on the basis that (i) the background model adopted between 3-4 keV is invalid outside that range and that (ii) extending the energy range multiple features appear, including a 3.5 keV line. Point (i) is manifestly irrelevant (the 3-4 keV background model was not meant to extend outside that range), while closer inspection of point (ii) shows that the detected features are inconsistent and likely unphysical. We demonstrate that the existence of an excess near 3.5 keV in the M31 data requires fitting a broad enough energy range such that the background modeling near 3.5 keV is poor to a level that multiple spurious residual features become significant. Bulbul et al. criticize our use of WebGuide instead of the full AtomDB package. While a technically correct remark, this is only...

  7. Formation of a necklike structure in 35Cl+12C and 197Au reactions at 43 MeV/nucleon

    Science.gov (United States)

    Larochelle, Y.; Gingras, L.; Beaulieu, L.; Qian, X.; Saddiki, Z.; Djerroud, B.; Doré, D.; Laforest, R.; Roy, R.; Samri, M.; St-Pierre, C.; Ball, G. C.; Bowman, D. R.; Galindo-Uribarri, A.; Hagberg, E.; Horn, D.; López, J. A.; Robinson, T.

    1997-04-01

    The experimental signature of the formation of a necklike structure, with a velocity between that of the projectilelike emitter and that of the targetlike emitter, is investigated with the same beam and experimental setup for targets lighter and heavier than the projectile. The reactions are 35Cl on 12C and on 197Au at 43 MeV/nucleon. Particle velocity distributions are compared with two-source statistical simulations and the presence of a necklike structure is inferred from the data. In the second part of the paper, dynamical model simulations with the formation of a necklike structure are presented for the 35Cl+12C system at 43 MeV/nucleon.

  8. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  9. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable.

  10. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  11. Transformation of iopamidol during chlorination.

    Science.gov (United States)

    Wendel, Friedrich M; Lütke Eversloh, Christian; Machek, Edward J; Duirk, Stephen E; Plewa, Michael J; Richardson, Susan D; Ternes, Thomas A

    2014-11-01

    The transformation of the iodinated X-ray contrast media (ICM) iopamidol, iopromide, iohexol, iomeprol, and diatrizoate was examined in purified water over the pH range from 6.5 to 8.5 in the presence of sodium hypochlorite, monochloramine, and chlorine dioxide. In the presence of aqueous chlorine, only iopamidol was transformed. All other ICM did not show significant reactivity, regardless of the oxidant used. Chlorination of iopamidol followed a second order reaction, with an observed rate constant of up to 0.87 M(-1) s(-1) (±0.021 M(-1) s(-1)) at pH 8.5. The hypochlorite anion was identified to be the reactive chlorine species. Iodine was released during the transformation of iopamidol, and was mainly oxidized to iodate. Only a small percentage (less than 2% after 24 h) was transformed to known organic iodinated disinfection byproducts (DBPs) of low molecular weight. Some of the iodine was still present in high-molecular weight DBPs. The chemical structures of these DBPs were elucidated via MSn fragmentation and NMR. Side chain cleavage was observed as well as the exchange of iodine by chlorine. An overall transformation pathway was proposed for the degradation of iopamidol. CHO cell chronic cytotoxicity tests indicate that chlorination of iopamidol generates a toxic mixture of high molecular weight DBPs (LC50 332 ng/μL).

  12. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection.

    Science.gov (United States)

    Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of

  13. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  14. Chlorination of tyrosyl residues in peptides and proteins by hypochlorous acid

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, A.J.; Chapman, A.L.P.; Senthilmohan, R.; Vile, G.F. [Christchurch School of Medicine, Christchurch (New Zealand). Free Radical Reseach Group; Chai, L.L. [The Australian National University, Canberra, ACT (Australia). Department of Chemistry

    1998-12-31

    Full text: Hypochlorous acid (HOCI) is the major strong oxidant produced by neutrophils. These granulocytic cells use HOCI to kill bacteria and it is also proposed to promote inflammation. Previously, it was shown that HOCI converts tyrosyl residues in proteins to 3-chlorotyrosine. This chlorinated molecule is an ideal biomarker for determining the precise roles HOCI plays in bacterial killing and inflammatory tissue damage. We have investigated the reaction of HOCI with tyrosyl residues in peptides and proteins to establish whether or not chlorinated products in addition to 3-chlorotyrosine are formed. When 200{mu}M HOCI was added to 500{mu}g/ml of bovine serum albumin both 3-chlorotyrosine and 3,5-dichlorotyrosine were formed. The monochlorinated amino acid was the predominant product and its formation was complete by 20 minutes whereas levels of 3,5-dichlorotyrosine continued to increase for up to an hour. Amounts of both chlorinated products increased with increasing concentrations of HOCI until a plateau was reached at about 800{mu}M. At all concentrations of HOCI a substantial amount of the tyrosine that had reacted was unaccounted for as either 3-chlorotyrosine or 3,5-dichlorotyrosine. Similar results were obtained with small peptides containing tyrosine. Sub-stoichiometric concentrations of HOCI converted tyrosyl residues in GGYR to 3-chlorotyrosine. At higher concentrations of HOCI, chlorination was rapid and both 3-chlorotyrosine and 3,5-dichlorotyrosine were produced but they accounted for less than 50% of the products. To identify the additional products of the reaction, we reacted HOCI with tyrosine analogues including N-acetyltyrosine, phydroxyphenylacetic acid, and 4-propylphenol. Separation of the reaction mixture by HPLC revealed that numerous products were formed besides mono and dichlorinated derivatives of the parent compounds. Analysis of the products by gas chromatography/mass spectrometry strongly indicated that mono and dichlorinated

  15. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    Science.gov (United States)

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  16. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  17. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  18. Thermally induced electrocyclic reaction of methylenecyclopropane methylene diketone derivatives: a facile method for the synthesis of spiro[2.5]octa-3,5-dienes.

    Science.gov (United States)

    Tang, Xiang-Ying; Wei, Yin; Shi, Min

    2010-11-19

    Thermally induced electrocyclic reactions of methylenecyclopropane (MCP) methylene diketone derivatives afford a novel method for the synthesis of spiro[2.5]octa-3,5-dienes in moderate to good yields. Applying this methodology in a one-pot manner for the reactions of MCP aldehydes with 1,3-diketones, catalyzed by l-proline, also afforded the corresponding spiro derivatives.

  19. A convenient route to symmetrically and unsymmetrically substituted 3,5-diaryl-2,4,6-trimethylpyridines via Suzuki–Miyaura cross-coupling reaction

    Science.gov (United States)

    Szawkało, Joanna; Czarnocki, Zbigniew

    2016-01-01

    Summary A series of differently substituted 3,5-diaryl-2,4,6-trimethylpyridines were prepared and characterized using the Suzuki–Miyaura coupling reaction with accordingly selected bromo-derivatives and arylboronic acids. The reaction conditions were carefully optimized allowing high yield of isolated products and also the construction of unsymmetrically substituted diarylpyridines, difficult to access by other methods. PMID:27340474

  20. Experimental investigation of the 19F( n, α)16N reaction excitation function in the neutron energy range of 4 to 7.35 MeV

    Science.gov (United States)

    Bondarenko, I. P.; Khryachkov, V. A.; Ivanova, T. A.; Kuz'minov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2013-07-01

    The interaction of neutrons with light nuclei study is of interest for understanding nuclear-reaction mechanisms. Fluorine nuclei are worth particular attention because they are abundant in the core of the promising molten-salt reactors and can noticeably affect the chain reaction kinetics. In this work we have experimentally investigated the 19F( n, α)16N reaction cross-section at neutron energies ranging from 4 to 7.35 MeV.

  1. Electric plasma discharge combustion synthesis of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, R. L.; Geren, G. W.

    1984-09-18

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent.

  2. [Genotoxicity of drinking water during chlorine and chloramine disinfection and the influence of disinfection conditions using the umu-test].

    Science.gov (United States)

    Liu, Qing; Zhang, Li-Ping; Liu, Wen-Jun; Nie, Xue-Biao; Zhang, Su-Xia; Zhang, Shun

    2010-01-01

    In this study, the effects of disinfectant dosage, reaction time and the ratio of Cl2 to N of disinfectant on genotoxicity of effluent of ozone-biological activated carbon (O3-BAC) during chlorine or chloramine disinfection were investigated using umu-test. It was found that, the genotoxicity of effluent of O3-BAC before disinfection ranged from 20-70 ng/L, and it increased after disinfection by chlorine or chloramines. With the same reaction time(24 h), genotoxicity after chlorination (40-95 ng/L) was higher than that after chloramination (20-40 ng/L) under same initial dosage. For chlorination, with initial dosage increasing from 0 mg/L to 10 mg/L, genotoxicity increased firstly, and got the maximum value at about 0.5-1 mg/L dosage, then decreased and got the minimum value at about 3-5 mg/L dosage, and finally increased again. For chloramination, genotoxicity didn't change that much. With the dosage of 3 mg/L and reaction time increasing from 0 h to 72 h, no matter for chlorine or chloramines disinfection, genotoxicity of effluent of O3-BAC both increased firstly, and got the maximum value at about 2 h, then decreased and got the minimum value at about 18 h, and finally increased again, and genotoxicity after chlorine disinfection (83-120 ng/L) was higher than that after chloramines disinfection (20-62 ng/L) under same reaction time. Further more, effects of the different ratios of Cl2 to N of disinfectant on genotoxicity of effluent of O3-BAC were also studied. Results of this study demonstrate that under test conditions, chloramine disinfection is safer than chlorine disinfection in the aspect of genotoxicity for drinking water, and the changes of genotoxicity are different from those of total HAAs.

  3. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    Institute of Scientific and Technical Information of China (English)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn3.5Ag/Cu solder reaction couple was investigated with a high current density of 5× 103 A/cm2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results in-dicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu6Sn5 intcrmetallic compounds (LMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu6Sn5 at the cathode interface due to the thermal stress.

  4. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    Science.gov (United States)

    Hongwen, He; Guangchen, Xu; Fu, Guo

    2009-03-01

    Electromigration (EM) behavior of Cu/Sn3.5Ag/Cu solder reaction couple was investigated with a high current density of 5 × 103 A/cm2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu6Sn5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu6Sn5 at the cathode interface due to the thermal stress.

  5. Phosphate valorization by dry chlorination route

    OpenAIRE

    Kanari N.; Menad N.; Diot F.; Allain E.; Yvon J.

    2016-01-01

    International audience; This work deals with the extraction of phosphorus chlorinated compounds from phosphate materials using chlorination with gaseous chlorine. An industrial sample of dicalcium phosphate dihydrate, after transformation into calcium pyrophosphate (Ca 2 P 2 O 7), is subjected to reactions with Cl 2 +CO+N 2 and Cl 2 +C+N 2 at temperatures ranging from 625 to 950 °C using boat experiments. Gathering results of the thermodynamic predictions and TG/DT analysis with those of SEM ...

  6. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    Science.gov (United States)

    1994-09-01

    chemically with each other, and with living organisms, particularly bacteria ( Manahan , 1991:435). To ensure effective disinfection, to meet the CWA...halogens are strong oxidants and are highly reactive ( Manahan , 1991:504). Chlorine is never found uncombined in nature, it exists only as the...HOCI) according to the following reaction: Cl2 (gas) + H20 =• HOC1 + H+ + Cl The hydrogen is oxidized and the chlorine gas is reduced ( Manahan , 1991

  7. Infrared identification of the {sigma}-complex of Cl-C{sub 6}H{sub 6} in the reaction of chlorine atom and benzene in solid para-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bahou, Mohammed; Witek, Henryk [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2013-02-21

    The reaction of a chlorine atom with benzene (C{sub 6}H{sub 6}) is important in organic chemistry, especially in site-selective chlorination reactions, but its product has been a subject of debate for five decades. Previous experimental and theoretical studies provide no concrete conclusion on whether the product is a {pi}- or {sigma}-form of the Cl-C{sub 6}H{sub 6} complex. We took advantage of the diminished cage effect of para-hydrogen (p-H{sub 2}) to produce Cl in situ to react with C{sub 6}H{sub 6} (or C{sub 6}D{sub 6}) upon photolysis of a Cl{sub 2}/C{sub 6}H{sub 6} (or C{sub 6}D{sub 6})/p-H{sub 2} matrix at 3.2 K. The infrared spectrum, showing intense lines at 1430.5, 833.6, 719.8, 617.0, and 577.4 cm{sup -1}, and several weaker ones for Cl-C{sub 6}H{sub 6}, and the deuterium shifts of observed new lines unambiguously indicate that the product is a 6-chlorocyclohexadienyl radical, i.e., the {sigma}-complex of Cl-C{sub 6}H{sub 6}. Observation of the {sigma}-complex rather than the {pi}-complex indicates that the {sigma}-complex is more stable in solid p-H{sub 2} at 3.2 K. The spectral information is crucial for further investigations of the Cl + C{sub 6}H{sub 6} reaction either in the gaseous or solution phase.

  8. Reaction and fusion cross sections for the near-symmetric system $^{129}Xe+^{nat}Sn$ from $8$ to $35$ $AMeV$

    CERN Document Server

    Manduci, L; Chbihi, A; Rivet, M F; Bougault, R; Frankland, J D; Borderie, B; Galichet, E; La Commara, M; Neindre, N Le; Lombardo, I; Pârlog, M; Rosato, E; Roy, R; Verde, G; Vient, E

    2016-01-01

    \\item[Background]Heavy-ion reactions from barrier up to Fermi energy. \\item[Purpose]Reaction and fusion cross sections determination. Fusion reactions induced by $^{129}Xe$ projectiles on $^{nat}Sn$ targets for energies ranging from $8$ A.MeV to $35$ A.MeV were measured with the INDRA $4\\pi$-array.\\\\ The evaluation of the fusion/incomplete fusion cross sections for the incident energies from 8 to 35 A.MeV is the main purpose of this paper. \\item[Method] The reaction cross sections are evaluated for each beam energy thanks to INDRA $4\\pi$-array. The events are also sorted in order to focus the study on a selected sample of events, in such a way that the fusion/fusion incomplete cross section is estimated. \\item[Results] The excitation function of reaction and fusion cross sections were measured for the heavy and nearly symmetric system $^{129}Xe + ^{nat}Sn$ from 8 to 35 A.MeV. \\item[Conclusions] The fusion-like cross-sections evaluated show a good agrement with a recent systematics for beam energies greater th...

  9. Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment.

    Science.gov (United States)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-11-15

    Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  10. Kinetics of the Reaction of 2-Chloro-3,5-dinitrobenzotriflouride with Aniline in Toluene and Methanol-Toluene Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    Fathalla; Magda F.

    2012-01-01

    Kinetics of the reaction of 2-chloro-3,5-dinitrobenzotriflouride with aniline were studied in toluene, metha- nol-toluene binary solvents, benzene and chloroform. The reaction in toluene exhibits third-order kinetics consistent with aggregates of aniline. Thermodynamic parameters AH#, AS# and AG# are calculated and discussed for the reaction of 2-chloro-3,5-dinitrobenzotriflouride with aniline in methanol-toluene. Molecular complexes between aniline and the substrate are rejected spectrophotometricaly. The mechanism is studied and compared with the reac- tion in presence of pyridine. It shows an amine dependence and formation of homo and/or hetero mixed aggregates between aniline and pyridine i.e. dimer mechanism.

  11. Method of improving formation permeability using chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, L.A.; Williams, D.A.

    1991-07-16

    This patent describes a method of treating a sandstone formation containing clays or silicates. It comprises injection a treating liquid into the formation comprising an aqueous solution of: from 50 to 4,200 ppm chlorine dioxide and from 1 to 85 volume percent of carbon dioxide; permitting the chlorine dioxide to react with material in the formation; and thereafter injecting into the formation an acid solution capable of dissolving the reaction products of chlorine dioxide and the clays and silicates.

  12. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  13. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  14. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui

    2015-08-17

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  15. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    Science.gov (United States)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  16. Chlorination of organophosphorus pesticides in natural waters.

    Science.gov (United States)

    Acero, Juan L; Benítez, F Javier; Real, Francisco J; González, Manuel

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 degrees C and pH 7 were determined to be 110.9, 0.004 and 191.6 M(-1) s(-1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L(-1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  17. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  18. Investigation of an Oscillation System in the Reaction of Chlorine Dioxide-Iodine-Malonic Acid-Sulfuric Acid%二氧化氯-碘-丙二酸-硫酸化学振荡体系的探讨

    Institute of Scientific and Technical Information of China (English)

    王芳; 施来顺

    2011-01-01

    The initial concentration of every reagent was changed in the chlorine dioxide-iodine-malonic acid-sulfuric acid oscillator in a closed system,and the system was investigated by determining the absorbance of I-3 with reaction time at 350 nm.As a result,the higher was the initial concentration of malonic acid,iodine or sulfuric acid,the bigger was the amplitude.Also,the number of oscillations became small.An opposite influence existed for chlorine dioxide.The oscillation occurred as long as the reactants mixed when the concentrations of components were comparatively high.However,the oscillation was preceded by a pre-oscillatory or induction period when the concentrations of components were relatively low.%对ClO2-I2-CH2(COOH)2-H2SO4化学振荡封闭体系,改变体系中各反应物的初始浓度,在350 nm处检测I3-的吸光度随反应时间的变化,结果发现丙二酸、碘及硫酸的初始浓度越高,二氧化氯的浓度越低,振荡的振幅越大,波数越少;当反应组分浓度较高时反应物一经混合振荡立即出现,没有诱导期,但当反应组分浓度较低时存在诱导期。

  19. Chlorine Abundances in Cool Stars

    CERN Document Server

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  20. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  1. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions.

    Science.gov (United States)

    Long, Yicheng; Jackman, Jane E

    2015-07-22

    Protozoan mitochondrial tRNAs (mt-tRNAs) are repaired by a process known as 5'-editing. Mt-tRNA sequencing revealed organism-specific patterns of editing G-U base pairs, wherein some species remove G-U base pairs during 5'-editing, while others retain G-U pairs in the edited tRNA. We tested whether 3'-5' polymerases that catalyze the repair step of 5'-editing exhibit organism-specific preferences that explain the treatment of G-U base pairs. Biochemical and kinetic approaches revealed that a 3'-5' polymerase from Acanthamoeba castellanii tolerates G-U wobble pairs in editing substrates much more readily than several other enzymes, consistent with its biological pattern of editing.

  2. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    Science.gov (United States)

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.

  3. Chlorination of nickel ore by gaseous chlorine in the presence of active additives

    Directory of Open Access Journals (Sweden)

    Ilić Ilija B.

    2003-01-01

    Full Text Available Paper presents a thermodynamic analysis of chemical reactions occurring during chlorination with and without additives for both nickel oxides and nickel ferrites, which are component parts of nickel ore. The experimental research investigated the influence of temperature in the range from 600 up to 1000 °C and time (up to 3 h on the chlorination degree of nickel ores with and without additives. It was found that the introduction of additives such as C, S, BaS and NaCl intensified the chlorination of nickel ore. The results can be applied and may help determine the optimal conditions for the chlorination of low-grade ferrous nickel ores.

  4. Reaction performance of methanation of carbon monoxide and carbon dioxide over supported ruthenium catalysts. ; Mainly on effects of remaining chlorine and dechlorination. Ruthenium tanji shokubaijo no issanka tanso oyobi nisanka tanso no methane ka no hanno tokusei. ; Shutoshite zanryu enso no eikyo to datsuenso shori no koka

    Energy Technology Data Exchange (ETDEWEB)

    Kasaoka, S.; Sasaoka, E.; Okazaki, Y.; Hanaya, M. (Okayama University, Okayama (Japan). Faculty of Engineering)

    1991-07-10

    An establishment of the methanation catalytic process is desired on CO and CO {sub 2} generated in coal gasification and other various processes. In this study as one reply to this requirement, Ru catalysts supported on ZrO {sub 2}, Al {sub 2} O {sub 3} ({theta}) and SiO {sub 2} were prepared, and the relationship between the reaction condition and the catalytic reaction performance was investigated, especially from a view to the effects of remaining chlorine in catalysts and dechlorination based on raw salt of Ru. Experiments were carried out using a flow fixed-bed reactor under an atmospheric temperature at mainly 120-350 {degree}C. The results are as follows: Knowledge was obtained about the amount of remaining chlorine after a hydrogen reduction treatment or after washing with warm water at 85 {degree}C; the effect of remaining chlorine one the catalytic activity was much larger for CO {sub 2} methanation than for CO methanation; the remaining chlorine suppresses the formation of carbonaceous species on the catalyst surface and decreases the catalytic activity; and Ru/ZrO {sub 2}, dechlorinated with water washing at 85 {degree}C is most active. 10 refs., 12 figs., 1 tab.

  5. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Directory of Open Access Journals (Sweden)

    Qais Iqbal

    Full Text Available In Ebola Virus Disease (EVD outbreaks, it is widely recommended to wash living things (handwashing with 0.05% (500 mg/L chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies with 0.5% (5,000 mg/L chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH, granular sodium dichloroisocyanurate (NaDCC, and liquid sodium hypochlorite (NaOCl, and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to 30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  6. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  7. Formation of a necklike structure in {sup 35}Cl+{sup 12}C and {sup 197}Au reactions at 43 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Larochelle, Y.; Gingras, L.; Beaulieu, L.; Qian, X.; Saddiki, Z.; Djerroud, B.; Dore, D.; Laforest, R.; Roy, R.; Samri, M.; St-Pierre, C. [Laboratoire de Physique Nucleaire, Departement de Physique, Universite Laval, Quebec, G1K 7P4 (CANADA); Ball, G.C.; Bowman, D.R.; Galindo-Uribarri, A.; Hagberg, E.; Horn, D. [AECL, Chalk River Laboratories, Ontario, K0J 1J0 (CANADA); Lopez, J.A.; Robinson, T. [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968-0515 (United States)

    1997-04-01

    The experimental signature of the formation of a necklike structure, with a velocity between that of the projectilelike emitter and that of the targetlike emitter, is investigated with the same beam and experimental setup for targets lighter and heavier than the projectile. The reactions are {sup 35}Cl on {sup 12}C and on {sup 197}Au at 43 MeV/nucleon. Particle velocity distributions are compared with two-source statistical simulations and the presence of a necklike structure is inferred from the data. In the second part of the paper, dynamical model simulations with the formation of a necklike structure are presented for the {sup 35}Cl+{sup 12}C system at 43 MeV/nucleon. {copyright} {ital 1997} {ital The American Physical Society}

  8. Production of Sigma{\\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    CERN Document Server

    Agakishiev, G; Belver, D; Belyaev, A; Berger-Chen, J C; Blanco, A; Boehmer, M; Boyard, J L; Cabanelas, P; Castro, E; Chernenko, S; Destefanis, T Christ M; Dohrmann, F; Dybczak, A; Epple, E; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzon, J A; Gernhäuser, R; Gilardi, C; Golubeva, M; Gonza'lez-Di'az, D; Guber, F; Gumberidze, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Kr'asa, A; Krizek, F; Krücken, R; Kuc, H; Kuehn, W; Kugler, A; Kurepin, A; Lalik, R; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Morinie're, E; Mousa, J; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Schwab, E; Siebenson, J; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Weber, M; Wendisch, C; Wüstenfeld, J; Yurevich, S; Zanevsky, Y

    2012-01-01

    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.

  9. Theoretical study on the reaction mechanism of chlorinated methylidyne radical with ozone%氯代次甲基与臭氧反应机理的理论研究

    Institute of Scientific and Technical Information of China (English)

    石从云; 胡威; 娄菲; 范淑珍

    2013-01-01

    The depletion of the ozone layer is one of the important environmental problems. The chlorinated methylidyne radical produced by UV photolysis of CFC in the stratosphere will consume the ozone. In order to clarify the ozone depletion mechanism by the radical, we employed quantum chemical calculations to study the reaction mechanisms of CCl radical with O3 on the doublet potential energy surface. The geometric structures of reactants, intermediates, transition states and products were optimized at the B3LYP/6-311G(d, p) level, and their vibration frequencies and energy values were obtained. Intrinsic reaction coordinate calculations at the same level were implemented to confirm the connections between transition states and intermediates. The detailed reaction pathways were made clear. It is found that the CCl + O3 reaction possesses five product channels:ClCO+O2, CO2+Cl+O, CO2+ClO, CO+O2+Cl, OCO2+Cl. Through the energy analysis of the stationary points on each reaction pathway, we can drawn the conclusion that the ClCO+O2 channel is the most feasible, CO2+Cl+O, CO2+ClO and OCO2+Cl are all secondary channels, the CO+O2+Cl channel is the least competitive. This research will provide theoretical basis for controlling the destruction of the ozone layer by the chlorinated methylidyne radical.%臭氧层损耗是人类面临的重要环境问题之一。平流层中氟氯烃类化合物受紫外线光解所产生的氯代次甲基会消耗臭氧。为了弄清该自由基消耗臭氧的机制,用量子化学计算的方法详细地研究了CCl+O3反应在二重态势能面上的反应机理。本文在B3LYP/6-311G(d, p)水平上优化了反应物、中间体、过渡态和产物的几何构型,得到了相应的振动频率和能量值,并在相同水平上用内禀反应坐标计算方法确认了过渡态和中间体之间的联系,理清了该反应详细的路径。研究发现CCl+O3反应有5种产物通道:ClCO+O2、CO2+Cl+O、CO2+ClO、CO+O2+Cl和OCO2+Cl

  10. Method and apparatus for producing chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Santillie, P.W.; Ramras, D.M.

    1984-05-29

    A continuous method and apparatus are described for the efficient production of gaseous chlorine dioxide by the reaction between gaseous sulfur dioxide and an aqueous solution of a metallic chlorate. The chlorate solution and a highly concentrated sulfur dioxide gas are introduced into a packed columnar chamber at closely adjacent locations at the bottom of the chamber so as to flood the chamber and maximize both the contact area and contact time of the two reactants. Throughout the reaction the chamber is subjected to high vacuum imposed by an eductor which exhausts the chlorine dioxide gas and spent reactants. For use of the chlorine dioxide to produce potable water or treat foodstuffs, the chlorine dioxide and spent reactants are exhausted from the chamber separately by respective eductors substantially balanced with respect to each other to impose comparable vacuums upon the chamber. Because of the high efficency of the reaction, substantial heat is generated therefrom which is absorbed by a coolant flowing through a jacket surrounding the chamber. The flow rate of the coolant and flow rate of the reactants into the chamber are porportional due to the dependency of the reactant flow rate on the coolant flow rate.

  11. Nuclear excitation functions of proton-induced reactions (Ep = 35-90 MeV) from Fe, Cu, and Al

    Science.gov (United States)

    Graves, Stephen A.; Ellison, Paul A.; Barnhart, Todd E.; Valdovinos, Hector F.; Birnbaum, Eva R.; Nortier, Francois M.; Nickles, Robert J.; Engle, Jonathan W.

    2016-11-01

    Fe, Cu, and Al stacked foils were irradiated by 90 MeV protons at the Los Alamos Neutron Science Center's Isotope Production Facility to measure nuclear cross sections for the production of medically relevant isotopes, such as 52gMn, 54Mn, 48Cr, 55Co, 58mCo and 57Ni. The decay of radioactive isotopes produced during irradiation was monitored using high-purity germanium gamma spectroscopy over the months following irradiation. Proton fluence was determined using the natAl(p,x)22Na, natCu(p,x)62Zn natCu(p,x)65Zn, and natCu(p,x)56Co monitor reactions. Calculated cross sections were compared against literature values and theoretical TALYS predictions. Notably this work includes the first reported independent cross section measurements of natCu(p,x)58mCo and natCu(p,x)58gCo.

  12. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  13. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

    Science.gov (United States)

    Zhang, Tian-Yang; Xu, Bin; Hu, Chen-Yan; Lin, Yi-Li; Lin, Lin; Ye, Tao; Tian, Fu-Xiang

    2015-01-01

    This study compared the formation of iodinated trihalomethanes (I-THMs) from iodide-containing raw waters oxidized by chlorine, chlorine dioxide (ClO₂) and potassium permanganate (KMnO₄) at different oxidant concentrations, reaction times, pHs, initial iodide concentrations and bromide to iodide mass ratios. Among the six investigated I-THMs, iodoform was the major species formed during the oxidation using chlorine, ClO₂ and KMnO₄. When oxidant concentration increased from 0.1 to 3.0 mg/L, the formation of I-THMs increased and then decreased for chlorine and ClO₂, but kept increasing for KMnO₄. As the reaction time went by, I-THM concentration increased to a plateau within 10 h (ClO₂ within only 1 h, especially) for all the three oxidants. I-THM formation gradually increased from pH 3.0 to 9.0 and remained stable at pH values higher than 7.5 for chlorine; however, for ClO₂ and KMnO₄ the highest I-THM formation showed at pH 7.0 and 7.5, respectively. As initial iodide concentration increased from 20 to 800 μg/L, the total amount and species of I-THMs increased for the three oxidants. Iodide contributed to I-THM formation much more significantly than bromide.

  14. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    Science.gov (United States)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.

  15. DFT Investigation of the Mechanism and Stereochemistry of Electrophilic Transannular Addition Reaction of Chlorine to Bisbenzotetracyclo[6.2.2.23,6 .02,7]tetradeca-4,9,11,13-tetraene.

    Science.gov (United States)

    Abbasoglu, Rza

    2010-12-01

    The mechanism and stereochemistry of electrophilic addition of chlorine to bisbenzotetracyclo[6.2.2.23,6.02,7]tetradeca-4,9,11,13-tetraene (BBTT) molecule were investigated by DFT methods. The geometry and the electronic structure of BBTT molecule was studied by DFT/B3LYP method using the 6-311G(d) and 6-311++G(d,p) basis sets. The double bonds of BBTT molecule are endo-pyramidalized. The structure and stability of the cationic intermediates and products of the addition reaction were investigated by B3LYP/6-311G(d) and B3LYP/6-311+G(2d,p) methods. The solvent effect was evaluated using SCI-PCM method. The bridged chloronium cation is isomerized into the more stable nonclassical delocalized N- and U-type cations, and the difference between the stability of these cations is small. For the determination of the direction of addition reaction and the stereochemistry of the products, the stability of nonclassical delocalized N- and U-type ions and the structure of their cationic centres play a vital role for the determination of the direction of addition reaction and the stereochemistry of the products. Since the cationic centre of the N-type ion is in interaction with the benzene ring from the exo face, the nucleophilic attack of the chloride anion to this centre occurs from the endo face, and the exo,endo-isomer of the N-type product is obtained. The attack of chloride anion towards the cationic centre of U-type ion from the endo face is sterically hindered by the hydrogen atom, therefore the attack occurs from the exo face, which interacts with the benzene ring and the more stable exo,exo-isomer of U-type product is formed. Although, the U-type cation was 3.485 kcal mol-1 more stable than the N-type cation, the U-type product was 1.886 kcal mol-1 [SCI-PCM-B3LYP/6-311++G(2d,p)// B3LYP/6-311G(d)] less stable than the N-type product.

  16. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    OpenAIRE

    Taylor, Robert H; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains wer...

  17. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.;

    2004-01-01

    organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration....... The decrease was correlated with that of triacylglycerols in the salmon muscle, indicating the chlorinated fatty acids to be mobilized and metabolized to approximately the same extent as the other fatty acids. Chlorinated fatty acids were also transferred to the maturing roe in a manner similar...... to that of the unchlorinated fatty acids. Lipids of the Arctic grayling (Thymallus arcticus), a fish resident to the spawning lake of the salmon, contained higher concentrations of chlorinated fatty acids than grayling in a lake without migratory salmon. This may reflect a food-chain transfer of the chlorinated fatty acids...

  18. Silver-Catalyzed C(sp(3))-H Chlorination.

    Science.gov (United States)

    Ozawa, Jun; Kanai, Motomu

    2017-03-17

    A silver-catalyzed chlorination of benzylic, tertiary, and secondary C(sp(3))-H bonds was developed. The reaction proceeded with as low as 0.2 mol % catalyst loading at room temperature under air atmosphere with synthetically useful functional group compatibility. The regioselectivity and reactivity tendencies suggest that the chlorination proceeded through a radical pathway, but an intermediate alkylsilver species cannot be ruled out.

