WorldWideScience

Sample records for chlorinated polyvinyl chloride

  1. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  2. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  3. Structure of chlorinated poly(vinyl chloride). III. Preparation of poly(vinyl chloride)-β,β-d2 as a model for the study of the mechanism of chlorination and of the chlorinated poly(vinyl chloride) structure

    International Nuclear Information System (INIS)

    Lukas, R.; Kolinsky, M.

    1976-01-01

    A method for the preparation of poly(vinyl chloride)-β,β-d 2 (PVC-β,β-d 2 ) as a model for the investigation of the mechanism of chlorination and of the CPVC structure has been suggested. The conditions of preparation of deuterated intermediates of a multistage synthesis of vinyl chloride-β,β-d 2 and of suspension-polymerized PVC-β,β-d 2 have been described including the mass balance. Malonic acid was used as the starting compound. Tacticity values of a sample of PVC-β,β-d 2 and its infrared and nuclear magnetic resonance (NMR) spectra are presented and compared with the data already published

  4. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  5. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  6. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  7. [Determination of short chain chlorinated paraffins in polyvinyl chloride plastics by gas chromatography-negative chemical ion/mass spectrometry].

    Science.gov (United States)

    Xing, Yuanna; Lin, Zhihui; Feng, Anhong; Wang, Xin; Gong, Yemeng; Chen, Zeyong

    2015-02-01

    A novel method was established to determine short chain chlorinated paraffins (SC-CPs) in polyvinyl chloride (PVC) plastics by gas chromatography-negative chemical ion/mass spectrometry (GC-NCI/MS). Ultrasonic extraction was used to extract SCCPs from PVC plastics. The optimal extraction time was 1.5 h, and concentrated sulfuric acid was adopted to purify the extracted solution. Finally, SCCPs in a sample were detected by GC-NCI/MS at 160 C and with methane reagent gas at 1. 5 mL/min. This method was not influenced by medium chain chlorinated paraffins (MCCPs) in the sample, and accurate quantitation was made for SCCPs. Twelve batches of samples were analyzed and SCCPs were detected in each batch with the contents from 0. 3 x 10(2)mg/kg to 3. 5 x 10(4)mg/kg. With respect to European limitation of SC-CPs (1%), four batches of samples did not comply with the European regulation, and they accounted for 33. 3%. Obviously, high SCCPs risk was presented in PVC plastics.

  8. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  9. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  10. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...

  11. Process for the graft polymerization of polyvinyl chloride. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, E; Kusama, Y; Udagawa, A; Hashimoto, S

    1970-08-14

    The graft polymerization of acrylonitrile on polyvinyl chloride is effected by simultaneous irradiation with ionizing radiations in a reaction bath consisting of 30% acrylonitrile and 70% n-hexane. The acrylonitrile-hydrocarbon reaction bath increases the graft efficiency markedly when the content of acrylonitrile is 30%. In this case, the formation rate of acrylonitrile homopolymer decreases with a decrease in the content of acrylonitrile. The immersion time may be from a few minutes to a few hours, depending on the type, property and desired graft efficiency of the polyvinyl chloride resin. The polyvinyl chloride may be any available on the market. The acrylonitrile may contain a small quantity of copolymerizable monomer if it does not influence the thermal property of the polyvinyl chloride graft polymer. The ionizing radiations must have enough energy to form an ion pair by removing one electron from one atom of a gas. In examples, 10 g of polyvinyl chloride in powder form were immersed in 100 cc of a mixed solution consisting of 70% to 90% of n-hexane and 10% to 30% of acrylonitrile. The polyvinyl chloride in the solution was exposed to electron beams of 2 Mrad at a dose rate of 7.2 x 10/sup 7/ rad/hr. under a reduced pressure. The graft efficiency was 50% to 80% and the yield of acrylonitrile homopolymer was 0.42 g to 1.26 g.

  12. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  13. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... Chlorine in Vinyl Chloride Polymers and Copolymers,” which is incorporated by reference (Copies may be..., Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For... percent in plastic articles prepared from polyvinyl chloride and/or from vinyl chloride copolymers...

  14. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    Science.gov (United States)

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  15. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    NARCIS (Netherlands)

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the

  16. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    Science.gov (United States)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  17. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  18. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  19. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride

    International Nuclear Information System (INIS)

    Park, Kye-Sung; Sato, Wakao; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2009-01-01

    Indium (In) was recovered from indium oxide (In 2 O 3 ) and liquid crystal display (LCD) powder via a chloride volatilization process using polyvinyl chloride (PVC) as the chlorination agent. The recovery of In from In 2 O 3 increased with an increasing molar Cl/In ratio in N 2 and air atmospheres. The degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 o C was 98.7% and 96.6%, for N 2 and air, respectively. The In recovery also increased notably with increasing temperature in N 2 atmosphere. In both atmospheres, the In recovery increased with an increasing degradation temperature of PVC. However, the In recovery from LCD powder was lower than that from In 2 O 3 . For LCD powder, the degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 o C was 66.7% and 54.1%, for N 2 and air, respectively.

  20. Electron Beam Damage in Poly(Vinyl Chloride) and Poly(Acrylonitrile) as Observed by Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.

    2003-01-01

    AES spectra of spun-cast films of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) were collected over a period of time to determine specimen damage during exposure to a 10kV electron beam. For the PVC, loss of chlorine was observed over a period of 203 minutes to the extent that the final chlorine concentration was only 20% of its original value. PAN exhibited a loss in nitrogen content over a period of 120 minutes, but the rate of damage to the polymer was significantly less than PVC. Figure 1 shows the atomic concentration in the PVC film as a function of dose (time). It takes a dose of approximately 7.0x10-5 Ccm-5 for the chlorine concentration to fall from its original value by 10% (one definition of critical dose). Figure 2 shows a similar drop in nitrogen concentration in the PAN film as a function of dose. For this polymer, it takes a dose of 1.3x10-3 Ccm-2 for the nitrogen concentration to fall by 10%

  1. The influence of polyvinyl chloride (P.V.C.) tubing on the isolated perfused rat heart

    NARCIS (Netherlands)

    Meijler, F.L.; Willebrands, A.F.; Durrer, D.

    1960-01-01

    Some brands of polyvinyl chlorides interfere with cardiac contraction, whereas other brands do not. Chemical investigation showed that the stabilizer is most probably responsibie for the cardiotoxic effect. It is suggested that all types of polyvinyl chloride used for medical and biological

  2. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.

    Science.gov (United States)

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2017-09-01

    In the present study, cathode materials (C/LiCoO 2 ) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO 2 /PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe 4 O 6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO 2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe 4 O 6 . This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.

  3. The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives

    OpenAIRE

    Ilic, Ilija; Krstev, Boris; Stopic, Srecko; Cerovic, K

    1997-01-01

    Chlorination of nickel oxide by chlorine and calcium chloride in the presence of C, BaS and S were studied, both experimentally and theoretically. Chlorination of nickel oxide by chlorine was carried out in the temperature range 573-873 K and by calcium chloride in the temperature range 1023-1223 K. The results obtained of the chlorination of nickel oxide by chlorine showed that C has the strongest and S the weakest effect on the process. Addition of BaS has a favorable effect on the chlorina...

  4. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artifici...

  5. 77 FR 22847 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2012-04-17

    ... abbreviations are used in this document. CAA Clean Air Act CDD/CDF chlorinated dibenzo-dioxins and furans CDX... chloride and chlorinated dibenzo-dioxins and furans (CDD/CDF)) and hydrogen chloride (HCl). We did not... chloride leak action level because if either of these pollutants is detected in the cooling water or in the...

  6. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  7. Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its methodology.

    Science.gov (United States)

    Rohlenová, J; Gryndler, M; Forczek, S T; Fuksová, K; Handova, V; Matucha, M

    2009-05-15

    Chloride, which comes into the forest ecosystem largely from the sea as aerosol (and has been in the past assumed to be inert), causes chlorination of soil organic matter. Studies of the chlorination showed that the content of organically bound chlorine in temperate forest soils is higher than that of chloride, and various chlorinated compounds are produced. Our study of chlorination of organic matter in the fermentation horizon of forest soil using radioisotope 36Cl and tracer techniques shows that microbial chlorination clearly prevails over abiotic, chlorination of soil organic matter being enzymatically mediated and proportional to chloride content and time. Long-term (>100 days) chlorination leads to more stable chlorinated substances contained in the organic layer of forest soil (overtime; chlorine is bound progressively more firmly in humic acids) and volatile organochlorines are formed. Penetration of chloride into microorganisms can be documented by the freezing/thawing technique. Chloride absorption in microorganisms in soil and in litter residues in the fermentation horizon complicates the analysis of 36Cl-chlorinated soil. The results show that the analytical procedure used should be tested for every soil type under study.

  8. Terpyridine modified poly(vinyl chloride) : possibilities for supramolecular grafting and crosslinking

    NARCIS (Netherlands)

    Meier, M.A.R.; Schubert, U.S.

    2003-01-01

    Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two-step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an

  9. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Lucía I., E-mail: lbarbosa@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); González, Jorge A. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Parque General San Martín, CP M5502JMA Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina)

    2015-04-10

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl{sub 2} on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl{sub 2} at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl{sub 2}Si{sub 2}O{sub 8}, SiO{sub 2}, and CaSiO{sub 3}.

  10. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    International Nuclear Information System (INIS)

    Barbosa, Lucía I.; González, Jorge A.; Ruiz, María del Carmen

    2015-01-01

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl 2 on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl 2 at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl 2 Si 2 O 8 , SiO 2 , and CaSiO 3

  11. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  12. Ultrastructural immunocytochemistry of particulate fractions using polyvinyl chloride microculture wells.

    Science.gov (United States)

    Wray, B E; Sealock, R

    1984-10-01

    A method is described for immunoelectron microscopy of particulate subcellular fractions using polyvinyl chloride (soft) microculture wells as mechanical supports and reaction vessels. Appropriate quantities of particles are centrifuged onto the well bottoms, fixed and permeabilized if necessary, then labeled by standard procedures, fixed in glutaraldehyde and tannic acid, and prepared for thin section electron microscopy. The centrifugation, the fixations, and the embedment in Epon are discussed in detail.

  13. Control of fouling organisms in estuarine cooling water systems by chlorine and bromine chloride

    International Nuclear Information System (INIS)

    Burton, D.T.; Margrey, S.L.

    1979-01-01

    The study described was initiated to evaluate the antifouling effectiveness of chlorine and bromine chloride in low velocity flow areas where estuarine waters are used for cooling purposes. The relative antifouling effectiveness of chlorine and bromine chloride under intermittent and continuous modes of application in low velocity flow areas was evaluated at an estuarine power plant located on the Chesapeake Bay

  14. Chloride pyrometallurgy of uranium ore. 1. Chlorination of phosphate ore using solid or gas chlorinating agent and carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1995-01-01

    A thermodynamical and pyrometallurgical study to recover uranium from the phosphate ores was undertaken using the chloride volatilization method. Iron was chlorinated with solid chlorinating agents such as NaCl and CaCl 2 in combination with activated carbon, which will be used for removing this element from the ore, but uranium was not. On the other hand, the chlorination using Cl 2 gas and activated carbon gave a good result at 1,223 K. Not only uranium but also iron, phosphorus, aluminum and silicon were found to form volatile chlorides which vaporized out of the ore, while calcium remained in the ore as non-volatile CaCl 2 . The chlorination condition was studied as functions of temperature, reaction time and carbon content. The volatilization ratio of uranium around 95% was obtained by heating the mixture of the ore and activated carbon (35 wt%) in a mixed gas flow of Cl 2 (200 ml/min) and N 2 (200 ml/min) at 1,223 K for 120 min. (author)

  15. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  16. Modeling of the Migration of Glycerol Monoester Plasticizers in Highly Plasticized Poly(vinyl chloride)

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Kristiansen, Jørgen K.

    2009-01-01

    soybean oil (ESBO) with regard to their migration from three different types of poly(vinyl chloride) into isooctane at 20, 40, and 60 degrees C. Diffusion coefficients derived from the experimental migration data were evaluated against diffusion coefficients estimated from a model based solely...

  17. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  18. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    Science.gov (United States)

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®

  19. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  20. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  1. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  2. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  3. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    Energy Technology Data Exchange (ETDEWEB)

    Nadagouda, Mallikarjuna N., E-mail: Nadagouda.mallikarjuna@epa.gov [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States); Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L. [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States)

    2011-04-15

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO{sub 3} and/or BaCO{sub 3}-loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO{sub 3} dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO{sub 3} wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  4. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    International Nuclear Information System (INIS)

    Nadagouda, Mallikarjuna N.; Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L.

    2011-01-01

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO 3 and/or BaCO 3 -loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO 3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO 3 wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  5. A high dose dosimeter based polyvinyl chloride dyed with malachite green

    International Nuclear Information System (INIS)

    Kattan, M.; Daher, Y.; Alkassiri, H.

    2007-01-01

    Polyvinyl chloride film (PVC) dyed with malachite green has been studied for high dose radiation dosimetry using visible spectrophotometry. A linear relationship between the relative absorbance and the absorbed dose at the wavelength 628 nm in the range of 0-125 kGy was found. The effect of dose rate, irradiation temperature, film thickness and dye intensity were found not to influence the response. The effects of shelf-life and the post-irradiation storage in darkness and indirect daylight conditions on dosimetry performance were discussed. (author)

  6. Chlorine/chloride based processes for uranium ores

    International Nuclear Information System (INIS)

    1980-11-01

    The CE Lummus Minerals Division was commissioned by The Department of Supply and Services to develop order-of-magnitude capital and operating cost estimates for chlorine/chloride-based processes for uranium ores. The processes are designed to remove substantially all radioactive consituents from the ores to render the waste products harmless. Two processes were selected, one for a typical low grade ore (2 lb. U 3 O 8 /ton ore) and one for a high grade ore (50 lbs U 3 O 8 /ton). For the low grade ore a hydrochloric acid leaching process was chosen. For high grade ore, a more complex process, including gaseous chlorination, was selected. Capital cost estimates were compiled from information obtained from vendors for the specified equipment. Building cost estimates and the piping, electrical and instrumentation costs were developed from the plant layout. Utility diagrams and mass balances were used for estimating utilities and consumables. Detailed descriptions of the bases for capital and operating cost estimates are given

  7. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  8. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride Compound

    Directory of Open Access Journals (Sweden)

    Mei Chan Sin

    2014-01-01

    Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax⁡ peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.

  9. Poly(vinyl chloride-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available A novel approach was developed for the surface modification of the multi-walled carbon nanotubes (MWCNTs with high percentage of grafting (PG% by the grafting of polymer via the Friedel-Crafts alkylation. The graft reaction conditions, such as the amount of catalyst added, the reaction temperature, and the reaction time were optimized for the Friedel-Crafts alkylation of the MWCNTs with poly(vinyl chloride (PVC with anhydrous aluminum chloride (AlCl3 as catalyst in chloroform (CHCl3. The Fourier Transform Infrared (FT-IR, Raman, and thermogravimetric (TGA analysis showed that PVC had been successfully grafted onto MWCNTs both at the ends and on the sidewalls by the proposed Friedel-Crafts alkylation. The PVC grafted MWCNTs (PVC-MWCNTs could be dispersed well in organic solvent and the dispersion was more stable.

  10. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride Terrain...

  11. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  12. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  13. Histogenesis of mouse sarcomas induced by implantation of polyvinyl chloride film in radiation chimeras

    International Nuclear Information System (INIS)

    Mojzhess, T.G.; Prigozhina, E.L.

    1976-01-01

    Sarcomas were induced in CBA/CBA-T6T6 mouse radiation chimeras by implantation of polyvinyl chloride film subcutaneously 13 months after irradiation and injection of donor's bone marrow. Of the 12 tumors studied 11 had the recipient's karyotype and one the donor's. The formation of connective-tissue cells from bone-marrow precursors thus, evidently does not play an essential role in the histogenesis of sarcomas induced by plastics

  14. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...

  15. Solidification of metal chloride waste from pyrochemical process via dechlorination-chlorination reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Cho, I.H.; Lee, K.R.; Choi, J.H.; Eun, H.C.; Kim, I.T.; Park, G.I. [Korea Atomic Energy Research Inst., Deajeon (Korea, Republic of)

    2014-07-01

    The metal chloride wastes generated from the pyro-chemical process to recover uranium and TRUs has been considered as a problematic waste due to the high volatility and low compatibility with conventional silicate glass. Our research group has suggested the dechlorination approach for the solidification of this kind of waste by using a synthetic composite, SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). During the dechlorination, metal elements are chemically interacted with the inorganic composite, SAP, while chlorine is vaporized as gaseous chlorine. Metal elements in the salt were immobilized into phosphate and silicate glass which are uniformly distributed in tens of nm scale. During the dechlorination, gaseous chlorine is captured by Li{sub 2}O-Li{sub 2}O{sub 2} composite that can be converted into metal chloride (LiCl). About 98wt% of oxide composite was converted into LiCl that can be used as an electrolyte in the electrochemical process. The method suggested in this study can provide a chance to minimize the waste volume for the final disposal of salt wastes from a pyro-chemical process. (author)

  16. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  17. Chlorination Revisited: Does Cl- Serve as a Catalyst in the Chlorination of Phenols?

    Science.gov (United States)

    Lau, Stephanie S; Abraham, Sonali M; Roberts, A Lynn

    2016-12-20

    The aqueous chlorination of (chloro)phenols is one of the best-studied reactions in the environmental literature. Previous researchers have attributed these reactions to two chlorine species: HOCl (at circum-neutral and high pH) and H 2 OCl + (at low pH). In this study, we seek to examine the roles that two largely overlooked chlorine species, Cl 2 and Cl 2 O, may play in the chlorination of (chloro)phenols. Solution pH, chloride concentration, and chlorine dose were systematically varied in order to assess the importance of different chlorine species as chlorinating agents. Our findings indicate that chlorination rates at pH pH 6.0 and a chlorine dose representative of drinking water treatment, Cl 2 O is predicted to have at best a minor impact on chlorination reactions, whereas Cl 2 may contribute more than 80% to the overall chlorination rate depending on the (chloro)phenol identity and chloride concentration. While it is not possible to preclude H 2 OCl + as a chlorinating agent, we were able to model our low-pH data by considering Cl 2 only. Even traces of chloride can generate sufficient Cl 2 to influence chlorination kinetics, highlighting the role of chloride as a catalyst in chlorination reactions.

  18. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control hydrogen chloride... WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions...

  19. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  20. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  1. The use of polyvinyl chloride dyed with bromo cresol purple in radiation dosimetry

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kassiri, H.; Daher, Y.

    2010-09-01

    In this work,the use of polyvinyl chloride (PVC) dyed with Bromo cresol purple in high dose radiation dosimetry has been studied according to the radio chromic change using visible spectrophotometry. The results show linear relationship between the relative absorbance (response) and the absorbed dose at the wavelength 417 nm in the range of 0-50 kGy. Dose rate, irradiation temperature, dye intensity have been investigated and found to be independent of the response. The effects of post-irradiation storage in dark and indirect daylight conditions on dosimetry performance are discussed. (Author)

  2. Extended Stability of Epinephrine Hydrochloride Injection in Polyvinyl Chloride Bags Stored in Amber Ultraviolet Light-Blocking Bags.

    Science.gov (United States)

    Van Matre, Edward T; Ho, Kang C; Lyda, Clark; Fullmer, Beth A; Oldland, Alan R; Kiser, Tyree H

    2017-09-01

    Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light-blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light-blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light-blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.

  3. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  4. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  5. The effect of plasticiser on the properties of radiation crosslinked poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Jamaliah Shariff; Roslin Abu Bakar

    1996-01-01

    A study on the effects of plasticizers in the crosslinking of poly(vinyl chloride), PVC, by an electron beam irradiation was carried out. Different types of plasticizers were used and these, with other additives, were blended with PVC in a Brabender mixer. The blended compound was the irradiated with high energy electron beam. Subsequent analysis of its properties showed that the efficiency of crosslinking was better in the presence of the adipate and trimellitate. The tensile and elongation properties were acceptable. The ageing properties of the compounds with adipate and trimellitate-type plasticizers showed encouraging results

  6. Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride)

    Science.gov (United States)

    In this work, for the first time, a castor oil derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC). The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (...

  7. Polyvinyl Chloride / Attapulgite / Micro-crystalline Cellulose (MCC Composites Preparation and Analysis of the Role of MCC as a Compatibilizer

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-09-01

    Full Text Available To improve the performance of polyvinyl chloride (PVC, composites incorporating polyvinyl chloride (PVC, attapulgite nanoparticles (ANPs, and microcrystalline cellulose (MCC were successfully prepared. The composites had higher vicat softening temperatures (VSTs and the MCC had a great influence on mechanical properties of the composites. When MCC was added from 0 to 5 per hundred parts of PVC (phr, the mechanical properties of the composites increased, but the mechanical properties of the composites decreased when the MCC was more than 5 phr. The tensile breaking stress, tensile strength, and impact strength were maximized with increases of 19.76 N (4.1%, 29.66 MPa (15.5%, and 13.8 MPa (7% when 5 phr MCC was added. Infrared spectral analysis indicated that MCC and ANPs were present in the composites. Scanning electron microscopy showed that the composites system was distributed into two phases, which indicated that MCC in composites was dissolved in the PVC matrix, and some of MCC coated the surface of ANPs as a compatibilizer. Overall, this study provided a promising method for PVC modification to improve its performance.

  8. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  9. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  10. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  11. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  12. Sorption of amiodarone to polyvinyl chloride infusion bags and administration sets.

    Science.gov (United States)

    Weir, S J; Myers, V A; Bengtson, K D; Ueda, C T

    1985-12-01

    The loss of amiodarone from i.v. admixtures to flexible polyvinyl chloride (PVC) infusion bags and i.v. administration sets was studied. Admixtures containing amiodarone hydrochloride 600 micrograms/mL and either 5% dextrose injection or 0.9% sodium chloride injection were stored at room temperature in glass bottles (both with and without contact of the drug solution with the rubber bottle closure), in flexible PVC bags, or in rigid PVC bottles. After 120 hours, the contents of each flexible PVC bag were emptied and replaced by methanol, which was allowed to remain in the bag for an additional 120 hours and was then analyzed for amiodarone content. To determine availability of amiodarone after infusion through a 1.8-m PVC i.v. administration set, solutions stored in glass containers were run through the set at 0.5 mL/min for 90 minutes. Samples of drug solutions were collected at appropriate intervals and analyzed by a stability-indicating high-performance liquid chromatography (HPLC) assay. Admixtures containing 0.9% sodium chloride injection were not stable; visual incompatibility was evident after 24 hours of storage in glass bottles, and no further testing was performed. In admixtures containing 5% dextrose injection that were stored in 50-mL flexible PVC bags, 60% of the initial amiodarone concentration remained after 120 hours; approximately half of the lost drug was recovered with the methanol. In effluent collected from the PVC administration set, 82% of the initial amiodarone concentration remained. Amiodarone concentrations did not decrease appreciably, after storage in glass or rigid PVC bottles, indicating that drug loss was probably affected by the plasticizer, di-2-ethylhexyl phthalate.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Degradation of poly(vinyl chloride) films by X-rays radiation

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Kawano, Y.

    1984-01-01

    The degradation of pure poly(vinyl chloride) (PVC) films has been studied by X-rays radiation in vacuum. The films are transparent and become yellow with the exposure of radiation and this colour is enhanced with the time of irradiation. The infrared, ultraviolet and visible spectra changed in the irradiated material. The IR spectra show changes in itensities and band shifting, particularly in the region of C-Cl stretching vibrations indicating the occurrence of dehydrochlorination and a change in the conformation of the degraded PVC. The ultraviolet and visible spectra of irradiated films show a strong absorption band at 240 nm and many shoulders which are associated to dyenes, carbonyl and polyenes with few double bonds formed. The shoulder numbers increase in the spectra of samples kept for three months. This effect indicates that with irradiation, HCl is evolved resulting in the formation of polyenyl radicals, which propagate after irradiation. At the same time, should occur the reaction of these radicals with the atmospheric oxygen with formation of C=0 bonds. (Author) [pt

  14. Case report of occupational asthma induced by polyvinyl chloride and nickel.

    Science.gov (United States)

    Song, Ga-Won; Ban, Ga-Young; Nam, Young-Hee; Park, Hae-Sim; Ye, Young-Min

    2013-10-01

    Polyvinyl chloride (PVC) is a widely used chemical for production of plastics. However occupational asthma (OA) caused by PVC has been reported only rarely. We report a 34-yr-old male wallpaper factory worker with OA due to PVC and nickel (Ni) whose job was mixing PVC with plasticizers. He visited the emergency room due to an asthma attack with moderate airflow obstruction and markedly increased sputum eosinophil numbers. A methacholine challenge test was positive (PC20 2.5 mg/mL). Bronchoprovocation tests with both PVC and Ni showed early and late asthmatic responses, respectively. Moreover, the fractional concentration of exhaled nitric oxide (FeNO) was increased after challenge with PVC. To our knowledge, this is the first case of OA in Korea induced by exposure to both PVC and Ni. We suggest that eosinophilic inflammation may be involved in the pathogenesis of PVC-induced OA and that FeNO monitoring can be used for its diagnosis.

  15. Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC

    Directory of Open Access Journals (Sweden)

    Emina Kristina Petrović

    2018-02-01

    Full Text Available With the increasing emphasis on sustainable construction, it has become important to better understand the impacts of common materials. This is especially paramount with the introduction of the United Nations (UN Sustainable Development Goals (SDGs which call for more comprehensive evaluations, adding many aspects of social consideration to the issues of environmental sustainability, including human health. Polyvinyl chloride (PVC/vinyl can be seen as a material with potential for significant adverse effects on a multiplicity of levels, and the construction industry is its single most significant consumer. This article presents a transdisciplinary review of adverse health impacts associated with PVC showing a number of issues: some that could be eliminated through design, but also some which appear inherent to the material itself and therefore unavoidable. The totality of issues revealed in relation to PVC presents a compelling case for a call for complete elimination of use of this material in sustainable construction.

  16. Facile Preparation of Chloride-Conducting Membranes : First Step towards a Room-Temperature Solid-State Chloride-Ion Battery

    NARCIS (Netherlands)

    Gschwind, Fabienne; Steinle, Dominik; Sandbeck, Daniel; Schmidt, Celine; von Hauff, Elizabeth

    2016-01-01

    Three types of chloride-conducting membranes based on polyvinyl chloride, commercial gelatin, and polyvinyldifluoride-hexafluoropolymer are introduced in this report. The polymers are mixed with chloride-containing salts, such as tetrabutylammonium chloride, and cast to form membranes. We studied

  17. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    Science.gov (United States)

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  18. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  19. Solvent and ion-pairing effects on the chlorine kinetic isotope effect of t-butyl chloride

    International Nuclear Information System (INIS)

    McCord, B.R.

    1986-01-01

    The solvolysis of t-butyl chloride and 1-adamantyl chloride was measured in mixtures of aqueous 2,2,2-trifluoroethanols and in mixtures of aqueous ethanols. The KIEs for t-butyl chloride at 25 0 C in 94% TFE/water, and 60% ethanol/water (solvent mixtures with similar polarity) were 1.0097 and 1.0104 respectively. Further investigations showed a KIE of 1.0104 in 50% ethanol/water and 1.0105 in 100% ethanol while the isotope effect in the fluorinated ethanols rose from 1.0094 in 99% TFE/water to 1.0101 in 70% ethanol/water. The KIE in all these solvents were shown to be directly proportional to the nucleophilicity of the solvent and indicates nucleophilic attack on an ion pair. The similar KIE of t-butyl chloride in the ethanol/water solvents was found to support the contention that solvent polarity exerts a minimal effect on the chlorine KIE

  20. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  1. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Abou Taleb, W.M. [Alexandria Univ. (Egypt); Madi, N.K.; Kassem, M.E.; El-Khatib, A.M. [Alexandria Univ. (Egypt). Dept. of Physics

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10{sup 9} n/cm{sup 2}. The optical energy gap E{sub op} exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C{sub p} showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author).

  2. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    International Nuclear Information System (INIS)

    Abou Taleb, W.M.; Madi, N.K.; Kassem, M.E.; El-Khatib, A.M.

    1996-01-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10 9 n/cm 2 . The optical energy gap E op exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C p showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author)

  3. Studies on physical properties and fractography of electron beam irradiated poly(vinyl chloride)/epoxidized natural rubber blend in the presence of trimethylolpropane triacrylate

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    The effect of irradiation on the 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was studied in the presence of 3 phr trimethylolpropane triacrylate (TMPTA). The blend was irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 200 kGy in air and room temperature. The tensile properties, resilience and gel fractions of the blends were measured. Electron beam irradiation of the blend in the presence of the TMPTA were found to cause crosslinking which in effect caused an enhancement in modulus and gel fraction together with a concomitant decline in ultimate elongation. The irradiation has resulted in a less hysteretic poly(vinyl chloride)/epoxidized natural rubber blend, with increased rebound resilience. The tensile strength of the blend reached a maximum at 60 kGy followed by a slight decrease at higher doses, implying embrittlement due to the excessive crosslinking. The scanning electron micrographs of the fracture surfaces of the irradiated blends show evidence consistent with the above contention. (Author)

  4. Development of pyrometallurgical partitioning technology of long-lived nuclides. Recovery of volatile chlorides for chlorination process using molten salt trap. 1

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Nakamura, Kyosei; Kurata, Masateru; Konagaya, Hideaki

    1997-01-01

    The dry process for partitioning of long-lived nuclides from high level radioactive waste has been developed. One of the subjects for development of this process is the recovering of the volatilization of chlorides for the chlorination process. We proposed that the volatile chlorides were recovered by the molten salt trap. We researched the behavior of volatile chlorides (ferric chloride, zirconium tetra-chloride and molybdenum pent-chloride) in LiCl-KCl eutectic salt. In this result, the volatile rate of these chlorides was slower than the volatile rate of undissolved chlorides in LiCl-KCl eutectic salt. Also, we make a prototype of molten salt trap for recovering the volatile chlorides and tested the performance of this experimental apparatus and recovering ratio of volatile chlorides. This trap has a good performance of recovering volatile chlorides. (author)

  5. Effect of gamma radiation on the spectroscopic properties of Bromocresol green-polyvinyl chloride film

    International Nuclear Information System (INIS)

    Bera, Anuradha; Ram, Surendra; Singh, Shailendra K.; Vaijapurkar, S.G.

    2009-01-01

    Bromocresol Green (BCG) - Polyvinyl chloride (PVC) film was prepared by dispersing the dye in the polymer matrix in a suitable solvent medium in the presence of an organic base and then solvent casting the formulation in the form of transparent colored film. Preliminary studies through UV-Vis Spectroscopic measurements show that the prepared PVC - dye films was sensitive to gamma radiation almost linearly in the dose range upto 8 kGy range. This spectroscopic change becomes visually distinguishable from 4 kGy onwards until 8 kGy where it finally changes color from green to yellow, beyond which no significant optical change was observed. The gamma response of the film could be tailored by varying the concentration of the pH sensitive dye and the organic base. (author)

  6. Palladium Nanoparticles Immobilized on Poly(vinyl chloride-Supported Pyridinium as an Efficient and Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2011-01-01

    Full Text Available The palladium nanoparticles immobilized on the polymeric surface of poly(vinyl chloride-supported pyridinium (PVC-Py-Pd0 were achieved by a simple procedure by applying the corresponding functionalized polymer and palladium chloride in ethanol solution. The as-prepared catalyst (PVC-Py-Pd0 was found to be air and moisture stable and exhibits significant catalytic activity for Suzuki-Miyaura cross-coupling reaction of various aryl halides and phenylboronic acid under milder operating conditions. The procedure presented here showed several merits such as short reaction time, simple experimental and isolated procedure and excellent yields of products. Furthermore, the catalyst can be easily recovered and reused for at least six times with consistent activities.

  7. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  8. Behavior of molybdenum in pyrochemical reprocessing: A spectroscopic study of the chlorination of molybdenum and its oxides in chloride melts

    International Nuclear Information System (INIS)

    Volkovicha, Vladimir A.; Griffiths, Trevor R.; Thied, Robert C.; Lewin, Bob

    2003-01-01

    The high temperature reactions of molybdenum and its oxides with chlorine and hydrogen chloride in molten alkali metal chlorides were investigated between 400 and 700 deg. C. The melts studied were LiCl-KCl, NaCl-CsCl and NaCl-KCl and the reactions were followed by in situ electronic absorption spectroscopy measurements. In these melts Mo reacts with Cl 2 and initially produces MoCl 6 2- and then a mixture of Mo(III) and Mo(V) chlorocomplexes, the final proportion depending on the reaction conditions. The Mo(V) content can be removed as MoCl 5 from the melt under vacuum or be reduced to Mo(III) by Mo metal. The reaction of Mo when HCl gas is bubbled into alkali chloride melts yields only MoCl 6 3- . MoO 2 reacts in these melts with chlorine to form soluble MoOCl 5 2- and volatile MoO 2 Cl 2 . MoO 3 is soluble in chloride melts and then decomposes into the oxychloride MoO 2 Cl 2 , which sublimes or can be sparged from the melt, and molybdate. Pyrochemical reprocessing can thus be employed for molybdenum since, after various intermediates, the end-products are chloride melts containing chloro and oxychloro anions of molybdenum plus molybdate, and volatile chlorides and oxychlorides that can be readily separated off. The reactions were fastest in the NaCl-KCl melt. The X-ray diffraction pattern of MoO 2 Cl 2 is reported for the first time

  9. Mechanism of chlorination of some actinide and fission product phosphates and tungstates in chloride melts

    International Nuclear Information System (INIS)

    Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N.

    1989-01-01

    Results of kinetic studies on the chlorination of crystalline phosphates and tungstates of uranium, cerium, zirconium, and plutonium by gaseous carbon tetrachloride in melts of alkali metal chlorides at 973-1073 degree K are analyzed. A mathematical model of the process is proposed. Analysis of regression models allowed solution of the problem by statistical evaluation of the effective factors and prediction within the limits of the factors studied of the optimal conditions for the process

  10. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  11. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  12. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media

    International Nuclear Information System (INIS)

    Hudry, D.

    2008-10-01

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO 4 ). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  13. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents

    Science.gov (United States)

    Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2018-01-01

    Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.

  14. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  15. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  16. [Simultaneous determination of ten organotin compounds in polyvinyl chloride plastics using gas chromatography-mass spectrometry].