  19. Research on the Preparation of Crosslinked Starch Chlorinated with Sodium Hypochlorite

    Institute of Scientific and Technical Information of China (English)

    LiangYin; ZhuZhi-feng

    2003-01-01

    Optimization of reaction variables such as catalyst type and amount, reaction temperature and time, formaldehyde amount, and oxidation extent of starch was studied for the crosslinking reaction of chlorinated cornstarch with form-aldehyde. The reaction was carried out in aqueous suspension dispersed granular chlorinated cornstarch. Catalysts such as hydrochloric acid, sulfuric acid, and nitric acid were individually evaluated. The results show that the type and amount of the inorganic acid, formaldehyde amount, and oxidation extent of the chlorinated starch strongly affect the reaction efficiency. Hydrochloric acid shows the best catalyst effect on the reaction. Increasing the amount of the catalyst favourably raises the reaction efficiency. It is also demonstrated that the reaction efficiency is enhanced with the decrease of the oxidation extent of granular chlorinated starch.

  20. Research on the Preparation of Crosslinked Starch Chlorinated with Sodium Hypochlorite

    Institute of Scientific and Technical Information of China (English)

    Liang Yin; Zhu Zhi-feng

    2003-01-01

    Optimization of reaction variables such as catalyst type and amount, reaction temperature and time, formaldehyde amount, and oxidation extent of starch was studied for the crosslinking reaction of chlorinated cornstarch with formaldehyde. The reaction was carried out in aqueous suspension dispersed granular chlorinated cornstarch. Catalysts such as hydrochloric acid, sulfuric acid, and nitric acid were individually evaluated. The results show that the type and amount of the inorganic acid, formaldehyde amount, and oxidation extent of the chlorinated starch strongly affect the reaction efficiency. Hydrochloric acid shows the best catalyst effect on the reaction. Increasing the amount of the catalyst favourably raises the reaction efficiency. It is also demonstrated that the reaction efficiency is enhanced with the decrease of the oxidation extent of granular chlorinated starch.

  1. Partial Wave Analysis of the Reaction $p(3.5 GeV)+p \\to pK^+\\Lambda$ to Search for the "$ppK^-$" Bound State

    CERN Document Server

    Agakishiev, G; Belver, D; Belyaev, A; Berger-Chen, J C; Blanco, A; Böhmer, M; Boyard, J L; Cabanelas, P; Chernenko, S; Dybczak, A; Epple, E; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Göbel, K; Golubeva, M; González-Díaz, D; Guber, F; Gumberidze, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Kornakov, G; Kotte, R; Krasa, A; Krizek, F; Krücken, R; Kuc, H; Kühn, W; Kugler, A; Kunz, T; Kurepin, A; Ladygin, V; Lalik, R; Lapidus, K; Lebedev, A; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michel, J; Müntz, C; Münzer, R; Naumann, L; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Schwab, E; Siebenson, J; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Tsertos, H; Vasiliev, T; Wagner, V; Weber, M; Wendisch, C; Wüstenfeld, J; Yurevich, S; Zanevsky, Y; Sarantsev, A V

    2014-01-01

    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction $p(3.5GeV)+p\\to pK^{+}\\Lambda$. This reaction might contain information about the kaonic cluster "$ppK^-$" via its decay into $p\\Lambda$. Due to interference effects in our coherent description of the data, a hypothetical $\\overline{K}NN$ (or, specifically "$ppK^-$") cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like $p\\Lambda$. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a $\\overline{K}NN$ cluster. At a confidence level of CL$_{s}$=95\\% such a cluster can not contribute more than 2-12\\% to the total cross section with a $pK^{+}\\Lambda$ final state, which translates into a production cross-section between 0.7 $\\mu b$ and 4.2 $\\mu b$, respectively. The range o...

  2. Thermal Behavior, Non-isothermal Decomposition Reaction Kinetics of Copper(Ⅱ) Salt of 4-Hydroxy-3,5-dinitropyridine and Its Application in Propellant

    Institute of Scientific and Technical Information of China (English)

    CHEN Pei; ZHAO Feng-qi; LUO yang; HU Rong-zu; GAO Sheng-li; ZHENG Yu-mei; DENG Min-hi; GAO Yin

    2005-01-01

    The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of thermal explosion was calculated. The effect of the title compound on the combustion characteristic of composition modifier double base propellant containing RDX was explored with a strand burner. The results show that the kinetic model function in differential forms, the apparent activation energy(Ea) and the pre-exponential factor(A) of the major exothermic decomposition reaction are 3(1-α)[-ln(1-α)]2/3, 190.56 kJ/mol and 1013.39 s-1, respectively. The critical temperature of thermal explosion of the compound is 353.08 ℃. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as dα/dT=1014.65(1-α)[-ln(1-α)]2/3 e-2.2920×104/T. As an auxiliary catalyzer, the title compound can help the main catalyzer of lead salt of 4-hydroxy-3,5-dinitropyridine to accelerate the burning rate and reduce the pressure exponent of RDX-CMDB propellant.

  3. Chlorobenzene outputs from combustion of chlorinated organic and inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.E.S.; Vitali, J.A.; Miller, T.L. [Univ. of Florida, Gainesville, FL (United States)

    1994-12-31

    The authors consider the gas phase formation of chlorinated benzenes and phenols as precursors of chlorinated dioxins and furans from the combustion of solid fuels containing organically bound chlorine. The model investigated is intended to apply to the combustion of medical waste, municipal waste and coals containing chlorine. Assuming a temperature-time profile drawn from incinerator experiments, the authors use kinetic modeling with known reaction rates to further investigate four models of chlorinated benzene formation. Since reaction rates for most chlorination processes are now known, the authors choose simple systems of reaction rates that yield outputs that can be made approximately compatible with results of the Pittsfield-Vicon incinerator and Clean Combustion Technology Laboratory experiments. The authors also consider recent measurements of HCI emissions from crematoria and the implication of this work with respect to the benefits of material substitution in medical and municipal waste incineration. These benefits should also accompany the dechlorination of coals. The authors note the disparity between the prevailing USA position and the emerging position of Germany on the issue of halogenated plastics. The authors also note that Europe and Asia are beginning to address solid fuel issues as a consolidated discipline. This pattern should be helpful in broadening the understanding of solid fuels combustion processes and in ferreting out erroneous data and conclusions. This is important in view of the recent concern about the role of low dioxin exposure levels on fetal development and the immune system.

  4. The gas phase chlorination of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Olsbye, Unni; Myhrvold, Elisabeth M.; Slagtern, Aase; Dahl, Ivar M. [SINTEF Applied Chemistry, Oslo (Norway)

    1999-07-01

    Light alkanes are dehydrogenated to their corresponding olefins before further reactions to more valuable chemicals. The conversion of ethane to ethene in a steam cracker requires the addition of a substantial amount of heat (90 kJ/mol). Oxidative processes for ethane dehydrogenation could in principle be carried out adiabatically, however, the oxidation selectivity towards hydrogen is too low in existing systems, which leads to low ethene selectivities. This paper discusses the potential for light alkane derivatization through chlorination.

  5. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.

  6. Chlorine dioxide and hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.P. (Dartmouth Coll., Hanover, NH (USA). Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  7. Simultaneous Control of Microorganisms and Disinfection By-products by Sequential Chlorination

    Institute of Scientific and Technical Information of China (English)

    CHAO CHEN; XIAO-JIAN ZHANG; WEN-JIE HE; HONG-DA HAN

    2007-01-01

    Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus)inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process.The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination.Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  8. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix;

    2010-01-01

    of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity...

  9. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  10. RESEARCH ON MATHEMATICAL SIMULATION OF RESIDUAL CHLORINE DECAY AND OPTIMIZATION OF CHLORINATION ALLOCATION OF URBAN WATER DISTRIBUTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    TIAN Yi-mei; CHI Hai-yan; LI Hong; SHAN Jin-lin; ZHAI Chun-nian

    2005-01-01

    The concentration of Residual Chlorine (RC) frequently violates the standard in situations of urban water distribution system with large water supply area and long time of distribution.If chlorine dosage increases within water treatment plant, although RC in distribution system could meet water quality standard, Disinfection By-Products (DBPs) such as hydrocarbon halide rises.In the paper, a mathematical model of chlorine allocation optimization was presented based on reaction kinetics mechanism and optimization theory to solve the problem.The model includes the objective function of minimizing annual operation cost and constraints of RC standard and rational chlorination station distribution, and solving by 0-1 Integer Programming (IP).The model had been applied to a real water distribution system.The simulation results of the model showed that adding chlorine in water distribution system remarkably improved water quality and reduced the operation cost by 49.3% per year less than chlorine dosed only in water treatment plant to meet RC standard.The results prove adding chlorine in water distribution system based on the model can bring both technological and economic advancement.

  11. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  12. Modeling of residual chlorine in water distribution system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of residual chlorine decay in water pipe has been developed,given the consumption of chlorine in reactions with chemicals in bulk water, bio-films on pipe wall, in corrosion process, and the mass transport of chlorine from bulk water to pipe wall. Analytical methods of the flow path from water sources to the observed point and the water age of every observed node were proposed. Model is used to predict the decay of residual chlorine in an actual distribution system. Good agreement between calculated and measured values was obtained.

  13. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways.

    Science.gov (United States)

    Wu, Zihao; Fang, Jingyun; Xiang, Yingying; Shang, Chii; Li, Xuchun; Meng, Fangang; Yang, Xin

    2016-11-01

    The UV/chlorine process, which forms several reactive species including hydroxyl radicals (HO) and reactive chlorine species (RCS) to degrade contaminants, is being considered to be an advanced oxidation process. This study investigated the kinetics and mechanism of the degradation of trimethoprim (TMP) by the UV/chlorine process. The degradation of TMP was much faster by UV/chlorine compared to UV/H2O2. The degradation followed pseudo first-order kinetics, and the rate constant (k') increased linearly as the chlorine dosage increased from 20 μM to 200 μM and decreased as pH rose from 6.1 to 8.8. k' was not affected by chloride and bicarbonate but decreased by 50% in the presence of 1-mg/L NOM. The contribution of RCS, including Cl, Cl2(-) and ClO, to the degradation removal rate was much higher than that of HO and increased from 67% to 87% with increasing pH from 6.1 to 8.8 under the experimental condition. The increasing contribution of RCS to the degradation with increasing pH was attributable to the increase in the ClO concentration. Kinetic modeling and radical scavenging tests verified that ClO mainly attacked the trimethoxybenzyl moiety of TMP. RCS reacted with TMP much faster than HOCl/OCl(-) to form chlorinated products (i.e., m/z 325) and chlorinated disinfection byproducts such as chloroform, chloral hydrate, dichloroacetonitrile and trichloronitromethane. The hydroxylation and demethylation of m/z 325 driven by HO generated m/z 327 and m/z 341. Meanwhile, reactions of m/z 325 with HO and RCS/HOCl/OCl(-) generated dichlorinated and hydroxylated products (i.e., m/z 377). All the chlorinated products could be further depleted to produce products with less degree of halogenation in the UV/chlorine process, compared to dark chlorination. The acute toxicity to Vibrio fischeri by UV/chlorine was lower than chlorination at the same removal rate of TMP. This study demonstrated the importance of RCS, in particular, ClO, in the degradation of micropollutants

  14. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    Science.gov (United States)

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  15. UV enhanced gas-solid synthesis of chlorinated poly vinyl chloride characterized by a UV-Vis online analysis method☆

    Institute of Scientific and Technical Information of China (English)

    Qianli Yang; Wei Lu; Lin Bai; Binhang Yan; Yi Cheng

    2015-01-01

    Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly. Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reac-tion once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature (Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.

  16. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  17. Revisiting the thermochemistry of chlorine fluorides

    CERN Document Server

    Sánchez, H R

    2016-01-01

    In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClF$_n$, n=1--7; Cl$_2$F and Cl$_3$F$_2$) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. In order to complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods.

  18. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: interlaboratory study.

    Science.gov (United States)

    Feinberg, Max; Fernandez, Sophie; Cassard, Sylvanie; Bertheau, Yves

    2005-01-01

    The European Committee for Standardization (CEN) and the European Network of GMO Working Laboratories have proposed development of a modular strategy for stepwise validation of complex analytical techniques. When applied to the quantitation of genetically modified organisms (GMOs) in food products, the instrumental quantitation step of the technique is separately validated from the DNA extraction step to better control the sources of uncertainty and facilitate the validation of GMO-specific polymerase chain reaction (PCR) tests. This paper presents the results of an interlaboratory study on the quantitation step of the method standardized by CEN for the detection of a regulatory element commonly inserted in GMO maize-based foods. This is focused on the quantitation of P35S promoter through using the quantitative real-time PCR (QRT-PCR). Fifteen French laboratories participated in the interlaboratory study of the P35S quantitation operating procedure on DNA extract samples using either the thermal cycler ABI Prism 7700 (Applied Biosystems, Foster City, CA) or Light Cycler (Roche Diagnostics, Indianapolis, IN). Attention was focused on DNA extract samples used to calibrate the method and unknown extract samples. Data were processed according to the recommendations of ISO 5725 standard. Performance criteria, obtained using the robust algorithm, were compared to the classic data processing after rejection of outliers by the Cochran and Grubbs tests. Two laboratories were detected as outliers by the Grubbs test. The robust precision criteria gave values between the classical values estimated before and after rejection of the outliers. Using the robust method, the relative expanded uncertainty by the quantitation method is about 20% for a 1% Bt176 content, whereas it can reach 40% for a 0.1% Bt176. The performances of the quantitation assay are relevant to the application of the European regulation, which has an accepted tolerance interval of about +/-50%. These data

  19. EFFECT OF THE DECHLORINATING AGENT, ASCORBIC ACID, ON THE MUTAGENICITY OF CHLORINATED WATER SAMPLES

    Science.gov (United States)

    XAD resin adsorption has been widely used to concentrate the organic compounds present in chlorinated drinking waters prior to mutagenicity testing. Previous work has shown that mutagenic artifcats can arise due to the reaction of residual chlorine with the resins. Althrough the ...

  20. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  1. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    Science.gov (United States)

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  2. ANALYSIS OF NASAL TISSUE FOR BIOMARKERS OF CHLORINE EXPOSURE

    Science.gov (United States)

    Both 3-chloro-tyrosine (CT) and 3,5-dichloro-tyrosine (dCT) are sensitive and specific biomarkers for evaluating exposure to chlorine gas (Cl2) and hypochlorous acid (HOCl). Previous investigations have focused on the formation of CT and dCT resulting from biochemical responses ...

  3. Effects of combined UV and chlorine treatment on chloroform formation from triclosan.

    Science.gov (United States)

    Ben, Weiwei; Sun, Peizhe; Huang, Ching-Hua

    2016-05-01

    The co-exposure to UV irradiation and free chlorine may occur in certain drinking water and wastewater treatment systems. This study investigated the effects of simultaneous low pressure ultraviolet (LPUV) irradiation and free chlorination on the formation of chloroform from triclosan which is a commonly used antibacterial agent. Different treatment systems (i.e., combined UV/chlorine, UV alone, and chlorine alone) were applied to examine the degradation of triclosan and formation of chloroform. The fate of representative intermediates, including chlorinated triclosan, dechlorinated triclosan intermediates and 2,4-dichlorophenol, were tracked to deduce the effect of combined UV/chlorine on the transformation of chloroform formation precursors. The relation between intermediates degradation and chloroform formation was investigated in depth by conducting stepwise experiments with UV and chlorine in different sequences. Results indicate that the combined UV/chlorine notably enhanced the chloroform formation from triclosan. From the reaction mechanism perspective the combined UV/chlorine, where the direct photolysis may play an important role, could accelerate the decay of intermediates and facilitate the generation of productive chloroform precursors. The radicals had modest influence on the degradation of triclosan and intermediates and partly hindered the formation of chloroform. These results emphasize the necessity of considering disinfection by-products formation in the application of combined UV/chlorine technology during water treatment.

  4. A comparison of chlorinated organic material produced by chlorine and chlorine dioxide bleaching

    Energy Technology Data Exchange (ETDEWEB)

    McKaque, A.B.; Reeve, D.W. [Univ. of Toronto (Canada)

    1995-12-31

    Chlorine and chlorine dioxide react differently with pulp during bleaching and produce different types of organic by-products. The main differences are the large reduction in the amount of AOX (adsorbable organic halogen) in the effluent and EOX (extractable organic halogen) in the pulp. This talk reviews the differences in the amounts and types of chlorinated organic by-products produced by the two different bleaching agents.

  5. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    Science.gov (United States)

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  6. Thermal diffusion of chlorine in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S. [Inst. de Physique Nucleaire de Lyon (IPNL), Villeurbanne (France); Martin, P. [Commissariat a l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, Saint-Paul lez Durance (France); Raimbault, L. [Centre d' Informatique Geologique (CIG), Ecole des Mines, Fontainebleau (France); Scheidegger, A.M. [Lab. for Waste Management, Nuclear Energy and Safety Dept. (NES), Paul Scherrer Inst. Villigen PSI (Switzerland)

    2006-07-01

    In a nuclear reactor, isotopes such as {sup 35}Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as {sup 36}Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO{sub 2}. {sup 37}Cl was implanted at a 10{sup 13} at/cm{sup 2} fluence in depleted UO{sub 2} samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain {sup 37}Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO{sub 2} at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO{sub 2} was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  7. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    Science.gov (United States)

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately.

  8. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  9. VARIATIONS IN ISOTOPIC COMPOSITIONS OF CHLORINE IN EVAPORATION-CONTROLLED SALT LAKE BRINES OF QAIDAM BASIN,CHINA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs2Cl+ ion by thermal ionization mass spectrometry. The results showed that variation in δ37Cl values in these evaporation-controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co-existing brine caused the variation of δ37Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 37Cl in the solid phase relative to 35Cl. The reverse isotopic fractionation of chlorine in which 35Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.

  10. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  11. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  12. Inactivation of Chironomid Larvae with Chlorine Dioxide and Chlorine

    Institute of Scientific and Technical Information of China (English)

    SUN Xin-bin; CUI Fu-yi

    2008-01-01

    Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process.The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some boundary values in practice were determined under conditions of various oxidant dosage,organic precursor concentration and pH value.In addition,removal effect of differmt pre-oxidation combined with coagulation process on Chironomid larvae in law water was evaluated.It was found that chlorine dioxide possessed better inactivation effect than chlorine.Complete inactivation of Chironomid larvae in raw water was resulted by 1.5mg/L of chlorine dioxide with 30min of contact time. Additionally,the ocgallic precursor concentration,pH value had little influence on the inactivation effect.The coagulation jar test showed that Chironomid larvae in the raw water could be completely ronxwed by chlorine dioxide pre-oxidation in combination with the omgulation process at chlorine dioxide dosage of 0.8 mg/L.

  13. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  14. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Wang, Ting; Hu, Hong-Ying

    2016-07-01

    For successful wastewater reclamation, advanced oxidation processes have attracted attention for elimination of emerging contaminants. In this study, the synergistic treatment with UV irradiation and chlorine (UV/chlorine) was used to degrade carbamazepine (CBZ). Neither UV irradiation alone nor chlorination alone could efficiently degraded CBZ. UV/chlorine oxidation showed a significant synergistic effect on CBZ degradation through generation of radical species (OH and Cl), and this process could be well depicted by pseudo first order kinetic. The degradation rate constants (kobs,CBZ) of CBZ increased linearly with increasing UV irradiance and chlorine dosage. The degradation of CBZ by UV/chlorine in acidic solutions was more efficient than that in basic solutions mainly due to the effect of pH on the dissociation of HOCl and OCl(-) and then on the quantum yields and radical species quenching of UV/chlorine. When pH was increased from 5.5 to 9.5, the rate constants of degradation of CBZ by OH decreased from 0.65 to 0.14 min(-1) and that by Cl decreased from 0.40 to 0.11 min(-1). The rate constant for the reaction between Cl and CBZ was 5.6 ± 1.6 × 10(10) M(-1) s(-1). Anions of HCO3(-) (1-50 mM) showed moderate inhibition of CBZ degradation by UV/chlorine, while Cl(-) did not. UV/chlorine could efficiently degrade CBZ in wastewater treatment plant effluent, although the degradation was inhibited by about 30% compared with that in ultrapure water with chlorine dosage of 0.14-0.56 mM. Nine main oxidation products of the CBZ degradation by UV/chlorine were identified using the HPLC-QToF MS/MS. Initial oxidation products arose from hydroxylation, carboxylation and hydrogen atom abstraction of CBZ by OH and Cl, and were then further oxidized to generate acylamino cleavage and decarboxylation products of acridine and acridione.

  15. Interfacial reactions of BGA Sn-3.5%Ag-0.5%Cu and Sn-3.5%Ag solders during high-temperature aging with Ni/Au metallization

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Ahmed [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Islam, M.N. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: eeycchan@cityu.edu.hk

    2004-11-15

    The joint strength and the microstructure of Sn-3.5Ag and Sn-3.5Ag-0.5Cu (wt.%) solders on Cu/Ni/Au ball-grid-array (BGA) pad metallization were investigated after high-temperature solid-state aging at 190 deg. C (around 0.86T{sup m} of solder alloys). Sn-Ag solder gave better results in terms of shear strength on high-temperature aging than Sn-Ag-Cu. Very high consumption of Ni was observed in the case of Sn-Ag-Cu solder alloys. After 16 days of aging at the afore mentioned temperature, 5 {mu}m Ni layer was fully consumed from the substrate pad and a thick layer of Cu-Sn intermetallic compounds (IMCs) was found at the base of the interfacial IMCs. Much less consumption of Ni substrate was observed for Sn-3.5Ag solder during high-temperature aging for longer time. The mean thickness of the intermetallics at the interface was higher for Sn-Ag-Cu solder alloy. For both cases Ni diffused through the interfacial IMCs and formed quaternary compounds for Sn-Ag-Cu system and ternary compounds for Sn-Ag system within the bulk solder. It appeared that Sn-Ag-Cu solder alloy was more vulnerable in high-temperature solid-state aging.

  16. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite.

    Science.gov (United States)

    Lin, Yangting; Guan, Yunbin; Leshin, Laurie A; Ouyang, Ziyuan; Wang, Daode

    2005-02-01

    Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are approximately 5 x 10(-6). Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > or = 1.6 x 10(-4) at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189-L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475-1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051-1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes.

  17. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    Science.gov (United States)

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  18. Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide1

    Science.gov (United States)

    Benarde, Melvin A.; Snow, W. Brewster; Olivieri, Vincent P.; Davidson, Burton

    1967-01-01

    Survival data are presented for a fecal strain of Escherichia coli exposed to three concentrations of chlorine dioxide at four temperatures. Chick's first-order reaction equation is generalized to a pseudo nth-order model. Nonlinear least squares curve-fitting of the survival data to the nth order model was performed on an analogue computer. The data were observed to follow fractional order kinetics with respect to survival concentration, with an apparent activation energy of 12,000 cal/mole. Initial experiments support the thesis that the mechanism of chlorine dioxide kill occurs via disruption of protein synthesis. Images Fig. 1 Fig. 2 Fig. 3 PMID:5339839

  19. Gaseous, chlorine-free chlorine dioxide for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, G. [Miami Univ., Oxford, OH (United States); Rosenblatt, A. [CDG Technology Inc., New York, NY (United States)

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  20. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    Science.gov (United States)

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  1. Photochemical ozone and nitric oxide formation in air-nitrogen dioxide mixtures containing sulfur dioxide or chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.S.; Springer, G.S.; Stedman, D.H.

    1980-01-01

    The effects of sulfur dioxide and chlorine on ozone and nitric oxide concentrations in nitrogen dioxide-air mixtures were studied. The presence of 0-10 ppM SO/sub 2/ produced no change in the air mixture. Addition of 1-15 ppm chlorine increased the ozone concentration in the air mixture. A reaction model describing the interactions of chlorine and NO/sub 2/ is presented. (1 diagram, 6 graphs, 30 references, 3 tables)

  2. Improved method generates more chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R.W.; Kosinski, A.J.; Baker, R.J.

    1980-10-01

    The addition of acid can greatly improve the chlorine-chlorite process and enhance the use of chlorine dioxide as an alternative to chlorine for disinfection. The process is economical for use in taste and odor control, and for manganese, oxidation. The maximum yield is obtained using no excess chlorine, and the amount of unreacted sodium chlorite and chlorine in the product stream is reduced. (1 diagram, 4 graphs, 9 references)

  3. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  4. Study of the transferred angular momentum as a function of the excitation energy in the Kr + U reaction at 35 A.MeV; Etude du moment angulaire transfere en fonction de l`energie d`excitation dans la reaction Kr + U a 35 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Josset, M.

    1996-09-06

    The aim of this study is to measure the angular momentum transferred to the target-like product, in the Kr + U reaction at 35 A.MeV, as a function of the excitation energy. The measured neutron multiplicity, as seen by the detector ORION, was used as the basic event selection criterion. This multiplicity also allows an estimation of the excitation energy transferred to the target-like product on an event by event basis. The study of the behaviour of the projectile-like component allows one to characterize two-body mechanisms, which are associated with a large energy dissipation for less peripheral collisions. The spin transferred to the target-like component is deduced from the out-plane angular distributions of the fission fragments. The study of the angular correlation between these fission fragments confirms that the dominant mechanism is essentially a two-body process. We show that the angular momentum values obtained, as a function of the excitation energy of the target-like product, have little dependence on the time taken for the nucleus to reach the saddle point. We observe a constant increase in the target-like component`s spin, varying from 15{Dirac_h} to 60{Dirac_h}, as the excitation energy increases from roughly 8 to 400 MeV. For the higher excitation energies the spin does not increase. This behaviour reflects the vanishing binary fission mechanism at high angular momenta. (author). 81 refs.

  5. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  6. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO

    Science.gov (United States)

    Höhener, Patrick

    2016-12-01

    BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes 12C, 13C, 35Cl, 37Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of Csbnd Cl bonds. The model is correctly reproducing results for δ13C and δ37Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.

  7. MECHANISM OF CHLORATE FORMATION IN CHLORINE DIOIXDE DELIGNIFICATION

    Institute of Scientific and Technical Information of China (English)

    Byung-Ho Yoon; Li-Jun Wang; Se-Jong Kim

    2004-01-01

    The effect of pH on chlorate formation during chlorine dioxide delignification of oxygen delignified kraft pulp was studied. Chlorate formation was found to increase slightly when pH was increased from 1.8 to 2.5, further increase of pH decreased chlorate formation.The above phenomenon is explained by the combination of two mechanisms, one by the reaction between hypochlorous acid and chlorite, another by the effect of chlorine on the regeneration of chlorine dioxide. The first mechanism suggests that chlorate formation is highly dependent on HCIO concentration which decreases with increasing pH and causes chlorate formation to behave in the same trend. The second mechanism suggests that chlorine favors the regeneration of chlorine dioxide while HCIO favors chlorate formation, thus lowering the pH from about 4 to the acidic end should decreases chlorate formation. The two opposite effects lead to the maximum formation of chlorate at around pH 2.5.

  8. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection.

    Science.gov (United States)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p=0.007-0.014, n=6),as well as contact time (p=0.0001, n=10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30-1.49 logs) could be achieved at FC dosage of 30 mg L(-1). The transformation kinetic data for ARGs removal (log C0/C) followed the second-order reaction kinetic model with FC dosage (R(2)=0.6829-0.9999) and contact time (R(2)=0.7353-8634), respectively. Higher ammonia nitrogen (NH3-N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl2:NH3-N ratio was over 7.6:1, a significant reduction of ARGs (1.20-1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36-0.40 at a fluence of 249.5 mJ cm(-2), which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters.

  9. Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia

    Science.gov (United States)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan

    2016-11-01

    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.

  10. Electrochemical cell design for the impedance studies of chlorine evolution at DSA anodes

    Science.gov (United States)

    Silva, J. F.; Dias, A. C.; Araújo, P.; Brett, C. M. A.; Mendes, A.

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA®) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm-3 NaCl) and high current densities (up to 140 mA cm-2) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  11. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    Science.gov (United States)

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  12. 头孢类抗生素与乙醇致双硫伦样反应35例报道%Report to 35 Cephalosporin and Ethanol to Disulfiram-Like Reactions

    Institute of Scientific and Technical Information of China (English)

    谭填英

    2010-01-01

    目的 探讨头孢类抗生素与乙醇致双硫伦样反应的常见性,应引起临床的重视.方法 对本院2年来发生双硫伦样反应的35例病例资料进行回顾性分析、比较.结果 ①用药前后及饮酒前后对发生双硫伦样反应的关联.②临床表现有头昏、胸闷、颜面发红,重者呼吸闲难,有血压下降.③经对症、支持处理,治疗1天治愈出院.结论 双硫伦是一种治疗慢性乙醇中毒的药物,它本身对机体小产生作用,是由于该药抑制乙醛脱氧酶,服用该约后饮酒量即使较少,也会产生轻微的双硫伦样症状.头孢类抗生索引起双硫伦样反应的机制.用头孢类抗菌素治疗过程中一定要特别医嘱,避免饮酒和乙醇制剂.

  13. Theoretical Study on the Reaction Mechanism and Kinetics of Fluorine and Chlorine Atoms with Ozone and Methane%F,Cl原子与臭氧和甲烷反应机理和反应动力学的理论研究

    Institute of Scientific and Technical Information of China (English)

    李来才; 徐伯华; 邓平

    2002-01-01

    Ab initio UMP2(full) method was performed to study the reaction mechanism of F and Cl atoms with methane and ozone.The geometry configurations of reactants,products,intermediates and transition states were optimized at UMP2(full)/6-31G* level and the energies of stationary points along the pathways were calculated at Gaussian-3(G3) and G3MP2 level.The results show that fluorine atoms react with ozone as violently as chlorine atoms;during the process of the reaction F+CH4,the hydrogen bond forms,the bond energy is 3.71 kJ/mol.In addition,fluorine atoms react readily with methane to form the intermediate with a hydrogen bond,which easily decomposed to form HF with stable properties.That is to say,the reaction F+CH4 is prior to the reaction F+O3 when there is a competition between methane and ozone.However,there is no hydrogen bond in the reaction Cl+CH4,and the reaction Cl+O3 is prior to Cl+CH4 when there is a competition between methane and ozone.Besides,we have calculated the rate constants of the fluorine and chlorine atoms with methane and ozone reactions.Therefore we can reasonably explain why chlorine atoms are the main reactants depleting ozone,while the more active fluorine atoms deplete less ozone.%用量子化学从头计算UMP2(full)方法研究F和Cl 原子与甲烷分子和臭氧之间的反应机理,优化了反应物、产物、中间体和过渡态的几何构型,在Gaussian-3(G3)和G3MP2水平计算了它们的能量.研究结果表明:F原子与Cl原子一样与臭氧之间有很强的反应活性,而F原子与甲烷分子反应过程中有氢键生成,键能为3.71 kJ/mol,F原子与甲烷分子之间反应活性比与臭氧分子之间反应活性强.F原子易与甲烷分子生成含有氢键的化合物,且很快分解生成化学性质非常稳定的HF,能同F+O3反应竞争.而Cl原子甲烷分子反应过程中则无氢键生成现象.且在Cl原子与臭氧和甲烷之间竞争反应时,Cl原子与臭氧之间反应优先,同时我们还对F

  14. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  15. Stability and toxicity of selected chlorinated benzophenone-type UV filters in waters.

    Science.gov (United States)

    Zhuang, Rensheng; Žabar, Romina; Grbović, Gorica; Dolenc, Darko; Yao, Jun; Tišler, Tatjana; Trebše, Polonca

    2013-01-01

    In our study, the transformation of two most widely used UV filters, benzophenone-3 (BP3) and benzophenone-4 (BP4), in chlorinated water with disinfection reagents sodium hypochlorite (NaClO) and trichloroisocyanuric acid (TCCA) was studied. Based on the HPLC/MS and UV-Vis analysis the formation of two different chlorinated products (5-chloro-2-hydroxy-4-methoxybenzophenone and 3,5-dichloro-2-hydroxy-4-methoxybenzophenone) was established. Identity of chlorinated products was confirmed by means of comparison of retention times with independently synthesized standards. Photostability study showed that dichloro-derivative in water is less stable then parent compounds, which is not the case for monochloro-derivatives. Toxicity of chlorinated compounds tested by Vibrio fischeri was found to be in the same range as that of the starting compounds. Preliminary testing of real water samples from swimming pools and sea swimming areas confirmed the presence of BP3 and its 3,5-dichloro derivative.

  16. Control effects of pε and pH on the generation and stability of chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    PEI Yuan-sheng; WU Xiao-qiang; LUAN Zhao-kun; WANG Tong

    2003-01-01

    A new method, without assistance of activity ratio diagram, was applied to construct the pε-pH diagrams for chlorine system. The optimal pH range for generation of ClO2 by contacting Cl2(g) directly with ClO2- solution is within pH 1.35-1.94, particularly within pH 1.35-4.00 only if minimizing the formation of Cl2. It is unachievable to synthesize pure ClO2 from the reaction of Cl2 and ClO2-. Conversely, ClO2 may be present a variation of stability in different waters owing to the changed pε and pH. ClO2 could be relatively stable if not disproportionate into ClO3-, coexisting with ClO2- (pε17.63 and pH>9.68), Cl2 (pH≤0.92) or Cl- (pH 0.92-9.68). When chlorine system has already reached the ultimate equilibria, ClO2 is a stable species in strongly acid media. As the acidity decreases, ClO2 disproportionates into ClO3- and Cl2. Aqueous ClO2 is unstable within the normal pH range. This work initially, theoretically elucidates the generation and stability of ClO2 by way of the pε-pH diagrams.

  17. Observation of high energy electromagnetic dipole radiation in 14N+Ni reactions at Elab/A = 35 MeV

    Science.gov (United States)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R. F.; Paul, P.; Stachel, J.; Awes, T. C.; Ferguson, R. L.; Obenshain, F. E.; Plasil, F.; Young, G. R.

    1986-06-01

    High energy photons (20γ+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  18. 3,5-二硝基水杨酸铈的制备、热分解机理及非等温反应动力学%Preparation,Thermal Behavior and Nonisothermal Decomposition Reaction Kinetics of Cerium 3,5-dinitrosalicylate(CeDNS)

    Institute of Scientific and Technical Information of China (English)

    张衡; 赵凤起; 仪建华; 张晓宏; 胡荣祖; 徐司雨

    2009-01-01

    3,5-二硝基水杨酸和硝酸铈为原料,制备了3,5-二硝基水杨酸铈(CeDNS),采用元素分析、X射线荧光光谱和FTIR对其进行了表征.用TG和DSC以及变温固相原位反应池/傅立叶变换红外光谱(RS-FTIR)联用技术研究了3.5-二硝基水杨酸铈的热分解机理,对主放热反应的DSC峰进行了数学处理.计算得到了动力学参数和动力学方程.结果表明,3,5-二硝基水杨酸铈的分解反应共有3个阶段,其中包括一个脱水吸热过程和一个主放热过程,主分解反应发生在第2阶段,主分解反应的表观活化能E.与指前因子A分别为:159.17 Kj·mol-1和1011.33s-1,主分解阶段的反应机理服从Avrami-Erofeev方程(n=1/4),主分解反应的动力学方程为:da/dt=1011.33×4(1-α)[-In(1-α)]3/4 e-1.92×104/T.%Cerium 3,5-dinitrosalicylate(CeDNS)was synthesized by using 3,5-dinitrosalicylic acid,sodium hydroxide and cerium nitrate as raw materials,and was characterized by elementary analysis,X·ray fluorescence and FTIRspectraoscopy.The thermal decomposition mechanism and kinetm parameters of the decomposition reaction ofCeDNS were investigated by means of TG/DSC and in situ condensed phase thermolysis/FHR(RS-FTIR).The kineticequation of decomposition reaction was obtained.The results show that the decomposition process of CeDNS hasthree stages and the main exothermie decomposition reaction Occurs in the second process.The kinetic parameters ofthe main exothermie decomposition reaction fire:Ea=159.17 kJ·mol-1,A=1011.33 s-1.The kinetic equation can be expressed as:dα/dt=1011.33×4(1-α)[-1n(1-α)]3/4 e -1.92×104/T.

  19. Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  20. Observation of high energy electromagnetic dipole radiation in /sup 14/N + Ni reactions at Esub(lab)/A = 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R.F.; Paul, P.; Stachel, J.; Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.; Plasil, F.; Young, G.R.

    1986-06-19

    High energy photons (20 < Esub(..gamma..) < 150 MeV) produced in inclusive /sup 14/N+Ni->..gamma..+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  1. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  2. Impact of chlorine dioxide and ozone on the oxidation of NTA during drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hrubec, J.; ' t Hart, M.J.; Marsman, P.; Luijten, J.A.

    1984-11-01

    The use, as it is proposed, of nitrilotriacetic acid (NTA) for phosphate replacement in detergents will lead to its discharge in surface water at relatively high concentrations. Questions have been raised about potential health hazards related to the uptake and treatment of the NTA containing riverwater for drinking water supply. Degradation of NTA by biological oxidation in waste water treatment systems, soil and surface water under aerobic conditions has been demonstrated many times. However reports on degradation of NTA by chemical oxidation applied in water treatment processes are scarce. The aim of the present investigation was to determine removal of nitrilotriacetic acid upon chlorine, chlorine dioxide and ozone treatment under conditions characteristic for drinking water treatment practice; possible formation of mutagenic substances from the reaction of NTA with these oxidants; and formation of halogenated reaction products of NTA with chlorine and chlorine dioxide.

  3. Identification of Some AOX Compounds Formed in Wool Chlorination Using Model Chemicals

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; HE Jin-xin; DAJ Jin-jin

    2002-01-01

    The AOX (adsorbable organic halogens) problem in wool shrinkproofing effluents has attracted more attention in recent years. The probable origins and structures of AOX compounds were proved by the reaction of DCCA with the model substances of different amino acid residues.The GC-MS results indicated that available chlorine could chlorinate the side chain of tyrosine, histidine and trypotophan and generate AOX load in the effluent.

  4. Colorectal cancers and chlorinated water

    Institute of Scientific and Technical Information of China (English)

    Ahmed Mahmoud El-Tawil

    2016-01-01

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers.

  5. Physical property determinations of short chain chlorinated paraffins

    Energy Technology Data Exchange (ETDEWEB)

    Drouillard, K.G.D. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Soil Science; Hiebert, T.; Friesen, K.J. [Univ. of Winnipeg, Manitoba (Canada). Dept. of Chemistry; Muir, D.C.G. [Freshwater Inst., Winnipeg, Manitoba (Canada)

    1995-12-31

    Chlorinated paraffins (CP) are chlorinated derivatives of n-alkanes commonly utilized in commercial formulations of flame retardants, plasticizers and high pressure lubricants. Recent reviews on CPs have expressed concern regarding the potential toxicity and carcinogenic properties of these compounds. Of the various classes of CPs, short chain compounds (carbon chain lengths 10 to 13) appear to pose the greatest risk. There is little data available concerning key physical properties of CPs required to assess their environmental behavior and mobility. In this study, water solubilities, dissolved organic matter water partition coefficients (K{sub DOM}) and Henry`s Law constants were determined for short chain chlorinated paraffins by generator column, apparent solubility enhancement and gas-purging techniques. Water solubilities were determined for synthesized, isolated products of polychlorinated decanes, undecanes and dodecanes. Solubilities at 25 C were on the order of 2 to 140 {micro}g/L for tetra- to hexachlorodecane products. The Henry`s Law constants for tetra- and pentachlorodecane were determined to be 6.6 {+-} 0.6 and 3.5 {+-} 0.6 Pa{center_dot}m{sup 3}{center_dot}mol{sup {minus}1} respectively. Relationships between carbon chain length and degree of chlorination on the determined physical properties will be discussed.

  6. Study of two- and multi-particle correlations in 12C+24Mg and 12C+208Pb reactions at E=35 AMeV

    Directory of Open Access Journals (Sweden)

    Quattrocchi L.

    2016-01-01

    Full Text Available Two and multi particle correlations from the decay of sources produced in 12C+24Mg and 12C+208Pb collisions at E=35 AMeV have been studied by using the forward part (1° < θlab < 30° of the CHIMERA multi-detector. Correlations and invariant mass spectroscopy are used to explore simultaneous and sequential decays of resonances in light isotopes with Z∼3-6, produced in peripheral collisions via the break-up of excited quasi-projectiles. Among them we mention 5Li, 6Li, 6Be, 8Be and the astrophysically important state in 12C decaying into three alpha particles. Results and future perspectives at the INFN-LNS will be presented.

  7. Ab initio heats of formation for chlorinated hydrocarbons: Allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride

    Science.gov (United States)

    Colegrove, Brenda Thies; Thompson, Tyler B.

    1997-01-01

    Ab initio molecular energies at several levels of theory (MP4/6-311G**//MP2/6-31G*, MP4/6-311+G**//MP2/6-31G*,G1, and G2) are used to determine the heats of formation of several chlorinated hydrocarbons (allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride) from atomization and isodesmic reactions. More than one isodesmic reaction was investigated for each molecule. Inconsistencies between the results from isodesmic reactions for a given molecule indicated possible errors in the experimental heats of formation for some of the chlorinated molecules used as references in the isodesmic reactions (in particular 1-chloropropane and 2-chloropropane). To further examine this possibility we did a multivariate regression for the G2 calculated reaction enthalpies for the 30 isodesmic reactions. In the regression, the heats of formation of the hydrocarbons and CH3Cl were fixed at the experimental values. The heats of formation of all the other chlorinated hydrocarbons were varied. The heats of formation determined using this method were: ΔHf298(CH2Cl2)=-22.6 kcal/mole, ΔHf298(CHCl=Cl2)=5.0 kcal/mole, ΔHf298(CCl2=CH2)=-0.2 kcal/mole, ΔHf298(CH2Cl-CH3)=-27.0 kcal/mole, ΔHf298(c-CHCl=CH-CH3)=-3.1 kcal/mole, ΔHf298(t-CHCl=CH-CH3)=-2.8 kcal/mole, ΔHf298(CH2=CClCH3)=-5.4 kcal/mole, ΔHf298(CH2=CH-CH2Cl)=-0.8 kcal/mole, ΔHf298(CH2Cl-CH2-CH3) =-32.2 kcal/mole, ΔHf298(CH3-CHCl-CH3 )=-35.9 kcal/mole. The calculated heats of formation were used to derive the following Benson group enthalpy values: C-(Cl)(H)2(Cd)=-15.6 kcal/mole, Cd-(Cl)(H)=-1.3 kcal/mole, and cis-halogen-alkyl =-0.3 kcal/mole.

  8. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    OpenAIRE

    Korich, D. G.; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactiv...

  9. Disinfectants: Chlorine and chlorine dioxide. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The bibliography contains citations concerning the antimicrobial properties of chlorine and chlorine dioxide. The use of chlorine for the inactivation of viruses, bacteria, and fungi in wastewater treatment plants is discussed, including the mode of action and factors influencing inactivation. The use of chlorine dioxide as an alternative to chlorine disinfection in swimming pools and water supplies, and possible adverse effects are also discussed. (Contains a minimum of 157 citations and includes a subject term index and title list.)

  10. Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3 and CF3CFH2 over the temperature range 253 – 551 K

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Ole John;

    2009-01-01

    Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl+CH2F2) = 1.19×10-17 T 2 exp(-1023/T ) cm3 molecule-1 s-1 (253– 553 K), k(Cl+CH3CCl3) = 2.41×10-12 exp(...

  11. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  12. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion.

    Science.gov (United States)

    Jansson, Stina; Fick, Jerker; Marklund, Stellan

    2008-07-01

    Non- to octa-chlorinated naphthalenes (PCNs) were analyzed in flue gas samples collected simultaneously at three different temperatures (450 degrees C, 300 degrees C and 200 degrees C, respectively) in the post-combustion zone during waste combustion experiments using a laboratory-scale fluidized-bed reactor. PCN homologue profiles in all samples were dominated by the lower chlorinated homologues (mono- to triCN), with successive reductions in abundance with each additional degree of chlorination. The isomer distribution patterns reflected ortho-directionality behavior of the first chlorine substituent, and the beta-positions, i.e. the 2,3,6,7-substitution sites, seemed to be favored for chlorination. Injection of naphthalene into the post-combustion zone resulted in increased PCN levels at 200 degrees C, demonstrating the occurrence of chlorination reactions in the post-combustion zone. However, the increases were restricted to the least-chlorinated homologue (monoCN), probably because there was insufficient residence time for further chlorination. In addition, an episode of poor combustion (manifested by high CO levels) was accompanied by extensive formation of 1,8-diCN, 1,2,3- and 1,2,8-triCN; congeners with substitution patterns that are not thermodynamically favorable. These are believed to be products of PAH breakdown reactions and/or chlorophenol condensation. Overall, PCN formation is likely to occur via more than one pathway, including chlorination of naphthalene that is already present, de novo synthesis from PAHs and, possibly, chlorophenol condensation.

  13. Réaction du polyisobutène chloré sur l'anhydride maléique : mécanisme. Catalyse par l'anhydride dichloromaléique Reaction of Chlorinated Polyisobutene on Maleic Anhydride. Mechanism. Catalysis by Dichloromaleic Anhydride

    Directory of Open Access Journals (Sweden)

    Sillion B.

    2006-11-01

    Full Text Available Dans cet article le mécanisme de la réaction de condensation du polyisobutène chloré sur l'anhydride maléique, qui sert dans la synthèse d'additif pour lubrifiant, est étudié par une cinétique globale et par un travail sur composés modèles. Il est montré que, dans cette réaction, l'anhydride maléique joue un double rôle : de catalyseur de déshydrochloration par une réactivité de type acide de Lewis organique, de réactif comme diénophile. Grâce à ces résultats, il est proposé une catalyse par l'anhydride dichloromaléique, qui permet une amélioration sensible du procédé. This article examines the mechanism of the chlorinated-polyisobutene condensation reaction on maleic anhydride. The overall kinetics and model compounds are investigated for this reaction which is used in the synthesis of lubricant additives. Maleic anhydride is shown to play the dual role of a dehydrochlorination catalyst by having a reactivity of the organic Lewis acid type and of a reactant like dienophile. These results are used to propose a catalysis by dichloromaleic anhydride which appreciably improves the process.

  14. Chloro({2-[mesityl(quinolin-8-yl-κNboryl]-3,5-dimethyl-phenyl}methyl-κCpalladium(II as a Catalyst for Heck Reactions

    Directory of Open Access Journals (Sweden)

    Sem Raj Tamang

    2015-07-01

    Full Text Available We recently reported an air and moisture stable 16-electron borapalladacycle formed upon combination of 8-quinolyldimesitylborane with bis(benzonitriledichloropalladium(II. The complex features a tucked mesityl group formed upon metalation of an ortho-methyl group on a mesityl; however it is unusually stable due to contribution of the boron pz orbital in delocalizing the carbanion that gives rise to an η4-boratabutadiene fragment coordinated to Pd(II, as evidenced from crystallographic data. This complex was observed to be a highly active catalyst for the Heck reaction. Data of the catalyst activity are presented alongside data found in the literature, and initial comparison reveals that the borapalladacycle is quite active. The observed catalysis suggests the borapalladacycle readily undergoes reductive elimination; however the Pd(0 complex has not yet been isolated. Nevertheless, the ambiphilic ligand 8-quinolyldimesitylborane may be able to support palladium in different redox states.

  15. Correlations between emission timescale of fragments and isospin dynamics in $^{124}$Sn+$^{64}$Ni and $^{112}$Sn+$^{58}$Ni reactions at 35 AMeV

    CERN Document Server

    De Filippo, E; Russotto, P; Amorini, F; Anzalone, A; Auditore, L; Baran, V; Berceanu, I; Borderie, B; Bougault, R; Bruno, M; Cap, T; Cardella, G; Cavallaro, S; Chatterjee, M B; Chbihi, A; Colonna, M; D'Agostino, M; Dayras, R; Di Toro, M; Frankland, J; Galichet, E; Gawlikowicz, W; Geraci, E; Grzeszczuk, A; Guazzoni, P; Kowalski, S; La Guidara, E; Lanzalone, G; Lanzanò, G; Neindre, N Le; Lombardo, I; Maiolino, C; Papa, M; Piasecki, E; Pirrone, S; Planeta, R; Politi, G; Pop, A; Porto, F; Rivet, M F; Rizzo, F; Rosato, E; Schmidt, K; Siwek-Wilczynska, K; Skwira-Chalot, I; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M; Wieleczko, J P; Wilczynski, J; Zetta, L; Zipper, W

    2012-01-01

    We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at mid-rapidity in semi-peripheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of $$ isospin asymmetry, stronger angular anisotropies and reduced odd-even staggering effects in neutron to proton ratio $$ distributions than those produced in sequential statistical emission. All these effects support the concept of isospin "migration", that is sensitive to the density gradient between participant and quasi-spectator nuclear matter, in the so called neck fragmentation mechanism. By comparing the data to a Stochastic Mean Field (SMF) simulation we show that this method gives valuable constraints on the symmetry energy term of nuclear equation of state at subsaturation densities. An indication emerges for a linear density dependence of the symmetry energy.

  16. Enzymatic chlorination and bromination.

    Science.gov (United States)

    van Pée, Karl-Heinz

    2012-01-01

    Our knowledge about the enzymes catalyzing the incorporation of halide ions during the biosynthesis of halometabolites has increased tremendously during the last 15 years. Between 1960 and 1995, haloperoxidases were the only halogenating enzymes known. However, absolute proof for the connection of haloperoxidases to the biosynthesis of halometabolites is still missing. In 1997, FADH(2)-dependent halogenases were identified as the type of halogenating enzymes responsible for the incorporation of chloride and bromide atoms into aromatic and aliphatic compounds activated for electrophilic attack. FADH(2)-dependent halogenases are two-component systems consisting of a flavin reductase providing the FADH(2) required by the halogenase. Elucidation of the three-dimensional structure of FADH(2)-dependent halogenases led to the understanding of the reaction mechanism, which involves the formation of hypohalous acids. Unactivated carbon atoms were found to be halogenated by nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases. The reaction mechanism of this type of halogenase was shown to involve the formation of a substrate radical. These two types of halogenating enzymes, together with the much less common fluorinases, are the major types of halogenating enzymes. However, the existence of other types of halogenating enzymes, yet not detected, cannot be completely ruled out. Here, we describe the detection, purification, characterization, and reaction mechanisms of flavin-dependent halogenases and of nonheme iron, α-ketoglutarate- and O(2)-dependent halogenases.

  17. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.

    Science.gov (United States)

    Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria

    2010-07-01

    Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.

  18. 二氧化氯/TiO2光催化氧化降解碱性品红模拟废水及反应机理%Investigation of Chlorine Dioxide/TiO2 Photocatalytic Oxidative Degradation of Simulated Wastewater Containing Fuchsine and Its Reaction Mechanism

    Institute of Scientific and Technical Information of China (English)

    施来顺; 王晓美

    2012-01-01

    The photocatalyst TiO2 was prepared by dipping-calcination method using silica gel as catalyst support.The chlorine dioxide/TiO2 photocatalyst was used for the photocatalytic oxidation of simulated fuchsine wastewater.The degradation effect of fuchsine by the combination of chlorine dioxide,TiO2 photocatalyst and UV irradiation was confirmed by comparison test.The optimum treatment conditions were as follows:the volume of wastewater containing 150 mg·L-1 fuchsine was 50 mL;ClO2 concentration was 6.14 mg·L-1,pH value was 5.0;the distance between UV lamp and flask was 20 cm;UV irradiation time was 13 min;and photocatalyst dosage was 10 g·L-1.The removal efficiency of fuchsine could reach 80%,compared with 46% of chlorine dioxide chemical oxidation.With UV-vis and FT IR analysis technique,the intermediates in the degradation process were obtained.Fuchsine was degradated into quinone and carboxylic acid,and finally changed into carbon dioxide and water during the photocatalytic oxidation.The degradation reaction mechanism of fuchsine by chlorine dioxide/TiO2 photocatalytic oxidation was proposed.%以硅胶为载体,采用浸渍-焙烧法制备了TiO2光催化剂,并将其用于二氧化氯/TiO2光催化氧化降解碱性品红模拟废水.经对比实验验证了ClO2/TiO2光催化剂/UV照射对碱性品红的氧化降解作用.50 mL质量浓度为150 mg.L-1的碱性品红模拟废水,在pH值为5.0,二氧化氯质量浓度6.14 mg.L-1和10 g.L-1光催化剂条件下,紫外照射距离20 cm,紫外照射时间13 min,碱性品红的去除率可达80%,远远高于二氧化氯化学氧化处理碱性品红的去除率46%.在废水处理过程中,采用紫外可见光谱和红外光谱分析降解产物,碱性品红被氧化降解为醌和羧酸,并进一步降解为二氧化碳和水,提出了二氧化氯/TiO2光催化氧化降解碱性品红废水的反应机理.

  19. Environmental factors regulating soil organic matter chlorination

    Science.gov (United States)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  20. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  1. Sequential flow injection determination of chlorine species using a triiodide-selective electrode detector.

    Science.gov (United States)

    Saad, Bahruddin; Wai, Wan Tatt; Ali, Abdussalam Salhin M; Saleh, Muhammad Idiris

    2006-01-01

    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.

  2. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes.

    Science.gov (United States)

    Li, Tong; Jiang, Yan; An, Xiaoqiang; Liu, Huijuan; Hu, Chun; Qu, Jiuhui

    2016-10-01

    The synergistic effect of ultraviolet light (UV) and chlorine on the structural transformation of Humic Acid (HA) and formation of chloro-disinfection byproducts (DBPs) in water were investigated, with chlorination as a reference. The transformation and mineralization of HA were enhanced upon co-exposure to UV and chlorine. Electron spin resonance (ESR) studies revealed that hydroxyl radical (OH) and chlorine radical (Cl) were predominant active species in a pH range from 4 to 7, while Cl dominated at pH 2 and pH higher than 7. The impact of different radicals on the transformation of HA was investigated by UV254, fluorescence and TOC measurements. OH were found to be responsible for the removal of chromophoric groups and mineralization of HA, while Cl mainly reacted with HA and intermediates from HA degradation. Due to the competitive and synergistic reaction of OH and Cl with HA, higher removal of HA and lower formation of chloro-DBPs appeared in UV-chlorine than chlorination, thus the combined UV-chlorine processes should be a promising method for water purification.

  3. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  4. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents.

    Science.gov (United States)

    Ding, Guoyu; Zhang, Xiangru; Yang, Mengting; Pan, Yang

    2013-05-15

    Chlorination could be the most cost-effective method for disinfecting saline sewage effluents resulting from toilet flushing with seawater. Upon chlorination, the high levels of bromide ions in saline sewage effluents (up to 32 mg/L) can be oxidized to hypobromous acid/hypobromite, which could then react with organic matter in the sewage effluents to form brominated disinfection byproducts (Br-DBPs). In this study, primary and secondary saline sewage effluents were collected and chlorinated at different chlorine doses, and a powerful precursor ion scan method using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry was adopted for detection and identification of polar Br-DBPs in these samples. With the new method, 54 major polar Br-DBPs were detected in the chlorinated saline effluents and six of them were newly identified as wastewater DBPs, including bromomaleic acid, 5-bromosalicylic acid, 3,5-dibromo-4-hydroxybenzaldehyde, 3,5-dibromo-4-hydroxybenzoic acid, 2,6-dibromo-4-nitrophenol, and 2,4,6-tribromophenol. The formation of polar Br-DBPs, especially those newly detected ones, during chlorination of the saline effluents was studied. For the secondary saline effluent, various polar Br-DBPs formed and reached their maximum levels at different chlorine doses, whereas for the primary saline effluent, the formation of polar Br-DBPs basically kept increasing with increasing chlorine dose. Compared with the secondary saline effluent, the primary saline effluent generated fewer and less Br-DBPs and rarely generated nitrogenous Br-DBPs.

  5. Evaluation of the use of chlorine dioxide to control zebra mussels

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, J. [Electric Power Research Institute, Palo Alto, CA (United States); Coyle, J. [Central Illinois Public Service, Meredosia, IL (United States); Pallo, S. [Illinois Power Company, Clinton, IL (United States)] [and others

    1995-06-01

    Chlorine dioxide was tested as a zebra mussel biocide at two steam electric generating stations in Illinois. The purpose of these studies was to determine the efficacy of chlorine dioxide in killing zebra mussels and to develop site specific treatment programs for the two utilities. The Electric Power Research Institute (EPRI) Zebra Mussel Consortium sponsored the testing of this recent use of chlorine dioxide. The raw water system at Central Illinois Public Service`s Meredosia Station, on the Illinois River, received two to four day applications of chlorine dioxide in April, July, and September 1994. The raw water system at Illinois Power Company`s Wood River Station, on the Mississippi River, received two to four day applications in July 1993, January, April, May, July, and September 1994. Chlorine dioxide was generated on-site and injected into the water intake structure, in front of or just behind the traveling screens, at both power stations. Both cooling and service water systems were treated at the facilities. Various water quality parameters, including residual chlorine in the discharge effluent, were measured during the studies. Residual chlorine was neutralized with sodium bisulfite prior to discharge at both plants. Bioboxes, containing healthy zebra mussels, were placed at various strategic locations throughout the power stations. Control bioboxes were also placed in the rivers, upstream of the chlorine dioxide injection locations. Results of the chlorine dioxide applications varied from 35 percent to 100 percent. These varied results appear to be related to seasonal water temperature differences, water quality, and/or plant design. Mortality differences were also noted in bioboxes which contained zebra mussels imported from Lake Erie and those which contained local mussels. These and other data are presented.

  6. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    Science.gov (United States)

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  7. Comparison of chlorine and chlorine dioxide toxicity of fathead minnows and bluegill

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Soracco, R.J.; Mayack, L.A.; Shealy, R.L.; Broadwell, T.L.; Steffen, R.F.

    1983-01-01

    The comparative toxicity of total residual chlorine (TRC) and chlorine dioxide (ClO/sub 2/) was evaluated by conducting 96 h flow-through bioassays with three types of fish. The fish were subjected to an intermittent exposure regime in which biocide residuals were present for approximately 2-h periods beginning at 0, 24, 48 and 72 h into the tests. These conditions simulated the antifouling procedure (1 h day/sup -1/ biocide addition) used to control biofouling of nuclear reactor heat exchangers at the Savannah River Plant near Aiken, South Carolina. LC/sub 50/ values showed that ClO/sub 2/ was approximately 2 to 4 times more toxic than TRC to: (1) juvenile and 1-year-old fathead minnows (Pimphales promelas); and (2) young-of-the-year bluegill (Lepomis macrochirus). The TRC mean 96-h LC/sub 50/ values were: 0.08 mg l/sup -1/ for juvenile fathead minnows, 0.35 mg l/sup -1/ for adult fathead minnows and 0.44 mg l/sup -1/ for young-of-the-year bluegills. The ClO/sub 2/ mean LC/sub 50/ values were: 0.02 mg l/sup -1/ for juvenile fathead minnows, 0.17 mg l/sup -1/ for adult fathead minnows and 0.15 mg l/sup -1/ for young-of-the-year bluegills. 31 references, 1 figure, 3 tables.

  8. Transformation of benzophenone-type UV filters by chlorine: Kinetics, products identification and toxicity assessments.

    Science.gov (United States)

    Li, Jian; Ma, Li-yun; Xu, Li

    2016-07-01

    The present study focused on the kinetics, transformation pathways and toxicity of several benzophenone-type ultraviolet filters (BPs) during the water chlorination disinfection process. The transformation kinetics of the studied three BPs was found to be second-order reaction, which was dependent on the concentration of BPs and chlorine. The second-order rate constants increased from 86.7 to 975 M(-1) s(-1) for oxybenzone, 49.6-261.7 M(-1) s(-1) for 4-hydroxybenzophenone and 51.7-540 M(-1) s(-1) for 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid with the increasing pH value from 6 to 8 of the chlorination disinfection condition. Then the transformation products (TPs) of these BPs were identified by HPLC-QTof analysis. Several transformation pathways, including electrophilic substitution, methoxyl substitution, ketone groups oxidation, hydrolysis, decarboxylation and ring cleavage reaction, were speculated to participate in the chlorination transformation process. Finally, according to the toxicity experiment on luminescent bacteria, Photobacterium phosphoreum, enhanced toxicity was observed for almost all the TPs of the studied BPs except for 2,2'-dihydroxy-4,4'-dimethoxybenzophenone; it suggested the formation of TPs with more toxic than the parent compounds during the chlorination process. The present study provided a foundation to understand the transformation of BPs during chlorination disinfection process, and was of great significance to the drinking water safety.

  9. Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes.

    Science.gov (United States)

    Zhang, Shujuan; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F

    2016-07-01

    UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during chlorine oxidation are a concern. In our study, the reaction between oxybenzone and chlorine followed pseudo-first-order and second-order kinetics. Three transformation products were detected by LC-MS/MS, and the stability of products followed the order of tri-chloro-methoxyphenoyl > di-chlorinated oxybenzone > mono-chlorinated oxybenzone. Disinfection byproducts (DBPs) including chloroform, trichloroacetic acid, dichloroacetic acid and chloral hydrate were quickly formed, and increased at a slower rate until their concentrations remained constant. The maximum DBP/oxybenzone molar yields for the four compounds were 12.02%, 6.28%, 0.90% and 0.23%, respectively. SOS/umu genotoxicity test indicated that genotoxicity was highly elevated after chlorination, and genotoxicity showed a significantly positive correlation with the response of tri-chloro-methoxyphenoyl. Our results indicated that more genotoxic transformation products were produced in spite of the elimination of oxybenzone, posing potential threats to drinking water safety. This study shed light on the formation of DBPs and toxicity changes during the chlorination process of oxybenzone.

  10. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...

  11. Cl app: android-based application program for monitoring the residue chlorine in water

    Science.gov (United States)

    Intaravanne, Yuttana; Sumriddetchkajorn, Sarun; Porntheeraphat, Supanit; Chaitavon, Kosom; Vuttivong, Sirajit

    2015-07-01

    A farmer usually uses a cheap chemical material called chlorine to destroy the cell structure of unwanted organisms and remove some plant effluents in a baby shrimp farm. A color changing of the reaction between chlorine and chemical indicator is used to monitor the residue chlorine in water before releasing a baby shrimp into a pond. To get rid of the error in color reading, our previous works showed how a smartphone can be functioned as a color reader for estimating the chlorine concentration in water. In this paper, we show the improvement of interior configuration of our prototype and the distribution to several baby shrimp farms. In the future, we plan to make it available worldwide through the online market as well as to develop more application programs for monitoring other chemical substances.

  12. Selective chlorine dioxide determination using gas-diffusion flow injection analysis with chemiluminescent detection

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, D.A.; Gord, J.R.; Gordon, G.; Pacey, G.E.

    1986-06-01

    An automated chemiluminescent technique has been developed utilizing the advantages of gas-diffusion flow injection analysis. A gas-diffusion membrane separates the donor (sampling) stream from the acceptor (detecting) stream and removes ionic interferences. A novel chemiluminescence flow-through detector cell is used to measure the concentration of chlorine dioxide as a function of the intensity of the chemiluminescence produced from its reaction with luminol. The chemiluminescent reagent merges with the analyte directly in front of the photomultiplier tube in order to maximize the sensitivity of the system. The detection limit for chlorine dioxide is approximately 5 ppb. The method is over 1500 times more selective for chlorine dioxide than for chlorine on a mole basis. This method eliminates interference from iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite ion and chlorate ion.