    Science.gov (United States)

    Li, Ying; Li, Bin; Liu, Li; Zhang, Chen; Wu, Jingwu; Liu, Zhihong; Li, Xintian

    2009-01-01

    A rapid and effective gas chromatography coupled with mass spectrometry method has been developed systematically and studied for the simultaneous determination of 10 organotin compounds, dibutyltin-dichloride (DBT), n-butyltin-trichloride (MBT), triethyltinchloride (TET), fentin-chloride (TPhT), chlorotributylstannane (TBT), tri-n-propyltinchloride (TPrT), diphenyltin-dichloride (DPhT), tetrabutyltin (TeBT), di-n-octyltin-dichloride (DOT), phenyltin trichloride (MPhT)), in polyvinyl chloride (PVC) plastics. The PVC sample was dissolved with tetrahydrofuran and the polymer in the sample was precipitated with methanol, and then the target compounds were derivatized with sodium tetraethylborate and extracted with hexane under ultrasonication. The qualitative and quantitative analysis were carried out by GC-MS and the total ion chromatogram and selected ion chromatogram were obtained. The derivatization and extraction conditions, such as the derivatization time, derivatization pH value, dosages of derivatization reagent and precipitation reagent were optimized. The good linearities, recoveries and precisions were obtained. The linearity ranges were 0.5 - 50 mg/L. The linearity correlation coefficients of 10 organotin compounds were between 0.997 8 and 0.999 7. The average recoveries were 84.23% - 109.1% with relative standard deviations of 4.24% - 10.75%. The established method has been successfully applied to the determination of organotin compounds in PVC plastics.

  17. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging

    International Nuclear Information System (INIS)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio

    2015-01-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm"-"1 and 1165 cm"-"1 bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  19. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  20. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  1. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  2. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  3. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    Science.gov (United States)

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  4. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  5. Continuous microcellular foaming of polyvinyl chloride and compatibilization of polyvinyl chloride and polylactide composites

    Science.gov (United States)

    Shah, Bhavesh

    This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix

  6. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  7. Local coordination and medium range order in molten trivalent metal chlorides: The role of screening by the chlorine component

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-11-01

    Earlier work has identified the metal ion size R M as a relevant parameter in determining the evolution of the liquid structure of trivalent metal chlorides across the series from LaCl 3 (R M approx. 1.4 A) to AlCl 3 (R M approx. 0.8 A). Here we highlight the structural role of the chlorines by contrasting the structure of fully equilibrated melts with that of disordered systems obtained by quenching the chlorine component. Main attention is given to how the suppression of screening of the polyvalent ions by the chlorines changes trends in the local liquid structure (first neighbour coordination and partial radial distribution functions) and in the intermediate range order (first sharp diffraction peak in the partial structure factors). The main microscopic consequences of structural quenching of the chlorine component are a reduction in short range order and an enhancement of intermediate range order in the metal ion component, as well as the suppression of a tendency to molecular-type states at the lower end of the range of R M . (author). 23 refs, 6 figs

  8. Comparison of prophylactic effects of polyurethane cylindrical or tapered cuff and polyvinyl chloride cuff endotracheal tubes on ventilator-associated pneumonia.

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2013-07-01

    Full Text Available Because microaspiration of contaminated supraglottic secretions past the endotracheal tube cuff is considered to be central in the pathogenesis of pneumonia, improved design of tracheal tubes with new cuff material and shape have reduced the size and number of folds, which together with the addition of suction ports above the cuff to drain pooled subglottic secretions leads to reduced aspiration of oropharyngeal secretions. So we conducted a study to compare the prophylactic effects of polyurethane-cylindrical or tapered cuff and polyvinyl chloride cuff endotracheal tubes (ETT on ventilator-associated pneumonia. This randomized clinical trial was carried out in a 12 bed surgical intensive care unit. 96 patients expected to require mechanical ventilation more than 96 hours were randomly allocated to one of three following groups: Polyvinyl chloride cuff (PCV ETT, Polyurethane (PU cylindrical Sealguard ETT and PU Taperguard ETT. Cuff pressure monitored every three hours 3 days in all patients. Mean cuff pressure didn't have significant difference between three groups during 72 hours. Pneumonia was seen in 11 patients (34% in group PVC, 8 (25% in Sealguard and 7 (21% in Taperguard group. Changes in mean cuff pressure between Sealguard and PVC tubes and also between Taperguard and PVC tubes did not show any significant difference. There was no significant difference in overinflation between three groups. The use of ETT with PU material results in reducing ventilator-associated pneumonia compared to ETT with PVC cuff. In PU tubes Taperguard has less incidence of ventilator-associated pneumonia compared to Sealguard tubes.

  9. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Method of modifying a vinyl chloride resin by utilizing radiation cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kagiya, T; Fujimoto, T; Hosoi, F; Tsuneta, K; Atogawa, M

    1970-08-26

    The polyvinyl chloride is improved in its mechanical, thermal and chemical properties, with particular advantages gained in dimensional stability at temperatures higher than the plasticizing temperature. The process comprises irradiating a vinyl chloride resin with ionizing radiations in the presence of a vinyl acetate monomer. In this process, the irradiation of vinyl acetate effects cross-linking and the polymerization of the monomer simultaneously. The vinyl chloride resin may be a copolymer along with another monomer, a polyvinyl chloride derivative, a graft polymer of polyvinyl chloride, a mixture of vinyl chloride with another resin and a graft copolymer of vinyl chloride on another resin in any form. The addition of the vinyl acetate monomer to the vinyl chloride is not limited to any particular procedure. The vinyl acetate monomer may be added to the polyvinyl chloride in a quantity ranging from a trace to 200% by weight. The radiation dose may be 10/sup 2/ to 10/sup 9/, but preferably 10/sup 3/ roentgen. In one example, 36 parts by weight of market available vinyl acetate monomer immersed in 100 parts by weight of hard vinyl tube were placed in a stainless reacting vessel. After the replacement of inner air with nitrogen, the vessel was exposed to ..gamma.. beams of 4.8 x 10 roentgen from a Co-60 source. After dipping the exposed samples in boiled tetrahydrofuran for 48 hours, the insoluble substance in the samjle was 78.9% by weight. In addition, after heating at 180/sup 0/C for 30 minutes, the sample did not show any deformation.

  11. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  13. Degradation of polyvinyl chloride (PVC) / hydrolyzed collagen (HC) blends active sludge test.

    Science.gov (United States)

    Agafiţei, Gabriela-Elena; Pascu, Mihaela; Cazacu, Georgeta; Vasile, Cornelia

    2008-01-01

    Biodegradable polymers represent a solution for the environment protection: they decrease the landfill space, by declining the petrochemical sources, and offer also an alternative solution for the recycling. The behavior during degradation in the presence of active sludge of some polyvinyl chloride (PVC) based blends with variable content of hydrolyzed collagen (HC) has been followed. Some samples were subjected to UV irradiation, for 30 hours. The modifications induced in the environment by the polymer systems (pH variation, bacterial composition), as well as the changes of the properties of the blends (weight losses, aspect etc.) were studied. During the first moments of degradation in active sludge, all the samples absorbed water, behavior which favored the biodegradation. The bacteriological analysis of the sludge indicates the presence of some microbiological species. Generally, the populations of microorganisms decrease, excepting the sulphito-reducing anaerobic bacteria, the actinomycetes and other anaerobic bacteria. PVC/HC blends are degraded with a significant rate in active sewage sludge. More susceptible for the degradation are the UV irradiated blends. After the migration of the components with a small molecular mass in the environment, the natural polymer is degraded. The degradation effect increases with the content in the natural polymer.

  14. Positron Annihilation Lifetime Study of Pure and Doped Polyvinyl Chloride with Al2O3

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Hamdy, F. M. M.; Alaa, H.B.

    2005-01-01

    Positron annihilation lifetime of pure and doped polyvinyl chloride (PVC) with Al 2 O 3 reflect the effect of concentration as well as temperature on free volume. Therefore, variations of the ortho-positronium (o-Ps) lifetime and its intensity have been correlated with changes in the dielectric properties of the pure and doped PVC. The o-Ps lifetime and its intensity show a linear dependence with a discontinuity at 20 % concentration of Al 2 O 3 . The size and the fractional of the o-Ps hole volume were estimated from the positron annihilation parameters. Therefore, the temperature dependence of the electrical conductivity and the positron annihilation parameters on pure and doped PVC with 20 % Al 2 O 3 were studied in the range from 20 to 140 degree C. The shift of the glass transition temperature to lower temperature for the 20 % Al 2 O 3 doped PVC might explain the increase in the electrical conductivity with the concentration of the additive

  15. Calculation of carbon-14, chlorine-37, and deuterium kinetic isotope effects in the solvolysis of tert-butyl chloride

    International Nuclear Information System (INIS)

    Burton, G.W.; Sims, L.B.; Wilson, J.C.; Fry, A.

    1977-01-01

    In the solvolysis of tert-butyl chloride, satisfactory α-carbon-14, β-deuterium, and chlorine kinetic isotope effects (KIE) may be calculated for a productlike transition state characterized by bond orders n/sub C Cl/ = 0.2, n/sub C C/ = 1.18, and n/sub C H/ = 0.94, employing a diagonal valence force field, provided that allowance is made for hydrogen-bonded solvation of the developing chloride ion with n/sub Cl H/ approx. 0.05 (approx. 7 kcal/mole hydrogen bonds). The effect of the three solvating molecules appears to be to increase the ''effective'' mass of the incipient chloride ion and to decrease the loss of zero-point energy in going to the transition state. Reaction coordinates more complicated than a simple heterolysis of the carbon-chlorine bond appear to be unnecessary and there is no advantage in employing force fields more complex than a simple valence force field containing only diagonal elements for both the reactant and the transition state model. The structural and bonding features of the proposed transition state are in accord with earlier more qualitative conclusions concerning the polar nature and productlike character of the transition state, and provide a reasonable explanation of the kinetic and equilibrium isotope effects (EIE) for the reaction. An alternative transition state model involving weak solvent nucleophilic assistance provides reasonable calculated values for the KIE, but the EIE strongly suggest the importance of solvation of the leaving group which, together with the hyperconjugation of the β hydrogens, provides a preferred explanation of the tert-butyl solvolysis results

  16. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Wassaf, Joseph; Khoury, Antonio; Simon, Marc

    2013-01-01

    Highlights: ► We measured the X-ray absorption spectrum of C 2 H 3 Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C 2 H 3 Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account

  17. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: elie.kawerk@etu.upmc.fr [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Carniato, Stéphane [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Iwayama, Hiroshi; Shigemasa, Eiji [Ultraviolet Synchrotron Orbital Radiation Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Piancastelli, Maria Novella [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Wassaf, Joseph; Khoury, Antonio [Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Simon, Marc [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2013-02-15

    Highlights: ► We measured the X-ray absorption spectrum of C{sub 2}H{sub 3}Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C{sub 2}H{sub 3}Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account.

  18. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  19. Photostabilizing Efficiency of Poly(vinyl chloride in the Presence of Organotin(IV Complexes as Photostabilizers

    Directory of Open Access Journals (Sweden)

    Mustafa M. Ali

    2016-08-01

    Full Text Available Three organotin complexes containing furosemide as a ligand (L, Ph3SnL, Me2SnL2 and Bu2SnL2, were synthesized and characterized. Octahedral geometry was proposed for the Me2SnL2 and Bu2SnL2, while the Ph3SnL complex has trigonal bipyramid geometry. The synthesized organotin complexes (0.5% by weight were used as additives to improve the photostability of poly(vinyl chloride, PVC, (40 μm thickness upon irradiation. The changes imposed on functional groups, weight loss and viscosity average molecular weight of PVC films were monitored. The experimental results show that the rate of photodegradation was reduced in the presence of the organotin additives. The quantum yield of the chain scission was found to be low (9.8 × 10−7 when Ph3SnL was used as a PVC photostabilizer compared to controlled PVC (5.18 × 10−6. In addition, the atomic force microscope images for the PVC films containing Ph3SnL2 after irradiation shows a smooth surface compared to the controlled films. The rate of PVC photostabilization was found to be highest for Ph3SnL followed by Bu2SnL2 and Me2SnL2. It has been suggested that the organotin complexes could act as hydrogen chloride scavengers, ultraviolet absorbers, peroxide decomposers and/or radical scavengers.

  20. Biodegradation of chlorinated unsaturated hydrocarbons in relation to biological waste-gas treatment

    NARCIS (Netherlands)

    Hartmans, S.

    1993-01-01

    The original goal of the research described in this thesis was to develop a biological process for the removal of vinyl chloride from waste gases. The gaseous and carcinogenic vinyl chloride is used to produce the plastic polyvinyl chloride (PVC). During this production process waste gases

  1. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    Science.gov (United States)

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  2. Regularities of the chlorination process of phosphates and tungstates of some actinide and fission elements in chloride melts

    International Nuclear Information System (INIS)

    Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N.

    1988-01-01

    Results of kinetic studies of chlorination process of crystal phosphates and tungstates of uranium, cerium, zirconium, plutonium by vapours of carbon tetrachloride in the melts of alkali element chlorides at of 973-1073 K have been analyzed. Mathematical models for the process description are suggested. Analysis of adequate models of regression type permitted to solve the problem of statistical evaluation of affecting factors and to predict within factor space studied the conditions for the optimal process course

  3. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: burillo@nucleares.unam.mx [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2016-10-30

    Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  4. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  5. Influence of potassium fluoride on the syntheses of methylpiperazine-modified poly(vinyl chloride)s for use as fixed-site proton carrier membranes.

    Science.gov (United States)

    Roudman, A R; Kusy, R P

    1998-03-15

    Aminated poly(vinyl chloride) (PVC) membranes were prepared that had a Nernstian response over a wide range of pH. The reaction between PVC and methyl-piperazine (MePIP) in dimethylformamide (DMF) was studied over a wide range of time and temperature, and in the presence of the catalyst, potassium fluoride (KF). Time, temperature, and KF increased the nitrogen (N) content of the resulting polymers, but sometimes at the expense of decreasing their specific viscosities (molecular weights). Activation energies of processes that occurred in different temperature ranges were estimated assuming an Arrhenius relationship. A Nernstian response occurred once the N content approached to about 0.3 w/w %, and was accelerated by the presence of KF at elevated temperatures. Increasing the N content above about 3% led to a loss of the Nernstian response either because of an increase in the double bond content and a subsequent decrease in polymer mobility, or because of a decrease in the molecular weight of the copolymer and concomitant difficulties in film preparation.

  6. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  7. Chlorine-36 investigations of salt lakes

    International Nuclear Information System (INIS)

    Chivas, A.R.; Kiss, E.

    1987-01-01

    The first chlorine-36 measurements are reported for surficial halite in lakes from a west-to-east traverse in Western Australia and from Lake Amadeus NT. Measurements of chlorine-36 were made using a 14 MV tandem accelerator. Isotopic chlorine ratios ranged from 8 to 53 x 10 exp-15, with no clear evidence for bomb-spike chlorine-36. The Western Australian samples have values close to secular equilibrium values for typical granite and groundwaters in this rock type. Studies are aimed at calculating the residence time of chloride in the surficial environment. 1 tab

  8. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  9. The production of hydrotalcite from magnesite ore as non-toxic heat stabiliser for polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    J. van der Laan

    2005-09-01

    Full Text Available In recent years polyvinyl chloride (PVC processors had to submit to worldwide pressure to convert to environmentally friendly stabilisers such as hydrotalcite (HT, since most of the heat stabilisers currently in use contain heavy metals such as lead, cadmium or barium – these being highly toxic. The presently used HT production process is, however, very expensive as it involves the recovering of magnesium from seawater magnesia. The purpose of this study was to prove that it is indeed possible to produce cost effective and non-toxic HT from an alternative source. During this study the costing and heat stabilising ability of the hydrotalcite produced from magnesite was compared to that of commercially available heat stabilisers. The effect of the pre-mixing process, as well as the influence of particle size distribution was also investigated. A cost comparative and stabilising efficiency study indicated the cost effectiveness of HT produced from magnesite ore, in comparison with other commercially available stabilisers. The use of HT as produced from magnesite ore would indeed assist in the worldwide changeover to environmentally friendly stabilisers.

  10. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  12. Long term variations of chlorine-36 input signal to groundwater as recorded in deep unsaturated zones, south-east Australia

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Herczeg, A.L.; Leaney, F.W.; Fifield, L.K.; Cresswell, R.G.; Kellet, J.

    1997-01-01

    The use of chlorine-36 is increasing in hydrology as its long half-life (3x10 5 a), allows useful long-term investigations into groundwater systems. Because chloride is very hydrophillic, the chlorine-36 signal should not be affected by geochemical processes in most aquatic systems. Nevertheless, over long periods of time, the chlorine-36 input to groundwater systems may vary due to factors such as: changes of production of chlorine-36 and/or changes of its distribution in the atmosphere. For instance the production of chlorine-36 might be governed by long-term terrestrial magnetic dipole strength variations as suggested for other radiogenic isotopes. Variations of the input signal of chlorine-36 should be recorded in pore waters of deep unsaturated zones. In this system, the time scale is approximated by the cumulative chloride content with depth assuming a constant input of chloride. Long-term records of chloride and chlorine-36 in two deep unsaturated-zone profiles, situated in the semi-arid Murray Basin in Australia, are presented. The two profiles record periods of approximately 20±1 to 27±2 ka and 100±5 to 220±10 ka respectively. The range of variation of the recorded time at each site is related to the estimated range of chloride deposition rate. The recharge rates are constant in both profiles with values approximating 0.4 and less than 0.1 mm.a -1 respectively. The linear relationship between chlorine-36 and stable chloride indicates that variations of chlorine-36 are governed by evapotranspiration, with a concentration factor of up to 2. Therefore the chlorine-36 is normalised to chloride to take account of the evapotranspiration process. In the soil profile at Kaniva, Western Victoria, 36 Cl/Cl'- ratio shows an increase of approximately 20% down profile. The second profile at Boree Plains, Wester, NSW, shows variations of 36 Cl/Cl'- ratio of 40% with a decreasing trend down profile. The input signal of chlorine-36/chloride is calculated by correction

  13. Chlorine and bromine contents in tobacco and tobacco smoke

    International Nuclear Information System (INIS)

    Haesaenen, E.; Manninen, P.K.G.; Himberg, K.; Vaeaetaeinen, V.

    1990-01-01

    The chlorine and bromine contents in tobacco and tobacco smoke in both the particulate and gaseous phases were studied by neutron activation analysis. Eleven popular brands of western filter cigarettes were tested. Methyl chloride and methyl bromide concentrations were measured in the gaseous phase in two leading brands in Finland. The results suggest that the mainstream smoke from one cigarette conveys into the lungs about 150 μg chlorine and about 5 μg bromine. Probably most of the chlorine and bromine is in the form of organic compounds and the main components are methyl chloride and methyl bromide. (author) 14 refs.; 1 tab

  14. Comparative scanning electron microscope study of the degradation of a plasticized polyvinyl chloride waterproofing membrane in different conditions

    International Nuclear Information System (INIS)

    Pedrosa, A.; Del Río, M.

    2017-01-01

    This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather. [es

  15. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Makarov, M. I.

    2017-09-01

    Chloride ions in soil may interact with soil organic matter and form organochlorine compounds in situ. The biotic chlorination of soil organic substances takes places under aerobic conditions with participation of H2O2 forming from peroxidases released by soil microorganisms (in particular, by microscopic fungi). The abiotic chlorination results also from the redox reactions with the participation of Fe3+/Fe2+ system, but it develops several times slower. Chlorination of soil organic substances is favored by Cl- coming to soil both from natural (salinized soil-forming rocks and groundwater, sea salt) and anthropogenic sources of chlorides, i.e., spills of saline water at oil production, road deicing chemicals, mineral fertilizers, etc. The study of the biogeochemical chlorine cycle should take into account the presence of organochlorine compounds in soils, in addition to transformation and migration of chloride ions.

  16. Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties.

    Science.gov (United States)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Azimi, Faezeh

    2018-03-01

    This study focused on the preparation and investigation of physicochemical features of new poly(vinyl chloride) (PVC) nanocomposites (NCs) including different amounts of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) functionalized with riboflavin (RIB). Firstly, to increase the hydrophilicity of MWCNTs, the surface of them was functionalized by incorporating and formation of ester groups with RIB as a low cost and environmentally friendly biomolecule through ultrasound and microwave irradiations. Afterwards, PVC/RIB-MWCNTs NCs were fabricated via the solution casting and ultrasonic dispersion methods. Prepared NCs were examined by X-ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, transmission electron micrograph, and Raman spectroscopy. The PVC/RIB-MWCNTs NCs (12wt%) showed the higher mechanical and thermal behavior as compared to other concentration of MWCNTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chemical aspects of incinerating highly chlorinated and actinide α contaminated organic waste: application to the Iris process

    International Nuclear Information System (INIS)

    Lemort, F.; Cames, B.

    2000-01-01

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide α radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  18. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  19. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    Science.gov (United States)

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  1. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  2. Stability of levothyroxine injection in glass, polyvinyl chloride, and polyolefin containers.

    Science.gov (United States)

    Frenette, Anne Julie; MacLean, Robert D; Williamson, David; Marsolais, Pierre; Donnelly, Ronald F

    2011-09-15

    The 24-hour stability of a levothyroxine solution admixed and stored in three common infusion containers and infused through polyvinyl chloride (PVC) tubing was evaluated. Levothyroxine sodium 1-μg/mL injection prepared in glass bottles and PVC and polyolefin bags were assayed using high-performance liquid chromatography at 0, 1, 3, 6, 12, and 24 hours; samples drawn directly from the containers, as well as from the distal end of attached PVC tubing, were assayed. The area under the time-versus-concentration curve (AUC) for predicted and delivered doses was calculated; analysis of variance was used for comparison of the percentages of predicted and actual AUC values. The levothyroxine concentration was stable in glass bottles and polyolefin bags through 24 hours (mean ± S.D. percentage of initial concentration remaining, 103.5% ± 2.5% and 100.0% ± 2.9%, respectively). In the PVC infusion bags, the amount of drug decreased to 90% of the initial concentration within 1 hour and then rose and remained within acceptability limits. The levothyroxine concentration of the samples infused through PVC line from glass and polyolefin containers decreased after 1 hour by about 13%; the loss of the drug from the samples infused from PVC bags was higher (18%), presumably due to additive adsorptive effects. In all samples tested, the drug concentration rebounded and remained above 90% to the end of the study. Levothyroxine sodium 1-μg/mL solution was stable for 24 hours in glass bottles and polyolefin bags but when stored in PVC bags, the concentration decreased by 10% after 1 hour.

  3. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  4. Thermal stabilization and plasticization of poly(vinyl chloride) by ester thiols: Update and current status

    International Nuclear Information System (INIS)

    Starnes, William H.; Du, Bin; Kim, Soungkyoo; Zaikov, Vadim G.; Ge, Xianlong; Culyba, Elizabeth K.

    2006-01-01

    Poly(vinyl chloride) (PVC) is one of the most important medical plastics. Recently, however, the safety of flexible PVC containing the common plasticizer, di(2-ethylhexyl) phthalate, has been called into question. Widely used heat stabilizers for PVC that incorporate toxic heavy metals also have fallen into disfavor. In order to address these problems, we have synthesized and tested, as potential replacements, several organic thiols that contain one or more carboxylate ester functions and thus are highly compatible with the polymer. When introduced into PVC at high loading levels (e.g., 30-35 parts by weight), the ester thiols are extremely effective as heat stabilizers and also useful as primary plasticizers. When used at a low loading level (e.g., 3 parts by weight), they still are excellent heat stabilizers for both plasticized and rigid PVC. Importantly, their high potency is achieved in the absence of any costabilizers that incorporate heavy metals. Their syntheses are simple and straightforward, and their odors are not offensive, because their volatilities are low. Described here are some typical results obtained with this new additive technology, which was licensed for commercialization in 2005

  5. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  6. Investigation on pretreatment of centrifugal mother liquid produced in the production of polyvinyl chloride by air-Fenton technique.

    Science.gov (United States)

    Sun, Yingying; Hua, Xiuyi; Ge, Rui; Guo, Aitong; Guo, Zhiyong; Dong, Deming; Sun, Wentian

    2013-08-01

    Centrifugal mother liquid (CML) is one of the main sources of wastewater produced during the production of polyvinyl chloride in chlor-alkali industry. CML is a typical poorly biodegradable organic wastewater, containing many kinds of refractory pollutants. Specifically, it contains dissolved refractory polymers, especially polyvinyl alcohol (PVA), which can pass though the biotreatment processes and clog the membranes used for further treatment. In this study, to ensure the CML applicable to biotreatment and membrane treatment, a novel efficient and mild technique, air-Fenton treatment, was employed as a pretreatment technique to improve biodegradability of the CML and to break down the polymers in the CML. Firstly, the technique was optimized for the CML treatment by optimizing the main parameters, including the dosage of ferrous sulfate, initial pH of the wastewater, [H2O2]/[Fe(2+)], aeration rate, reaction time, and temperature, based on removal efficiency of COD and PVA from the CML. Then, the optimized technique was tested and evaluated. The results indicated that under the optimized conditions, the air-Fenton treatment could remove 66, 98, and 55 % of the COD, PVA, and TOC, respectively, from the CML. After the treatment, biodegradability of the wastewater increased significantly (BOD/COD increased from 0.31 to 0.68), and almost all of the PVA polymers were removed or broken down. Meanwhile, concentration of the remaining iron ions, which were added during the treatment, was also quite low (only 2.9 mg/L). Furthermore, most of the suspended materials and ammonia nitrogen, and some of the phosphorus in the wastewater were removed simultaneously.

  7. Pepspectives of chlorine application in metallurgy of vanadium

    International Nuclear Information System (INIS)

    Korshunov, B.G.; Kutsenko, S.A.

    1983-01-01

    The most expedient variants of reprocessing of vanadium technical oxide (5), ferrovanadium and converter slags by chlorine technology with production of pure metal are considered. It is shown that production of vanadium by the way of electro- or metallothermal reduction of chlorides provides more plastic metal in comparison with reduction from oxides. The methods of production of VOCl 3 , VCl 4 and vanadium lowest chlorides are considered. Necessity of expansion of production of vanadium chlorine derivatives is dictated as well by their increasing application in different areas of national economy, in particular, as catalysts in organic synthesis

  8. Regiospecific synthesis of polychlorinated dibenzofurans with chlorine-37 excess

    International Nuclear Information System (INIS)

    Yoonseok Chang; Deinzer, M.L.; Oregon State Univ., Corvallis, OR

    1991-01-01

    The synthesis of regiospecifically chlorine-37 labeled di-and trichlorodibenzofurans is described. The strategy for introducing a chlorine-37 label regiospecifically has been to reduce the nitro derivative to the corresponding amine. The amine is converted to the diazonium salt with t-butyl nitrite, and this product is converted to the final product via the Sandmeyer reaction with chlorine-37 labeled cuprous chloride. (author)

  9. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  10. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags.

    Science.gov (United States)

    DeAngelis, Michael; Ferrara, Alexander; Gregory, Kaleigh; Zammit, Kimberly; Zhao, Fang

    2018-04-01

    Adenosine is a potent endogenous mediator of vasodilation. Compounded sterile solutions of adenosine are used in cardiac catheterization lab to perform stress tests on the heart. These tests are used to determine the fractional flow reserve (FFR) and are commonly used in the management and diagnosis of cardiovascular conditions. The purpose of this study was to assess the physical and chemical stability of 2 mg/mL adenosine in 0.9% Sodium Chloride Injection, USP in polyvinyl chloride [PVC]) and polyolefin infusion bags stored at room temperature (20°C-25°C) and under refrigeration (2°C-8°C). The compounding and analytical methods used in this study were very similar to those described in the prior publications from the authors' laboratory. To ensure a uniform starting concentration of all stability samples, a batch of 2 mg/mL adenosine solution was prepared and then packaged into empty PVC and polyolefin infusion bags. These stability samples were prepared in triplicate for each bag type and storage temperature (a total of 12 samples). The infusion bag samples were assessed for stability immediately after preparation and after 1 day, 3 days, 7 days, and 14 days. At each time point, the infusion bags were first visually inspected against a light background for color change, clarity, and particulates. Aliquots were drawn from each sample at each time point for pH analysis and high-performance liquid chromatography (HPLC) analysis. Over 14 days of storage at room temperature or refrigeration, no considerable change in visual appearance or pH was observed in any bags. All samples retained 90% to 110% of the initial drug concentration. No significant degradation peaks were observed in the HPLC chromatograms.

  11. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Heraty, L.J.; Huang, L.; Holt, B.D.; Abrajano, T.A. Jr.; Clausen, J.L.

    1998-01-01

    Natural attenuation of chlorinated aliphatic hydrocarbons (CAHs) can be an important mechanism for groundwater remediation. It is difficult to determine the effectiveness of natural CAH attenuation from chemical analyses of groundwater samples because mixing, dispersion, and secondary reactions can mask the chemical evidence of attenuation. In this paper, the authors explore the application of stable chlorine isotope ratio measurements as a new tool for evaluating natural attenuation of CAHs. They report stable isotope ratios of chlorine in both trichloroethene (TCE) and inorganic chloride in groundwater from an aerobic aquifer beneath an extensively contaminated industrial site, the Paducah Gaseous Diffusion Plant in western Kentucky. Variations in the concentrations and chlorine isotope ratios of TCE and chloride in the groundwater are consistent with those expected from natural attenuation. These data support a model in which partial TCE degradation occurred in relatively impermeable, clay-rich sediments above the aquifer, and little or no further degradation of TCE occurred within the aquifer. A record of changing conditions within the TCE source area can be inferred from the spatial variation of chlorine isotope ratios for TCE and chloride within the plume

  12. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride

    Directory of Open Access Journals (Sweden)

    Kar Min Lim

    2015-10-01

    Full Text Available Flexible poly(vinyl chloride (PVC was fabricated using a palm oil-based alkyd as a co-plasticizer to di-octyl phthalate (DOP and di-isononyl phthalate (DiNP. The effects of the incorporation of the palm oil-based alkyd on morphological, thermal and mechanical properties of PVC compounds were studied. Results showed the incorporation of the alkyd enhanced the mechanical and thermal properties of the PVC compounds. Fourier transform infrared spectroscopy (FTIR results showed that the polar –OH and –C=O groups of alkyd have good interaction with the –C–Cl group in PVC via polar interaction. The morphological results showed good incorporation of the plasticizers with PVC. Improved tensile strength, elastic modulus, and elongation at break were observed with increasing amount of the alkyd, presumably due to chain entanglement of the alkyd with the PVC molecules. Thermogravimetric analysis results confirmed that the alkyd has improved the thermostability of the PVC compounds.

  13. Preparation of pure anhydrous rare earth chlorides

    International Nuclear Information System (INIS)

    Bel'kova, N.L.; Slastenova, N.M.; Batyaev, I.M.; Solov'ev, M.A.

    1979-01-01

    A method has been suggested for obtaining extra-pure anhydrous REE chlorides by chloridizing corresponding oxalates by chlorine in a fluid bed, the chloridizing agents being diluted by an inert gas in a ratio of 2-to-1. The method is applicable to the manufacture of quality chlorides not only of light, but also of heavy REE. Neodymium chloride has an excited life of tau=30 μs, this evidencing the absence of the damping impurities

  14. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  15. Constraining wintertime sources of inorganic chlorine over the northeast United States

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Campuzano Jost, P.; Schroder, J. C.; Day, D. A.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Weber, R. J.; Dibb, J. E.; Brown, S. S.; Jimenez, J. L.; Thornton, J. A.

    2017-12-01

    Wintertime multiphase chlorine chemistry is thought to play a significant role in the regional distribution of oxidants, the lifetime of VOCs, and the transport of NOx downwind of urban sources. However, the sources and chemistry of reactive chlorine remain highly uncertain. During the WINTER 2015 aircraft campaign, the inorganic chlorine budget was dominated by HCl (g) and total particulate chloride, accounting for greater than 85% of the total chlorine budget within the boundary layer. The total concentration of inorganic chlorine compounds found over marine regions was 1014 pptv and 609 pptv over continental regions with variability found to be driven by changes in meteorological conditions, particle liquid water content, particle pH, and proximity to large anthropogenic sources. However, displacement of particle chloride was often not a large enough source to fully explain the concentrations of gas phase Cly compounds. We use the GEOS-Chem global chemical transport model to simulate the emissions, gas-particle partitioning, and downwind transport and deposition of Cly during winter. Simulated concentrations of HCl, particle chloride, and other dominant Cly compounds are compared to measurements made during the WINTER aircraft campaign. The relative roles of Cly sources from sea-salt aerosol and anthropogenic sources such as power plants, biomass burning and road salt are explored.

  16. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation.

    Science.gov (United States)

    Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long

    2017-11-01

    A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Characterization of historical infiltration in the unsaturated zone at the Nevada Test Site using chloride, bromide, and chlorine-36 as environmental tracers]. [Final subcontract report

    International Nuclear Information System (INIS)

    1991-01-01

    This document is an end-of-contract report, prepared by Hydro Geo Chem for Los Alamos National Laboratory under contract number 9-XDD-6329F-1. The ultimate goal of this work is to characterize historical infiltration and unsaturated flow in the Yucca Mountain area of the Nevada Test Site. Work on this contract has focused on using chloride, bromide, stable chlorine isotopes, and chlorine-36 distributions to evaluate the depth of infiltration in the unsaturated zone. Effort in support of this work has included developing analytical procedures, exploring ways in which to separate the. meteoric component from the rock component, and meeting quality assurance requirements

  18. Fabrication and characterization of a novel hydrophobic CaCO{sub 3} grafted by hydroxylated poly(vinyl chloride) chains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Lixia [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); School of Chemical Science and Technology, Yunnan University (China); Yang, Simei; Luo, Xin [School of Chemical Science and Technology, Yunnan University (China); Lei, Jingxin [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); Cao, Qiue [School of Chemical Science and Technology, Yunnan University (China); Wang, Jiliang, E-mail: jlwang@ynu.edu.cn [School of Chemical Science and Technology, Yunnan University (China)

    2015-12-01

    Highlights: • Hydroxylated poly(vinyl chloride) (PVC-OH) with different molecular weight and hydroxyl value was successfully prepared by the suspension copolymerization. • PVC-OH was grafted onto the surface of CaCO{sub 3} particles by the urethane formation reaction. • The modified CaCO{sub 3} particles show excellent hydrophobicity. - Abstract: The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO{sub 3} was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the −OH groups both in the PVC-OH chains and on the surface of pristine CaCO{sub 3} particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO{sub 3} particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO{sub 3} had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO{sub 3} particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO{sub 3} particles, respectively. The change of specific surface area implying surface modification was investigated as well.

  19. Aqueous-chlorine leaching of typical Canadian uranium ores

    International Nuclear Information System (INIS)

    Haque, K.E.

    1982-01-01

    Laboratory-scale aqueous-chlorine leaches were conducted on quartz-pebble conglomerates, pegmatite and vein-type ores. Optimum leach temperatures, pulp density and retention times were determined. Uranium extraction of 98 per cent was obtained from the Elliot Lake, Madawaska Mines of Bancroft and Rabbit Lake ores, 96 per cent from the Key Lake ore and 86 per cent from the Agnew Lake ore. However, tailings containing 15-20 pCi g -1 of radium-226 were obtained only from the Elliot Lake and Agnew lake quartz-pebble conglomerates and Bancroft pegmatite-type ores by second-stage leaches with HCl. The second-stage leach results indicate that multistage (3 or 4) acid-chloride or salt-chloride leaches might be effective to obtain tailings containing 15-20 pCi 226 Ra g -1 from the high-grade vein-type ores. Comparative reagent-cost estimates show that the sulphuric-acid leach process is far less expensive than aqueous chlorine leaching. Nevertheless, only the aqueous chlorine and acid-chloride leaches in stages are effective in producing tailings containing 15-20 pCi 226 Ra g -1 from the typical Canadian uranium ores. (Auth.)