  13. O2(1△) Yield Measurement by Raman Spectroscopy With Elimination of Chlorine Fluorescence Interference

    Institute of Scientific and Technical Information of China (English)

    Rong-rong Cui; Wen-bo Shi; Lie-zheng Deng; He-ping Yang; Guo-he Sha; Cun-hao Zhang

    2012-01-01

    Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of O2(1△) and O2(3∑),seriously affecting the O2(1△) yield measurement in the reaction of chlorine with basic hydrogen peroxide by use of the Raman spectroscopy technique.To solve this problem we have taken advantage of the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized in a gaseous medium.When chlorine utilization of a singlet oxygen generator is 88%,O2(1△) yield reaches (42.4±7.4)%with the effect of chlorine fluorescence completely eliminated.

  14. Ultrafast measurements of chlorine dioxide photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  15. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    Science.gov (United States)

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine.

  16. Sorption- and diffusion-associated isotope effects for chlorinated and non chlorinated aromatic hydrocarbons in a sediment pore water diffusion sampler

    Science.gov (United States)

    Passeport, E.; Chu, K.; Lacrampe Couloume, G.; Landis, R.; Lutz, E. J.; Mack, E. E.; West, K.; Sherwood Lollar, B.

    2013-12-01

    Compound Specific Isotope Analysis (CSIA) has gained prominence for evaluation of microbial and abiotic degradation processes governing the fate of organic contaminants in groundwater. At the sediment pore water interface, in wetland or river bottom sediments, variations in oxidation-reduction conditions can affect reaction mechanisms and hence the contaminant mass flux discharged to surface waters. Carbon isotope fractionation has been shown to be an important tool in identifying the effects of degradation and differentiating between different degradation pathways. To date, while passive diffusion samplers (commonly called 'peepers') have provided a powerful tool for high spatial resolution sampling for dissolved VOC across the sediment water interface, peepers' compatibility with CSIA has never been evaluated. The operating principle of peepers involves compound diffusion from the sediment pore water to the peeper chambers via a membrane. In this study, we evaluated the isotope effects of diffusion through, and possible adsorption to a polysulfone membrane for priority groundwater contaminants including chlorinated and non-chlorinated aromatic hydrocarbons. Chlorinated benzenes tend to accumulate in the food web and therefore represent a significant threat to water resources. This is due to their larger sorption coefficients (Koc) and higher hydrophobicity properties (logKow) compared to other commonly-studied compounds (e.g., chlorinated ethenes). Application of CSIA to BTEX and chlorinated ethenes has demonstrated that non-degradative processes (e.g., sorption, volatilization, diffusion) typically result in smaller carbon isotope fractionation compared to degradative processes that involve breaking bonds. The large sorption properties of chlorinated benzenes preclude a direct extrapolation to these compounds of existing data on sorption-associated isotope effects obtained on other compounds. To date, similar studies have not been done for chlorinated aromatics

  17. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    Science.gov (United States)

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT).

  18. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    Science.gov (United States)

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2.

  19. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...... as well as biological degradation of chlorinated solvents is a contact sport and requires direct contact between the contaminant and the reactants and/or degrading microorganisms. In fractured geologic media, where contaminants have spread to the low permeability matrix by diffusion, the contact between......-clay mixing for contact; hydrophobic and/or mobile nano-reactants targeting DNAPL. The complexity of the technologies varies greatly and the current level of implementation ranges from multiple full scale applications to bench scale testing. However, the basic degradation reaction involved is usually well...

  20. Reactions between atomic chlorine and pyridine in solid para-hydrogen: Infrared spectrum of the 1-chloropyridinyl (C{sub 5}H{sub 5}N-Cl) radical

    Energy Technology Data Exchange (ETDEWEB)

    Das, Prasanta; Bahou, Mohammed [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2013-02-07

    With infrared absorption spectra we investigated the reaction between Cl atom and pyridine (C{sub 5}H{sub 5}N) in a para-hydrogen (p-H{sub 2}) matrix. Pyridine and Cl{sub 2} were co-deposited with p-H{sub 2} at 3.2 K; a planar C{sub 5}H{sub 5}N-Cl{sub 2} complex was identified from the observed infrared spectrum of the Cl{sub 2}/C{sub 5}H{sub 5}N/p-H{sub 2} matrix. Upon irradiation at 365 nm to generate Cl atom in situ and annealing at 5.1 K for 3 min to induce secondary reaction, the 1-chloropyridinyl radical (C{sub 5}H{sub 5}N-Cl) was identified as the major product of the reaction Cl + C{sub 5}H{sub 5}N in solid p-H{sub 2}; absorption lines at 3075.9, 1449.7, 1200.6, 1148.8, 1069.3, 1017.4, 742.9, and 688.7 cm{sup -1} were observed. The assignments are based on comparison of observed vibrational wavenumbers and relative IR intensities with those predicted using the B3PW91/6-311++G(2d, 2p) method. The observation of the preferential addition of Cl to the N-site of pyridine to form C{sub 5}H{sub 5}N-Cl radical but not 2-, 3-, or 4-chloropyridine (ClC{sub 5}H{sub 5}N) radicals is consistent with the reported theoretical prediction that formation of the former proceeds via a barrierless path.

  1. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  2. 42 CFR 35.35 - Unsalable articles.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Unsalable articles. 35.35 Section 35.35 Public... HOSPITAL AND STATION MANAGEMENT Disposition of Articles Produced by Patients § 35.35 Unsalable articles. Articles having no commercial value shall be stored, destroyed, or otherwise disposed of as the officer...

  3. Aqueous chlorination of mefenamic acid: kinetics, transformation by-products and ecotoxicity assessment.

    Science.gov (United States)

    Adira Wan Khalit, Wan Nor; Tay, Kheng Soo

    2016-05-18

    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.

  4. The chlorination of cyclopentanone and cyclohexanone

    NARCIS (Netherlands)

    Maatman, Hendrik

    1980-01-01

    In this thesis the results of an investigation of the chlorination of cyclopentanone and cyclohexanone in the solvent carbontetrachloride and catalyzed by hydrogen chloride are described. ... Zie: Summary

  5. High resolution spectrophotometry for identification of chlorine dioxide in concentrated chlorine solutions.

    Science.gov (United States)

    Gauw, R D; Emmert, G L; Bubnis, B; Gordon, G

    1999-12-06

    Electrolyzed salt brine generators hold great promise for water disinfection in small communities and remote locations. Electrolysis cell liquors have been reported to contain chlorine, chlorine dioxide and ozone. High resolution spectrophotometry was used to observe the presence (or absence) of a unique spectral absorbance pattern present in solutions containing 1-2 mg/l chlorine dioxide.

  6. Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids.

    Science.gov (United States)

    Wang, Zhentao; Zhu, Lin; Yin, Feng; Su, Zhongquan; Li, Zhaodong; Li, Chaozhong

    2012-03-07

    Decarboxylative halogenation of carboxylic acids, the Hunsdiecker reaction, is one of the fundamental functional group transformations in organic chemistry. As the initial method requires the preparations of strictly anhydrous silver carboxylates, several modifications have been developed to simplify the procedures. However, these methods suffer from the use of highly toxic reagents, harsh reaction conditions, or limited scope of application. In addition, none is catalytic for aliphatic carboxylic acids. In this Article, we report the first catalytic Hunsdiecker reaction of aliphatic carboxylic acids. Thus, with the catalysis of Ag(Phen)(2)OTf, the reactions of carboxylic acids with t-butyl hypochlorite afforded the corresponding chlorodecarboxylation products in high yields under mild conditions. This method is not only efficient and general, but also chemoselective. Moreover, it exhibits remarkable functional group compatibility, making it of more practical value in organic synthesis. The mechanism of single electron transfer followed by chlorine atom transfer is proposed for the catalytic chlorodecarboxylation.

  7. Relative Rate and Product Studies of the Reactions of Atomic Chlorine with Tetrafluoroethylene, 1,2-Dichloro-1,2-difluoroethylene, 1,1-Dichloro-2,2-difluoroethylene, and Hexafluoro-1,3-butadiene in the Presence of Oxygen.

    Science.gov (United States)

    Herath, Thushani N; Clinch, Eric C; Orozco, Ivan; Raign, Erin L; Marshall, Paul

    2016-09-22

    Rate coefficients k1-k3 have been measured for Cl atom reactions with CF2═CF2, CFCl═CFCl, and CCl2═CF2 relative to k4 for CF2═CF-CF═CF2 at 293 ± 2 K. k4 was remeasured relative to Cl + ethane. Cl was generated by UV photolysis of Cl2, and other species were monitored by FT-IR spectroscopy. The measurements yield k1 = (6.6 ± 1.0) × 10(-11), k2 = (6.5 ± 1.0) × 10(-11), and k3 = (7.1 ± 1.1) × 10(-11) cm(3) molecule(-1) s(-1), respectively, and k4 = (8.0 ± 1.2) × 10(-11) cm(3) molecule(-1) s(-1) is proposed. These results are discussed in the context of atmospheric chemistry. Subsequent chemistry in the presence of oxygen leads to oxygenated products that are identified via their IR spectra, and possible mechanisms are discussed. The yield of CF2O from C2F4 is 93 ± 7%. Dichlorofluoroacetyl fluoride (CCl2FCFO) was observed as a product from CFClCFCl, and chlorodifluoroacetyl chloride (CClF2CClO) was observed from CCl2CF2 oxidation. C4F6 led to 66 ± 5% CF2O and 38 ± 3% OCF2CFC(F)═O. Reaction enthalpies and enthalpy barriers computed via CBS-QB3 theory help rule out some unfavorable mechanistic steps.

  8. Partial wave analysis of the reaction p(3.5 GeV+p→pK+Λ to search for the “ppK−” bound state

    Directory of Open Access Journals (Sweden)

    G. Agakishiev

    2015-03-01

    Full Text Available Employing the Bonn–Gatchina partial wave analysis framework (PWA, we have analyzed HADES data of the reaction p(3.5 GeV+p→pK+Λ. This reaction might contain information about the kaonic cluster “ppK−” (with quantum numbers JP=0− and total isospin I=1/2 via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K¯NN (or, specifically “ppK−” cluster signal need not necessarily show up as a pronounced feature (e.g. a peak in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra without a contribution of a K¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  9. Thermal Decomposition Behavior and Non-isothermal Decomposition Reaction of Copper(Ⅱ) Salt of 4-Hydroxy-3,5-dinitropyridine Oxide and Its Application in Solid Rocket Propellant

    Institute of Scientific and Technical Information of China (English)

    CHEN Pei陈沛; ZHAO Feng-Qi赵凤起; LUO Yang罗阳; HU Rong-Zu胡荣祖; GAO Sheng-Li高胜利; ZHENG Yu-Mei郑玉梅; DENG Min-Zhi邓敏智; GAO Yin高茵

    2004-01-01

    The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature-programmed mode have been investigated by means of DSC, TG-DTG and lower rate thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre-exponential factor A of the major exothermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as:dα/dT=1016.42(1-α)e-2.502× 104/T. As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4-hydroxy-3,5-dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX-CMDB propellant.

  10. Bank security dye packs: synthesis, isolation, and characterization of chlorinated products of bleached 1-(methylamino)anthraquinone.

    Science.gov (United States)

    Egan, James M; Rickenbach, Michael; Mooney, Kim E; Palenik, Chris S; Golombeck, Rebecca; Mueller, Karl T

    2006-11-01

    Banknote evidence is often submitted after a suspect has attempted to disguise or remove red dye stain that has been released because of an anti-theft device that activates after banknotes have been unlawfully removed from bank premises. Three chlorinated compounds have been synthesized as forensic chemical standards to indicate bank security dye bleaching as a suspect's intentional method for masking a robbery involving dye pack release on banknotes. A novel, facile synthetic method to provide three chlorinated derivatives of 1-(methylamino)anthraquinone (MAAQ) is presented. The synthetic route involved Ultra Clorox bleach as the chlorine source, iron chloride as the catalyst, and MAAQ as the starting material and resulted in a three-component product mixture. Two mono-chlorinated isomers (2-chloro-1-(methylamino)anthraquinone and 4-chloro-1-(methylamino)anthraquinone) and one di-chlorinated compound (2,4-dichloro-1-(methylamino)anthraquinone) of the MAAQ parent molecule were detected by gas chromatography mass spectrometry (GC-MS), and subsequently isolated by liquid chromatography (LC) with postcolumn fraction collection. Although GC-MS is sensitive enough to detect all of the chlorinated products, it is not definitive enough to identify the structural isomers. Liquid-state nuclear magnetic resonance (NMR) spectroscopy was utilized to elucidate structurally the ortho- and para-mono-chlorinated isomers once enough material was properly isolated. A reaction mechanism involving iron is proposed to explain the presence of chlorinated MAAQ species on stolen banknotes after attempted bleaching.

  11. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  12. The photoreactivity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, V. [Univ. of Colorado, Boulder, CO (United States); Simon, J.D. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-06-09

    Determining the detailed photoreactivity of radicals that are of importance in atmospheric processes requires information from both laboratory and field measurements and theoretical calculations. Laboratory experiments and quantum calculations have been used to develop a comprehensive understanding of the photoreactivity of chlorine dioxide (OClO). The photoreactivity is strongly dependent on the medium (gas phase, liquid solution, or cryogenic matrix). These data reveal details of the complex chemistry of OClO. The potential role of this radical in stratospheric ozone depletion is discussed in accord with these laboratory measurements. 53 refs., 4 figs.

  13. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L

    2007-05-01

    Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants <1 M(-1)s(-1). The first chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (k<1M(-1)s(-1)). The elimination of CYN and ANTX in surface water was also investigated. A chlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.

  14. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    Science.gov (United States)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Raimbault, L.; Scheidegger, A. M.; Farges, F.; Carlot, G.

    2007-05-01

    In a nuclear reactor, 35Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, 36Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO2. For this purpose, sintered UO2 pellets were implanted with 37Cl at an ion fluence of 1013 cm-2 and successively annealed in the 1175-1475 K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and μ-XAS (at the Cl-K edge) analyses show that: the thermal migration of implanted chlorine becomes significant at 1275 K; this temperature and the calculated activation energy of 4.3 eV points out the great ability of chlorine to migrate in UO2 at relatively low temperatures, the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing, the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I, the comparison between an U2O2Cl5 reference compound and the pristine chlorine environment shows a contribution of the U2O2Cl5 to the pristine chlorine.

  15. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    Energy Technology Data Exchange (ETDEWEB)

    Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.

  16. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    Science.gov (United States)

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water. PMID:2339894

  17. Behavior and control of chlorine in dyestuff residue incineration

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hua; TAN Zhong-xin; JIANG Xue-guang; CHI Yong; CEN Ke-fa

    2006-01-01

    Dyestuff residue, a type of hazardous waste, is incinerated in the tubular furnace, and thermodynamic equilibrium model is used to calculate and analyze the chlorine behavior. The HCl emission and its effects on the behaviors of heavy metals are studied.Meanwhile, the effects of three dechlorine reagents are predicted at a high temperature. Results show that HCl emission is dependent on incineration temperature. The HCl evaporated mainly derives from the organic chlorine. Under the working condition of 500--900℃, the main products of Hg, Pb, Cu, Ni, Zn, and Mn in reaction with HCl are HgCl2 (g), PbCl4(g), PbCl2 (g), (CuCl)3 (g), NiCl2 (s),NiCl2 (g), ZnCl2 (s), ZnCl2 (g), Zn (g), MnCl2 (s), and MnCl2 (g), respectively. Among the three dechlorine reagents, CaCO3 is optimal to remove chlorine at high temperature, little of HCl is released below 800℃, whereas Fe3O4 is unstable at high temperature.

  18. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.

    Science.gov (United States)

    Son, Hyunju; Cho, Min; Kim, Jaeeun; Oh, Byungtaek; Chung, Hyenmi; Yoon, Jeyong

    2005-02-01

    To the best of our knowledge, this study is the first investigation to be performed into the potential benefits of mechanically mixed disinfectants in controlling bacterial inactivation. The purpose of this study was to evaluate the disinfection efficiency of mechanically mixed oxidants with identical oxidant concentrations, which were made by adding small amounts of subsidiary oxidants, namely ozone (O3), chlorine dioxide (ClO2), hydrogen peroxide (H2O2) and chlorite (ClO2(-)), to free available chlorine (Cl2), using Bacillus subtilis spores as the indicator microorganisms. The mechanically mixed oxidants containing Cl2/O3, Cl2/ClO2 and Cl2/ClO2(-) showed enhanced efficiencies (of up to 52%) in comparison with Cl2 alone, whereas no significant difference was observed between the mixed oxidant, Cl2/H2O2, and Cl2 alone. This enhanced disinfection efficiency can be explained by the synergistic effect of the mixed oxidant itself and the effect of intermediates such as ClO2(-)/ClO2, which are generated from the reaction between an excess of Cl2 and a small amount of O3/ClO2(-). Overall, this study suggests that mechanically mixed oxidants incorporating excess chlorine can constitute a new and moderately efficient method of disinfection.

  19. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  20. Development of industrial catalysts for sustainable chlorine production.

    Science.gov (United States)

    Mondelli, Cecilia; Amrute, Amol P; Moser, Maximilian; Schmidt, Timm; Pérez-Ramírez, Javier

    2012-01-01

    The heterogeneously catalyzed gas-phase oxidation of HCl to Cl(2) offers an energy-efficient and eco- friendly route to recover chlorine from HCl-containing byproduct streams in the chemical industry. This process has attracted renewed interest in the last decade due to an increased chlorine demand and the growing excess of byproduct HCl from chlorination processes. Since its introduction (by Deacon in 1868) and till recent times, the industrialization of this reaction has been hindered by the lack of sufficiently active and durable materials. Recently, RuO(2)-based catalysts with outstanding activity and stability have been designed and they are being implemented for large-scale Cl(2) recycling. Herein, we review the main limiting features of traditional Cu-based catalysts and survey the key steps in the development of the new generation of industrial RuO(2)-based materials. As the expansion of this technology would benefit from cheaper, but comparably robust, alternatives to RuO(2)-based catalysts, a nov el CeO(2)-based catalyst which offers promising perspectives for application in this field has been introduced.

  1. Mutagenic compounds from chlorination of humic substances

    Science.gov (United States)

    Holmbom, Bjarne

    Chlorination of natural humic substances, as well as of lignin, produces a myriad of non-chlorinated and chlorinated compounds. The identification of an important class of strongly mutagenic compounds is reviewed. The most important Ames mutagen in chlorinated drinking waters of various origin is the compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone ("MX"). This compound occurs at neutral pH in the acyclic form, i.e. in the form of Z-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid. Its E-isomer (E-MX) is present in chlorinated drinking waters at a similar concentration, but is less mutagenic in Ames test. Both oxidised and reduced forms of MX and E-MX are also present in chlorinated waters. The present knowledge of the chemistry and toxicology of these mutagens is examined. The formation and possible elimination of the chlorination mutagens is discussed. The need of understanding the mechanisms of formation of these mutagens from humic substances during drinking water chlorination is emphasized.

  2. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  3. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Lucía I., E-mail: lbarbosa@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); González, Jorge A. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Parque General San Martín, CP M5502JMA Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina)

    2015-04-10

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl{sub 2} on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl{sub 2} at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl{sub 2}Si{sub 2}O{sub 8}, SiO{sub 2}, and CaSiO{sub 3}.

  4. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water

    Institute of Scientific and Technical Information of China (English)

    Veeriah Jegatheesan; Seung Hyun Kim; C. K. Joo; GAO Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong river that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand due to FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  5. Kinetics of AOX Formation in Chlorine Dioxide Bleaching of Bagasse Pulp

    Directory of Open Access Journals (Sweden)

    Shuangxi Nie

    2014-07-01

    Full Text Available In this paper, a kinetic model of the first chlorine dioxide bleaching stage (D0 in an elemental chlorine-free (ECF bleaching sequence is presented for bagasse pulps. The model is based on the rate of adsorbable organic halogen (AOX formation. The effects of the chlorine dioxide dosage, the sulfuric acid dosage, and the reaction temperature on the AOX content of wastewater are examined. The reaction of AOX formation could be divided into two periods. A large amount of AOX was formed rapidly within the first 10 min. Ten minutes later, the AOX formation rate significantly decreased. The kinetics could be expressed as: dW⁄dt=660.8•e^(-997.98/T 〖•[ClO〗_2 ]^0.877•[H2SO4 ]^0.355•W^(-1.065, where W is the AOX content, t is the bleaching time (min, T is the temperature (K, [ClO2] is the dosage of chlorine dioxide (kg/odt, and [H2SO4] is the dosage of sulfuric acid (kg/odt. The fit of the experiment results obtained for different temperatures, initial chlorine dioxide dosages, initial sulfuric acid dosages, and AOX content were very good, revealing the ability of the model to predict typical mill operating conditions.

  6. Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    Science.gov (United States)

    2016-01-01

    Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques. PMID:28090245

  7. Chlorinated Phospholipids and Fatty Acids: (Pathophysiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Jenny Schröter

    2016-01-01

    Full Text Available Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl, generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated phospholipids and plasmalogens such as lysophospholipids, (chlorinated free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.

  8. Final chlorine dioxide stage at near-neutral pH for bleaching eucalypt pulp

    Directory of Open Access Journals (Sweden)

    Robisnéa A. Ribeiro

    2014-01-01

    Full Text Available It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.

  9. Theoretical study of the thermochemistry of chlorine oxyfluorides

    Science.gov (United States)

    Sánchez, Hernán R.; Del Pla, Julián

    2016-10-01

    There is a lack of experimental thermochemical values for most chlorine oxyfluorides. Previous high level theoretical, CCSD(T), results showed uncommonly large errors in the standard heats of formation calculated through the atomization method. We propose that the differences are due to unusually large contributions to energy from higher excitations within the coupled cluster framework, and we tackle the problem by using a calculation scheme based on isodesmic reactions. Our suspicions are supported by results of static correlation diagnostics. Our final recommended values are in better agreement with the experimental data available. Other thermodynamic properties are also calculated.

  10. Antimicrobial effect of chlorine dioxide on Actinobacillus actinomycetemcomitans in diabetes mellitus rats treated with insulin

    Directory of Open Access Journals (Sweden)

    Tantin Ermawati

    2012-03-01

    Full Text Available Background: Periodontitis is a chronic inflammatory disease of periodontal tissues. Etiology of periodontal disease includes Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans which is the most predominant disease-causing bacteria found in the gingival sulcus. Periodontitis can be exacerbated by the systemic disease, such as diabetes mellitus considered as a metabolic disease characterized by hyperglycemia due to insulin deficiency. Treatment of periodontitis is then required in patients with type I diabetes to avoid radical reaction that can not only cause bleeding, but can also prevent infection, as a result, topical antimicrobial therapy and blood glucose control are required. Topical antimicrobial chlorine dioxide is a disinfectant that is effective in killing A. actinomycetemcomitans. Purpose: This study is aimed to determine the effects of topical antimicrobial chlorine dioxide gel or rinse on the number of A. actinomycetemcomitans in DM rats treated with insulin. Methods: 20 three month old male Wistar rats with weight of 170–200 grams were divided into four groups. First, periodontitis and DM were manipulated into all groups through aloksan injection with dose of 170 mg/kg. Those rats in group I were treated with insulin and chlorine dioxide gel, those in group II were treated with insulin and chlorine dioxide rinse, those in group III were treated with insulin only, and those in group IV were without treatment. In the third and seventh weeks, the number of A. actinomycetemcomitans was measured. The data was tested by using One-Way ANOVA test followed by LSD test. Results: The study showed that chlorine dioxide gel has a greater ability in reducing the number of A. actinomycetemcomitans than chlorine dioxide rinse although both are antimicrobials. Conclusion: It can be concluded that the use of chlorine dioxide gel can more effective to decrease the number of A. actinomycetemcomitans than chlorine dioxide rinse in DM rats

  11. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China.

    Science.gov (United States)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Wang, Yuan; Liu, Jiemin; Cai, Yaqi

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239ngL(-1), followed by the total amount of chlorinated parabens (average 50.1ng/L) and parabens (average 44.3ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing.

  12. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  13. Chlorination of Wastewater, Manual of Practice No. 4.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  14. Electron affinity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, L.M.; Pentecost, T.; Koppenol, W.H. (Louisiana State Univ., Baton Rouge (USA))

    1989-12-14

    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 {plus minus} 0.10 eV was found by bracketing between the electron affinities of HS* and SF{sub 4} as a lower limit and that of NO{sub 2} as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the ClO{sub 2}/ClO{sub 2}{sup {minus}} couple and a Gibbs hydration energy identical with that of SO{sub 2}{sup {sm bullet}{minus}}.

  15. Multiphoton ionization of chlorine: the 3Σ u state

    Science.gov (United States)

    Zafiropulos, V.; Fu, G. S.; Hontzopoulos, E.; Fotakis, C.; Castex, M. C.

    1991-04-01

    This work presents the three-photon resonant, one-photon (3 + 1) ionization spectrum of chlorine in the region of 73170-79360 cm -1 above the neutral ground state. In contrast to one-photon experiments, an intense double-peaked band progression attributed to 35Cl 2 and 35Cl 37Cl is observed in this energy region and assigned to a 3Σ u(υ' = 0-7) ← X 1Σ g+ (υ″ = 0) Rydberg excitation. The molecular constants of the 3Σ u Rydberg well as determined from the vibrational progression are T e = 74013 (5) cm -1, ω e = 628 (3) cm -1 and ω eχ e =4.4 (6) cm -1.

  16. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  17. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  18. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  19. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  20. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.

    Science.gov (United States)

    Fujimori, Takashi; Nishimoto, Yoshihiro; Shiota, Kenji; Takaoka, Masaki

    2014-12-01

    Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.

  1. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.; Clement, T P.

    2006-07-25

    RT3D (Reactive Transport in 3-Dimensions) is a reactive transport code that can be applied to model solute fate and transport for many different purposes. This document specifically addresses application of RT3D for modeling related to evaluation and implementation of Monitored Natural Attenuation (MNA). Selection of MNA as a remedy requires an evaluation process to demonstrate that MNA will meet the remediation goals. The U.S. EPA, through the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4?17P, provides the regulatory context for the evaluation and implementation of MNA. In a complementary fashion, the context for using fate and transport modeling as part of MNA evaluation is described in the EPA?s technical protocol for chlorinated solvent MNA, the Scenarios Evaluation Tool for Chlorinated Solvent MNA, and in this document. The intent of this document is to describe (1) the context for applying RT3D for chlorinated solvent MNA and (2) the attenuation processes represented in RT3D, (3) dechlorination reactions that may occur, and (4) the general approach for using RT3D reaction modules (including a summary of the RT3D reaction modules that are available) to model fate and transport of chlorinated solvents as part of MNA or for combinations of MNA and selected types of active remediation.

  2. Kinetics of Chlorination of Benzophenone-3 in the Presence of Bromide and Ammonia.

    Science.gov (United States)

    Abdallah, Pamela; Deborde, Marie; Dossier Berne, Florence; Karpel Vel Leitner, Nathalie

    2015-12-15

    The aim of this study was to assess the impact of chlorination on the degradation of one of the most commonly used UV filters (benzophenone-3 (BP-3)) and the effects of bromide and ammonia on the kinetics of BP-3 elimination. Bromide and ammonia are rapidly converted to bromine and chloramines during chlorination. At first, the rate constants of chlorine, bromine and monochloramine with BP-3 were determined at various pH levels. BP-3 was found to react rapidly with chlorine and bromine, with values of apparent second order rate constants equal to 1.25(±0.14) × 10(3) M(-1)·s(-1) and 4.04(±0.54) × 10(6) M(-1)·s(-1) at pH 8.5 for kChlorine/BP-3 and kBromine/BP-3, respectively, whereas low monochloramine reactivity was observed (kNH2Cl/BP-3 = 0.112 M(-1)·s(-1)). To assess the impact of the inorganic content of water on BP-3 degradation, chlorination experiments with different added concentrations of bromide and/or ammonia were conducted. Under these conditions, BP-3 degradation was found to be enhanced in the presence of bromide due to the formation of bromine, whereas it was inhibited in the presence of ammonia. However, the results obtained were pH dependent. Finally, a kinetic model considering 18 reactions was developed using Copasi to estimate BP-3 degradation during chlorination in the presence of bromide and ammonia.

  3. Oxidation of phenol and hydroquinone by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wajon, J.E.; Rosenblatt, D.H.; Burrows, E.P.

    1982-07-01

    Rates of reaction of chlorine dioxide with phenol and with hydroquinone were determined with a stopped-flow spectrophotometer in the pH range 4-8. Second-order rate constants increase with increasing pH, consistent with a mechanism in which both the free phenol and the more reactive phenoxide anion react with ClO/sub 2/. Removal of an electron from the substrate by ClO/sub 2/ to form a phenoxyl radical and ClO/sub 2//sup -/ ion is the rate-determining step. Subsequently, in the case of hydroquinone, ClO/sub 2/ removes another electron from the radical, forming p-benzoquinone and another ClO/sub 2//sup -/ ion. In the case of phenol, ClO/sub 2/ adds to the phenoxyl radical para to the oxygen, and p-benzoquinone is formed with concomitant release of HOCl. The mechanism for phenol reaction accounts for (i) the immediate formation of p-benzoquinone without apparent intermediacy of hydroquinone, (ii) the chlorination observed in solutions containing excess phenol, and (iii) the production of only 0.5 mol of ClO/sub 2//sup -//mol of ClO/sub 2/ consumed.

  4. In vivo measurement of total body chlorine using the 8. 57 MeV prompt de-excitation following thermal neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.; Plank, L.D.; Knight, G.S.; Hill, G.L. (Auckland Hospital (New Zealand). University Dept. of Surgery)

    1993-01-01

    Prompt gamma neutron activation analysis with [sup 238]Pu/Be sources is used to measure total body chlorine (TBC1) in vivo following the reaction [sup 35]Cl(n,[gamma])[sup 36]Cl. The precision of the method is 4.9% (CV). To assess accuracy an anthropomorphic phantom of minced meat was constructed. Replicate scans of this phantom yielded a mean total chlorine not significantly different from the chemical analysis value. The subject dose equivalent for the activation measurement is less than 0.3 mSv. Mean TBC1 values for 63 male and 107 female healthy volunteers were in broad agreement with predicted amounts based on multiple regression equations developed at other centres from measurements using the delayed gamma approach. Good agreement was observed in 76 volunteers between total body water (TBW) measured by tritium dilution, after correction for non-aqueous hydrogen exchange, and TBW derived from the sum of extracellular water and intracellular water as measured by TBCl and total body potassium (TBK). (Author).

  5. Behavior of chlorine during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  6. Chlorine Salts at the Phoenix Landing Site

    Science.gov (United States)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  7. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  8. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts.

    Science.gov (United States)

    Lavonen, Elin E; Gonsior, Michael; Tranvik, Lars J; Schmitt-Kopplin, Philippe; Köhler, Stephan J

    2013-03-01

    Natural organic matter (NOM) serve as precursors for disinfection byproducts (DBPs) in drinking water production making NOM removal essential in predisinfection treatment processes. We identified molecular formulas of chlorinated DBPs after chlorination and chloramination in four Swedish surface water treatment plants (WTPs) using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chlorine-containing formulas were detected before and after disinfection and were therefore classified to identify DBPs. In total, 499 DBPs were detected, of which 230 have not been reported earlier. The byproducts had, as a group, significantly lower ratio of hydrogen to carbon (H/C) and significantly higher average carbon oxidation state (COS), double bond equivalents per carbon (DBE/C) and ratio of oxygen to carbon (O/C) compared to Cl-containing components present before disinfection and CHO formulas in samples taken both before and after disinfection. Electrophilic substitution, the proposed most significant reaction pathway for chlorination of NOM, results in carbon oxidation and decreased H/C while O/C and DBE/C is left unchanged. Because the identified DBPs had significantly higher DBE/C and O/C than the CHO formulas we concluded that chlorination of NOM during disinfection is selective toward components with relatively high double bond equivalency and number of oxygen atoms per carbon. Furthermore, choice of disinfectant, dose, and predisinfection treatment at the different WTPs resulted in distinct patterns in the occurrence of DBP formulas.