  20. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  1. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1994-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  2. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  3. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  4. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    Ioffe, R.B.; Korovin, Yu.I.

    1978-01-01

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  5. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of the Utility of Recycling Used Products made of Polyvinyl Chloride

    Science.gov (United States)

    Matsuda, Satoshi; Kubota, Hiroshi

    This study intends to propose a new approach to evaluate the utility of recycling used products made of Polyvinyl Chloride (PVC) . In order to determine whether or not these used products can be recycled, there must be some indicators that appropriately and quantitatively show the degree that the contribution of recycling these targeted used products has on society. It was indicated that the rights and wrongs of incineration and/or heat recovery using a material such as wallpaper or floor cover made of PVC could be judged by the concept of "Social Energy Consumption" originally proposed by the authors (Chap. 3 in the text) . On the other hand, in the case where the used products such as PVC pipes and joints are dug out from underground and recycled, this research shows the estimation of its utility should be accomplished by extending the concept: Specifically, the manpower converted to the value of the social energy consumption was added, because labor costs for digging out these used products occupy a large portion of the total recycling cost, although manpower is not taken into account in the usual energy balance calculation, which leads to the contradiction of the estimation results from the standpoint of energy balance and economy. In this study, the marginal cost for digging out PVC pipes and joints evaluated by this method was shown as an example of a trial calculation (Chap. 2 in the text) . As a whole, this research quantitatively demonstrated an example trial calculation showing whether or not these used products should be recycled disregarding if the economic efficiency should be evaluated as a result of the analysis based upon the concept of "Social Energy Consumption".

  7. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  8. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  9. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    Science.gov (United States)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  10. Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic.

    Science.gov (United States)

    Bastviken, David; Svensson, Teresia; Karlsson, Susanne; Sandén, Per; Oberg, Gunilla

    2009-05-15

    Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 degrees C. Minimum rates were found at high temperatures (50 degrees C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 degrees C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 degrees C and under oxic conditions at 50 degrees C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

  11. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture

    International Nuclear Information System (INIS)

    Fogel, M.M.; Taddeo, A.R.; Fogel, S.

    1986-01-01

    Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14 CO 2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO 2 . Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations

  12. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    Science.gov (United States)

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  13. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  14. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.

    Science.gov (United States)

    He, Yao; Ma, Xiaoqian; Zeng, Guangbo

    2015-02-01

    The thermochemical processes of lignocellulosic biomass and its mixtures with poly(vinyl chloride) (PVC) fractions were investigated by thermogravimetric analysis in CO2 atmosphere. Superposition property was assumed to examine whether and/or to what extent interactions occurred during the mixture decomposition. Results showed that interactions existed, of which the intensities changed with reaction stage, heating rate and PVC quantity, and they actively behaved toward the decomposition in most cases. With PVC presence, lignocellulosic biomass turned from three-stage to four-stage decomposition process where the reactions occurred at lower temperatures with heightened intensity, especially in the first stage. The measured activation energies calculated by Ozawa-Flynn-Wall and Vyazovkin methods were of minor difference <5 kJ/mol, and comparing them between materials in each stage confirmed the results of interaction impact. This work provides a theoretical basis bringing about the possibilities of recycling CO2 into a reaction medium of thermo-treatment of lignocellulosic material with PVC contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A.M. Hezma

    2017-06-01

    Full Text Available Structural, thermal, and mechanical properties of pure blend and nanocomposites based on polyurethane (PU and polyvinyl chloride (PVC doped with low different content of single walled-carbon nanotubes (SWCNTs were studied. The nanocomposites at different concentration were prepared via casting technique. The interaction between PU/PVC and CNTs were examined via FT-IR studies. The changes in the structures of the nanocomposites were examined using X- Ray Diffraction (XRD, and the results indicated that the amorphous domains of nanocomposites increased with increasing SWCNTs content. Transmission electron microscope (TEM observation indicated that SWCNTs surface was wrapped with the polymer with the thermal properties of nanocomposites improved. The mechanical behavior of the nanocomposites was evaluated as a function of SWCNTs content. The main enhancement in tensile properties was observed, e.g., the tensile strength and elastic modulus increased compared with the pure blend, which may be attributed to the interaction and adhesion between CNTs and the polymer matrices due to the hydrogen bonding between carbonyl groups (C=O of polymer blend chains and carboxylic acid (COOH groups of CNTs.

  16. Effect of irradiation on poly(vinyl chloride)/epoxidized natural rubber blend in the presence of additives: FTIR analysis

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Dahlan; Baharin, A.; Nasir, M.

    2001-01-01

    The effect of irradiation on the structure of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR) was studied using the Fourier Transform Spectroscopy (FTIR). The 50/50 PVC/ENR blend was irradiated by using 3.0 MeV electron beam machine at 0 and 200 kGy irradiation doses. The influence of several additives such as TMPTA, Irganox 1010, and tribasic lead sulfate on the irradiation induced changes of the blend was investigated. It was found that upon irradiation, ring opening of the epoxide groups, oxidation as well crosslinking at residual double bonds occurred, leading to decreases in the intensities of the epoxide and cis double bond bands and an increases in ether and furan bands. The addition of Irganox 1010 and tribasic lead sulfate were found to inhibit the irradiation-induced reaction in the blend to a considerable extent. The importance of TMPTA in preventing the intramolecular ring opening side chain reaction was also discussed. However, studies did not reveal the exact nature of the irradiation-induced reactions involved in the blend. (Author)

  17. The optimization of the analysis of chlorine-36 in urine

    International Nuclear Information System (INIS)

    Joseph, S.; Kramer, G.H.

    1982-02-01

    A method has been developed and optimized for the analysis of chlorine-36 in urine. Problems such as sample size, photodecomposition of silver chloride and anion interferences have been solved and are discussed in detail. The analysis is performed by first removing interfering phosphates and sulphates from an untreated urine sample and isolating the chlorine-36 as silver chloride. The precipitate is counted in a planchet counter. Recoveries are estimated to be 90 +- 5% with a detection limit of 3 pCi (0.1 Bq) for a routine sample (counting time 10 minutes, counting efficiency 10%, sample size 100 mL)

  18. Chlorine gas processing of oxide nuclear fuel particles containing thorium

    International Nuclear Information System (INIS)

    Knotik, K.; Bildstein, H.; Falta, G.; Wagner, H.

    Experimental studies on the chloride extraction and separation of U and Th from coated Th--U oxide particles are reported. After a description of the chlorination equipment and the experimental procedures, the results are discussed. The yield of U is determined as a function of the reaction temperature. The results of a thermogravimetric analysis of the chlorination of uranium carbide and thorium carbides are reported and used to establish the reaction mechanism for the chlorination

  19. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.

    Science.gov (United States)

    Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo

    2013-10-15

    The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Stability of Procainamide Injection in Clear Glass Vials and Polyvinyl Chloride Bags.

    Science.gov (United States)

    Donnelly, Ronald F

    2017-11-01

    The objective of this study was to evaluate the chemical stability of procainamide hydrochloride, 100 mg/mL, when repackaged in clear glass vials or diluted to 3 mg/mL with normal saline and packaged in polyvinyl chloride (PVC) bags when stored at either 23°C and exposed to light (ETL) or 5°C and protected from light (PFL). Solutions were assayed using a stability-indicating high-performance liquid chromatography method. Samples (5 mL) were collected from triplicate containers on days 0, 7, 14, 21, 28, 56, 91, and 193. Color/clarity and pH changes were also monitored at each time interval. During the study, all samples remained clear and there was only a slight pH change. The color of the solutions stored at 23°C intensified but did not correlate with a significant decrease in concentration, while solutions stored at 5°C remained unchanged. Solutions repackaged in glass vials were stable for 193 days when stored at 23ºC and ETL or 5ºC and PFL. When further diluted to 3 mg/mL with normal saline and packaged in PVC bags, procainamide was also stable for 193 days at either 23ºC and ETL or 5°C and PFL. The stability of procainamide, 100 mg/mL, repackaged in clear glass vials was 193 days when stored at either 23ºC and ETL or 5ºC or PFL. If diluted further to 3 mg/mL with normal saline and packaged in PVC bags, the drug was also stable for 193 days at either 23ºC and ETL or 5°C and PFL.

  1. Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride.

    Science.gov (United States)

    Webb, J S; Van der Mei, H C; Nixon, M; Eastwood, I M; Greenhalgh, M; Read, S J; Robson, G D; Handley, P S

    1999-08-01

    Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 10(8) blastospores ml(-1). That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13 degrees in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces.

  2. Sonochemical synthesis of cooper II sulfide nanoparticles and their use as radiolytic stabilizer in polyvinyl chloride matrix

    International Nuclear Information System (INIS)

    Freitas, Danubia Maria da Silva; Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2013-01-01

    Cooper (II) sulfide (CuS) was synthesized by sonochemical method. CuS crystals with hexagonal structure exhibit irregular aggregates of particles with an average size in the range of 250-900 nm. Commercial Polyvinyl chloride (PVC) containing CuS nanoparticles (PVC/CuS) at concentrations of 0.10; 0.30; 0.50 and 0.70 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without nanoparticles and with nanoparticles. Decrease in viscosity molar mass was observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.5 wt% into PVC matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 84% in PVC matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PVC systems. The interactions between CuS and PVC favor action of nanoparticles as a good plasticizer in the PVC molecule. (author)

  3. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. Thermodynamic analysis and experimental study on the chlorination of uranium oxide by gas-solid reaction

    International Nuclear Information System (INIS)

    Shin, Y.J.; Kim, I.S.; Shin, H.S.; Ro, S.G.; Park, H.S.

    1998-01-01

    In order to determine the operating condition of an uranium chlorination process with U 3 O 8 -C-Cl 2 system, the experimental conditions have been evaluated preliminarily by the thermochemical analysis and experimentally confirmed in this study. The dry-type chlorination of U 3 O 8 occurs as irreversible and exothermic reaction and produces many kinds of chloride compounds such as UCl 3 , UCl 4 , UCl 5 , and UCl 6 in the air and humidity controlled argon environment. Taking account of Gibbs free energy and vapor pressure for various chloride compounds, the proper temperature range of chlorination appears to be 863 to 953 K in aspects of increasing reaction rate and the yield of nonvolatile product. In the course of the experimental confirmation the powder of U 3 O 8 is perfectly converted into uranium chlorides within 4 hours above 863 K, and then the maximum fraction of uranium chloride remaining in the reactor is about 30% of total conversion mass. (author)

  5. Electrical and mechanical investigations on polyvinyl chloride filled with haf black

    International Nuclear Information System (INIS)

    El- Nashar, D.E.; Eid, M.A.M.; Abou Aiad, T.H.; Abd-El-Messieh, S.L.

    2005-01-01

    Polyvinyl chloride (PVC) was chosen to be loaded with various amount of high abrasion furnace black (HAF). The mechanical as well as electrical properties of the prepared composites were investigated. The Dielectric properties of these composites were investigated in the frequency range 10 2 - 10 5 Hz at temperature range from 30 to 120 degree C . In addition to the conductivity term, the experimental data of the dielectric losses ε were analyzed using a computer program based on both Havriliak-Nagami and Frohlich equations into two relaxation processes. The first relaxation process in the lower frequency range could be attributed to Maxwell Wagner effect. The second relaxation could be attributed to the combination of the large scale mobilization of the chains i.e. the glass rubber relaxation process in addition to a contribution of the motion of the large aggregates caused by the movement of the main chain, which are expected to be formed by the addition of different ingredients to PVC such as plasticizer. The percolation threshold concentration, which is the concentration after which the conductivity increases many orders of magnitude with very little increase in the filler amount for PVC/HAF composites depends upon the measuring temperature, whether it is below or above the glass transition of the polymer matrix. Stress strain plot, hardness, and other mechanical properties such as stress at yield, stress at rupture, strain at yield, strain at rupture and Young's Modulus were investigated at room temperature. This investigation led to the conclusion that all the mechanical properties are improved by increasing HAF content and reaches its optimum values at about 30 p hr HAF loading. On the other hand. The addition of HAF black by concentration up to 40 p hr increase the electrical conductivity to be in the order of 10 -10 Sm -1 at 30 degree C and 10 -9 Sm -1 at 120 degree C which highly recommend such composites to be used in anti static applications as the

  6. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC)

    Science.gov (United States)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.

    2006-01-01

    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  7. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo [EcoTopia Science Institute (Japan); Hirabayashi, Daisuke; Enokida, Youichi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  8. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    International Nuclear Information System (INIS)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-01-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U 3 O 8 without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  9. Non-destructive analysis of chlorine in fly ash cement concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Nagadi, M.M.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman

    2009-01-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  10. Non-destructive analysis of chlorine in fly ash cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-08-11

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022{+-}0.007 and 0.038{+-}0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  11. Radiation-chemical formation of acids in polyvinyl butyral films with chlorinated additives

    International Nuclear Information System (INIS)

    Kriminiskaya, Z.K.

    1993-01-01

    Radiochromic indicators are commonly produced by reacting an indicator dye with an acid formed inside a polymer by irradiation. Halogenated and unhalogenated polymers were used, the latter containing halogenated organics. It was therefore of interest to study the formation of acid in polyvinyl butyral (PVD) with addition of a halogenated compound. Yields were measured of radiation-chemical acid formation in PVB films containing chloral hydrate and hexachloroethane. 5 refs., 1 fig., 2 tabs

  12. Pourbaix diagrams for the system copper-chlorine at 5-100 deg C

    International Nuclear Information System (INIS)

    Beverskog, B.; Puigdomenech, I.

    1998-04-01

    Pourbaix diagrams for the copper-chlorine system in the temperature interval 5-100 deg C have been revised. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of each dissolved element, 10 -4 and 10 -6 molal for copper and 0.2 and 1.5 molal for chlorine have been used in the calculations. Chloride is the predominating chlorine species in aqueous solutions. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. CuCl 2 · 3Cu(OH) 2 is the only copper-chloride solid phase that forms at the concentrations of chlorine studied. However, its stability area decreases with increasing temperature. The ion CuCl 2 - predominates at all temperatures at [Cl(aq)] tot =0.2 molal and this reduces the immunity and passivity areas. A corrosion region exists between the immunity and passivity regions at 100 deg C at [Cu(aq)] tot =10 -6 and [Cl(aq)] tot =0.2 molal. At the chlorine concentration of 1.5 molal the corrosion region exists in the whole temperature range investigated. The ion CuCl 3 2- predominates at 5-25 and 100 deg C, while CuCl 2 - predominates at 50-80 deg C at [Cl(aq)] tot= 1-5 molal. A copper concentration of 10 -4 molal reduces the corrosion areas due to expansion of the immunity and passivity areas. However, a corrosion region still exists between the immunity and passivity regions at all investigated temperatures at pH Τ -6 molal and the chloride concentration of 0.2 molal. However, at 80-100 deg C the equilibrium potentials postulated for the Swedish nuclear repository are dangerously close to a corrosion situation. According to our calculations the copper canisters in the Swedish repository corrode at 80-100 deg C at the chloride concentration of 1.5 molal

  13. Pourbaix diagrams for the system copper-chlorine at 5-100 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Beverskog, B. [Studsvik Material AB, Nykoeping (Sweden); Puigdomenech, I. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1998-04-01

    Pourbaix diagrams for the copper-chlorine system in the temperature interval 5-100 deg C have been revised. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of each dissolved element, 10{sup -4} and 10{sup -6} molal for copper and 0.2 and 1.5 molal for chlorine have been used in the calculations. Chloride is the predominating chlorine species in aqueous solutions. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. CuCl{sub 2} {center_dot} 3Cu(OH){sub 2} is the only copper-chloride solid phase that forms at the concentrations of chlorine studied. However, its stability area decreases with increasing temperature. The ion CuCl{sub 2}{sup -} predominates at all temperatures at [Cl(aq)]{sub tot}=0.2 molal and this reduces the immunity and passivity areas. A corrosion region exists between the immunity and passivity regions at 100 deg C at [Cu(aq)]{sub tot}=10{sup -6} and [Cl(aq)]{sub tot}=0.2 molal. At the chlorine concentration of 1.5 molal the corrosion region exists in the whole temperature range investigated. The ion CuCl{sub 3}{sup 2-} predominates at 5-25 and 100 deg C, while CuCl{sub 2}{sup -} predominates at 50-80 deg C at [Cl(aq)]{sub tot=}1-5 molal. A copper concentration of 10{sup -4} molal reduces the corrosion areas due to expansion of the immunity and passivity areas. However, a corrosion region still exists between the immunity and passivity regions at all investigated temperatures at pH{sub {Tau}}<9.5 and 1.5 molal chloride concentration. According to our calculations the copper canisters in the deep nuclear waste repository should not corrode at the copper concentration of 10{sup -6} molal and the chloride concentration of 0.2 molal. However, at 80-100 deg C the equilibrium potentials postulated for the Swedish nuclear repository are dangerously close to a corrosion situation. According to

  14. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R; Scala, C von; Schuler, A; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  15. Investigations of high-temperature chlorination ultramicroquantities of rare earths and thermochromatographic behaviour of their chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Nguen Kong Chang; Novgorodov, A.F.; Kaskevich, M.; Kolachkovski, A.; Khalkin, V.A.

    1984-01-01

    An attempt has been undertaken to accomplish gas thermochromatographic (GTC) separation of trichloride mixture of all lanthanoids. Effect of starting temperature, content and concentration of different chlorinating reagent gases upon the thermochromatographic process has been investigated in order to optimize GTC separation of RSE. Investigations have been carried out using the following REE radioactive isotopes: /sup 140/La, /sup 144/Ce, /sup 147/Nd, /sup 153/Sm, /sup 156/Eu, sup(151, 153)Gd, /sup 160/Yb and /sup 172/Lu, which were preliminary purified at the chromatographic column filled with cationite using ammonium ..cap alpha..-oxiizobtirate, then transformed into a chloride form and dried under vacuum conditions. Pronounced zones of separated REE trichloride asorption, chacterized by a mean square root value of adsorbent distribution sigma=5 K, have been obtained. It has been shown that temperatures of center of gravity of REE trichloride adsorbtion zone are practically equal to each other and, hence it is impossible to perform the GTC separation of their ultramicroamounts.

  16. Thermodynamic analysis of separating lead and antimony in chloride system

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-zhong; CAO Hua-zhen; LI Bo; YUAN Hai-jun; ZHENG Guo-qu; YANG Tian-zu

    2009-01-01

    In chloride system, thermodynamic analysis is a useful guide to separate lead and antimony as well as to understand the separation mechanism. An efficient and feasible way for separating lead and antimony was discussed. The relationships of [Pb2+][Cl-]2-lg[Cl]T and E-lg[Cl]T in Pb-Sb-Cl-H2O system were studied, and the solubilities of lead chloride at different antimony concentrations were calculated based on principle of simultaneous equilibrium. The results show that insoluble salt PbCl2 will only exist stably in a certain concentration range of chlorine ion. This concentration range of chlorine ion expands a little with increasing the concentration of antimony in the system while narrows as the system acidity increases. The solubility of Pb2+ in solution decreases with increasing the concentration of antimony in the system, whereas increases with increasing the concentration of total chlorine. The concentration range of total chlorine causing lead solubility less than 0.005 mol/L increases monotonically.

  17. Stability of methadone hydrochloride in 0.9% sodium chloride injection in single-dose plastic containers.

    Science.gov (United States)

    Denson, D D; Crews, J C; Grummich, K W; Stirm, E J; Sue, C A

    1991-03-01

    The stability of methadone hydrochloride in 0.9% sodium chloride injection in flexible polyvinyl chloride containers was studied. Commercially available methadone hydrochloride 20 mg/mL and 25-mL single-dose bags of 0.9% sodium chloride injection were used. Six samples each were prepared at methadone hydrochloride concentrations of 1, 2, and 5 mg/mL. The solutions were stored at room temperature and were not protected from light. Immediately after preparation and after two, three, and four weeks of storage, each of the 18 samples was divided into three aliquots, each of which was analyzed in duplicate for methadone hydrochloride concentration by gas chromatography. There was less than 10% change in methadone hydrochloride concentration in any sample throughout the four-week study period. Methadone hydrochloride at concentrations of 1, 2, and 5 mg/mL prepared in commercially available flexible polyvinyl chloride containers of 0.9% sodium chloride injection and stored at room temperature without deliberate protection from light is stable for at least four weeks.

  18. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  19. Recovery of actinides from actinide-aluminium alloys by chlorination: Part III - Chlorination with HCl(g)

    Science.gov (United States)

    Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas

    2018-01-01

    Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).

  20. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    International Nuclear Information System (INIS)

    Pickles, C.A.

    2009-01-01

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  1. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  2. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  3. Influence of inorganic salts mixture and a commercial additive on the degradation of poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Silva, Williams B. da; Vasconcelos, Henrique M. de; Aquino, Katia Aparecida da S.; Araujo, Elmo S. de

    2009-01-01

    Samples of commercial poly(vinyl chloride) (PVC) containing a Hindered Amine Stabilizer (HAS) and samples containing a salt mixture of CuCl 2 /KI both in 0.1, 0.3, 0.5 and 0.7wt% concentration of HAS or salt mixture were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature in air at 25 kGy, sterilization dose of PVC medical supplies. The viscosity-average molecular weight (Mv) was analyzed by viscosity technique. Comparison of viscosity results obtained before and after irradiation ( at 25 kGy) of PVC showed crosslinking effect is predominant. On the other hand the PVC-HAS systems and PVC-salt systems showed a decrease in Mv values on irradiated samples reflecting the main chain random scissions effect. However the PVC-salt at 0.5wt% concentration showed no significant degradation index value. This result suggests that salt keeps the good radiolytic stabilization behavior of gamma-irradiated PVC and the HAS additive is not efficient on radiolytic stabilization of PVC. The CuCl 2 /KI mixture at 0.5wt% in the PVC matrix influenced the thermal behavior of the polymer increasing of 42 deg C in maximum thermal degradation temperature. In addition, the salt mixture influences significantly the Young's Modulus of PVC increasing the rigidity of polymer. (author)

  4. Derivatization method of free cyanide including cyanogen chloride for the sensitive analysis of cyanide in chlorinated drinking water by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Kang, Hye-In; Shin, Ho-Sang

    2015-01-20

    A novel derivatization method of free cyanide (HCN + CN(-)) including cyanogen chloride in chlorinated drinking water was developed with d-cysteine and hypochlorite. The optimum conditions (0.5 mM D-cysteine, 0.5 mM hypochlorite, pH 4.5, and a reaction time of 10 min at room temperature) were established by the variation of parameters. Cyanide (C(13)N(15)) was chosen as an internal standard. The formed β-thiocyanoalanine was directly injected into a liquid chromatography-tandem mass spectrometer without any additional extraction or purification procedures. Under the established conditions, the limits of detection and the limits of quantification were 0.07 and 0.2 μg/L, respectively, and the interday relative standard deviation was less than 4% at concentrations of 4.0, 20.0, and 100.0 μg/L. The method was successfully applied to determine CN(-) in chlorinated water samples. The detected concentration range and detection frequency of CN(-) were 0.20-8.42 μg/L (14/24) in source drinking water and 0.21-1.03 μg/L (18/24) in chlorinated drinking water.

  5. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    Science.gov (United States)

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  6. Stability of diclofenac sodium oral suspensions packaged in amber polyvinyl chloride bottles.

    Science.gov (United States)

    Donnelly, Ronald F; Pascuet, Elena; Ma, Carmen; Vaillancourt, Régis

    2010-01-01

    Prescribing of diclofenac for children usually involves a dose different from commercially available strengths. This drug is available only as tablets, which can be divided only so many times before the dose obtained becomes inaccurate. In addition, children may have difficulty swallowing tablets. For these reasons, a compounding formula for a liquid dosage form is essential to ensure effective delivery of the drug to pediatric patients. To develop a compounding formula for diclofenac sodium and to determine the extended physical and chemical stability of this compound when stored in amber polyvinyl chloride (PVC) prescription bottles under refrigeration and at room temperature. A suspension of diclofenac sodium (10 mg/mL) was prepared from commercially available diclofenac sodium tablets, with Ora-Blend as the suspending and flavouring agent. The suspension was packaged in 60-mL amber PVC prescription bottles and stored at either room temperature (23°C) or under refrigeration (5°C). Samples were collected on days 0, 7, 14, 21, 27, 56, and 93. Chemical stability was determined using a validated stability-indicating high-performance liquid chromatography method. At each sampling time, the suspensions were checked for changes in appearance (i.e., colour, layering, caking, ease of resuspension), odour, and pH. The diclofenac sodium suspensions were very stable, retaining at least 99.5% of the original concentration for up to 93 days, regardless of storage temperature. There were no apparent changes in the physical appearance of the suspensions, nor were there any substantial changes in odour or pH. Suspensions of diclofenac sodium (10 mg/mL) were quantitatively stable but difficult to prepare because of the enteric coating of the tablets. Therefore, it is recommended that diclofenac powder be used for the preparation of suspensions. For pediatric use, palatability is a consideration, and a masking agent should be added before administration. An expiry date of up to

  7. Hydrogen-promoted chlorination of RuO2(110)

    NARCIS (Netherlands)

    Hofmann, J.P.; Zweidinger, S.; Knapp, M.; Seitsonen, A.P.; Schulte, K.; Andersen, J.N.; Lundgren, E.; Over, H.

    2010-01-01

    High-resolution core-level photoemission spectroscopy and temperature-programmed reaction experiments together with density functional theory calculations were used to elucidate on the atomic scale the chlorination mechanism of ruthenium dioxide RuO2(110) by hydrogen chloride exposure. The

  8. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    Science.gov (United States)

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  9. Chloride metallurgy for uranium recovery: concept and costs

    International Nuclear Information System (INIS)

    Campbell, M.C.; Ritcey, G.M.; Joe, E.G.

    1982-01-01

    Uranium, thorium and radium are all effectively solubilized in chloride media. This provides a means to separate and isolate these species for ultimate sale or disposal. The laboratory work on the applications of hydrochloric acid leaching, chlorine assisted leaching and high temperature chlorination is reviewed. An indication of costs and benefits is provided to enable the evaluation of this technology as an option for reducing the environmental impact of tailings

  10. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  11. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  12. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    Science.gov (United States)

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  14. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures

    Science.gov (United States)

    Tolbert, Margaret A.; Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO2) with H2O and HCl on surfacers that simulate polar stratospheric clouds are studied at temperatures relevant to the Antarctic stratosphere. The gaseous products of the resulting reactions, HOCl, Cl2O, and Cl2, could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the additional formation of condensed-phase HNO3 could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.

  16. Preparation and electrical-property characterization of poly(vinyl chloride)-derived carbon nanosheet by ion beam irradiation-induced carbon clustering and carbonization

    Science.gov (United States)

    Jung, Chan-Hee; Sohn, Joon-Yong; Kim, Hyo-Sub; Hwang, In-Tae; Lee, Hong-Joon; Shin, Junhwa; Choi, Jae-Hak

    2018-05-01

    In this work, we demonstrated that carbon nanosheet (CNS) can easily be produced by a room-temperature, solid-state proton irradiation-induced clustering of poly(vinyl chloride) (PVC) films followed by carbonization. The results of the optical, chemical, and structural analyses revealed that oxidized and sp2-hybridized carbon clusters were effectively created in the PVC thin film by combined dehydrochlorination and inter-coupling reactions during proton irradiation. This was further converted to pseudo-hexagonally-structured nano-crystalline CNS with 2-D symmetry and metallic transporting character by high-temperature treatment. As a result, the CNS exhibited a very high electrical conductivity (587 S/cm) without a significant change in their thickness, a low surface roughness (0.36 nm), and a high work function (5.11 eV). These findings demonstrate that the radiation-based approach opens new avenues for the design and development of 2-D CNS as a graphene allotrope for the application of electronic devices, including field-effect transistors, electric heating devices, biosensors, supercapacitors, and fuel cells.

  17. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.

    2008-01-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection

  18. Selective recovery of uranium from Ca-Mg uranates by chlorination

    Science.gov (United States)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.; Bohé, Ana E.

    2017-07-01

    A chlorination process is proposed for the uranium extraction and separation using Calciumsbnd Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO4) as reaction product. The formation of U3O8 and MgU3O10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h-1 of chlorine and 10 hs of reaction at 700 °C being U3O8 the single uranium product obtained.

  19. The chlorine-36 dating program at the Australian National University

    International Nuclear Information System (INIS)

    Fifield, L.F.; Ophel, T.R.; Bird, J.R.; Calf, G.E.; Allison, G.B.; Chivas, A.R.

    1987-05-01

    A chlorine-36 dating capability based on the 14UD pelletron accelerator was developed at the Australian National University during 1986 and is now entering the routine measurement phase. It involves a collaboration between the Department of Nuclear Physics, the Australian Atomic Energy Commission and CSIRO Division of Soils. The chlorine-36 dating system is described and some early results are presented for samples of chloride from salt lakes in Western Australia and soil profiles in South Australia

  20. Chlorination separation of uranium, thorium, and radium from low-grade ores

    International Nuclear Information System (INIS)

    Sastri, V.S.; Perumareddi, J.R.

    1995-01-01

    Low-temperature chlorination of low-grade uranium ores containing uranium in the 0.02 to 0.06% range, thorium in the 0.036 to 0.12% range, and radium in the 70 to 200 pci/g range resulted in the extraction of >90% of the constituents. The residue left after chlorination was found to be innocuous and suitable for disposal as a waste acceptable to the environment. Use of sodium chloride in the charge was useful in reducing the chlorination temperature and in the formation of nonvolatile anionic chloro complexes of the metal ions in the ore

  1. Synthetic strategies in the preparation of regiospecifically chlorine-37 labeled polychlorinated dibenzo-p-dioxins

    International Nuclear Information System (INIS)

    Mahiou, Belaid; Deinzer, M.L.

    1992-01-01

    A series of thirteen regiospecifically chlorine-37 labeled polychlorodibenzo-p-dioxins were synthesized via the Sandmeyer reaction. Nitrochlorodibenzodioxins which were obtained by a base promoted condensation of catechols and dinitropolyhalobenzenes were reduced and converted to the diazonium salts. Chlorine-37 was introduced using cuprous chloride-37. The isotopic enrichment was in the range 75-96%. (Author)

  2. Stability assessment of lyophilized intravenous immunoglobulin after reconstitution in glass containers and poly(vinyl chloride) bags.

    Science.gov (United States)

    Parti, R; Mankarious, S

    1997-02-01

    Human intravenous immunoglobulin (IGIV) has been in use for the past 20 years. This biological product is commonly provided in liquid or lyophilized dosage form. When the lyophilized product is rehydrated, it is usually administered within 2-3 h from time of complete dissolution. While this practice is advisable whenever possible, occasionally the patient or care-giver may need to delay the infusion. Hence, a study of the stability of lyophilized IGIV after reconstitution with water for injection was conducted. The reconstituted product was stored either in its original glass container or pooled into poly(vinyl chloride) (PVC) bags. The effect of extended storage on the active ingredient (IgG), excipients (glucose, albumin) and extractables [sodium from glass vials, and di-(2-ethyl-hexyl) phthalate and cyclohexanone from PVC bags] was evaluated. The stability of the active ingredient was evaluated by physico-chemical tests (molecularsize distribution, pH, appearance, total protein), monitoring titres of a specific antibody (hepatitis B surface antigen) and an antibody functional test (bacterial opsonization). To evaluate the risk of microbial contamination during reconstitution and pooling procedures, sterility, pyrogen and animal-safety tests were included in the protocol. The potential of IgG polymerizing in solution during storage and subsequent complement activation was evaluated by assaying for non-specific binding of complement (anti-complement activity). Results show that aseptically reconstituted IGIV is stable and remains sterile up to 48 h at 5 degrees C. The reconstituted product was also found to be stable at room temperature (25 degrees C) up to 12 h.

  3. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C von; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  4. Atmospheric pressure ionization of chlorinated ethanes in ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.

    2015-05-16

    This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS and MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.

  5. Protein valves prepared by click reaction grafting of poly(N-isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes

    Science.gov (United States)

    Guo, Jian-Wei; Lin, Zhen-Yu; Chang, Chi-Jung; Lu, Chien-Hsing; Chen, Jem-Kun

    2018-05-01

    In this study, poly(vinyl chloride) (PVC) was electrospun into fibrous membranes and then reacted with NaN3 to generate azido-terminated PVC fibrous membranes. A propargyl-terminated poly(N-isopropylacrylamide) (PNIPAAm) was also synthesized and then grafted, through click reactions, onto the azido-terminated PVC fiber surface. Protrusion-, scale-, and joint-like structures of the PNIPAAm grafts on the PVC fibers were formed upon increasing the molecular weight of the PNIPAAm grafts. The PNIPAAm-grafted PVC fibrous mats exhibited completely wetted surfaces at 25 °C because of their high roughness. The static water contact angle of the PNIPAAm-grafted PVC fibrous mats reached 140° when the temperature was increased to 45 °C. This thermoresponsive behavior was significantly greater than that of the PNIPAAm grafted on a flat surface. Temperature-responsive membranes were constructed having a pore size of 1.38 μm and applied as protein valves to block and release an antibody (fluorescein-conjugated AffiniPure goat anti-rabbit IgG). At 25 °C, the collection efficiency remained at 94% for antibody concentrations up to 60 ng/L. As the temperature increased to 45 °C, the collection efficiency decreased abruptly, to 4%, when the antibody concentration was greater than 20 ng/L. Accordingly, this system of PNIPAAm-grafted PVC fibers functioned as a protein valve allowing the capture and concentration of proteins.

  6. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    Science.gov (United States)

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  7. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Huang, Luo-Luo

    2017-07-01

    A novel process was proposed for separation of ternary waste plastics by froth flotation. Pretreatment of plastics with potassium permanganate (KMnO 4 ) solution was conducted to aid flotation separation of polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) plastics. The effect of pretreatment parameters including KMnO 4 concentration, treatment time, temperature and stirring rate on flotation recovery were investigated by single factor experiments. Surface treatment with KMnO 4 changes selectively the flotation behavior of PC, PVC and PMMA, enabling separation of the plastics by froth flotation. Mechanism of surface treatment was studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). Effect of frother concentration and flotation time on flotation behavior of plastic mixtures was further studied for flotation separation. The optimized conditions for separation of PC are KMnO 4 concentration 2mmolL -1 , treatment time 10min, temperature 60°C, stirring rate 300rpm, flotation time 1min and frother concentration 17.5mgL -1 . Under optimum conditions, PVC and PMMA mixtures are also separated efficiently by froth flotation associated with KMnO 4 treatment. The purity of PC, PVC and PMMA is up to 100%, 98.41% and 98.68%, while the recovery reaches 96.82%, 98.71% and 98.38%, respectively. Economic analysis manifests remarkable profits of the developed process. Reusing KMnO 4 solution is feasible, enabling the process greener. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    Science.gov (United States)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  9. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  10. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  11. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds.