  9. Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification.

    Science.gov (United States)

    Cao, Fei; Zhang, Mengtao; Yuan, Shoujun; Feng, Jingwei; Wang, Qiquan; Wang, Wei; Hu, Zhenhu

    2016-06-01

    As a high-consumption drug in the world, acetaminophen (AAP) has been widely detected in natural waters and wastewaters. Its reactivity and the transformation products formed during chlorination may greatly threaten the safety of drinking water. The reaction kinetics of AAP during chlorination was investigated in this study. The results showed that the reaction kinetics could be well described with a kinetics model of -d[AAP]/dt = k app[AAP]t (0.63)[Cl2]t (1.37). The values of apparent rate constant (k app) were dependent on reaction temperature, ammonium, and pH. With the increase in reaction temperature from 5.0 ± 1.0 to 40.0 ± 1.0 °C, the removal efficiency of AAP increased from 60 to 100 %. When ammonium was present in the solution at 2.0 mg/L, the transformation of AAP was inhibited due to the rapid formation of chloramines. The maximum of k app was 0.58 × 10(2) M(-1) · min(-1) at pH 9.0, and the minimum was 0.27 M(-1) · min(-1) at pH 11.0. A low mineralization of AAP (about 7.2 %) with chlorination was observed through TOC analysis, implying the formation of plenty of transformation products during chlorination. The main transformation products, hydroquinone and two kinds of chlorinated compounds, monochlorinated acetaminophen and dichlorinated acetaminophen, were detected in gas chromatography-mass spectrometry analysis.

  10. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2012-11-01

    Full Text Available Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite

  11. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.

    Science.gov (United States)

    Al-Jasser, A O

    2007-01-01

    Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small.

  12. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  13. [Water disinfection: comparative activities of ozone and chlorine on a wide spectrum of bacteria].

    Science.gov (United States)

    Korol, S; Fortunato, M S; Paz, M; Sanahuja, M C; Lazaro, E; Santini, P; D'Aquino, M

    1995-01-01

    Ozone and chlorine are agents that disinfect by destroying, neutralizing or inhibiting the growth of pathogenic microorganisms. The treatment of drinking water with ozone has shown to be more efficient against spores of Bacillus subtilis. It was observed that the ozone already in dose of 0.35 mg/l produced the reduction of at least 5 log in populations of approximately 1 x 10(6) cells/ml of Escherichia coli, Vibrio cholerae, Salmonella typhi, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Listeria monocytogenes and Staphylococcus aureus. With a dose of 0.50 mg/l of chlorine, the reduction was much smaller for the tested microorganisms (except Vibrio cholerae), while the effect of 2 mg/l of chlorine was similar to the ozone treatment. For spores of Bacillus subtilis, the reduction observed with ozone concentrations of 0.35 and 0.70 mg/l was of almost 3 log, while no considerable effect was obtained with chlorine in the tested conditions. Our results have shown that both disinfectans were consumed during the treatment period, probably because of the own water demand and the added bacterial mass.

  14. Chlorine dioxide-facilitated oxidation of the azo dye amaranth.

    Science.gov (United States)

    Nadupalli, S; Koorbanally, N; Jonnalagadda, S B

    2011-10-27

    The oxidation reaction of amaranth (trisodium 2-hydroxy-1-(4-sulfonato-1-naphthylazo)naphthalene-3,6-disulfonate or AM(-)) by chlorine dioxide (ClO(2)) in aqueous conditions was investigated in detail. The major reaction products immediately after decolorization of AM(-) were 1,2-naphthoquinone disulfonate sodium salt and 1,4-napthalenedione. The reaction had first-order dependence on both AM(-) and ClO(2). The rate-limiting step involved the reaction between AM(-) and OH(-) ions. The role of hydroxide ion as a catalyst was established. The second-order rate constant increased with pH, from (19.8 ± 0.9) M(-1) s(-1) at pH 7.0, (97.1 ± 2.3) M(-1) s(-1) at pH 8.0 to (132.5 ± 2.8) M(-1) s(-1) at pH 9.0. In the pH range of 6.0-7.5, the catalytic constant for OH(-) ion was 4.0 × 10(9) M(-2) s(-1). The energy and entropy of activation values for the reaction were 50.0 kJ mol(-1) and -658.7 J K(-1) mol(-1), respectively. A probable reaction mechanism was elucidated and was validated by simulations.

  15. Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10

    Science.gov (United States)

    Wegner, Tobias; Pitts, Michael C.; Poole, Lamont R.; Tritscher, Ines; Grooß, Jens-Uwe; Nakajima, Hideaki

    2016-04-01

    In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of polar stratospheric clouds (PSCs). These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl (hydrochloric acid) mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 (chlorine nitrate) was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSCs indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSC particles and the observed chlorine activation can only be explained by an increase in surface area density due to PSC formation. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area density.

  16. Detection and characterization of chlorinated-dioxin ether cleavage function in the bacterium geobacillus midousuji SH2B-J2

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y.; Hoshina, S. [Jikei Univ. School of Medicine, Tokyo (Japan). Dept. of Laboratory Medicine; Nakamura, M.; Hishiyama, S. [Forestry and Forest Products Research Institute, Ibaraki (Japan); Katayama, Y. [Tokyo Univ. of Agriculture and Technology, Koganei (Japan)

    2004-09-15

    As of now, there are no dioxin degrading microorganism reported that can be applied to bioremediation. The reasons for this are that degrading function acquired from comprehensive screening of bacteria that can be grown with a single carbon source using non-chlorinated dioxin does not function against highly chlorinated dioxins, and that although white rot fungus capable of degrading lignin, a plant polyphenol substance, have been reported to reduce chlorinated dioxins, degrading enzyme remain unclear. Geobacillus midousuji SH2B-J2 (J2 strain) that have been separated by Hoshina et al. have shown to reduce highly chlorinated dioxins in incineration fly ash, as well as octa-chlorinated dioxins (OCDD). However, details of its degrading mechanisms remain unclear. Since the J2 strain is capable of reducing even OCDD, it was hypothesized that the initial degradation reaction is intramolecular ether bond cleavage, so J2 strain dioxin degradation mechanism was analyzed for verification.

  17. Maxillofacial prostheses of chlorinated polyethylene.

    Science.gov (United States)

    May, P D

    1978-05-01

    There is clearly a need for maxillofacial prosthetic materials with improved properties. The chlorinated polyethylenes are thermoplastic elastomers which have particularly promising properties, and were used by us to prepare improved maxillofacial prostheses. Suitable CPE resins were compounded with other polymers and with pigments on a heated rubber mill to form thin sheets in a variety of shades. These were heated at 190 degrees C for 10 min and placed between heated linotype mold halves. The prosthesis was formed in a hand press. Sometimes heating and pressing were repeated. After cooling in water, the prosthesis was removed and hand-shaded with oil-soluble dyes. Physical properties were evaluated using standard techniques; skin irritation studies were conducted by 14-day insult patch tests on rabbits. Clinical evaluations were conducted on human volunteers. Parallel evaluations were conducted on commerically available materials for comparison. The CPE was superior to all of the three commerical materials in most properties, and comparable to the better of the three in the remaining properties. On balance, CPE was significantly superior. Early results indicate that the materials and techniques required are easily handled in the dental lab and that the final prosthesis has excellent aesthetic and patient acceptability.

  18. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Bormate (BrO3-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions,particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and,simultaneously, 6.6%-32% of Br- was oxidized to BrO3-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.

  19. Chlorine dioxide treatment for zebra mussel control

    Energy Technology Data Exchange (ETDEWEB)

    Rybarik, D. [Dairyland Power Cooperative, La Crosse, WI (United States); Byron, J. [Nalco Chemical Company, Naperville, IL (United States); Germer, M. [Rio Linda Chemical Company, Sacramento, CA (United States)

    1995-06-01

    Chlorine is recognized and commonly used biocide for power plant cooling water and service water treatment programs, including the control of zebra mussels. Chlorine dioxide has recently become a popular method of zebra mussel control because of its economy, safety, environmental acceptability, and effectiveness when compared to other mussel control methods. This control technique was recently demonstrated at Dairyland Power Cooperative`s Alma Generating Station on the east bank of the upper Mississippi River in Alma, Wisconsin. The project was assisted with EPRI Tailored Collaboration Program funds. The Dairyland Power Alam Generating Station consists of five generating units that utilize raw, untreated Mississippi River water for condenser, circulating, and service water supplies. The first units were built in 1947, with the final and largest unit being completed in 1960. Total station generating capacity is 200 MW. Because of recent increases in the zebra mussel density at the station intake, Dairyland Power selected the team of Nalco and Rio Linda to perform a chlorine dioxide treatment of the station`s new water systems to eradicate and control the mussels before their presence created operational difficulties. This paper will present the results of the treatment including treatment theory, design and construction of the treatment system, the method of chlorine dioxide generation, treatment concentration, analytical methods o monitoring chlorine dioxide generation, residuals and trihalomethane (THM) concentrations, protocol for monitoring treatment mortality, and the effects of chlorine dioxide and detoxification on other water chemistry parameters and equipment materials. The goal of this paper is to inform and assist users with establishing consistent and uniform practices for safely utilizing and monitoring chlorine dioxide in the eradication and control of zebra mussels.

  20. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon done on different tantalum parts to determine the amount of dissolved hydrogen.

  1. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  2. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine

    Institute of Scientific and Technical Information of China (English)

    Meiquan Cai; Liqiu Zhang; Fei Qi; Li Feng

    2013-01-01

    Owing to its low cost,free chlorine is one of the most common disinfectants for wastewater and drinking water treatment.However,the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades.Antipyrine (ANT),an anti-inflammatory analgesic,has been frequently detected in the aquatic environment.In this work.the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments.The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L,free chlorine dosage from 0.30 to 1.31 mg/L,and pH from 1.5 to 9.0.The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry.The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L,ANT 0.5 mg/L,pH 7.0).Higher oxidant dosage,lower ANT initial concentration and low pH favor the ANT removal.The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro1,5-dimethyl-2-phenyl-3H-pyrazol-3-one),which can be further chlorinated by free chlorine.In addition,the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  3. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    Science.gov (United States)

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  4. Pregnancy After Age 35

    Science.gov (United States)

    ... Pregnancy complications > Pregnancy after age 35 Pregnancy after age 35 E-mail to a friend Please fill ... to your dashboard . KEY POINTS Being pregnant after age 35 makes certain complications more likely, including premature ...

  5. Hybrid Quantum Mechanical/Molecular Mechanics Study of the SN2 Reaction of CH3Cl+OH- in Water

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyun; Wang, Dunyou; Valiev, Marat

    2011-11-03

    The SN2 mechanism for the reaction of CH3Cl + OH- in aqueous solution was investigated using combined quantum mechanical and molecular mechanics methodology. We analyzed structures of reactant, transition and product states along the reaction pathway. The free energy profile was calculated using the multi-layered representation with the DFT and CCSD(T) level of theory for the quantum-mechanical description of the reactive region. Our results show that the aqueous environment has a significant impact on the reaction process. We find that solvation energy contribution raises the reaction barrier by ~18.9 kcal/mol and the reaction free energy by ~24.5 kcal/mol. The presence of the solvent also induces perturbations in the electronic structure of the solute leading to an increase of 3.5 kcal/mol for the reaction barrier and a decrease of 5.6 kcal/mol for the reaction free energy respectively. Combining the results of two previous calculation results on CHCl3 + OH- and CH2Cl2 + OH- reactions in water, we demonstrate that increase in the chlorination of the methyl group (from CH3Cl to CHCl3) is accompanied by the decrease in the free energy reaction barrier, with the CH3Cl + OH- having the largest barrier among the three reactions.

  6. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  7. Phase transformations of a talc ore under heated chlorine atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, P., E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina); Ruiz, M. del C. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis (Argentina); González, J. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Chacabuco y Pedernera, 5700 San Luis (Argentina); Instituto de Ciencias Básicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2013-02-20

    Highlights: ► We studied the effect of Cl{sub 2} on minerals present in a talc of ultramafic origin. ► Isothermal and non-isothermal assays were performed in N{sub 2} and Cl{sub 2}–N{sub 2} atmospheres. ► The reagents and the products were analyzed by DTA, XRD, SEM, and EPMA. ► The chlorination produced protoenstatite at 800 °C. ► Calcination of a talc ore in Cl{sub 2} produces more enstatite than thermal treatment in N{sub 2}. - Abstract: The effect of Cl{sub 2} on the phase transformations of the minerals present in a talc (Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}) unpurified with clinochlore (Mg{sub 5}Al{sub 2}Si{sub 3}O{sub 10}(OH){sub 8}), magnesite (MgCO{sub 3}), dolomite (MgCa(CO{sub 3}){sub 2}), hematite (Fe{sub 2}O{sub 3}) and pyrite (FeS{sub 2}) was studied with the purpose of deferricating the mineral and obtaining protoenstatite (MgSiO{sub 3}), which is the basic component of steatite ceramics. Isothermal and non-isothermal assays in N{sub 2} and Cl{sub 2}–N{sub 2} atmospheres were performed using a thermogravimetric device at temperatures between 600 and 980 °C. The reagents and the products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Results obtained showed that the following phenomena were produced in Cl{sub 2}: (a) The transformation of vitreous silica (SiO{sub 2}), from the chlorination reaction of talc, into enstatite (MgSiO{sub 3}) started at about 700 °C, being dolomite the mineral that favored this reaction. At 800 °C, more enstatite was formed as a result of the reaction between vitreous silica not transformed, MgCl{sub 2} and O{sub 2} derived from the chlorination of dolomite and magnesite; then, polymorphic transformation of enstatite into protoenstatite was produced. (b) At about 950 °C, CaCl{sub 2} produced as a result of dolomite chlorination led to the destruction of the protoenstatite

  8. Intrinsic Kinetics of Chlorination of WO3 Particles With Cl2 Gas Between 973 K and 1223 K (700 °C and 950 °C)

    Science.gov (United States)

    de Micco, G.; Bohé, A. E.; Sohn, H. Y.

    2011-04-01

    Chlorination is one of the methods applied in extractive metallurgy for the treatment of minerals to obtain valuable metals, such as titanium and zirconium. The possibility of applying chlorination metallurgy to other metals such as tungsten was the major aim of this study. The kinetics of the chlorination of tungsten oxide (WO3) particles has been investigated by thermogravimetry between 973 K and 1223 K (700 °C and 950 °C) and for partial pressures of chlorine ranging from 15 to 70 kPa. The starting temperature for the reaction of WO3 with chlorine is determined to be about 920 K (647 °C). The influence of chlorine diffusion through the bulk gas phase and through the particle interstices in the overall rate was analyzed. In the absence of these two mass-transfer steps, a reaction order of 0.5 with respect to chlorine partial pressure, and an activation energy of 183 kJ/mol were determined. For tungsten oxide particles of less than 50- μm size, a complete rate expression has been obtained.

  9. Metabolites of chlorinated syringaldehydes in fish bile as biomarkers of exposure to bleached eucalypt pulp effluents.

    Science.gov (United States)

    Brumley, C M; Haritos, V S; Ahokas, J T; Holdway, D A

    1996-04-01

    Metabolites of chlorinated phenolic compounds in fish bile have been found to be sensitive biomarkers of bleached pulp mill effluent exposure. Chlorinated syringaldehydes are largely unstudied chlorophenolics found in bleached hardwood effluent. Sand flathead (Platycephalus bassensis), Australian marine fish, were exposed to 100% chlorine dioxide-bleached eucalypt pulp effluent at concentrations of 0.5, 2, and 8% (v/v) for 4 days. Metabolites of 2-chlorosyringaldehyde (2-CSA), the predominant chlorophenolic in this effluent, were measured in the bile. The major metabolite was the conjugate of 2-chloro-4-hydroxy-3,5-dimethoxy-benzylalcohol (2-CB-OH), the reduced product of 2-CSA. 2-CB-OH was found in all fish exposed to diluted effluent and was concentrated in the bile over 1000 times above 2-CSA levels in the effluent. A separate experiment examined the metabolic fate of 2,6-dichlorosyringaldehyde (2,6-DCSA), which is one of the major chlorophenolics in chlorine-bleached eucalypt pulp effluent. Sand flathead were exposed to 2,6-DCSA by intraperitoneal injection at 15 mg/kg or through the water to 0.5, 2, or 8 micrograms/liter for 4 days. Analysis of the bile revealed the major metabolite of 2,6-DCSA to be the conjugate of 2,6-dichloro-4-hydroxy-3,5-dimethoxybenzylalcohol, which was found in all exposed fish and was concentrated in the bile over 20,000 times above 2,6-DCSA exposure levels. Results reveal that the analysis of metabolites of chlorinated syringaldehydes in fish bile can provide a biomarker of bleached hardwood effluent exposure that is sensitive to low levels of exposure, specific to certain bleaching sequences, and correlates well with exposure concentrations.

  10. A study of transition-metal organometallic complexes combining 35Cl solid-state NMR spectroscopy and 35Cl NQR spectroscopy and first-principles DFT calculations.

    Science.gov (United States)

    Johnston, Karen E; O'Keefe, Christopher A; Gauvin, Régis M; Trébosc, Julien; Delevoye, Laurent; Amoureux, Jean-Paul; Popoff, Nicolas; Taoufik, Mostafa; Oudatchin, Konstantin; Schurko, Robert W

    2013-09-09

    A series of transition-metal organometallic complexes with commonly occurring metal-chlorine bonding motifs were characterized using (35)Cl solid-state NMR (SSNMR) spectroscopy, (35)Cl nuclear quadrupole resonance (NQR) spectroscopy, and first-principles density functional theory (DFT) calculations of NMR interaction tensors. Static (35)Cl ultra-wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST-QCPMG pulse sequence. The (35)Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. (35)Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of (35)Cl SSNMR spectra. (35)Cl EFG tensors obtained from first-principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a (35)Cl SSNMR spectrum of a transition-metal species (TiCl4) diluted and supported on non-porous silica is presented. The combination of (35)Cl SSNMR and (35)Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine-containing transition-metal complexes, in pure, impure bulk and supported forms.

  11. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Wang, Xin; Wang, Juan; Zhang, Yahe; Shi, Quan; Zhang, Haifeng; Zhang, Yu; Yang, Min

    2016-06-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AImod), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water.

  12. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, W.E. Jr. [Alabama Power Co./GSC No. 8, Birmingham, AL (United States); Laylor, M.M. [Univ. of Alabama, Birmingham, AL (United States)

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  13. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.

    Science.gov (United States)

    Acero, Juan L; Piriou, Philippe; von Gunten, Urs

    2005-08-01

    Halophenols are often reported as off-flavor causing compounds responsible for medicinal taste and odor episodes in drinking water. To better understand and minimize the formation of 2-bromophenol and 2,6-dibromophenol which have low odor threshold concentrations (OTCs, 30 and 0.5 ng/L, respectively) a kinetic data base for the chlorination and bromination of phenols was established by combination of kinetic measurements and data from literature. Second-order rate constants for the reactions of chloro- and bromophenols with chlorine and bromine were determined over a wide pH range. The second-order rate constants for bromination of phenols are about three orders of magnitude higher than for chlorination. A quantitative structure activity relationship (QSAR) showed a good comparability of second-order rate constants from this study with those published previously for different phenol derivatives. The quantification of product distribution of the formed halophenols demonstrated that chlorine or bromine attack in ortho position is favored with respect to the para position. A kinetic model was formulated allowing us to investigate the influence of chlorine dose and some water quality parameters such as the concentration of phenol, ammonia, bromide and the pH on the product distribution of halophenols. The kinetic model can be applied to optimize drinking water chlorination with respect to phenol-born taste and odor problems. In general, high chlorine doses lead to low concentrations of intermediate odorous chlorophenols and bromophenols. An increase in the ammonia or phenol concentration leads to a higher consumption of HOCl and therefore greater final concentration of intermediate bromophenols. The presence of higher bromide than phenol concentration also facilitates the rapid bromination pathway which leads to further bromination of 2,6-dibromophenol to higher brominated phenols. Laboratory-scale experiments on taste and odor formation due to the chlorination of

  14. Microbiological aspects of the removal of chlorinated hydrocarbons from air

    NARCIS (Netherlands)

    Dolfing, Jan; Wijngaard, Arjan J. van den; Janssen, Dick B.

    1993-01-01

    Chlorinated hydrocarbons are widely used synthetic chemicals that are frequently present in industrial emissions. Bacterial degradation has been demonstrated for several components of this class of compounds. Structural features that affect the degradability include the number of chlorine atoms and

  15. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara;

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  16. Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Erkelens, Corrie; Galan, L.

    1985-01-01

    The chlorination of terrestrial humic acid was studied at pH 7. 2 with varying chlorine to carbon ratios. The principal products are chloroform, di- and trichloroacetic acid, and chlorinated C-4 diacids. At a high chlorine dose many new chlorination products were detected, among them chlorinated aro

  17. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    Science.gov (United States)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  18. Chlorine: Undergraduate Research on an Element of Controversy

    Science.gov (United States)

    Chang, Hasok

    2009-04-01

    If chemical elements were people, chlorine would be a celebrity. Although intrinsically no more or less important than any other element, chlorine has had a knack of making headlines. The genre of "object biography" has been quite successful in popular science recently. We took this opportunity to write a "biographical" study of chlorine. Chlorine's wide range of interesting controversies is well suited for attracting and maintaining the enthusiasm of the diverse range of students we teach in our department.

  19. Determination of chlorine in silicate rocks

    Science.gov (United States)

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  20. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2015-12-01

    Full Text Available Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing.

  1. A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Shirin R. King

    2015-08-01

    Full Text Available Aqueous solutions of tetrachloroauric acid of high purity and stability were synthesised using the known reaction of gold metal with chlorine gas. The straightforward procedure developed here allows the resulting solution to be used directly for gold nanoparticle synthesis. The procedure involves bubbling chlorine gas through pure water containing a pellet of gold. The reaction is quantitative and progressed at a satisfactory rate at 50 °C. The gold(III chloride solutions produced by this method show no evidence of returning to metallic gold over at least twelve months. This procedure also provides a straightforward method to determine the concentration of the resulting solution using the initial mass of gold and volume of water.

  2. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    Institute of Scientific and Technical Information of China (English)

    Robert M. Clark

    2011-01-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall.The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination.Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material.Free chlorine loss in corroded metal and PVC pipes,subject to changes in velocity,was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati,Ohio (USA).These studies demonstrated that in older unlined metal pipes,the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  3. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-González, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-10-01

    A single scoop of the Rocknest aeolian deposit was sieved (trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of ~0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.

  4. Non-heme manganese catalysts for on-demand production of chlorine dioxide in water and under mild conditions.

    Science.gov (United States)

    Hicks, Scott D; Kim, Doyeon; Xiong, Silei; Medvedev, Grigori A; Caruthers, James; Hong, Seungwoo; Nam, Wonwoo; Abu-Omar, Mahdi M

    2014-03-05

    Two non-heme manganese complexes are used in the catalytic formation of chlorine dioxide from chlorite under ambient temperature at pH 5.00. The catalysts afford up to 1000 turnovers per hour and remain highly active in subsequent additions of chlorite. Kinetic and spectroscopic studies revealed a Mn(III)(OH) species as the dominant form under catalytic conditions. A Mn(III)(μ-O)Mn(IV) dinuclear species was observed by EPR spectroscopy, supporting the involvement of a putative Mn(IV)(O) species. First-order kinetic dependence on the manganese catalyst precludes the dinuclear species as the active form of the catalyst. Quantitative kinetic modeling enabled the deduction of a mechanism that accounts for all experimental observations. The chlorine dioxide producing cycle involves formation of a putative Mn(IV)(O), which undergoes PCET (proton coupled electron-transfer) reaction with chlorite to afford chlorine dioxide. The ClO2 product can be efficiently removed from the aqueous reaction mixture via purging with an inert gas, allowing for the preparation of pure chlorine dioxide for on-site use and further production of chlorine dioxide.

  5. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination.

    Science.gov (United States)

    Chiang, Pen-Chi; Chang, E-E; Chuang, Chao-Chin; Liang, Chung-Huei; Huang, Chin-Pao

    2010-06-01

    The effects of pre-ozonation on the formation of haloacetonitriles (HANs), trichloronitromethane (TCNM), and haloketones (HKs) during chlorination were evaluated. Ozone dose used in this study was 8.0, 10.0 and 25.0 mg O(3)/min. Results showed high UV(254) reduction (>80%) and relatively low dissolved organic carbon removal (40-70%) after ozonation, indicating that ozone might change significantly the chemical properties of natural organic matter presented in the raw water. Undesired ozonation by-products such as aldehydes and ketones were also formed during ozonation. At high ozone dose of 25.0 mg O(3)/min, the formation of dichloroacetonitrile and bromochloroacetonitrile were reduced significantly. Chlorination of the ozonated water formed high concentration of TCNM and HKs were 8-10 and 31-48 microg/L, respectively. It was also found that continuous hydrolysis at longer reaction time rapidly decreased the formation of HKs. Ozonation prior to chlorination practice exhibited a negative effect on TCNM and HKs reduction. A model based on the dissolved organic carbon and chlorine decay was developed not only for determining the reaction rate constants, e.g. formation and hydrolysis of HANs, HKs and TCNM, but also for interpreting the mechanisms of formation and hydrolysis for HANs, HKs and TCNM during the chlorination of natural organic matter.

  6. Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons

    Science.gov (United States)

    Manion, Jeffrey A.

    2002-03-01

    Experimental data on the enthalpies of formation of chloromethanes, chloroethynes, chloroethenes, and chloroethanes are critically reviewed. Enthalpy of formation values for the C1 and C2 chlorinated hydrocarbons are highly cross-linked by various measured reaction equilibria and currently available sets of values are not internally self-consistent. It is shown that the early static bomb combustion calorimetry studies on highly chlorinated compounds generally give enthalpies of formation that are systematically more positive than later values derivable from rotating bomb combustion or equilibria studies. Those previously recommended values which were based mainly on the early static bomb work therefore need substantial revision. On the basis of more recent literature data obtained with rotating bomb combustion calorimetry, together with analyses of literature data on other reaction enthalpies and equilibria involving chlorinated hydrocarbons, an updated self-consistent set of ΔfHo[298.15 K] values for closed shell chlorinated C1 and C2 hydrocarbons (25 compounds) is recommended. Data on the enthalpies of vaporization are also reviewed and values of ΔvapH[298.15 K] and ΔvapHo[298.15 K] are recommended. The presently suggested enthalpies of formation for highly chlorinated alkenes and alkanes (particularly C2Cl4, C2HCl3, C2HCl5, and C2Cl6) are significantly (8-15 kJ mol-1) more negative than given by most previous evaluators. Values for the chloroethynes are 10-25 kJ mol-1 more positive than given in previous reviews and more limited changes are suggested for other compounds in the series.

  7. Solvent extraction of chlorinated compounds from soils and hydrodechlorination of the extract phase.

    Science.gov (United States)

    Murena, Fabio; Gioia, Francesco

    2009-03-15

    The remediation of soils contaminated with chlorinated compounds was investigated. The process consists of solvent extraction followed by catalytic hydroprocessing (hydrodechlorination) of the extract phase. A mixture of ethylacetate-acetone-water (E-A-W) was adopted as solvent in the extraction process. Tests of extraction of chlorobenzene from a model contaminated soil were carried out and the Langmuir adsorption equation was characterized. The solvent, contaminated with different chlorinated compounds was then hydrotreated with a Pd/C catalyst. The chlorinated compounds tested are: chlorobenzene, hexachlorobenzene and hexachloroethane at various initial concentrations. The reaction runs were carried out at room temperature and at a hydrogen pressure of 1bar. Hydrotreating of these compounds takes place according to a Langmuir-Hinshelwood mechanism whose kinetic parameters were determined. The experiments show that high destruction efficiencies may be reached in reasonably short times, particularly for hexachloroethane. Longer times are necessary for the aromatic compounds (chlorobenzene and hexachlorobenzene) for which the CCl bond is much stronger than that in the aliphatic compound. Time for a 95% destruction efficiency for all experimental runs was determined. A noteworthy finding is that ethylacetate and acetone do not undergo any reaction during hydrotreating. Thus the treated extract solution may be recycled inasmuch as it conserves its full extracting capacity towards chlorinated compounds. A limitation in recycling is the inhibiting effect of benzene on the HDCl rate: benzene produced by HDCl of chlorinated compounds, accumulates in the solvent mixture in the event of recycling. Simulation of the process with the recycling of the solvent was carried out, accounting for the inhibiting effect of benzene.

  8. Clinical evaluation of chlorine dioxide for disinfection of dental instruments.

    Science.gov (United States)

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2013-01-01

    This study aimed to clinically evaluate the disinfection efficacy of chlorine dioxide (ClO2) for used dental instruments. An imprint culture technique demonstrated that ultrasonic cleaning of intraorally applied dental mirrors in 0.02% ClO2 for 10 minutes resulted in compete removal of microorganisms for 10 subjects. Hepatitis C virus (HCV) RNA was detected by real-time polymerase chain reaction on periodontal curettes after subgingival scaling in four HCV-infected patients and was completely removed by the same treatment procedure. Therefore, the combination of ultrasonic cleaning with ClO2 may provide an alternative to toxic disinfectants, such as glutaraldehyde and sodium hypochlorite, for disinfecting dental instruments.

  9. Biomimetic Iron Complexes involved in Oxygenation and Chlorination : A Theoretical Study

    OpenAIRE

    Noack, Holger

    2010-01-01

    Biomimetic chemistry is directed towards the simulation of enzymatic reactivity with synthetic analogues. In this thesis a quantum chemical method has been employed to study the mechanism of highly reactive iron-oxo complexes involved in oxygenation and chlorination of organic substrates. The aim of this research is to gain greater understanding for the reactivity paradigm of the iron-oxo group. One reaction deals with the conversion of cyclohexane into adipic acid, a key chemical in industri...

  10. Molecular dynamics study of the Cu-water interface in the presence of chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Mazzolo, A.; Halley, J.W. [Univ. of Minnesota, Minneapolis, MN (United States). School of Physics and Astronomy; Price, D.L. [Univ. of Memphis, TN (United States). Dept. of Physics

    1998-05-01

    As part of a program to model and explain the sensitivity of electron transfer reactions at metal interfaces to trace amounts of chloride in aqueous solutions, preliminary results on a direct dynamics model for the adsorption of chloride ion on a copper 100 surface in water are reported. The model predicts the charge state of the chlorine in water and vacuum correctly, but gives a solvation energy which is too large. Possible reasons for this are discussed.

  11. Study of nuclear reactions producing 36Cl by micro-AMS

    Science.gov (United States)

    Luís, H.; Jesus, A. P.; Fonseca, M.; Cruz, J.; Galaviz, D.; Franco, N.; Alves, E.

    2016-01-01

    36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances at the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced in the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles (mostly, p, a, 3He -X-wind irradiation model). The objective of the present work is to measure the cross section of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples (previously bombarded with high energy protons and deuterons) with AMS, taking advantage of the very low detection limits of this technique for chlorine measurements. For that, the micro-AMS system of the LF1/ITN laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam). Here are presented the first results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material.

  12. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  13. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  14. Photoabsorption and photoionization of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Flesch, R.; Ruehl, E.; Hottmann, K.; Baumgaertel, H. (Freie Universitaet Berlin (Germany))

    1993-01-28

    Photoprocesses of chlorine dioxide in the near-UV have become highly important for stratospheric photoprocesses at high latitudes, especially in Antarctica. Chlorine dioxide has been identified among other absorbers because of its specific absorption cross section in the near-UV. Possible contributions of chlorine dioxide photochemistry to polar ozone depletion have been discussed recently. The high-resolution He I photoelectron spectrum and the absolute (vacuum-UV) absorption cross section (6-25 eV) as well as the ionic fragmentation of chlorine dioxide (OCIO) are reported. The photoelectron spectrum is interpreted in terms of exchange splitting effects of the various singlet and triplet cation states as well as by comparison to chemically related molecules. The vacuum-UV absorption spectrum shows different Rydberg series converging to the cation states. These Rydberg series and their vibrational progressions are assigned by term value arguments, dipole selection rules, and comparison with the photoelectron spectrum. Photoionization mass spectrometry is used for measurements of the ionization and fragmentation threshold of OCIO. The major fragment is ClO[sup +] which occurs above 13.4 eV. Thermomechanical data such as heats of formation and bond dissociation energies are derived. No evidence for isomerization of OClO[sup +] is found, as observed for the electronically excited neutral molecule. 54 refs., 6 figs., 7 tabs.

  15. Inhibitor treatment program for chlorine dioxide corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, J.G.; Holder, E.P.

    1991-11-12

    This patent describes a method of inhibiting corrosion by chlorine dioxide in oil field waterflood systems by adding a sufficient amount of a corrosion inhibiting composition. It comprises a phosphonate, a copolymer consisting of repeating units of acrylic acid/allyl hydroxy propyl sulfonate ether, and a permangante.

  16. Effects of ozone and chlorine disinfection on VBNC Helicobacter pylori by molecular techniques and FESEM images.

    Science.gov (United States)

    Orta de Velásquez, María Teresa; Yáñez Noguez, Isaura; Casasola Rodríguez, Beatriz; Román Román, Priscila Ivette

    2017-03-01

    Helicobacter pylori is a pathogen bacteria associated with chronic gastritis, peptic ulceration, and gastric carcinoma. H. pylori has a spiral morphology, which under certain conditions of stress becomes a coccoid form. This type of morphology has been linked to a viable but non-culturable (VBNC) state, which is thought to allow its persistence in the environment. Membrane damage in VBNC H. pylori in water as a mechanism for inactivation using ozone (O3) and chlorine disinfection has not been reported in the literature. In this paper, disinfection assays with ozone and chlorine were conducted to evaluate their effects on VBNC H. pylori cells. The use of fluorescent dyes such as propidium monoazide (PMA) coupled with quantitative real-time polymerase chain reactions produced results necessary to assess the viability of the microorganism and demonstrate the effect of each disinfectant on the bacterial count. Applying ozone showed a 5-log bacterial reduction using a disinfectant concentration and exposure time (CT) of 4 mg min/L. Chlorine disinfection for the same 5-log reduction required a higher CT value. Field emission scanning electron microscope images of ozone-treated VBNC H. pylori also showed severe cell damage. The use of PMA revealed that chlorine produced physical damage in the membrane in addition to the known inhibiting effect on cell enzymatic processes. These findings are important for the detection and control of VBNC H. pylori cells in drinking water systems.

  17. Simultaneous Recovery of Hydrogen and Chlorine from Industrial Waste Dilute Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    N. Paidimarri

    2016-01-01

    Full Text Available Recovery of chlorine from byproduct HCl has inevitable commercial importance in industries lately because of insufficient purity or too low concentration to recycle it. Instead it is being neutralized in industries before disposing to meet stringent environmental conditions. Although recovery through catalytic oxidation processes is studied since the 19th century, their high operating conditions combined with sluggish reaction kinetics and low single pass conversions make electrolysis a better alternative. The present motive of this work is to develop a novel electrolysis process which in contrast to traditional processes effectively recovers both hydrogen and chlorine from dilute HCl. For this, an electrolytic cell with an Anionic Exchange Membrane has been designed which only allows the passage of chlorine anions from catholyte to anolyte separating the gasses in a single step. The catholyte can be as low as 3.59 wt% because of fixed anolyte concentration of 1.99 wt% which minimizes oxygen formation. Preliminary results show that the simultaneous recovery of hydrogen and chlorine is possible with high conversion up to 98%. The maximum current density value for 4.96 cm2 membrane surface area (70% active surface area is 2.54 kAm−2, which is comparable with reported commercial processes. This study is expected to be useful for process intensification of the same in a continuous process environment.

  18. Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide.

    Science.gov (United States)

    Kim, J; Marshall, M R; Du, W X; Otwell, W S; Wei, C I

    1999-09-01

    The use of chlorine dioxide (ClO(2)) as a potential substitute for aqueous chlorine to improve the quality of seafood products has not been approved by regulatory agencies due to health concerns related to the production of chlorite (ClO(2)(-)) and chlorate (ClO(3)(-)) as well as possible mutagenic/carcinogenic reaction products. Cubes of Atlantic salmon (Salmo salar) and red grouper (Epinephelus morio) were treated with 20 or 200 ppm aqueous chlorine or ClO(2) solutions for 5 min, and extracts of the treated fish cubes and test solutions were checked for mutagenicity using the Ames Salmonella/microsome assay. No mutagenic activity was detected in the treated fish samples or test solutions with ClO(2). Only the sample treated with 200 ppm chlorine showed weak mutagenic activity toward S. typhimurium TA 100. No chlorite residue was detected in sea scallops, mahi-mahi, or shrimp treated with ClO(2) at 3.9-34.9 ppm. However, low levels of chlorate residues were detected in some of the treated samples. In most cases, the increase in chlorate in treated seafood was time- and dose-related.

  19. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    Science.gov (United States)

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  20. Halogenase-Inspired Oxidative Chlorination Using Flavin Photocatalysis.

    Science.gov (United States)

    Hering, Thea; Mühldorf, Bernd; Wolf, Robert; König, Burkhard

    2016-04-18

    Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal-catalyzed cross-couplings. Nature chlorinates with chloride anions, FAD-dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket.

  1. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  2. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    Science.gov (United States)

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  3. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France)]. E-mail: pipon@ipnl.in2p3.fr; Toulhoat, N. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Commissariat l' Energie Atomique (CEA), DEN/Saclay, 91191 Gif s/Yvette Cedex (France); Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Raimbault, L. [Centre d' Informatique Geologique (CIG), Ecole des Mines, 35 rue Saint Honore, F-77305 Fontainebleau cedex (France); Scheidegger, A.M. [Laboratory for Waste Management, Nuclear Energy and Safety Department (NES), Paul Scherrer Institut CH-5232 Villigen PSI (Switzerland); Farges, F. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Bd Descartes-Champs S/Marne, 77454 Marne la Vallee cedex 2 (France); Carlot, G. [Commissariat l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, 13108 Saint-Paul lez Durance (France)

    2007-05-31

    In a nuclear reactor, {sup 35}Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, {sup 36}Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO{sub 2}. For this purpose, sintered UO{sub 2} pellets were implanted with {sup 37}Cl at an ion fluence of 10{sup 13}cm{sup -2} and successively annealed in the 1175-1475K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and {mu}-XAS (at the Cl-K edge) analyses show that: (1) the thermal migration of implanted chlorine becomes significant at 1275K; this temperature and the calculated activation energy of 4.3eV points out the great ability of chlorine to migrate in UO{sub 2} at relatively low temperatures; (2) the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing; (3) the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I; (4) the comparison between an U{sub 2}O{sub 2}Cl{sub 5} reference compound and the pristine chlorine environment shows a contribution of the U{sub 2}O{sub 2}Cl{sub 5} to the pristine chlorine.

  4. Influence of water chlorination on the counting of bacteria with DAPI (4',6-diamidino-2-phenylindole).

    Science.gov (United States)

    Saby, S; Sibille, I; Mathieu, L; Paquin, J L; Block, J C

    1997-01-01

    Counting bacteria in drinking water samples by the epifluorescence technique after 4',6-diamidino-2-phenylindole (DAPI) staining is complicated by the fact that bacterial fluorescence varies with exposure of the cells to sodium hypochlorite. An Escherichia coli laboratory-grown suspension treated with sodium hypochlorite (5 to 15 mg of chlorine liter-1) for 90 min was highly fluorescent after DAPI staining probably due to cell membrane permeation and better and DAPI diffusion. At chlorine concentrations greater than 25 mg liter-1, DAPI-stained bacteria had only a low fluorescence. Stronger chlorine doses altered the DNA structure, preventing the DAPI from complexing with the DNA. When calf thymus DNA was exposed to sodium hypochlorite (from 15 to 50 mg of chlorine liter-1 for 90 min), the DNA lost the ability to complex with DAPI. Exposure to monochloramine did not have a similar effect. Treatment of drinking water with sodium hypochlorite (about 0.5 mg of chlorine liter-1) caused a significant increase in the percentage of poorly fluorescent bacteria, from 5% in unchlorinated waters (40 samples), to 35 to 39% in chlorinated waters (40 samples). The presence of the poorly fluorescent bacteria could explain the underestimation of the real number of bacteria after DAPI staining. Microscopic counting of both poorly and highly fluorescent bacteria is essential under these conditions to obtain the total number of bacteria. A similar effect of chlorination on acridine orange-stained bacteria was observed in treated drinking waters. The presence of the poorly fluorescent bacteria after DAPI staining could be interpreted as a sign of dead cells. PMID:9097452

  5. Depletion of chlorine into HCl ice in a protostellar core. The CHESS spectral survey of OMC-2 FIR 4

    Science.gov (United States)

    Kama, M.; Caux, E.; López-Sepulcre, A.; Wakelam, V.; Dominik, C.; Ceccarelli, C.; Lanza, M.; Lique, F.; Ochsendorf, B. B.; Lis, D. C.; Caballero, R. N.; Tielens, A. G. G. M.

    2015-02-01

    Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances OMC-2 FIR 4. Methods: We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2 hyperfine collisional excitation rate coefficients. Results: A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9 × 10-11, a factor of only 10-3 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Conclusions: Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of ≲10-10 in most of the protostellar core. We find the [35Cl]/[37Cl] ratio in OMC-2 FIR 4 to be 3.2 ± 0.1, consistent with the solar system value. Appendices are available in electronic form at http://www.aanda.org

  6. A simple and convenient method for direct α-chlorination of ketones with ammonium chloride and Oxone

    Institute of Scientific and Technical Information of China (English)

    Zhong Shi Zhou; Li Li; Xue Han He

    2012-01-01

    When ketones were treated with ammonium chloride and Oxone(R) in MeOH at room temperature,a direct α-chlorination of ketones was occurred and a series of the corresponding α-chloroketones were obtained in moderate to good yields after 24 h.In this reaction,ammonium chloride was used as the source of chlorine and Oxone(R) was used as an oxidant.This method was simple,convenient and providing a novel procedure for preparation of α-chloroketones.

  7. InCl{sub 3}/NaClO: a reagent for allylic chlorination of terminal olefins

    Energy Technology Data Exchange (ETDEWEB)

    Pisoni, Diego S.; Gamba, Douglas; Fonseca, Carlos V.; Costa, Jesse S. da; Petzhold, Cesar L.; Oliveira, Eduardo R. de; Ceschi, Marco A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: mceschi@iq.ufrgs.br

    2006-03-15

    Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of {beta}-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes. (author)

  8. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    Science.gov (United States)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  9. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  10. Mutagenic activities of a chlorination by-product of butamifos, its structural isomer, and their related compounds.

    Science.gov (United States)

    Kamoshita, Masahiro; Kosaka, Koji; Endo, Osamu; Asami, Mari; Aizawa, Takako

    2010-01-01

    The mutagenic activities of 5-methyl-2-nitrophenol (5M2NP), a chlorination by-product of butamifos, its structural isomer 2-methyl-5-nitrophenol (2M5NP), and related compounds were evaluated by the Ames assay. The mutagenic activities of 5M2NP and 2M5NP were negative or not particularly high. However, those of their chlorinated derivatives were increased in Salmonella typhimurium strain TA100 and the overproducer strains YG1026, and YG1029 in the absence and/or presence of a rat liver metabolic activation system (S9 mix), particularly for YG1029. The mutagenic activities of 6-chloro-2-methyl-5-nitrophenol (6C2M5NP) in YG1029 in the absence and presence of S9 mix were 70000 and 110000 revertants mg(-1), respectively. When nitro functions of 6C2M5NP and 4-chloro-5-methyl-2-nitrophenol (4C5M2NP) were reduced to amino functions, their mutagenic activities were markedly decreased. The mutagenic activities of 5M2NP and 4C5M2NP were lower than those of 2M5NP and 6C2M5NP, respectively. Thus, it was shown that substituent position is a key factor for the mutagenic activities of methylnitrophenols (MNPs) and related compounds. The mutagenic activities of the extracts of 2M5NP in chlorination increased early during the reaction time and then decreased. The main chlorination by-product contributing to the mutagenic activities of the extracts of 2M5NP in chlorination was 6C2M5NP. The results of chlorination of 2M5NP suggested that MNPs were present as their dichlorinated derivatives or further chlorination by-products in drinking water.

  11. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    Energy Technology Data Exchange (ETDEWEB)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  12. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.; Rajamohan, R.; Harinath, Y.V.; Mohan, T.V.K.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil nadu (India)

    2010-07-01

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L{sup -1} TRO) and chlorine dioxide (0.4 - 0.5 mg L{sup -1}) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  13. Isospin Against Size Effects In Projectile Dynamical Fission For 112,124Sn+58,64Ni and 124Xe+64Zn Reactions At 35 A.MeV

    Science.gov (United States)

    Russotto, P.; De Filippo, E.; Pagano, A.; Piasecki, E.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Boiano, C.; Borderie, B.; Bruno, M.; Cap, T.; Cardella, G.; Castoldi, A.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; D'Andrea, M.; Di Toro, M.; Fichera, F.; Francalanza, L.; Geraci, E.; Gianì, R.; Gnoffo, B.; Grimaldi, A.; Grzeszczuk, A.; Guazzoni, C.; Guazzoni, P.; Giudice, N.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Lombardo, I.; Maiolino, C.; Marquínez-Durán, G.; Minniti, T.; Papa, M.; Pagano, E. V.; Passaro, G.; Pirrone, S.; Płaneta, R.; Politi, G.; Porto, F.; Quattrocchi, L.; Rivet, M. F.; Rosato, E.; Riccio, F.; Rizzo, F.; Saccà, G.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zambon, P.; Zetta, L.; Zipper, W.

    2014-05-01

    In past experiments, mass asymmetric projectile-target combinations124Sn+64Ni and 112Sn+58Ni were investigated at ELab(112'124Sn)=35 A.MeVbeam energybyusing the 4n multi-detector CHIMERA. From a quantitative comparison of cross sections associated to Statistical and Dynamical Fission of the Projectile-Like Fragments, it resulted that Dynamical Fission process is about two times more probable in the neutron rich 124Sn+64Ni system than in the 112 Sn +58 Ni neutron poor one. In contrast, no sizable difference was found for Statistical Fission mechanism. The observed difference in the strength of the Dynamical effects could arise from the difference in entrance channel Isospin (N/Z) content. In order to disentangle Isospin effects from effects due to the different masses of the two systems, a new experiment 124Xe+64Zn at 35 A.MeV beam energy has been recently carried out.

  14. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  15. CHEMISTRY OF PHOSPHORYLMETHYL ISOCYANIDES .5. INTRODUCTION OF 20-KETO SIDE-CHAINS IN 17-OXOSTEROIDS - WITTIG-HORNER-EMMONS REACTIONS OF (E)-17-[(DIETHYLPHOSPHONO)ISOCYANOMETHYLENE]-3-METHOXYANDROSTA-3,5-DIENE

    NARCIS (Netherlands)

    STOELWINDER, J; van Leusen, A.M.

    1993-01-01

    The synthesis is described of a series of polyfunctional unsaturated DELTA16,20-20-isocyanosteroids 5a-f by the Wittig-Horner-Emmons reaction of (E)-17-[(diethylphosphono)isocyanomethylene] steroid 4 with several aldehydes and with acetone. Hydrolysis of the isocyanosteroids 5a-f with dilute sulfuri

  16. The effect of sulfur dioxide on the formation of molecular chlorine during co-combustion of fuels

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Xie, W.; Liu, K.; Dicken, L.; Pan, W.-P.; Riley, J.T. [Western Kentucky University, Bowling Green, KY (USA). Combustion Lab., Dept. of Chemistry

    2000-06-01

    This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The effect of sulfur dioxide on the formation of molecular chlorine during co-combustion of fuels was examined in this study. Sulfur dioxide was shown to be an effective inhibitor for the formation of molecular chlorine through the Deacon Reaction and subsequently, the formation of chlorinated organics. Theoretically, co-firing high sulfur coals with MSW will decrease the possibility of polychlorodibenzodioxin/furan (PCDD/F) formation during the combustion process. A mixture of coal and PVC pellets was burned in a 0.1 MW{sub th} bench-scale fluidized bed system at WKU and no detectable amounts of chlorinated organics were found in the flue gas and bed ash. The results from this study indicated the practical effects of using coal as a combustion support fuel when burning MSW. 23 refs., 3 figs., 3 tabs.

  17. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations.

    Science.gov (United States)

    Fujimori, Takashi; Nakamura, Madoka; Takaoka, Masaki; Shiota, Kenji; Kitajima, Yoshinori

    2016-07-01

    Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms.

  18. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms.

    Science.gov (United States)

    Liebensteiner, Martin G; Oosterkamp, Margreet J; Stams, Alfons J M

    2016-02-01

    Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.

  19. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista de Duffard, A.M.; Duffard, R. [Laboratorio de Toxicologia Experimental, Santa Fe (Argentina)

    1996-04-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  20. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-Gonzalez, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  1. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes.

    Science.gov (United States)

    Karlsson, Rasmus K B; Cornell, Ann

    2016-03-09

    Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation.

  2. Predicting bromide incorporation in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, Abu Jafar; Husain, Tahir

    2016-06-01

    The water in and air above swimming pools often contain high levels of disinfection byproducts (DBPs) due to chemical reactions between chlorine- or bromine-based disinfectants and organic/inorganic matter in the source water and released from swimmers. Exposure to these DBPs, though inevitable, can pose health threats to humans. In this study, DBPs in tap water (S1), and water from a chlorinated indoor swimming pool before (S2) and after swimming (S3) were measured. The brominated species constituted the majority of DBPs formed in S1, S2, and S3. Trihalomethanes (THMs) in S3 was 6.9 (range 2.9-11.1) and 1.4 (range 0.52-2.9) times those in S1 and S2, respectively; and the haloacetic acids (HAAs) in S3 was 4.2 (range 2.5-7.5) and 1.2 (range 0.6-2.6) times those in S1 and S2, respectively. The mean THMs in air above the swimming pool before (S2-A) and after swimming (S3-A) were 72.2 and 93.0 μg/m(3), respectively, and their ranges were 36.3-105.8 and 44.1-133.6 μg/m(3), respectively. The average percentages of bromide incorporation (BI) into THMs in S1, S2, and S3 were 3.0, 9.3, and 10.6 %, respectively; and the BI into HAAs in S1, S2, and S3 were 6.6, 12.0, and 12.2 %, respectively. Several models were trained for predicting the BI into THMs and HAAs. The results indicate that additional information is required to develop predictive models for BI in swimming pools.

  3. A new entry to asymmetric platinum(IV) complexes via oxidative chlorination.

    Science.gov (United States)

    Ravera, Mauro; Gabano, Elisabetta; Pelosi, Giorgio; Fregonese, Federico; Tinello, Stefano; Osella, Domenico

    2014-09-02

    Pt(IV) complexes are usually prepared by oxidation of the corresponding Pt(II) counterparts, typically using hydrogen peroxide or chlorine. A different way to synthesize asymmetrical Pt(IV) compounds is the oxidative chlorination of Pt(II) counterparts with N-chlorosuccinimide. The reaction between cisplatin cis-[PtCl2(NH3)2], carboplatin, cis-[PtCl2(dach)] and cis-[Pt(cbdc)(dach)] (cbdc = cyclobutane-1,1'-dicarboxylato; dach = cyclohexane-1R,2R-diamine) with N-chlorosuccinimide in ethane-1,2-diol was optimized to produce the asymmetric Pt(IV) octahedral complexes [PtA2Cl(glyc)X2] (A2 = 2 NH3 or dach; glyc = 2-hydroxyethanolato; X2 = 2 Cl or cbdc) in high yield and purity. The X-ray crystal structure of the [Pt(cbdc)Cl(dach)(glyc)] complex is also reported. Moreover, the oxidation method proved to be versatile enough to produce other mixed Pt(IV) derivatives varying the reaction medium. The two trichlorido complexes easily undergo a pH-dependent hydrolysis reaction, whereas the dicarboxylato compounds are stable enough to allow further coupling reactions for drug targeting and delivery via the glyc reactive pendant. Therefore, the coupling reaction between the [Pt(cbdc)Cl(dach)(glyc)] and a model carboxylic acid, a model amine, and selectively protected amino acids is reported.

  4. Hydraulic fracturing with chlorine dioxide cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.A.; Newlove, J.C.; Horton, R.L.

    1990-10-23

    This patent describes a method for fracturing a subterranean formation penetrated by a wellbore. It comprises: injecting a fracturing fluid into the formation to form a vertical fracture therein, the fracturing fluid being gelled with a polymer selected from guar, guar derivatives, acrylamide, acrylamide derivatives, cellulose, cellulose derivatives, and mixtures thereof and crosslinked with an organometallic crosslinking compound and having temperature stability above about 175{degrees} F.; packing the fracture with particulate propping agent; backflowing fluids from the formation through the propped fracture to remove a portion of the polymer; injecting at matrix rates sufficient aqueous solution of chlorine dioxide down the wellbore and into the propped fracture to penetrate at least 60 feet of the propped fracture length and contact polymer in the fracturing fluid and polymer residue in the propped fracture and on the fracture walls, the amount of the chlorine dioxide in the aqueous medium being sufficient to degrade polymer in the fracturing fluid and polymer residue; permitting the chlorine dioxide to remain in contact with the polymer in the fracturing fluid and with the polymer residue on the fracture walls and in the fracture for sufficient time to degrade the polymer thereby reducing the fracturing fluid viscosity and dissolving portions of the polymer residue; and flowing formation fluid from the formation through the propped fracture and into the wellbore to remove substantial portions of the polymer and degraded polymer from the fracture.

  5. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    Science.gov (United States)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  6. Characterization of the products formed by the reaction of trichlorocyanuric acid with 2-propanol.

    Science.gov (United States)

    Sandercock, P Mark L; Barnett, Julie S

    2009-11-01

    We report a recent investigation into the death of a cat that was initially thought to involve intentionally burning the animal via the use of an ignitable liquid. The exposure of the animal to flame was ruled out. Instead, forensic investigation revealed the intentional mixing together of a common outdoor swimming pool chlorinator, trichlorocyanuric acid (TCCA), and 2-propanol (aka, isopropyl alcohol or rubbing alcohol). The reaction of these two chemicals resulted in the formation of cyanuric acid residue, hydrochloric acid, and the evolution of a significant volume of chlorine gas. Further alpha-chlorination side reactions also occurred between 2-propanol and TCCA to produce a variety of chlorinated 2-propanone species that were detected on the submitted evidence. The identification of the products of both the main reaction and the side reactions allowed the authors to determine what chemicals were originally mixed together by the culprit.

  7. Kinetics of recovering germanium from lignite ash with chlorinating roasting methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Guocai; WANG Jingyan; CHENG Zhuo; ZHAO Yuna

    2008-01-01

    A process of recovering Ge by chlorinating roasting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting process fits with the unreacted-core shrinking model and the reaction rate equation corresponds to 1-2a/3-(1-a)2/3 =kt. The apparent activation energy Ea is calculated to be 22.36 kJ·mol-1. The diffusion of product layer serves as the rate-controlling step in this process. When the roasting temperature is 250℃, the roasting time is 60 min, the concentration of hydrochloric acid is 10 mol/L, and the ratio of liquid to solid is 10 (mHCl/ash=10), and 90% Ge in lignite ash can be recovered.

  8. Smelting chlorination method applied to removal of copper from copper slags

    Institute of Scientific and Technical Information of China (English)

    李磊; 王华; 胡建杭

    2015-01-01

    In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However, the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34%is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, CaCl2 addition amount of 0.1 (mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.

  9. Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu; Mohammad Asadullah; Rosalie Hocking; LIN Jian-ying; LI Chun-zhu

    2012-01-01

    This study is to examine the changes in Cl volatilizations and chemical forms in NaCl-loaded Victorian brown coal during gasification in steam at 800 ℃ using Cl K-edge X-ray absorption near-edge structure (XANES) spectroscopy.The char samples were prepared in a novel one-stage fluidised-bed/fixed-bed quartz reactor at a fast heating rate.The samples were then collected and sealed in an argon-filled bag in order to minimise possible oxidation of char and Cl by air prior to analysis by XANES.Char-steam reactions were found to significantly affect the transformation of Cl,including the possible formation of chlorine-containing organic structures.On the other hand,volatile-char interactions during the gasificauon appeared to enhance the Cl retention and prevent the formation of organic chlorine compounds in chars.

  10. Chlorine and carbon isotope measurements can help assessing the effectivenes of a zero valent iron barrier

    Science.gov (United States)

    Cretnik, S.; Audi, C.; Bernstein, A.; Palau, J.; Soler, A.; Elsner, M.

    2012-04-01

    Chlorinated aliphatic hydrocarbons (CAH's) such as trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinylchloride (VC) are extensively used in industrial applications. One of the most promising remediation techniques for CAH's in groundwater is their removal via abiotic reductive dechlorination using Zero Valent Iron (ZVI). This is applied for the treatment of contaminated sites by installing permeable reactive barriers (PRB). In this study, isotope fractionation of chlorinated ethylenes in transformation by cast iron has been investigated, because such types of iron are commonly used in PRBs. Batch experiments have been carried out in closed flasks, containing cast iron with aqueous solutions of TCE, cDCE and VC. These substrates and their respective products have been monitored by headspace samplings for their concentration (by GC-FID) and isotope fractionation of carbon and chlorine (by GC-IRMS). A decreasing reactivity trend was observed when compounds contain less chlorine atoms, with differences in rate constants of about one order of magnitude between each of the substances TCE > cDCE > VC. This resulted in the accumulation of products with fewer chlorine atoms. Therefore a similar observation can be expected if degradation in the field is incomplete, for example in the case of aged or improperly designed PRB. Pronounced carbon and chlorine isotope fractionation was measured for each of the compounds, and characteristic dual isotope plots (C, Cl) were obtained for TCE and cDCE. These results may serve as an important reference for the interpretation of isotope data from field sites, since stable isotope fractionation is widely recognized as robust indicator for such pollutant transformations. However, carbon isotope fractionation in a given parent compound may be caused by either abiotic or biotic degradation. In the field, it can therefore be difficult to delineate the contribution of abiotic transformation by PRB in the presence of ongoing

  11. A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of Ethylene.

    Science.gov (United States)

    Ramirez, Adrian; Hueso, Jose L; Suarez, Hugo; Mallada, Reyes; Ibarra, Alfonso; Irusta, Silvia; Santamaria, Jesus

    2016-09-05

    The selective oxidation of ethylene to ethylene epoxide is highly challenging as a result of competing reaction pathways leading to the deep oxidation of both ethylene and ethylene oxide. Herein we present a novel catalyst based on silver and copper oxide with an excellent response in the selective oxidation pathway towards ethylene epoxide. The catalyst is composed of different silver nanostructures dispersed on a tubular copper oxide matrix. This type of hybrid nanoarchitecture seems to facilitate the accommodation of chlorine promoters, leading to high yields at low reaction temperatures. The stability after the addition of chlorine promoters implies a substantial improvement over the industrial practice: a single pretreatment step at ambient pressure suffices in contrast with the common practice of continuously feeding organochlorinated precursors during the reaction.

  12. Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas

    Science.gov (United States)

    Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya

    2009-02-01

    The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.

  13. Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

    OpenAIRE

    Buffin, Lisa Webster

    1992-01-01

    Chlorine (C12(sq»' chlorine dioxide (Cl02 ) and potassium permanganate (KMn04) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The ef...

  14. Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles%Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles

    Institute of Scientific and Technical Information of China (English)

    冷瑜婷; 杨帆; 吴养洁; 李克

    2011-01-01

    An efficient and facile protocol for palladacycle-catalyzed chlorination of 2-arylbenzoxazoles was developed. The results represent the first examples involving the palladacycle as the catalyst for such chlorination. This chlori- nation was not a ligand-directed ortho-C--H activation, but an electrophilic substitution process at the para-position of the nitrogen atom in the benzo ring of benzoxazole moiety, the regiochemistry of which had been confirmed by HMBC spectral analysis. The catalytic system could tolerate various halogen atoms, such as F, Cl and Br, affording the corresponding products in moderate to excellent yields.

  15. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen A; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-07-02

    Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.

  16. Intrinsic Kinetics of the Chlorination of RuO2 with Cl2 Between 973 K and 1073 K (700 °C and 800 °C)

    Science.gov (United States)

    Guibaldo, Cristina N.; De Micco, Georgina; Bohe, Ana E.

    2016-04-01

    Ruthenium, as well as the rest of the platinum-group metals, is of crucial importance for industry due to its extraordinary catalytic activity and high-tech applications. Because of its scarcity and high value, there is an increasing interest towards its recovery from wastes. Chlorination metallurgy arises as one possible recovery method. The intrinsic kinetics of the chlorination of ruthenium oxide was studied with the aim of applying this process in a suitable recovery technology. Chlorination of RuO2 was investigated for temperatures between 973 K and 1073 K (700 °C and 800 °C) and chlorine partial pressure from 50 to 90 kPa. The reaction rate was measured by gravimetry and the rate equation was obtained. An activation energy of 259 ± 6 kJ mol-1 and a reaction order of 0.5 with respect of chlorine partial pressure were determined. The reaction product is unstable at atmospheric conditions. Formation of RuO2Cl2 is proposed based on experimental evidence; however, such product has not been confirmed yet.

  17. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  18. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  19. Fatty acids and algal lipids as precursors of chlorination by-products

    Institute of Scientific and Technical Information of China (English)

    Yan Liang; Yuen Shan Lui; Huachang Hong

    2012-01-01

    Six common algal fatty acids (FAs) with different numbers of double bonds,lipophilic fractions and proteins extracted from the diatom Navicula pelliculosa and algal cells were chlorinated to evaluate their potential in generating disinfection by-products (DBPs).The result showed that the more double bonds in the FAs,the higher the amounts of chloroform and dichloroacetic acid (DCAA) produced,but such a pattern was not observed for trichloroacetic acid (TCAA).Based on the previously reported composition of fatty acids in algal lipids,the DBP generation potentials of algal lipids were calculated.These predicted values were much lower than those measured in the chlorinated algal lipophilic fraction,suggesting unknown lipophilic fraction(s) served as potent DBPs precursors.Another calculation attempted to predict DBP production in algal cells based on algal lipid and protein composition,given quantified measured DBP production per unit algal lipid and proteins.The analysis showed that the observed DBP production was similar to that predicted (< 35% difference),suggesting that algal biochemical compositions may serve as a bioindicator for preliminary estimation of chloroform,DCAA and TCAA formation upon chlorinating algae.

  20. Use of chlorine kinetic isotope effects for evaluating ion pairing in nucleophilic displacements at saturated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Taylor, J.W.; Turnquist, C.R.

    1978-11-08

    Use of the Winstein scheme to describe ion pairing leads to the conclusion that chlorine kinetic isotope effects (KIE) are primarily responsive to processes involving the covalently bound chlorine and less indicative of reactions which occur after the formation of the initial ion pair. This conclusion has been tested by showing that the calculated equilibrium isotope effect (1.0057) and observed (1.0059/sub 6/ +- 0.0001/sub 1/) KIE are nearly identical when the solvolysis of p-methylbenzyl chloride is forced toward a limiting case with 97% trifluoroethanol as solvent. The reaction of p-phenoxybenzyl chloride showed similar behavior with an equilibrium KIE value of 1.0058/sub 4/ +- 0.0001/sub 1/. These results suggest that competing ion-pair and S/sub N/2 processes may be one factor contributing to Hammett plot curvature for these nucleophilic displacement reactions. Chloride KIE values for the reaction of n-butyl chloride with thiophenoxide anion, where ion pairing does not occur, show little variation with a wide variety of solvents. 3 tables.