    Science.gov (United States)

    Wey, M Y; Liu, K Y; Yu, W J; Lin, C L; Chang, F Y

    2008-01-01

    HCl and some organic compounds are the precursors of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in municipal solid waste incinerators. In this work, a lab-scale fluidized bed incinerator is adopted to study the relationship between the organic and the inorganic chlorine contents of artificial wastes and the emissions of HCl and organic compounds. The lower threshold limit (LTL) of chlorine content below which HCl and organic compounds are not generated is studied. Experimental results showed that organic chlorides had a greater potential to release chlorine than inorganic chlorides. The generation of organic pollutants fell, but the emissions of HCl increased with the temperature. The concentrations of chlorophenols (CPs)/chlorobenzenes (CBs) increased with chlorine contents. No LTL existed for HCl regardless of whether CaO was added. The LTL for CPs was between 0.1 and 0.3wt% of inorganic chloride, but there was none for organic sources. For CBs, the LTL was between 0.5 and 1.0wt% for inorganics at 700 and 800 degrees C, but 0.1-0.3 wt% at 700 degrees C and 0.3-0.5 wt% at 800 degrees C for organics. The production of PAHs and benzene, toluene, ethylbenzene and xylene (BTEX) was related to the surplus hydrogen ions that were not reacted with the chlorine. Adding CaO inhibited the production of HCl, CBs and CPs, but did not seriously affect PAHs and BTEX.

  12. ANALYSIS OF ADIPATE ESTER CONTENTS IN POLY(VINYL CHLORIDE) PLASTICS

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Otero, Amalia Dopazo

    2006-01-01

    Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser can be used to determine the content of plasticizers in commercial flexible poly vinyl chloride (PVC) products. Our previous study [T. Nørbygaard, R.W. Berg, Analysis of phthalate ester content in PVC plastics by means of FT......-Raman Spectroscopy, Appl. Spectrosc. 58 (4) (2004) 410–413]—on detection of the presence of phthalate esters in PVC by FT-Raman spectroscopy — is here extended to the similar case of adipate esters (AEs) in samples of soft poly vinyl chloride plastics. Spectra of a range of adipate ester plasticizers (11 AEs......) in pure form are reported. We studied if qualitative and quantitative determination of the adipate ester content would be possible based on the use of proper reference samples. It was found that AEs as a group cannot be definitively identified by their characteristic Raman bands because other aliphatic...

  13. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    Science.gov (United States)

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  14. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  15. Degradation of chlorinated compounds in an anaerobic-aerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Alfan-Guzman, R.; Guerrero-Barajas, C.; Garcia-Pena, I.

    2009-07-01

    Remediation technologies that involves gas transport (e.g., soil vapor extraction and air sparging of groundwater) cause the emission of gases contaminated with chlorinated solvents. Under anaerobic conditions, reductive dechlorination of trichloroethylene (TCE) proceeds via the formation of cis and trans dichloroethene (DCEs) and vinyl chloride (VC) as intermediates. (Author)

  16. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  17. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  18. Thermodynamic consideration on chlorination of uraniferous phosphorite

    International Nuclear Information System (INIS)

    Itagaki, Kimio; Tozawa, Kazuteru; Taki, Tomihiro; Hirono, Shuichiro.

    1989-01-01

    The uranium ore of low grade which has apatite as a main mineral, but is different from the phosphorite used as the raw material for phosphoric acid production, exists in large amount in South America and Africa continents, and the importance of its effective utilization as future uranium resources is recognized. The Power Reactor and Nuclear Fuel Development Corp. took up the establishment of the treatment techniques to make this ore into resources as the subject of a project, and proposed the process of volatilizing the uranium in the ore as the chloride and recovering it, and at present, it attempts the experiment on the chlorination treatment. In this paper, the thermodynamic examination on the feasibility of this process, the optimum condition for leaving calcium existing in a large amount in the ore as the phosphate without chlorination and recovering only uranium by chlorination and volatilization, the phase reaction equilibrium chart and the calculation method according to thermodynamics concerning the behavior of chlorination of accompanying elements such as iron, silicon and aluminum and the effect of moisture in the ore are reported. (K.I.)

  19. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chirachanchai, S.; Kumkrong, A. [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok (Thailand); Ishida, Hatsuo [Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH (United States)

    2000-03-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3{alpha}, 12{alpha} -dihydroxy-5{beta}-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by {gamma}-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  20. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via γ-ray irradiation

    International Nuclear Information System (INIS)

    Chirachanchai, S.; Kumkrong, A.; Ishida, Hatsuo

    2000-01-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3α, 12α -dihydroxy-5β-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by γ-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  1. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Singh, A.K.; Gupta, Barkha

    2006-01-01

    A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 x 10 -7 to 1.0 x 10 -2 M) with a limit of detection as low as 8.91 x 10 -8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures

  2. Chemical aspects of incinerating highly chlorinated and actinide {alpha} contaminated organic waste: application to the Iris process; Aspects chimiques de l'incineration des dechets organiques fortement charges en chlore et contamines en actinides emetteurs {alpha}. Application au procede IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Cames, B. [CEA Valrho, (DCC/DRRV/SCD), 30 - Marcoule (France)

    2000-07-01

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide {alpha} radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  3. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  4. Stability of Dexmedetomidine in 0.9% Sodium Chloride in Two Types of Intravenous Infusion Bags.

    Science.gov (United States)

    Marquis, Kathleen; Hohlfelder, Benjamin; Szumita, Paul M

    2017-01-01

    Dexmedetomidine is a frequently used sedative in the critical care setting. It is commercially available as a 4-mg/mL premixed compound or as 200-mcg/2-mL vials that must be further diluted prior to administration. However, limited data exist regarding the stability of dexmedetomidine admixtures compounded from the 200-mcg/2-mL vials, particularly for durations greater than 48 hours. Therefore, we performed stability testing on compounded dexmedetomidine prepared in two types of intravenous infusion bags for 14 days. Dexmedetomidine is available as 200-mcg/2-mL vials for dilution, 80-mcg/20-mL single-dose vials, and as 200-mcg/50-mL and 400-mcg/100-mL glass bottles. The stability of dexmedetomidine admixtures has previously been tested for 48 hours. The purpose of this analysis was to test the stability of dexmedetomidine admixtures for 14 days. Six dexmedetomidine admixtures of 200 mcg/50 mL were compounded in polyvinyl chloride and non-polyvinyl chloride bags, three of which were stored under refrigeration and three of which were kept at room temperature. High-performance liquid chromatography testing was performed to determine the concentration at Days 1 through 14. Stability was determined by taking the mean concentration of samples taken from each bag. All samples were tested in duplicate. A sample was considered stable if the concentration was greater than 90% of the original concentration. All samples retained over 90% of the drug under their respective storage conditions for the duration of the study. At time 0, the concentration of dexmedetomidine was between 3.99 mcg/mL and 4.01 mcg/mL. On Day 14, the mean concentration was between 95.8% and 98.9%, depending on the bag type and storage condition. The pH remained between 4.7 and 5.8 during the study period as has previously been reported in the literature. Dexmedetomidine admixtures of 200 mcg/50 mL were stable in both polyvinyl chloride bags and non-polyvinyl chloride bags for 14 days under refrigeration

  5. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels

    International Nuclear Information System (INIS)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M.

    1997-01-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  6. Selective recovery of uranium from Ca-Mg uranates by chlorination

    International Nuclear Information System (INIS)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.

    2017-01-01

    A chlorination process is proposed for the uranium extraction and separation using Calcium−Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO 4 ) as reaction product. The formation of U 3 O 8 and MgU 3 O 10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h −1 of chlorine and 10 hs of reaction at 700 °C being U 3 O 8 the single uranium product obtained. - Highlights: •The chlorination is an effective method for the recovery uranium from Ca-Mg uranates. •The optimal conditions were: 10 hs of reaction time at 700 °C using 3 l/h of Cl 2 (g). •U 3 O 8 is recovery by washing out the chlorination by-products.

  7. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... used as components of articles intended for contact with food, subject to the provisions of this... chlorine content is in the range of 53 to 56 percent as determined by any suitable analytical procedure of... section. (d) Analytical methods: The analytical methods for determining whether vinyl chloride-propylene...

  8. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    Science.gov (United States)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2

  9. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  11. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  12. Phytoscreening for vinyl chloride in groundwater discharging to a stream

    DEFF Research Database (Denmark)

    Ottosen, Cecilie Bang; Rønde, Vinni Kampman; Trapp, Stefan

    2018-01-01

    and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis-dichloroethylene (cis-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging...

  13. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  14. Anodic oxidation of chloride ions in 1-butyl-3-methyl-limidazolium tetrafluoroborate ionic liquid

    International Nuclear Information System (INIS)

    Zhang, Qibo; Hua, Yixin; Wang, Rui

    2013-01-01

    Highlights: • The anodic oxidation of Cl − in BMIMBF 4 is electrochemically irreversible with diffusion controlled. • The oxidation of Cl − in BMIMBF 4 is more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . • The minute amount of Cl 2 detected after electrolysis forms according to the equilibrium of Cl 2 + Cl − ⇌ Cl 3 − . -- Abstract: The oxidation behavior of chloride ions on platinum electrodes was investigated in a natural ionic liquid, 1-butyl-3-methyl-limidazolium tetrafluoroborate (BMIMBF 4 ) in the presence of high concentrations of 1-butyl-3-methyl-limidazolium chloride (BMIMCl). Analysis of the electrode reaction was explored using cyclic voltammetry, and chronoamperometry with a platinum micro-disk electrode, and bulk potentiostatic electrolysis and UV–vis spectroscopy. The anodic oxidation of chloride ions on the platinum micro-disk electrode in the mixture was considered to be an irreversible process with diffusion controlled as revealed by cyclic voltammetry. The diffusion coefficient, D, and the number of electrons transferred, n, for anodic oxidation of Cl − in BMIMBF 4 derived from results of chronoamperometry revealed that the oxidation of chloride ions was more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . Bulk electrolysis and UV–vis spectroscopy further confirmed that the tri-chloride ion was the main product from the overall oxidation of the chloride ion

  15. Chlorination of uranium ore for extraction of uranium, thorium and radium and for pyrite removal

    International Nuclear Information System (INIS)

    Skeaf, J.M.

    1979-01-01

    The high-temperature chlorination of uranium ore was investigated. The objective was to develop a process which is both economically viable and environmentally acceptable. Test work was directed toward obtaining high extractions of uranium, thorium and radium-226, as well as iron, sulphur and the rare earths, and consists of chlorinating samples of an Elliot Lake uranium ore at elevated temperatures and repulping the resulting calcine in dilute hydrochloric acid. The effect of temperature and chlorine throughput on the extraction of the various metals was investigated. The best conditions yielded extractions of uranium, iron and sulphur (all as chlorides) greater than 95 percent. Chlorine consumption varied between 6 and 16 percent by weight of the ore charge. (author)

  16. Decomposition analysis of cupric chloride hydrolysis in the Cu-Cl cycle of hydrogen production

    International Nuclear Information System (INIS)

    Daggupati, V.N.; Naterer, G.F.; Gabriel, K.S.; Gravelsins, R.; Wang, Z.

    2009-01-01

    This paper examines cupric chloride solid conversion during hydrolysis in a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production. The hydrolysis reaction is a challenging step, in terms of the excess steam requirement and the decomposition of cupric chloride (CuCl 2 ) into cuprous chloride (CuCl) and chlorine (Cl 2 ). The hydrolysis and decomposition reactions are analyzed with respect to the chemical equilibrium constant. The effects of operating parameters are examined, including the temperature, pressure, excess steam and equilibrium conversion. A maximization of yield and selectivity are very important. Rate constants for the simultaneous reaction steps are determined using a uniform reaction model. A shrinking core model is used to determine the rate coefficients and predict the solid conversion time, with diffusional and reaction control. These new results are useful for scale-up of the engineering equipment in the thermochemical Cu-Cl cycle for hydrogen production. (author)

  17. Physicochemical stability of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride, polyethylene, and polypropylene infusion bags.

    Science.gov (United States)

    Eiden, Céline; Philibert, Laurent; Bekhtari, Khedidja; Poujol, Sylvain; Malosse, Francoise; Pinguet, Frédéric

    2009-11-01

    The physicochemical stability of extemporaneous dilutions of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride (PVC), polypropylene, and polyethylene infusion bags was studied. Oxaliplatin 100 mg/20 mL concentrated solution was diluted in 100 mL of 5% dextrose injection in PVC, polypropylene, and polyethylene infusion bags to produce nominal oxaliplatin concentrations of 0.2 and 1.3 mg/mL. The filled bags were stored for 14 days at 20 degrees C and protected from light, at 20 degrees C under normal fluorescent light, and at 4 degrees C. A 1-mL sample was removed from each bag at time 0 and at 24, 48, 72, 120, 168, and 336 hours. The samples were visually inspected for color and clarity, and the pH values of the solutions were measured. High-performance liquid chromatography was used to assay oxaliplatin concentration. Bacterial contamination was assessed on study day 14 after incubation in trypticase soy solution for three days at 37 degrees C. Solutions of oxaliplatin 0.2 and 1.3 mg/mL in 5% dextrose injection were stable in the three container types for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure. No color change was detected during the storage period, and pH values remained stable. No microbial contamination was detected in any samples over the study period. Oxaliplatin solutions diluted in 5% dextrose injection to 0.2 and 1.3 mg/mL were stable in PVC and PVC-free infusion bags for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure.

  18. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Science.gov (United States)

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  19. Allylic chlorination of terpenic olefins using a combination of MoCl{sub 5} and NaOCl

    Energy Technology Data Exchange (ETDEWEB)

    Boualy, Brahim; Firdoussi, Larbi El; Ali, Mustapha Ait; Karim, Abdellah, E-mail: elfirdoussi@ucam.ac.m [Universite Cadi Ayyad, Marrakech (Morocco). Faculte des Sciences Semlalia. Lab. de Chimie de Coordination

    2011-07-01

    MoCl{sub 5} is applied as efficient agent in allylic chlorination of terpenic olefins in the presence of NaOCl as chlorine donor. Various terpenes are converted to the corresponding allylic chlorides in moderate to good yield under mild and optimized reaction conditions. Different molybdenum precursors are also studied. Among them, MoO{sub 3} gives good yield, but after a longer reaction time. (author)

  20. Improved permeation performance and fouling-resistance of Poly(vinyl chloride/Polycarbonate blend membrane with added Pluronic F127

    Directory of Open Access Journals (Sweden)

    Supateekan Pacharasakoolchai

    2014-04-01

    Full Text Available The aim of this work was to prepare and characterize poly(vinyl chloride (PVC/polycarbonate (PC blend membranes for use in ultrafiltration. Pluronic F127 was used as an additive to modify the membrane surface of the PVC/PC blended membranes. The PVC/PC blend membrane was first prepared using the phase inversion method from a casting solution of PVC with small amount of PC in N-methylpyrrolidone (NMP and water as the non-solvent. The morphologies structure and properties, such as tensile strength, water flux, and bovine serum albumin (BSA rejection of the blend membrane were studied. Increased amounts of PC resulted in an increase in the water flux and ability to reject protein. A concentration of 0.75 wt% PC provided the best improvement in tensile strength of blend membrane. Addition of different amounts of pluronic F127 to the casting solution of PVC/PC with a PC concentration of 0.75 wt% resulted in a decrease in the water contact angle that demonstrated the improvement of hydrophilicity of blend membrane. Scanning electron microscopy photographs showed that the modified PVC/PC membranes had a bigger pore volume in the porous sub-layer compared to the PVC/PC control membrane. The PVC/PC membrane with added Pluronic F127 exhibited a much higher flux and rejection of BSA in a protein filtration experiment than the PVC/PC membrane. An increase in flux recovery ratio of PVC/PC/pluronic 127 blend membrane indicated that the modified membranes could reduce membrane fouling useful for ultrafiltration.

  1. Selective recovery of uranium from Ca-Mg uranates by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Pomiro, Federico J., E-mail: pomiro@cab.cnea.gov.ar [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); Gaviría, Juan P. [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Quinteros, Raúl D. [Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 S.C. de Bariloche, Río Negro (Argentina); and others

    2017-07-15

    A chlorination process is proposed for the uranium extraction and separation using Calcium−Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO{sub 4}) as reaction product. The formation of U{sub 3}O{sub 8} and MgU{sub 3}O{sub 10} was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h{sup −1} of chlorine and 10 hs of reaction at 700 °C being U{sub 3}O{sub 8} the single uranium product obtained. - Highlights: •The chlorination is an effective method for the recovery uranium from Ca-Mg uranates. •The optimal conditions were: 10 hs of reaction time at 700 °C using 3 l/h of Cl{sub 2}(g). •U{sub 3}O{sub 8} is recovery by washing out the chlorination by-products.

  2. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  3. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    International Nuclear Information System (INIS)

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-01-01

    At low temperatures (-40 to -80 0 C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of β-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to β-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins

  4. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films

    International Nuclear Information System (INIS)

    Mortazavi, S. Hamideh; Ghoranneviss, Mahmood; Pilehvar, Soheil; Esmaeili, Sina; Zargham, Shamim; Hashemi, S. Ebrahim; Jodat, Hamzeh

    2013-01-01

    In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times. (plasma technology)

  5. Kinetic investigation of the chlorine reduction reaction on electrochemically oxidised ruthenium

    International Nuclear Information System (INIS)

    Thomassen, M.; Karlsen, C.; Borresen, B.; Tunold, R.