  1. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  2. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    Science.gov (United States)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  3. Effects of chlorine and chlorine dioxide on mutagenic activity of Lake Kinnereth water

    Energy Technology Data Exchange (ETDEWEB)

    Guttman-Bass, N.; Bairey-Albuquerque, M.; Ulitzur, S.; Chartrand, A.; Rav-Acha, C.

    1987-03-01

    Water from Lake Kinnereth (Israel) was tested for the presence of mutagenic activity, with and without disinfection by chlorine and chlorine dioxide. The samples were assayed for activity with two Ames Salmonella typhimurium tester strains, TA 104 and TA 100, and by a luminescent genotoxic assay with a dark mutant strain of Photobacterium fischeri. The water concentrates were mutagenic in strain TA 104 and in the luminescent assay, reaching positive mutagenic activities in the equivalent of 20 mL of water. Chlorination did not greatly affect the net mutagenic activity, although ClO/sub 2/ apparently reduced it. Humic acids were isolated from lake sediment and were assayed with and without disinfection in distilled water and in lake water from which the organic components were removed. The humic acids were mutagenic in both test systems, and treatment with Cl/sub 2/ generally decreased the net activity. ClO/sub 2/ also tended to decrease the mutagenic activity, and cytotoxic effects were observed in some of the samples. Conversely, commercial humic acid was mutagenic only after chlorination on strain TA 100. 54 references, 3 figures, 6 tables.

  4. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    Science.gov (United States)

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  5. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  6. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  7. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P.

    1981-04-01

    Ozone and chlorine dioxide present definite advantages and disadvantages over chlorination. Chlorination, particularly for the removal of ammonia and the maintenance of a disinfectant residual in the distribution system has decisive advantages and will be difficult to replace. Ozone and chlorine dioxide seem to produce fewer carcinogenic by-products but the risk for acute toxicity, especially from the chlorites which follow chlorine dioxide, is higher than with chlorine. Chlorine dioxide and more particularly ozone should be considered as useful complements to chlorination, but no strong oxidative treatment should be applied before most of the organic matter has been removed.

  8. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    Science.gov (United States)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  9. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  10. Sensitivity of an atmospheric photochemistry model to chlorine perturbations including consideration of uncertainty propagation

    Science.gov (United States)

    Stolarski, R. S.; Douglass, A. R.

    1986-01-01

    Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.

  11. Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196.

    Science.gov (United States)

    Lin, Chunjiao; Yang, Lirong; Xu, Gang; Wu, Jianping

    2011-04-01

    In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinated aliphatic acid dehalogenase.

  12. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride.

    Science.gov (United States)

    Fujimori, Takashi; Takaoka, Masaki; Morisawa, Shinsuke

    2010-03-15

    The relationship between the formation of chlorinated aromatic (aromatic-Cl) compounds and ferric chloride in the solid phase during a thermal process motivated us to study the chemical characteristics of iron in a model solid sample, a mixture of FeCl(3) x 6H(2)O, activated carbon, and boron nitride, with increasing temperature. Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed drastic changes in the chemical form of amorphous iron, consistent with other analytical methods, such as X-ray diffraction using synchrotron radiation (SR-XRD) and Fourier-transform infrared (FT-IR) spectroscopy. Atomic-scale evidence of the chlorination of aromatic carbon was detected by Cl-K X-ray absorption near edge structure (XANES) spectroscopy. These results showed the thermal formation mechanism of aromatic-Cl compounds in the solid phase with ferric chloride. We attribute the formation of aromatic-Cl compounds to the chlorination of carbon, based on the oxychlorination reaction of FeCl(3) at temperatures in excess of ca. 300 degrees C, when the carbon matrix is activated by carbon gasification, catalyzed by Fe(2)O(3), and surface oxygen complexes (SOC) generated by a catalytic cycle of FeCl(2) and FeOCl. Chemical changes of trace iron in a thermal process may offer the potential to generate aromatic-Cl compounds in the solid phase.

  13. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Zheng, Hongdie; Yang, Min

    2014-03-18

    Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.

  14. 78 FR 66767 - Chlorinated Isocyanurates From China and Japan

    Science.gov (United States)

    2013-11-06

    ... publishing the notice in the Federal Register of September 10, 2013 (78 FR 55293). The conference was held in... COMMISSION Chlorinated Isocyanurates From China and Japan Determinations On the basis of the record \\1... injured by reason of imports from China and Japan of chlorinated isocyanurates, provided for...

  15. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  16. 75 FR 23303 - Chlorinated Isocyanurates From China and Spain

    Science.gov (United States)

    2010-05-03

    ... COMMISSION Chlorinated Isocyanurates From China and Spain AGENCY: United States International Trade... isocyanurates from China and Spain. SUMMARY: The Commission hereby gives notice that it has instituted reviews... revocation of the antidumping duty orders on chlorinated isocyanurates from China and Spain would be...

  17. 75 FR 51113 - Chlorinated Isocyanurates From China and Spain

    Science.gov (United States)

    2010-08-18

    ... COMMISSION Chlorinated Isocyanurates From China and Spain AGENCY: United States International Trade... chlorinated isocyanurates from China and Spain. SUMMARY: The Commission hereby gives notice of the scheduling... from China and Spain would be likely to lead to continuation or recurrence of material injury within...

  18. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  19. On the sensitivity of extracting the astrophysical cross section factor of the 12C(a,g) reaction from existing data [Comment on Schuermann et al. Phys. Lett. B711(2012)35

    CERN Document Server

    Gai, Moshe

    2015-01-01

    We address a conflicting report on the value and uncertainty of the astrophysical cross section factor of the 12C(a,g) reaction extracted from existing data. In sharp contrast to previously reported ambiguities (by up to a factor 8), Schuermann et al. suggest an accuracy of 12%. We demonstrate that the so claimed "rigorous data selection criteria" used by Schuermann et al. relies on the s-factors extracted by Assuncao et al. But these results were shown in a later analysis (by this author) to have large error bars (considerably larger than claimed by Assuncao em et al.) which render these data not appropriate for a rigorous analysis. When their "rigorous data selection" is adjusted to remove the results of Assuncao et al. the astrophysical cross section factor cannot be extracted with 12% accuracy, or even close to it. Such data on the S_E2 values at low energies deviate by up to a factor two from their fit and exhibit a sharper slope rising toward low energies, leading to strong doubt on their extrapolated S...

  20. Colour Reaction of Cadimum with 1-Azobenzene-3-(5-Nitro-2-pyridyl)-Triazene and Its Application%1-偶氮苯基-3-(5-硝基-2-吡啶)-三氮烯与镉的显色反应及其应用

    Institute of Scientific and Technical Information of China (English)

    龚楚儒; 杨明华; 金传明; 陈才元; 胡宗球

    2001-01-01

    @@1 引言 三氮烯试剂是测定IB、ⅡB族金属元素的优良试剂。近年来,对该类试剂中的取代苯重氮氨基苯的合成和分析应用报道较多,但对含杂环的三氮烯试剂的研究报道较少。我们曾将安替比林、苯并噻唑、噻唑引入该类试剂中,使试剂灵敏度有所提高。为进一步探讨此类试剂的分析性能,我们合成了1-偶氮苯基-3-(5-硝基-2-吡啶基)-三氮烯(ABNPDT)。研究其分析性能,结果表明:试剂与镉有灵敏反应,摩尔吸光系数达2.07×105 L·mol-1·cm-1。用拟定方法测定了水样中镉含量,结果令人满意。

  1. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  2. Low-Cost Graphite-Based Free Chlorine Sensor.

    Science.gov (United States)

    Pan, Si; Deen, M Jamal; Ghosh, Raja

    2015-11-01

    Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.

  3. Biodegradability of Chlorinated Anilines in Waters

    Institute of Scientific and Technical Information of China (English)

    CHAO WANG; GUAN-GHUA LU; YAN-JIE ZHOU

    2007-01-01

    Objective To identify the bacteria tolerating chlorinated anilines and to study the biodegradability of o-chloroaniline and its coexistent compounds. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicant. Biodegradability of chlorinated anilines was determined using domesticated complex bacteria as an inoculum by shaking-flask test. Results The complex bacteria were identified, consisting of Xanthomonas, Bacillus alcaligenes,Acinetobacter, Pseudomonas, and Actinomycetaceae nocardia. The obtained complex bacteria were more tolerant to o-chloroaniline than mixture bacteria in natural river waters. The effects of exposure concentration and inoculum size on the biodegradability of o-chloroaniline were analyzed, and the biodegradation characteristics of single o-chloroaniline and 2,4-dichloroaniline were compared with the coexistent compounds. Conclusion The biodegradation rates can be improved by decreasing concentration of compounds and increasing inoculum size of complex bacteria. When o-chloroaniline coexists with aniline, the latter is biodegraded prior to the former, and as a consequence the metabolic efficiency of o-chloroaniline is improved with the increase of aniline concentration. Meanwhile, when o-chloroaniline coexists with 2,4-dichloroaniline, the metabolic efficiency of 2,4-dichloroaniline is markedly improved.

  4. The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions

    Science.gov (United States)

    Williams, J. T.; Shearer, C. K.; Sharp, Z. D.; Burger, P. V.; McCubbin, F. M.; Santos, A. R.; Agee, C. B.; McKeegan, K. D.

    2016-11-01

    The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle-derived magmas and the crust. We have measured the Cl-isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine-phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately -3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation-fractional crystallization.

  5. Synergetic Inactivation of Microorganisms in Drinking Water by Short-term Free Chlorination and Subsequent Monochloramination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Escherichia coli,Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. Results The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. Conclusion The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.

  6. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  7. Change in genotoxicity of wastewater during chlorine dioxide and chlorine disinfections and the influence of ammonia nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Lisha; HU Hongying; WANG Chao; Koichi Fujie

    2007-01-01

    The effects of chlorine dioxide and chlorine disinfections on the genotoxicity of different biologically treated sewage wastewater samples were studied by umu-test.The experiment results showed that when chlorine dioxide dosage was increased from 0 to 30 mg/L,the genotoxicity of wastewater first decreased rapidly and then tended to be stable,while when the chlorine dosage was increased from 0 to 30 mg/L,the genotoxicity of wastewater changed diversely for different samples.It was then found that ammonia nitrogen did not affect the change of genotoxicity during chlorine dioxide disinfection of wastewater,while it greatly affected the change of genotoxicity during chlorine disinfection of wastewater.When the concentration of ammonia nitrogen was low(<10-20mg/L),the genotoxicity of wastewater decreased after chlorine disinfection,and when the concentration of ammonia nitrogen was high(>10-20 mg/L),the genotoxicity of wastewater increased after chlorine disinfection.

  8. Degradation of microcystin-RR in water by chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    JI Ying; HUANG Jun-li; FU Jiao; WU Ming-song; CUI Chong-wei

    2008-01-01

    Due to the potent hepatotoxicity and tumor-promoting activity of microcystins, a successful removal of these toxins during drinking water treatment processes is of increasing concern. The oxidation kinetics of MC-RR by chlorine dioxide (C1O2)was studied with HPLC and characterization of the reacdon products was performed with UV-spectrometry, TOC and LC-MS. Our experimental results show that the oxidation process is a second order overall and a first order with respect to C1O2 and MC-RR.The activation energy of MC-RR degradation by C1O2 is 53.07 kJ/mol. The rate constant k of the action can be increased by increasing temperature and decreasing pH value and ranged from 6. 11x102 L/(mol.min) to 5.29x 102 L/(mol-min) at pH from 3.44 to 10.41 at 10 ℃. Reaction products were determined to be organic and volatile, because they could be almost removed from aqueous solution by heating for 15 min at 60 ℃. In addition, the main oxidation products have m/z values of 1072 and are identified as dihydroxy isomers of MC-RR.

  9. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water

    Institute of Scientific and Technical Information of China (English)

    TONG Shao-ping; WEI Hong; MA Chun-an; LIU Wei-ping

    2005-01-01

    Detoxification of chlorinated organic compounds via reaction with nickel/iron powder was implemented in aqueous solution. Compared to iron, nickel/iron bimetallic powder had higher hydrodechlorination activities for both atrazine (ATR) and p-chlorophenol (pCP); nickel/iron (2.96%, w/w) was shown to have the largest specific surface area and the optimum proportion for the dechlorination of both ATR and pCP. Electrochemical measurements showed that the adsorbed hydrogen atom on the nickel must have been the dominant reductive agent for the dechlorination of both ATR andpCP in this system.

  10. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Brendan W. [West Virginia Univ., Morgantown, WV (United States)

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

  11. 48 CFR 6302.35 - Dismissal without prejudice (Rule 35).

    Science.gov (United States)

    2010-10-01

    ... prejudice (Rule 35). 6302.35 Section 6302.35 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION BOARD OF CONTRACT APPEALS RULES OF PROCEDURE 6302.35 Dismissal without prejudice (Rule 35). When... prejudice to its restoration to the Board's docket when the cause of suspension has been eliminated....

  12. Proportion of bromo-DBPs in total DBPs during reclaimed-water chlorination and its related influencing factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; QU JiuHui; LIU HuiJuan; ZHAO Xu

    2008-01-01

    During the chlorine disinfection of reclaimed-water, the proportion of bromo-disinfection by-products (bromo-DBPs) in total DBPs is affected by chlorine dosage, reaction time, Ph, ammonia nitrogen (NH3-N) and preozonation. Results show that bromo-trihalomethanes (bromo-THMs) form more easily than bromo-haloacetic acids (bromo-HAAs) and bromine incorporation in DBPs decreases with the increase of chlorine dosage. Within 5 h, bromine incorporation in THMs (n(Br)) increases but bromine incorporation in HAAs (n'(Br)) decreases with the extension of reaction time; however, n(Br) decreases and n'(Br) keeps relatively constant at a longer reaction time. Furthermore, bromine incorporation in DBPs is low under acidic and alkaline conditions. The increase of NH3-N concentration inhibits the formation of chloro-DBPs, resulting in the increase of n(Br) and n'(Br) to some extent. Preozonation enhances the formation of HOBr and the increase of bromine incorporation in DBPs; however, ozone of a high concentration oxidizes HOBr to its salt form, leading to the decrease of bromine incorporation in DBPs.

  13. Proportion of bromo-DBPs in total DBPs during reclaimed-water chlorination and its related influencing factors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    During the chlorine disinfection of reclaimed-water, the proportion of bromo-disinfection by-products (bromo-DBPs) in total DBPs is affected by chlorine dosage, reaction time, pH, ammonia nitrogen (NH3-N) and preozonation. Results show that bromo-trihalomethanes (bromo-THMs) form more easily than bromo-haloacetic acids (bromo-HAAs) and bromine incorporation in DBPs decreases with the increase of chlorine dosage. Within 5 h, bromine incorporation in THMs (n(Br)) increases but bromine incorpo-ration in HAAs (n′(Br)) decreases with the extension of reaction time; however, n(Br) decreases and n′(Br) keeps relatively constant at a longer reaction time. Furthermore, bromine incorporation in DBPs is low under acidic and alkaline conditions. The increase of NH3-N concentration inhibits the formation of chloro-DBPs, resulting in the increase of n(Br) and n′(Br) to some extent. Preozonation enhances the formation of HOBr and the increase of bromine incorporation in DBPs; however, ozone of a high con-centration oxidizes HOBr to its salt form, leading to the decrease of bromine incorporation in DBPs.

  14. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  15. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    Science.gov (United States)

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P < 0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6- and 4.3-log reduction of Escherichia coli O157:H7 and Listeria monocytogenes, respectively. However, this treatment could result in the presence of chloroxyanion residues, such as chloride (Cl(-)), chlorite (ClO2(-)), chlorate (ClO3(-)), and perchlorate (ClO4(-)), which, apart from chloride, are a toxicity concern. Radiolabeled chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This

  16. Asian Highlands Perspectives 35

    Directory of Open Access Journals (Sweden)

    various

    2015-03-01

    Full Text Available This complete version of AHP 35 features four original research articles, three short stories, and seven book reviews. The research articles include studies of camels in Mang ra County, Sinophone Tibetan author Alai, marmot hunting, and the construction and maintenance of yurts.

  17. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  18. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  19. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Y. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France) and Universite Claude Bernard Lyon-1, Institut Universitaire de Technologie (IUT A), 94, boulevard Niels Bohr, 69622 Villeurbanne cedex (France)]. E-mail: pipon@ipnl.in2p3.fr; Bererd, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Universite Claude Bernard Lyon-1, Institut Universitaire de Technologie (IUT A), 94, boulevard Niels Bohr, 69622 Villeurbanne cedex (France); Moncoffre, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Peaucelle, C. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Toulhoat, N. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Commissariat a l' Energie Atomique (CEA), DEN/Saclay, 91191 Gif sur Yvette cedex (France); Jaffrezic, H. [Universite Claude Bernard Lyon-1/Institut de Physique Nucleaire de Lyon (IPNL), 4, rue Enrico Fermi, 69622 Villeurbanne cedex (France); Raimbault, L. [Ecole des Mines de Paris, Centre de Geosciences, 35 rue Saint Honore, F-77305 Fontainebleau cedex (France); Sainsot, P. [Institut National des Sciences Appliquees de Lyon (INSA), UMR 5514, F-69621 Villeurbanne cedex (France); Carlot, G. [Commissariat a l' Energie Atomique (CEA), Centre de Cadarache, DEN/DEC/SESC/LLCC, 13108 Saint-Paul lez Durance (France)

    2007-04-15

    The radiation enhanced diffusion of chlorine in UO{sub 2} during heavy ion irradiation is studied. In order to simulate the behaviour of {sup 36}Cl, present as an impurity in UO{sub 2}, {sup 37}Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV {sup 127}I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10{sup -14} cm{sup 2} s{sup -1}, reflect the high mobility of chlorine in UO{sub 2} during irradiation with fission products.

  20. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  1. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  2. Removal effect on Mesocyclops leukarti and mutagenicity with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; CUI Fu-yi; QU Bo; ZHU Gui-bing

    2006-01-01

    Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocyclops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with the conventional drinking water treatment process.Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukarti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.

  3. Characterization of Chlorinated Ethene Degradation in a Vertical Flow Constructed Wetland

    Science.gov (United States)

    2007-03-01

    pathway for chlorinated volatiles in phytoremediation applications. Although transpiration of chlorinated solvents has been confirmed in studies ... case study publications and conference presentations providing support for the use of constructed wetlands for the treatment of chlorinated solvent...groundwater. This study characterized and evaluated the concentration of chlorinated ethenes within a vertical flow constructed wetland, fed with PCE

  4. Effects of continuous chlorination on entrained estuarine plankton

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, S.J.; Foulk, H.R.

    1980-01-01

    Technical report: The effects of continuous chlorination in running sea water on entrained plankton were examined. The concentration of ATP was used as an indicator of biomass because: it is present in all living cells; the concentration is proportional to the living biomass; and dead cells lose ATP rapidly. Effects were measured by bioluminescence; luciferin-luciferase reagents from firefly lanterns were used to analyze ATP concentration. Results indicate that ATP measurement is an accurate, effective means of evaluating damage done to planktonic organisms by continuous chlorination. Further studies of the effects of low-concentration, continuous chlorination are recommended. (13 references, 1 table)

  5. Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis

    OpenAIRE

    Kaur, Simran

    2013-01-01

    Chlorine dioxide is a selective oxidant and powerful antimicrobial agent. Previous work has shown that treatment of cantaloupe with chlorine dioxide gas at 5 mg/L for 10 minutes results in a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monocytogenes respectively. A significant reduction (p Current analytical methods for chlorine dioxide and chloroxyanions are only applicable to aqueous samples. Some of these methods have been used to determine surface residues in treated products by...

  6. A green Hunsdiecker reaction of cinnamic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sodre, Leonardo R.; Esteves, Pierre M.; Mattos, Marcio C. S. de, E-mail: pesteves@iq.ufrj.br, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica

    2013-02-15

    Tribromo- and trichloroisocyanuric acids react with cinnamic acids in NaOH/H{sub 2}O/Et{sub 2}O at room temperature to produce (E)-2-halostyrenes regioselectively in 25-95% yield. Mechanism studies using Hammett correlations and DFT (density functional theory) calculations have shown that this reaction has as rate determining step the electrophilic addition of chlorine atom to the double bond. (author)

  7. Chlorine-36 and chlorine concentrations within several compartments of a deciduous forest ecosystem in Meuse/Haute-Marne (France)

    Science.gov (United States)

    Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves

    2013-04-01

    Chlorine-36 is a cosmogenic nuclide mainly produced in the atmosphere by interactions between energetic particles originating from the cosmic radiations and 40Ar. Because of its long half-life (T1-2 = 3.01 105 yr) and its high mobility, chlorine-36 is a critical radionuclide concerning radioactive waste repository sites. Moreover, it has been shown that inorganic chlorine could be enriched along the trophic chain due to its high solubility and bioavailability (Ashworth and Shaw, 2006). Additionally, many studies during the last decades have established that due to chlorination process, organic chlorine may account for a large proportion of the total soil chlorine pool (more than 80 % in surface soils of temperate ecosystems. Redon et al., 2012). The aim of this study is thus to measure chlorine-36 in all the compartments of the biogeochemical cycle, to better understand its recycling in the biosphere. The study site is the experimental beech forest site of the Andra long-term monitoring and testing system (OPE*). It is located at Montiers-sur-Saulx, North-East of France and is associated to the future radioactive waste repository site of Bure. Since March 2012, rainwater above (rainfall collected from a 45 m high tower built on purpose) and below (throughfall and stemflow) the canopy, has been collected monthly, as well as soil solutions (gravitational and bound waters) at four depths (0, 10, 30, 60 cm deep). Chlorine-36 and chlorine have been measured in the rainfall samples between March and July 2012 and in water solutions collected from all compartments of the biosphere using isotope dilution mass spectrometry at the french AMS national facility ASTER located at CEREGE. The results yielded from the rainfall samples allow to study the temporal fluctuations of chlorine-36 in the atmosphere, which represents the main inflow of chlorine-36 in its biogeochemical cycle. The first results indicate a flow increase during the late spring-early summer. Santos et al

  8. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  9. Annex 35: Hybvent

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The Annex 35 research project is aiming at a better knowledge of hybrid systems and focusing on development of control strategies and performance prediction methods for hybrid ventilation in new and retrofitted office buildings. Its main objectives are: • to develop control strategies for hybrid ...... and cost effective hybrid ventilation systems in office and educational buildings......The Annex 35 research project is aiming at a better knowledge of hybrid systems and focusing on development of control strategies and performance prediction methods for hybrid ventilation in new and retrofitted office buildings. Its main objectives are: • to develop control strategies for hybrid...... ventilation systems in new and retrofitted office and educational buildings • to develop methods to predict ventilation performance in hybrid ventilated buildings • . to select suitable measurement techniques for diagnostic purposes to be used in . buildings with hybrid ventilation systems • to promote energy...

  10. Occurrence mode of chlorine in solid products from co-pyrolysis of coal and waste plastic and its emission characteristic during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li Zheng; Liu Ze-chang; Zhao Ying; Shi Yu-miao [Chemical and Environmental Engineering College of Shandong University of Science and Technology, Qingdao (China)

    2006-12-15

    The occurrence mode of chlorine in solid products from co-pyrolysis of coal and waste plastic was studied by IR and TG-MS. In addition, the emission characteristic of those solid products during combustion was studied. The results indicates that when co-pyrolysis temperature is below 600{sup o}C, there are some organic as well as inorganic chlorine compounds in coke; when the temperature is above 600{sup o}C, there is only inorganic one in the coke. The emission ratio of chlorine is relative to combustion temperature, the co-pyrolysing temperature as well as the percentage of PVC. The emission ratio of chlorine increases with the rising temperature of combustion. When the combustion temperature is 900{sup o}C, the emission ratio is up to 94%. On the contrary, the emission ratio is lower for the solid product from higher co-pyrolysis temperature as the combustion temperature is the same. The highest chlorine emission ratio from pyrolysis at 400{sup o}C is 99.86%, but that from 1000{sup o}C pyrolysis is 94.35%. 7 refs., 7 figs., 1 tab.

  11. Chlorine treatment effectiveness and physico-chemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana

    Science.gov (United States)

    Karikari, A. Y.; Ampofo, J. A.

    2013-06-01

    Drinking water quality from two major treatment plants in Ghana; Kpong and Weija Plants, and distribution networks in the Accra-Tema Metropolis were monitored monthly for a year at fifteen different locations. The study determined the relationship between chlorine residual, other physico-chemical qualities of the treated water, and, bacteria regrowth. Results indicated that the treated water at the Kpong and Weija Treatment Plants conformed to WHO guidelines for potable water. However, the water quality deteriorated bacteriologically, from the plants to the delivery points with high numbers of indicator and opportunistic pathogens. This could be due to inadequate disinfection residual, biofilms or accidental point source contamination by broken pipes, installation and repair works. The mean turbidity ranged from 1.6 to 2.4 NTU; pH varied from 6.8 to 7.4; conductivity fluctuated from 71.1 to 293 μS/cm. Chlorine residual ranged from 0.13 to 1.35 mg/l. High residual chlorine was observed at the treatment plants, which decreased further from the plants. Results showed that additional chlorination does not take place at the booster stations. Chlorine showed inverse relationship with microbial counts. Total coliform bacteria ranged from 0 to 248 cfu/100 ml, and faecal coliform values varied from 0 to 128 cfu/100 ml. Other microorganisms observed in the treated water included Aeromonas spp., Clostridium spp. and Pseudomonas spp. Boiling water in the household before consumption will reduce water-related health risks.

  12. ADONET 35 Cookbook

    CERN Document Server

    Hamilton, Bill

    2008-01-01

    The new edition of this Cookbook gives you more than 200 coding solutions and best practices for real problems you're likely to face with this technology using Visual Studio 2008 and the .NET 3.5 platform. Organized to help you find the topic and specific recipe you need quickly and easily, this book also offers clear explanations of how and why each code solution works and warns you of potential pitfalls.

  13. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  14. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water.

  15. Researches on Formation of Haloacetic Acids in Chlorination of Drinking Water by a Novel Technique

    Institute of Scientific and Technical Information of China (English)

    LI Xin; REN Yue-ming; QIANG Liang-sheng; ZHAO Hong-bin

    2004-01-01

    Haloacetic acids(HAAs) are formed during the chlorination of drinking water, which are harmful to people′s health due to their carcinogenic and mutagenic effects. In the present study, a detection method combining methyl tert-butyl ether(MtBE) extraction with acid catalysis and gas chromatography coupled with an electron capture detector(GC/ECD) was developed for determining HAAs. The detection limit of this method(MDL) and relative standard deviation(RSD) were below 0.37 μg/L and 6.2%, respectively. The laboratory chlorination experiments were conducted with the purpose of investigating the influences of reaction time, temperature, UV254, bromide and ammonia-nitrogen on the formation of HAAs. The results show that the formation amount of HAAs increases with increasing reaction time and temperature, respectively; and there exists a linear relationship between the formation of HAAs and UV254. The formation amount of HAAs decreases first and then increases as the bromide ion concentration increases, and adding NH+4 is a possible way to control the formation of HAAs.

  16. Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jared A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hylton, Tom D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brunson, Ronald Ray [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney Dale [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inlet was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.

  17. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  18. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  19. Kinetics of Chlorine Decay in Water Distribution Systems

    Institute of Scientific and Technical Information of China (English)

    周建华; 薛罡; 赵洪宾; 汪永辉; 郭美芳

    2004-01-01

    A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with total organic carbon (TOC), the initial chlorine concentration and the temperature. Except for the initial stages they can be simplified into a linear increase with TOC, a linear decrease with initial chlorine concentration and an exponential relationship with the temperature. The model also explains why chlorine decays rapidly in the initial stages. The parameters of model are determined by deriving the best fitness with experimental data. And the accuracy of model has been verified by using the experimental data and the monitoring data in a distribution system.

  20. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  1. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  2. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  3. Bromoform production in tropical open-ocean waters: OTEC chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  4. Assessment of the risk of transporting liquid chlorine by rail

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  5. Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aleisa C [ORNL

    2015-01-01

    Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE Aleisa Bloom, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA) Robert Lyon (bob.lyon@aecom.com), Laurie Stenberg, and Holly Brown (AECOM, Germantown, Maryland, USA) ABSTRACT: Past disposal practices at Dover Air Force Base (AFB), Delaware, created a large solvent plume called Area 6 (about 1 mile long, 2,000 feet wide, and 345 acres). The main contaminants are PCE, TCE, and their degradation products. The remedy is in-situ accelerated anaerobic bioremediation (AAB). AAB started in 2006 and is focusing on source areas and downgradient plume cores. Direct-push injections occurred in source areas where contamination is typically between 5 and 20 feet below ground surface. Lower concentration dissolved-phased contamination is present downgradient at 35 and 50 feet below ground surface. Here, permanent injection/extraction wells installed in transects perpendicular to the flow of groundwater are used to apply AAB. The AAB substrate is a mix of sodium lactate, emulsified vegetable oil, and nutrients. After eight years, dissolved contaminant mass within the main 80-acre treatment area has been reduced by over 98 percent. This successful application of AAB has stopped the flux of contaminants to the more distal portions of the plume. While more time is needed for effects to be seen in the distal plume, AAB injections will soon cease, and the remedy will transition to natural attenuation. INTRODUCTION Oak Ridge National Laboratory Environmental Science Division (ORNL) and AECOM (formerly URS Corporation) have successfully implemented in situ accelerated anaerobic bioremediation (AAB) to remediate chlorinated solvent contamination in a large, multi-sourced groundwater plume at Dover Air Force Base (AFB). AAB has resulted in significant reductions of dissolved phase chlorinated solvent concentrations. This plume, called Area 6, was originally over 1 mile in length and over 2,000 feet wide (Figure 1

  6. 高温对二氧化氯脱木素的贡献%Contribution of high temperature with chlorine delignification

    Institute of Scientific and Technical Information of China (English)

    殷学风; 林涛

    2012-01-01

    基于漂序为D0Eop-D1和D0Eo-D1的硫酸盐桉木浆ECF三段漂,研究90℃高温二氧化氯脱木素对化学品总消耗量和浆料质量的影响.实验结果表明,与常规温度(67℃)二氧化氯脱木素相比,高温二氧化氯脱木素可降低纸浆中HexA含量,并且可以在降低二氧化氯用量的前提下,获得更高粘度和强度的全漂浆.%This paper researched the influence of chlorine dioxide deliglinfication at high tem-perature(90 ℃) on total chemical consumption and pulp quality in D0-Eop-D1 and D0-Eo-D1 bleaching sequence. The results indicated that chlorine dioxide deliglinfication at high temperature could increase the reaction rate uf chlorine dioxide, and thus increase delignification rate and hydrolysis of cellulose and hemicellulose, reduce final pH and HexA content after alkali extraction. For the full bleaching pulp of 90 % ISO, chlorine dioxide deliglinfication at high temperature could save chlorine dioxide consumption and improve pulp viscosity and strength compared with routine bleaching temperature (67 ℃).

  7. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  8. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  9. Prompt gamma analysis of chlorine in concrete for corrosion study.

    Science.gov (United States)

    Naqvi, A A; Nagadi, M M; Al-Amoudi, O S B

    2006-02-01

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine gamma-rays and calcium gamma-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine gamma-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  10. Chlorine dioxide project allows Stora to clean up, use hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    Butters, G.

    1988-10-01

    Effluent fouling into the Strait of Canso between Nova Scotia mainland and Cape Breton Island has caused Stora Forest Industries Ltd. to develop a $5.6 million solution to its chlorine and acid problems. In 1987, Stora produced about 160,000 tonnes of market pulp where their resource base increasingly consisted of hardwood. The company uses hardwood chips for a growing percentage of its annual pulp production and for its hog fuel boiler, but became faced with having to use more local hardwoods which contributes to the resin problem. Their solution was to construct a 12-tpd chlorine dioxide generator, a process using dry sodium chlorate added to concentrated H/sub 2/SO/sub 4/, The products are chlorine dioxide and highly concentrated sulphuric acid resulting from the elimination of water at the starting point. This will eliminate the acid effluent from the generator and the sulphuric acid will be recycled to the top of the chlorine dioxide generation process. In the new process, ClCO/sub 2/ replaces 70% of the chlorine in the first stage, with 100% substitution a goal. In addition to eliminating the chlorine, other benefits include an increase in pulp production, a nominal increase in pulp strength, lower production costs, and an economic incentive to harvest the area's mixed-wood stands.

  11. Zebra mussel control using periodic chlorine dioxide treatments

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, J. [Electric Power Research Institute, Palo Alto, CA (United States); Coyle, J. [Central Illinois Public Service, Merdosia, IL (United States); Crone, D. [Illinois Power Company, Alton, IL (United States)] [and others

    1996-08-01

    This paper summarizes the EPRI report (TR-105202) on the same topic as well as presents changes in current thinking on the suitability (applicability) of chlorine dioxide for fouling control. Chlorine dioxide was tested as a zebra mussel biocide at two steam electric generating stations in Illinois and one in Indiana. The purpose of these studies was to determine the efficacy of chlorine dioxide in killing zebra mussels and to develop site specific treatment programs for the three utilities. The Electric Power Research Institute (EPRI) Zebra Mussel Consortium sponsored the testing of this recent use of chlorine dioxide. The raw water system at Central Illinois Public Service`s Meredosia Station, on the Illinois River, received applications of chlorine dioxide in April, July, and September 1994. The raw water system at Illinois Power Company`s Wood River Station, on the Mississippi River, received applications in July 1993, January, April, May, July, and September 1994. The Gallagher Station, on the Ohio River, was treated in July and October 1994. Chlorine dioxide was generated on-site and injected into the water intake structure. Both cooling and service water systems were treated at the facilities. 6 refs., 13 figs.

  12. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    Science.gov (United States)

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  13. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform

    Institute of Scientific and Technical Information of China (English)

    Zhimin QIANG; Weiwei BEN; ChinPao HUANG

    2008-01-01

    The degradation of selected chlorinated ali-phatic hydrocarbons (CAHs) exemplified by trichloroethy-lene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contami-nants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton's reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new "time-squared" kinetic model, C = Coexp(-kobst2), was developed to express the degrada-tion kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ·OH. Chloride release was monitored to examine the degree of dechlorina- tion during the oxidation of selected CAHs. TCE was more easily dechlorinated than DCE and CF. Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermedi- ates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton's reagent was proposed.

  14. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 2: Uncertainties due to reaction rates

    Science.gov (United States)

    Stolarski, R. S.; Butler, D. M.; Rundel, R. D.

    1977-01-01

    A concise stratospheric model was used in a Monte-Carlo analysis of the propagation of reaction rate uncertainties through the calculation of an ozone perturbation due to the addition of chlorine. Two thousand Monte-Carlo cases were run with 55 reaction rates being varied. Excellent convergence was obtained in the output distributions because the model is sensitive to the uncertainties in only about 10 reactions. For a 1 ppby chlorine perturbation added to a 1.5 ppby chlorine background, the resultant 1 sigma uncertainty on the ozone perturbation is a factor of 1.69 on the high side and 1.80 on the low side. The corresponding 2 sigma factors are 2.86 and 3.23. Results are also given for the uncertainties, due to reaction rates, in the ambient concentrations of stratospheric species.

  15. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  16. Ficusmicrochlorin A-C, two new methoxy lactone chlorins and an anhydride chlorin from the leaves of Ficus microcarpa.

    Science.gov (United States)

    Lin, Huan-You; Chiu, Hsi-Lin; Lu, Te-Ling; Tzeng, Chih-Ying; Lee, Tzong-Huei; Lee, Ching-Kuo; Shao, Yi-Yuan; Chen, Chiy-Rong; Chang, Chi-I; Kuo, Yueh-Hsiung

    2011-01-01

    Two new methoxy lactone chlorins ficusmicrochlorin A (1) and ficusmicrochlorin B (2), and one new anhydride chlorin ficusmicrochlorin C (3), along with eight known pheophytins were isolated from the leaves of Ficus microcarpa. Their structures were determined by the extensive 1D- and 2D-NMR techniques. New pheophytin compound was rarely obtained from natural sources. In the past ten years, only three new natural pheophytins were characterized.

  17. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Science.gov (United States)

    Vidakovic-Koch, Tanja; Martinez, Isai Gonzalez; Kuwertz, Rafael; Kunz, Ulrich; Turek, Thomas; Sundmacher, Kai

    2012-01-01

    Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl− crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized. PMID:24958294

  18. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears indicates a gradual increase from Alaska east to Svalbard, except PCB levels are significantly higher in eastern Greenland and Svalbard. Information on temporal trends is somewhat contradictory.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Directory of Open Access Journals (Sweden)

    Ulrich Kunz

    2012-07-01

    Full Text Available Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized.

  20. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  1. Rate and mechanism of the reactions of OH and Cl with 2-methyl-3-buten-2-ol

    Science.gov (United States)

    Ferronato, C.; Orlando, J. J.; Tyndall, G. S.

    1998-10-01

    An environmental chamber/Fourier transform infrared system was used to determine the rate coefficient k1 for the gas-phase reaction of OH with 2-methyl-3-buten-2-ol (MBO, (CH3)2C(OH)CH=CH2), relative to the rate of its reaction with ethylene (k2) and propylene (k3). Experiments performed at 295±1 K, in 700 torr total pressure of air, gave k1 = (6.9±1.0) × 10-11 cm3 molecule-1 s-1. At 295±1 K, the reaction of OH with MBO yielded, on a per mole basis, (52±5)% acetone, (50±5)% glycolaldehyde, and (35±4)% formaldehyde. The production of acetone from the oxidation of MBO may be of significance globally. The kinetics and mechanism of the reaction of chlorine atoms with MBO (k15) have also been studied at 700 torr total pressure of air and 295±1 K. The rate coefficient was determined using a relative rate technique, with ethane (k16), ethylene (k17), and cyclohexane (k18) as reference compounds. The value of k15 was found to be (3.3±0.4) × 10-10 cm3 molecule-1 s-1 at 295 K. The major carbon-containing products obtained in the Cl-atom oxidation of MBO were acetone (47±5)%, chloroacetaldehyde (53±5)%, HCOCl (<11%), and formaldehyde (6 ± 2)%.

  2. A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation

    Science.gov (United States)

    Hossaini, Ryan; Chipperfield, Martyn P.; Saiz-Lopez, Alfonso; Fernandez, Rafael; Monks, Sarah; Feng, Wuhu; Brauer, Peter; Glasow, Roland

    2016-12-01

    Chlorine atoms (Cl) are highly reactive toward hydrocarbons in the Earth's troposphere, including the greenhouse gas methane (CH4). However, the regional and global CH4 sink from Cl is poorly quantified as tropospheric Cl concentrations ([Cl]) are uncertain by 2 orders of magnitude. Here we describe the addition of a detailed tropospheric chlorine scheme to the TOMCAT chemical transport model. The model includes several sources of tropospheric inorganic chlorine (Cly), including (i) the oxidation of chlorocarbons of natural (CH3Cl, CHBr2Cl, CH2BrCl, and CHBrCl2) and anthropogenic (CH2Cl2, CHCl3, C2Cl4, C2HCl3, and CH2ClCH2Cl) origin and (ii) sea-salt aerosol dechlorination. Simulations were performed to quantify tropospheric [Cl], with a focus on the marine boundary layer, and quantify the global significance of Cl atom CH4 oxidation. In agreement with observations, simulated surface levels of hydrogen chloride (HCl), the most abundant Cly reservoir, reach several parts per billion (ppb) over polluted coastal/continental regions, with sub-ppb levels typical in more remote regions. Modeled annual mean surface [Cl] exhibits large spatial variability with the largest levels, typically in the range of 1-5 × 104 atoms cm-3, in the polluted northern hemisphere. Chlorocarbon oxidation provides a tropospheric Cly source of up to 4320 Gg Cl/yr, sustaining a background surface [Cl] of methane sink of 12-13 Tg CH4/yr due the CH4 + Cl reaction ( 2.5% of total CH4 oxidation). Larger regional effects are predicted, with Cl accounting for 10 to >20% of total boundary layer CH4 oxidation in some locations.

  3. Toxicokinetics of short-chain chlorinated paraffins in Sprague-Dawley rats following single oral administration.

    Science.gov (United States)

    Geng, Ningbo; Zhang, Haijun; Xing, Liguo; Gao, Yuan; Zhang, Baoqin; Wang, Feidi; Ren, Xiaoqian; Chen, Jiping

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) have attracted considerable attention for their characteristic of persistent organic pollutants. However, very limited information is available for their toxicokinetic characteristics, limiting the evaluation of their health risks. In this study, we performed a toxicokinetics study to explore the absorption and excretion processes of SCCPs (a mixture of C10-, C11-, C12- and C13-CPs) after a single oral administration to the Sprague-Dawley rats. The toxicokinetic results showed that peak blood concentration of total SCCPs was attained at 2.8 day with Cmax value of 2.3 mg L(-1). The half-lives of total SCCPs in blood for the absorption t1/2 (ka), distribution t1/2 (α) and elimination phases t1/2 (β) were calculated to be 1.0, 1.7 and 6.6 days, respectively. During the 28 days post-dosing, about 27.9% and 3.5% of orally administrated SCCPs were excreted through feces and urine without metabolism, respectively. Congener group abundance profiles indicate a relative increase of Cl5-SCCPs in blood and urine in the elimination stage, and a higher accumulation of Cl8-10-SCCPs in feces. The distribution discrepancies of SCCPs congener groups in blood and excreta were more dependent on chlorine contents than on carbon chain lengths.

  4. Reflectance spectra of hydrated chlorine salts: The effect of temperature with implications for Europa

    Science.gov (United States)

    Hanley, Jennifer; Dalton, J. Brad; Chevrier, Vincent F.; Jamieson, Corey S.; Barrows, R. Scott

    2014-11-01

    Hydrated chlorine salts are expected to exist on a variety of planetary bodies, including inner planets such as Mars and outer planet satellites such as Europa. However, detection by remote sensing has been limited due to a lack of comparison data in spectral libraries. In addition, at low temperatures spectral features of many H2O-bearing species deviate from their room temperature behavior. Thus, we acquired spectra of NaCl, NaClO4·nH2O, MgCl2·nH2O, Mg(ClO4)2·6H2O, and Mg(ClO3)2·6H2O from 0.35 to 2.5 µm at both 298 and 80 K to observe the effects of temperature on diagnostic spectral features. In the near-infrared, the strongest spectral features often arise from water molecules. Increasing hydration states increases the depth and width of water bands. Interestingly, at low temperature these bands become narrower with sharper, better defined minima, allowing individual bands to be more easily resolved. We also measured frozen eutectic solutions of NaCl, MgCl2, and KCl. We show that while care must be taken to acquire laboratory spectra of all hydrated phases at the relevant conditions (e.g., temperature and pressure) for the planetary body being studied, chlorine salts do possess distinct spectral features that should allow for their detection by remote sensing.

  5. Recovering Y and Eu from Waste Phosphors Using Chlorination Roasting—Water Leaching Process

    Directory of Open Access Journals (Sweden)

    Mingming Yu

    2016-10-01

    Full Text Available Recovering Y and Eu from waste phosphors using chlorination roasting followed by a water leaching process was investigated in this study. Firstly, by chlorination roasting and water leaching, Y and Eu elements present in waste phosphors were efficiently extracted into a leach solution. Secondly, the majority of the impurities in the solution can be removed by adjusting the pH to 4.5 using a Na2S and NH3·H2O solution. Thirdly, the rare earths can be precipitated afterwards by adding a H2C2O4 solution and adjusting the pH to 2.0. Then rare earth oxides (REOs can be obtained after calcining at 800 °C for 1 h. The characterization study of the waste phosphors and the rare earth oxide products was performed by XRD, XRF, and SEM-EDS analysis to determine the phase and morphological features. Influences of the factors, such as roasting temperatures and time, the addition of ammonium chloride on the roasting of waste phosphors, as well as the pH and the amount of oxalates on the precipitation of Y and Eu, were investigated. The maximum grade (99.84% of mixed rare earth oxides and recovery rate (87.35% of Y and Eu were obtained at the optimized conditions.

  6. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; GAO Tingyao; ZHOU Rongfeng; MA Lumin

    2007-01-01

    The electrochemical reduction characteristies of chlorinated hyrdrocarbons were investigated by cyclic voltammetry technique.The reduction mechanism and activity of the chlorinated hydrocarbons at the copper electrode were explored.The relationship between the structure of chlorinated hydrocarbons and their reductive activity were discussed.The experimental results showed that chlorinated alkanes and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode.However,chlorinated aromatic hydrocarbons were not easy to reduce at the copper electrode.The results provided a theoretical basis for the catalyzed iron inner electrolysis method.

  7. Study on metal corrosion caused by chlorine dioxide of various purities

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼; 许晶

    2004-01-01

    Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contras, metals corrosion is the least serious in the case of chlorine dioxide.The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.

  8. Sub μg·L-1 level analysis of chlorinated pesticide and herbicide analysis in water by GC/μECD using agilent J&W DB-35ms ultra inert and DB-XLB columns%使用安捷伦J&W DB-35ms超高惰性色谱柱和DB-XLB色谱柱对水中低于μg·L-1级的有机氯农药和除草剂进行GC/μECD法分析

    Institute of Scientific and Technical Information of China (English)

    Doris Smith; Ken Lynam

    2016-01-01

    本文中使用安捷伦SPEC C18AR固相萃取膜盘成功萃取了水中的有机氯农药残留和除草剂.使用双柱配置的GC/μECD系统进行检测,安捷伦J&W DB-35ms UI超高惰性色谱柱作为分析柱,DB-XLB色谱柱为确认柱.该方法为浓度接近或低于最大污染限值的含氯有机物提供了高度灵敏的分析方法.根据预估的分析物萃取浓度,方法使用的校准范围为1-100 ng· mL-1.分别对0.01 μg·L-1的加标水样和一个自来水水样进行了萃取和分析,结果证明可满足水中的有机氯农药残留和除草剂的测定.

  9. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  10. Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs).

    Science.gov (United States)

    Steen, Peter O; Grandbois, Matthew; McNeill, Kristopher; Arnold, William A

    2009-06-15

    The potential photochemical formation of polybrominated and mixed halogenated dibenzo-p-dioxins (PBDDs and PXDDs) from hydroxylated polybrominated and polybrominated/ chlorinated diphenyl ethers (OH-PBDEs and OH-PBCDEs) in aqueous solution was studied. The ortho-hydroxylated BDE47 derivative 6-OH-BDE47, and chlorinated derivatives 3-Cl-6-OH-BDE47, 5-Cl-6-OH-BDE47, and 3,5-Cl-6-OH-BDE47 were photolyzed under sunlight at 45 degrees N latitude in buffered waters, Mississippi River water, Lake Josephine water, and ultrapure water adjusted to the pH of the natural waters. Chemical actinometry was used to determine reactant quantum yields which were calculated to be between 0.03 and 0.21, with lower yields for the chlorinated derivatives under all conditions. Quantum yields under natural water conditions were not significantly enhanced indicating that direct photolysis is the primary process of photochemical degradation. The formation of halogenated dioxins from the outdoor photolysis of the four OH-PBDEs/OH-PBCDEs under all conditions was confirmed. Dioxin yields of 0.7-3.6% were found, with higher yields for 6-OH-BDE47 under all conditions. This study suggests that photolysis of OH-PBDEs and OH-PBCDEs is a potential formation pathway of PBDDs and PXDDs in the environment.

  11. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta, M. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)], E-mail: mfontcub@aspb.es; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)

    2008-01-15

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan {alpha}, {beta} or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements.

  12. Intra- and intermembrane distribution of chlorin e6 derivatives

    Science.gov (United States)

    Zorin, Vladimir P.; Zorina, Tatyana E.; Mikhalovsky, Iosif S.; Khludeyev, Ivan I.

    1995-01-01

    The parameters of chlorin e6 and trimethylester of chlorin e6 incorporation and distribution in suspensions of unilamellar liposomes of DMPC, DPPC, and DSPC, as well as efficiency of the pigment redistribution from liposomes to cellular membranes have been studied. Determination of the fraction of pigments' fluorescence which is accessible to quenching by a watersoluble quencher indicates that for both chlorins the outer monolayer of the liposomal membrane is more populated than the inner one. Gel-liquid crystalline phase transition induces a shift of a part of the pigments' molecules toward the inner monolayer. By means of ultrafiltration technique it is shown that chlorins binding to liposomal membrane occurs as partitioning between water and lipid phases. The partition coefficient is affected strongly by the type of pigment, the phase state of the lipid bilayer. Similar results were obtained when the influence of the physical state of the lipid bilayer on the rate of chlorins redistribution from liposomes to cellular membrane was studied. These findings show that diffusive mobility of the sensitizer in suspensions of cellular and model membranes is a complex process which is dependent on structural features of both the pigment and its biological carriers.

  13. Coagulation properties of anelectrochemically prepared polyaluminum chloride containing active chlorine

    Institute of Scientific and Technical Information of China (English)

    HU Chengzhi; LIU Huijuan; QU Jiuhui

    2006-01-01

    With high content of the Al13 species and the active chloride, an electrochemically prepared polyaluminum chloride (E-PACl) presents integrated efficiency of coagulation and oxidation. The coagulation properties of E-PACl were systemically investigated through jar tests in the various water quality conditions. The active chlorine in E-PACl can significantly influence the coagulation behavior due to the active chlorine preoxidation, which can change the surface charge characteristic of organic matter (OM) in water. The active chlorine preoxidation could improve the E-PACl coagulation efficiency if the water possessed the characteristics of relatively low OM content (2 mg/L) and high hardness (278 mg CaCO3/L). In the water with medium content of OM (5 mg/L), dosage would be a crucial factor to decide whether the active chlorine in E-PACl aided coagulation process or not. Comparing with alkaline condition, active chlorine would show a more significant influence on the coagulation process in acidic region.

  14. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.

    Science.gov (United States)

    Van Aken, Benoit; Doty, Sharon Lafferty

    2010-01-01

    Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.

  15. Application of chlorine dioxide as an oilfield facilities treatment fluid

    Energy Technology Data Exchange (ETDEWEB)

    Romaine, J.; Strawser, T.G.; Knippers, M.L.

    1995-11-01

    Both mechanical and chemical treatments are used to clean water flood injection distribution systems whose efficiency has been reduced as a result of plugging material such as iron sulfide sludge. Most mechanical treatments rely on uniform line diameter to be effective, while chemical treatments require good contact with the plugging material for efficient removal. This paper describes the design and operation of a new innovative application using chlorine dioxide for the removal of iron sulfide sludge from water flood injection distribution systems. This technology has evolved from the use of chlorine dioxide in well stimulation applications. The use of chlorine dioxide for continuous treatment of injection brines will also be discussed. Exxon USA`s Hartzog Draw facility in Gillette, Wyoming was the site for the application described. 4,500 barrels of chlorine dioxide was pumped in three phases to clean sixty-six miles of the water flood distribution system. Results indicate that chlorine dioxide was effective in cleaning the well guard screens, the injection lines, frac tanks used to collect the treatment fluids and the injection wells.

  16. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    Science.gov (United States)

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors.

  17. Chlorination byproducts, their toxicodynamics and removal from drinking water.

    Science.gov (United States)

    Gopal, Krishna; Tripathy, Sushree Swarupa; Bersillon, Jean Luc; Dubey, Shashi Prabha

    2007-02-01

    No doubt that chlorination has been successfully used for the control of water borne infections diseases for more than a century. However identification of chlorination byproducts (CBPs) and incidences of potential health hazards created a major issue on the balancing of the toxicodynamics of the chemical species and risk from pathogenic microbes in the supply of drinking water. There have been epidemiological evidences of close relationship between its exposure and adverse outcomes particularly the cancers of vital organs in human beings. Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine. The total concentration of trihalomethanes and the formation of individual THM species in chlorinated water strongly depend on the composition of the raw water, on operational parameters and on the occurrence of residual chlorine in the distribution system. Attempts have been made to develop predictive models to establish the production and kinetics of THM formations. These models may be useful for operational purposes during water treatment and water quality management. It is also suggested to explore some biomarkers for determination of DBP production. Various methods have been suggested which include adsorption on activated carbons, coagulation with polymer, alum, lime or iron, sulfates, ion exchange and membrane process for the removal of DBPs. Thus in order to reduce the public health risk from these toxic compounds regulation must be inforced for the implementation of guideline values to lower the allowable concentrations or exposure.

  18. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gabr, Hamid Mohammad [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Zheng, Tianling [State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Yu, Xin, E-mail: xyu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log{sub 10} control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log{sub 10} reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus.

  19. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Directory of Open Access Journals (Sweden)

    M. Mendez

    2013-06-01

    Full Text Available The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  20. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    Science.gov (United States)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  1. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Science.gov (United States)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  2. Reductive cleavage of chlorine from 6-chloronicotinic acid on mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, M., E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, S., E-mail: q02pibes@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain); Rodriguez Mellado, J.M., E-mail: jmrodriguez@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain)

    2011-04-30

    Highlights: Dissociation constants (as pK) of 6 chloronicotinic acid (6CNA) obtained by UV-vis spectroscopy: -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen). Electrolysis of 6CNA evidenced the reductive cleavage of chlorine from the molecule. Kinetic parameters (Tafel slopes and reaction orders) determined at the foot of the waves. Reduction pathways have been proposed. - Abstract: This paper presents polarographic (direct current, dc, and differential pulse, DP) and voltammetric (linear-sweep cyclic voltammetry) studies on the electroreduction of 6-chloronicotinic acid (6CNA) on mercury electrodes. In order to obtain the dissociation constants of 6CNA, UV-vis spectra were recorded as a function of pH. pK values of -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen) were obtained. The electrochemical studies were performed in the acidity range 6 M H{sub 2}SO{sub 4} to pH 8. Above the last pH value no signals were obtained. Electrolysis made at potentials corresponding to the limiting current of the first wave indicates that there is a reductive cleavage of chlorine from the molecule. This was confirmed by dc and DP polarografic results and also by voltammetric results. Kinetic parameters such as Tafel slopes and electrochemical reaction orders have been determined at potentials corresponding to the foot of the waves. From these results, together with those obtained by cyclic voltammetry, a reaction pathway is proposed, in which the rate-determining step of the process is the release of a chloride ion from the radical formed after the uptake of a H{sup +} ion and an electron.

  3. Degradation of anthracene, pyrene and benzo[a]anthracene in aqueous solution by chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    LIU Jinquan; HUANG Junli; SU Liqiang; CAO Xiangyu; JI Ying

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute an important group of micropollutants, which are known to be mutagenic, carcinogenic and/or co-carcinogenic and relatively persistent in the environment. The effects of chlorine dioxide (ClO2) on the degradation of anthracene (ANTH), pyrene (PYR) and benzo[a]anthracene (BaA) in aqueous solution were investigated using high performance liquid chromatography (HPLC). In preliminary experiments, it was observed that ClO2 could remove these three PAHs effectively within a short time. Several factors including reaction time, the concentration of ClO2 and pH of the reaction mixture influencing the degradation ratio of PAHs have been studied by batch experiments. The results showed that the degradation ratio of PAHs was affected by reaction time and the concentration of ClO2 instead of pH. The degradation ratio of ANTH, PYR and BaA could reach their maximum as approximately 99.0%, 67.5% and 89.5%, respectively, under the condition as follows: reaction time 30, 60 and 120 min, the concentration of ClO2 0.1, 0.4 and 0.5 mmol·L-1, and pH 7.2. ANTH was selected as the representative to study the reaction mechanism with ClO2. The oxidation products formed in the reaction of ANTH with ClO2 were tentatively identified by gas chromatography-mass spectrometry (GC-MS), and the results showed that the main product was 9, 10-anthraquinone, which could be biodegraded more easily and quickly than ANTH. Through analyzing the reaction properties of ANTH and ClO2, the possible pathway for the ANTH-ClO2 reaction was proposed based on the theory of single electron transfer (SET).

  4. Experimental study on cryptosporidium inactivation in drinking water by chlorine-based disinfectants%氯系消毒剂杀灭饮用水中隐孢子虫试验研究

    Institute of Scientific and Technical Information of China (English)

    刘丽娜; 张鑫; 崔崇威; 孙兴滨

    2013-01-01

    为了考察氯系消毒剂对饮用水中隐孢子虫的灭活作用,分别对氯气和二氧化氯的投加量、反应时间、浊度、pH值和温度等影响因素进行考察.实验结果表明,氯系消毒剂对隐孢子虫理想灭活效果的反应条件是氯气投量6.5 mg/L,反应360 min,ClO2投量3.0 mg/L,反应120 min;浊度越高,氯气对隐孢子虫的灭活率越低,ClO2对隐孢子虫灭活率当浊度升高到5.0和10.0 ntu时,影响基本稳定;pH值波动对氯气灭活影响不大,ClO2在pH值6~7范围内灭活效果最佳;5~35℃范围,水温增加,灭活效果逐渐增强.%In order to find chlorine-based disinfectants' inactivation effect on cryptosporidium in drinking water,factors influencing inactivation efficiency such as the dosage of chlorine and chlorine dioxide,contact time,turbidity,pH value and temperature were investigated.It was found that optimal cryptosporidim inactivation efficacy of chlorine-based disinfectants was obtained at 360 min with chlorine dosage of 6.5 mg/L and at 120 min with chlorine dioxide dosage of 3.0 mg/L,respectively.Cryptosporidium inactivation ratio of chlorine reduced with higher turbidity; cryptosporidium inactivation ratio of chlorine dioxide was almost stable when turbidity increased to 5.0 and 10.0 ntu.The fluctuating of pH value had little influence on inactivation by chlorine; optimal inactivation efficiency of chlorine dioxide was obtained at pH value of 6 ~ 7.In the temperature range of 5 ~ 35 ℃,inactivation ratio was enhanced with the increase of water temperature.

  5. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.

    Science.gov (United States)

    Guo, Zhanyong; Li, Qing; Wang, Gang; Dong, Fang; Zhou, Haoyuan; Zhang, Jing

    2014-01-01

    A group of novel inulin derivatives containing benzene or chlorinated benzene were synthesized by reaction of chloracetyl inulin (CAIL) with the Schiff bases of 4-amino-pyridine, including (2-pyridyl)acetyl inulin chloride (PAIL), 2-[4-(2-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2CPAIL), 2-[4-(4-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (4CPAIL), and 2-[4-(2,4-dichlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2,4DCPAIL). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro. Of all the synthesized chitosan derivatives, 2,4DCPAIL inhibited the growth of the tested phytopathogens with inhibitory indices of 67%, 47%, and 43% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak and Fusarium oxysporum (schl.) F.sp. niveum (F. oxysporum) respectively at 1.0 mg/mL. The results indicate that all the inulin derivatives have better antifungal activity than inulin, and the inhibitory index is affected by the chlorine atom grafted to the inulin derivatives.

  6. Oxidation of diclofenac by aqueous chlorine dioxide: identification of major disinfection byproducts and toxicity evaluation.

    Science.gov (United States)

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai

    2014-03-01

    Diclofenac (DCF), a synthetic non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the aquatic environment. In this work, the mechanism and toxicity of DCF degradation by ClO2 under simulated water disinfection conditions were investigated. Experimental results indicate that rapid and significant oxidation of DCF occurred within the first few minutes; however, its mineralization process was longer than its degradation process. UPLC-MS and (1)H NMR spectroscopy were performed to identify major disinfection byproducts that were generated in three tentative degradation routes. The two main routes were based on initial decarboxylation of DCF on the aliphatic chain and hydroxylation of the phenylacetic acid moiety at the C-4 position. Subsequently, the formed aldehyde intermediates were the starting point for further multistep degradation involving decarboxylation, hydroxylation, and oxidation reactions of CN bond cleavage. The third route was based on transient preservation of chlorinated derivatives resulting from electrophilic attack by chlorine on the aromatic ring, which similarly underwent CN bond cleavage. Microtox bioassay was employed to evaluate the cytotoxicity of solutions treated by ClO2. The formation of more toxic mid-byproducts during the ClO2 disinfection process poses a potential risk to consumers.

  7. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.

    Science.gov (United States)

    Hua, Guanghui; Reckhow, David A; Abusallout, Ibrahim

    2015-07-01

    Natural organic matter (NOM) is the major precursor to the formation of disinfection byproducts (DBPs) during drinking water treatment. Specific ultraviolet absorbance (SUVA) is a widely used surrogate parameter to characterize NOM and predict its DBP formation potential. The objective of this study was to determine the relationships between SUVA and different classes of DBPs formed by NOM fractions from different sources. Three natural waters with a wide SUVA range were fractionated into differing hydrophobicity and molecular weight groups using XAD-4 and XAD-8 resins and ultrafiltration membranes. Each NOM fraction was treated with chlorine and monochloramine under controlled laboratory conditions. Different classes of DBPs showed different relationships with SUVA. SUVA correlated strongly with trihaloacetic acids (THAAs) and unknown total organic halogen (UTOX) yields whereas weak correlations were observed between SUVA and trihalomethane (THM) and dihaloacetic acid (DHAA) yields during chlorination. These results reinforce the hypothesis that DHAAs and THAAs form through different precursors and reaction pathways. Strong correlation between SUVA and UTOX was also observed during chloramination. However, no significant relationship was observed between SUVA and chloramination THMs and DHAAs. Overall, SUVA is a good indicator for the formation of unknown DBPs. This indicates that UV absorbing compounds and aromatic carbon within NOM are the primary sources of precursors for unknown DBPs.

  8. Photochemical partitioning of the reactive nitrogen and chlorine reservoirs in the high-latitude stratosphere

    Science.gov (United States)

    Kawa, S. R.; Fahey, D. W.; Heidt, L. E.; Pollock, W. H.; Solomon, S.; Anderson, D. E.; Loewenstein, M.; Proffitt, M. H.; Margitan, J. J.; Chan, K. R.

    1992-01-01

    The correlated set of measurements in the lower stratosphere from polar missions of the NASA ER-2 is used to derive partitioning of the major components of the reactive nitrogen and inorganic chlorine reservoirs. The results provide a consistent method for comparing distributions, and hence the controlling processes, between different areas of the near-polar regions. Clear evidence of the effects of heterogeneous processes in the atmosphere is found. Values for NO2, ClONO2, N2O5, and Cl2O2 are derived in a simplified steady-state model based on in situ NO, ClO, O3, temperature, and pressure measurements, laboratory-measured reaction rates; and modeled photodissociation rates. Values for the reservoir totals are independently derived from measurements of N2O, organic chlorine, and total reactive nitrogen. The relative abundances of the measured and derived species within the reservoirs are calculated, and the longer-lived species HCl and HNO3 are estimated as the residuals of their respective reservoirs.

  9. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    capable of incorporating multiple chemical and biological reactions to model the movement and chemical alteration of chlorinated solvents as they move with groundwater through the subsurface and reach to the surface water of the Zenne River . Keywords: MODFLOW, RT3D, Chlorinated-solvent; groundwater/surface water interaction ACKNOWLEDGEMENT The authors would like to thank the EU/FP7 AQUAREHAB Project for the financial support.

  10. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... term secondary source that can leach to the underlying aquifer. As some of the chlorinated solvents and their degradation products are toxic and carcinogenic, remediation technologies applicable in low permeability settings are needed. Enhanced reductive dechlorination (ERD) has been proven efficient...... and ethanes in clay till (Vadsbyvej) revealed a very complex system where diffusion, biotic and abiotic degradation processes occurred simultaneously. High resolution sub sampling with combined use of chemical analysis, molecular microbial tools and CSIA was necessary to identify both biotic and abiotic...

  11. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  12. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  13. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2013-01-01

    Full Text Available In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS, Energy Dispersi