    2006-01-01

    The rate and mechanism of the electroreduction of chlorine on electrooxidised ruthenium has been investigated with focus on the effect of solution pH. Current/potential curves for the reduction process in solutions with constant chloride concentration of 1.0 mol dm -3 and varying H + concentration have been obtained with the use of the rotating disk electrode technique (RDE). It was found that the chlorine reduction rate is highly inhibited in solutions with high H + concentrations and that it can be satisfactorily described by the Erenburg mechanism, previously suggested for the chlorine evolution on RuO 2 and RTO. The expression of the kinetic current as a function of chlorine and H + concentration was obtained by solving the elementary rate equations of the kinetic mechanism. The kinetic constants obtained from the correlation of the kinetic current expression to the experimental data were used to simulate the dependence of the surface coverages and elementary reaction rates on overpotential

  6. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties.

    Science.gov (United States)

    Mallakpour, Shadpour; Darvishzadeh, Marzieh

    2018-03-01

    In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    Science.gov (United States)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  8. Solvent effects on the kinetics of the chlorine isotopic exchange reaction between chloride ion and O,O-diphenyl phosphorochloridate or O,O-diphenyl phosphorchloridothioate

    International Nuclear Information System (INIS)

    Mikolajczyk, M.; Slebocka-Tilk, H.; Reimschussel, W.

    1982-01-01

    The effect of solvent on the kinetics of the chlorine isotopic exchange reaction between 36 Cl- ions and O,O-diphenyl phosphorochloridate or O,O-diphenyl phosphorochloridothioate has been investigated in nitromethane, acetonitrile, propylene carbonate, benzonitrile, nitrobenzene, and hexamethyl-phosphoric triamide. The rate constants decrease with increasing electrophilicity of the solvent. A good correlation between the logarithm of the rate constants and acceptor number (AN) of the solvent was obtained with identical slopes for reactions with phosphoryl and thiophosporyl compounds. The slopes for the dependence of ΔH or TΔS vs. AN for chlorine isotopic exchange in (PHO) 2 pace are opposite those for the exchange reaction in (PHO) 2 PSCl, so a constant ratio of k/sub p=O//k/sub p=s/ is observed, resulting from compensation of ΔH by ΔS. The effect of solvent on the initial state (from solubility measurements) and the transition state of the reaction between (PhO) 2 PSCl and the Cl- ion was evaluated. Changes of solvation of (PHO) 2 PSCE have practically no effect on the kinetics of the reactions. Changes of solvation of the chloride ion and of the transition state primarily influence the rate constants and activation parameters of the investigated isotopic-exchange reaction

  9. Pyrolysis of poly(vinyl chloride) and-electric arc furnacedust mixtures.

    Science.gov (United States)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Makhadmah, Leema; Hamilton, Ian E; Kingman, Sam; Al-Asheh, Sameer; Hararah, Muhanned

    2015-12-15

    An investigation into the pyrolysis kinetics of PVC mixed with electric arc furnace dust (EAFD) was performed. Mixtures of both materials with varying PVC ratios (1:1, 1:2, 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at different heating rates (5, 10, 30 and 50 °C/min). The pyrolysis process proceeded through two main decomposition steps; the first step involved the release of HCl which reacted with the metal oxides present in the dust, subsequently forming metal chlorides and water vapor. Benzene was also found to release as detected by TGA-MS. The remaining hydrocarbons in the polymer backbone decomposed further in the second step releasing further volatile hydrocarbons. Different models were used to fit the kinetic data namely the integral, the Van Krevelen, and Coats and Red fern methods. The presence of EAFD during PVC decomposition resulted in a considerable decrease in the activation energy of the reaction occurring during the first decomposition region. Furthermore, iron oxides were retained in the pyrolysis residue, whilst other valuable metals, including Zn and Pb, were converted to chlorides that are recoverable by leaching in water. It is believed that EAFD can be utilized as an active catalyst to produce energy gases such as propyneas evident from the TGA-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Methyl chloride and other chlorocarbons in polluted air during INDOEX

    NARCIS (Netherlands)

    Scheeren, HA; Lelieveld, J; de Gouw, JA; van der Veen, C; Fischer, H

    2002-01-01

    [1] Methyl chloride (CH3Cl) is the most abundant, natural, chlorine-containing gas in the atmosphere, with oceans and biomass burning as major identified sources. Estimates of global emissions suffer from large uncertainties, mostly for the tropics, partly due to a lack of measurements. We present

  11. Removal of uranium from simulated fly ash by chloride volatilization method

    International Nuclear Information System (INIS)

    Nobuaki, Sato; Yoshikatsu, Tochigi; Toshiki, Fukui; Takeo, Fujino

    2003-01-01

    Fly ash is generated from LWR nuclear power plant as a low-level waste, which is contaminated with a small amount of radioactive materials, composed mainly of uranium oxide. The constituents of the fly ash are similar to those of the ore; the major components of the ash are oxides of silicon, aluminum, sodium, magnesium, zinc, iron sodium and uranium. In this study, removal of uranium from the simulated fly ash, of which composition was U 3 O 8 : 10, CaO:25, SiO 2 : 25, Al 2 O 3 : 20, MgO: 10, ZnO:5, Fe 2 O 3 : 3 and Na 2 CO 3 : 2 wt%, by chloride volatilization method was examined. The simulated fly ash was chlorinated by the same manner as the dry way processing for the ore; namely, the ash was heated in a flow of chlorine in the presence of carbon at high temperatures. In the case of volatilization of uranium from U 3 O 8 and a simulated fly ash by chlorination using chlorine and carbon, it was seen that uranium of both samples showed similar volatilization behaviour: The volatilization ratio of uranium (VU) increased with increasing temperature from 800 to 1100 C. The VU value attained 99.9% at 1100 C. Iron, silicon and zinc showed similar behaviour to uranium, namely, they vaporized completely. The volatilization ratio of aluminum, magnesium and sodium were still high in a range 80-90%. The volatilization ratio of calcium was ∼40% under the same chlorination condition, though it changed to chloride. For recovery of uranium from fly ash by chlorination using chlorine in the presence of carbon, high volatilization ratio of uranium can be achieved at high temperatures. Volatilization ratio of other components also increases, which decreases the amount of decontaminated residue resulting in the reducing of decontamination effect. Selection of heating condition is important. (author)

  12. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  13. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure.

  14. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    International Nuclear Information System (INIS)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure

  15. Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sarıtaş, Sevilay; Eşsiz, Serpil; Sarı, Bekir, E-mail: bsari@gazi.edu.tr

    2017-07-01

    Highlights: • In this study, ternary composite/nanocomposite films were synthesized. • Magnetic field-sensitive folding films were prepared without any elastomer. • Morphological studies show that all composite films have a smooth surface. • The ternary composites/nanocomposite show improved thermal stability compared to the pure PF. - Abstract: In this study, polyfuran and poly(vinyl acetate)/poly(vinyl chloride)/polyfuran ternary composites were synthesized via the chemical polymerization method. The temperature and magnetic field–sensitive novel composites and the nanocomposite were obtained in the form of powders and films. It was observed that the prepared novel conductive films have superior properties at a certain temperature range (25–50 °C) such as bending and folding. The structural properties, thermal behavior, surface morphology, internal structure, and surface roughness of the prepared samples were investigated by various characterization techniques. The conductivities of the samples were measured at room temperature and different temperatures by the four-point technique. X-ray Diffraction analysis results demonstrated that the PF and composites have an amorphous structure, whereas the nanocomposite is in crystalline form. The saturation magnetization (Ms) values of the magnetite and nanocomposite were found to be 58.9 and 5.3 emu g{sup −1}, respectively. It was found that magnetite-doped nanocomposite has superparamagnetic properties at room temperature.

  16. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  17. Investigation of physico-mechanical properties of flexible poly (vinyl chloride) filled with antimony trioxide using ionizing radiation.

    Science.gov (United States)

    Elnaggar, Mona Y; Fathy, E S; Hassan, Medhat M

    2018-04-12

    Composites of polyvinyl chloride (PVC) with 2% calcium carbonate, 2% diethyl phthalate, 2% paraffin wax and 2% lead sulphate and different contents of antimony trioxide (Sb 2 O 3 ) prepared by melting and irradiated with gamma ray have been considered. Assessment of the mechanical and thermal properties of the unirradiated and irradiated flexible polyvinyl chloride (FPVC) were completed utilizing elasticity (TS), Elongation at break (Eb) and thermogravimetric analysis measurements. TS and thermal stability of FPVC displayed advanced improvement after addition of additives and this approach highlighted the efficiency of those ingredients on PVC. The compounding of FPVC with Sb 2 O 3 in various extents was examined by FTIR, X-ray diffraction and scanning electron microscope methods. It is obvious that the presence of Sb 2 O 3 begins impacting oxidative degradation, leading to a decrease in mechanical properties up to 10%. Moreover, a slight increase in the thermal stability of composites by exposure to ionizing radiation is apparently due to cross-linking of FPVC chains.

  18. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  19. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response.

    Science.gov (United States)

    Shishkanova, T V; Matejka, P; Král, V; Sedenková, I; Trchová, M; Stejskal, J

    2008-08-29

    Repeated depositions of polyaniline (PANI) have been used to control the thickness of the polymeric film deposited on poly(vinyl chloride) (PVC) membrane surface. The oxidation of aniline was carried out in a dispersion mode, i.e. in the presence of poly(N-vinylpyrrolidone) (PVP). Two kinds of PVC were used for this purpose: a non-plasticized PVC for the study of PANI deposition and PVC, plasticized with nitrophenyl octyl ether (NPOE), as a prototype of a liquid membrane electrode. The results of UV-visible and FTIR spectroscopies and electron microscopy showed that (1) the film thickness increased by about equal increments of approximately 40 nm after each polymerization, and (2) the interface with PVC was constituted by PANI film and adhering PANI-PVP colloidal particles. The various thicknesses of the deposited PANI films affected the potentiometric response of the NPOE/PVC membrane with and without an anion-exchanger. The potentiometric anionic response was observed with a minimal thickness of PANI film on the blank NPOE/PVC membrane. Sensitivity of the PANI film to pH occurred only with a blank NPOE/PVC membrane coated with a thick polymeric film, while it was strongly suppressed by the presence of a lipophilic anion-exchanger, tridodecylmethylammonium chloride (TDDMACl), in the membrane, regardless of the thickness of the polymer film. The thickness of the PANI film did not affect the anionic selectivity pattern of TDDMACl-based membranes to any great extent, but its presence improved and stabilized their potentiometric characteristics (sensitivity, linear-response range).

  20. Reactions of enolisable ketones with dichloroisocyanuric acid in absence and presence of added chloride ions – a kinetic study

    Directory of Open Access Journals (Sweden)

    Y. L. Kumar

    2015-01-01

    Full Text Available Kinetics of reactions of enolisable ketones (S = acetone/2-butanone with dichloroisocyanuric acid (DCICA were studied in aqueous acetic acid and perchloric acid media in absence and presence of added chloride ions. The reactions were found to be pseudo zero order and pseudo first order on [DCICA] in absence and presence of chloride ions respectively. Both in presence and absence of chloride ions, first order and fractional order in substrate and perchloric acid were observed respectively. An increase in the rate of reaction was observed with an increase in chloride ion concentration as well as acetic acid composition. The results were interpreted in terms of probable mechanisms involving (i rate-determining enol formation from the conjugate acid of the ketone (SH+ in the absence of added chloride ions and (ii rate-determining interaction of SH+ with the most effective molecular chlorine species produced by the hydrolysis of DCICA (rather than a rate-determining interaction of enol with chlorine in the presence of added chloride ions, prior to the rapid steps of product formation. DOI: http://dx.doi.org/10.4314/bcse.v29i1.12

  1. Transformation of aminopyrine in the presence of free available chlorine: Kinetics, products, and reaction pathways.

    Science.gov (United States)

    Cai, Mei-Quan; Feng, Li; Zhang, Li-Qiu

    2017-03-01

    Aminopyrine (AMP) has been frequently detected in the aquatic environment. In this study, the transformation mechanism of AMP by free available chlorine (FAC) oxidation was investigated. The results showed that FAC reacted with AMP rapidly, and a 74% elimination was achieved for 1.30 μM AMP after 2 min at 14.08 μM FAC dose. AMP chlorination was strongly pH-dependent, and its reaction included second- and third-order kinetic processes. Three active FAC species, including chlorine monoxide (Cl 2 O), molecular chlorine (Cl 2 ), and hypochlorous acid (HOCl), were observed to contribute to AMP degradation. The intrinsic rate constants of each FAC species with neutral (AMP 0 ) and cation (AMP + ) species were obtained by kinetic fitting. Cl 2 O exhibited the highest reactivity with AMP 0 (k AMP0, Cl2O  = (4.33 ± 1.4) × 10 9  M -1 s -1 ). In addition, Cl 2 showed high reactivity (10 6 -10 7  M -1 s -1 ) in the presence of chloride, compared with HOCl (k AMP+, HOCl  = (5.73 ± 0.23) × 10 2  M -1 s -1 , k AMP0, HOCl  = (9.68 ± 0.96) × 10 2  M -1 s -1 ). At pH 6.15 and 14.08 μM FAC dose without chloride addition, the contribution of Cl 2 O reached to the maximum (33.3%), but in the whole pH range, HOCl was the main contributor (>66.6%) for AMP degradation. The significance of Cl 2 was noticeable in water containing chloride. Moreover, 11 transformation products were identified, and the main transformation pathways included pyrazole ring breakage, hydroxylation, dehydrogenation, and halogenation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Corrosion behaviour of dimensionally stable anodes in chlorine electrolysis

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    2000-01-01

    Dependence of ruthenium anodic dissolution rate in active coating of oxide ruthenium-titanium anodes on time both in chloride and perchlorate solutions was studied using radiometric methods. It is shown that i chloride solutions effect of a high and long-term decrease in ruthenium dissolution rate takes place. The data confirm the previously made conclusion that adsorbed chlorine produces inhibiting effect on anodic dissolution of a precious metal. Influence of pH on steady-state rate of the anode corrosion is considered. Effect of abrupt increase in corrosion rate with pH increase from 2 to 4 with its subsequent slow decrease to the values characteristic of the process rate in solutions with pH 2 is revealed [ru

  3. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  4. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging; Filme ativo de poli(cloreto de vinila)/prata: sintese, caracterizacao e avaliacao como embalagem ativa antimicrobiana

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio, E-mail: lilianrodribraga@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF, (Brazil)

    2015-07-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm{sup -1} and 1165 cm{sup -1} bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  5. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    International Nuclear Information System (INIS)

    Waber, H.N.; Hobbs, M.Y.; Frape, S.K.

    2013-01-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ 37 Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  6. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    Science.gov (United States)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  7. Review on the significance of chlorine for crop yield and quality.

    Science.gov (United States)

    Geilfus, Christoph-Martin

    2018-05-01

    The chloride concentration in the plant determines yield and quality formation for two reasons. First, chlorine is a mineral nutrient and deficiencies thereof induce metabolic problems that interfere with growth. However, due to low requirement of most crops, deficiency of chloride hardly appears in the field. Second, excess of chloride, an event that occurs under chloride-salinity, results in severe physiological dysfunctions impairing both quality and yield formation. The chloride ion can effect quality of plant-based products by conferring a salty taste that decreases market appeal of e.g. fruit juices and beverages. However, most of the quality impairments are based on physiological dysfunctions that arise under conditions of chloride-toxicity: Shelf life of persimmon is shortened due to an autocatalytic ethylene production in fruit tissues. High concentrations of chloride in the soil can increase phyto-availability of the heavy metal cadmium, accumulating in wheat grains above dietary intake thresholds. When crops are cultivated on soils that are moderately salinized by chloride, nitrate fertilization might be a strategy to suppress uptake of chloride by means of an antagonistic anion-anion uptake competition. Overall, knowledge about proteins that catalyse chloride-efflux out of the roots or that restrict xylem loading is needed to engineer more resistant crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. High temperature behaviour of copper and silver in presence of gaseous carbon and of chlorine-water vapor mixtures

    International Nuclear Information System (INIS)

    Beloucif, Luisa

    1986-01-01

    This research thesis reports the study of the effects of gaseous chlorine, in various conditions, on two metals, copper and silver, the chlorides of which can be precisely characterized and dosed by using different methods. After an overview of different aspects of corrosion of metals by halogens, and of copper and silver behaviour in chloride environment, the author reports and discusses results of tests performed in dry chlorine at high temperature, and the establishment of temperature-pressure semi-thermodynamic diagrams. The next part reports and discusses tests performed in a controlled atmosphere in presence of humidity. For all these tests, the author notably comments and discusses the nature of formed products, sample aspect, reaction progress, and influence of temperature or humidity

  9. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    International Nuclear Information System (INIS)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10 -5 %, of chlorine- 1x10 -4 % in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10 -4 - nx10 -3 mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine [ru

  10. Corrosive gas generation potential from chloride salt radiolysis in plutonium environments

    International Nuclear Information System (INIS)

    Tandon, L.; Allen, T.H.; Mason, R.E.; Penneman, R.A.

    1999-01-01

    The specific goal of this project was to evaluate the magnitude and practical significance of radiation effects involving mixtures of chloride salts and plutonium dioxide (PuO 2 ) sealed in stainless steel containers and stored for up to 50 yr, after stabilization at 950 C and packaging according to US Department of Energy (DOE) standards. The potential for generating chemically aggressive molecular chlorine (and hydrogen chloride by interaction with adsorbed water or hydrogen gas) by radiolysis of chloride ions was studied. To evaluate the risks, an annotated bibliography on chloride salt radiolysis was created with emphasis on effects of plutonium alpha radiation. The authors present data from the material identification and surveillance (MIS) project obtained from examination and analysis of representative PuO 2 items from various DOE sites, including the headspace gas analysis data of sealed mixtures of PuO 2 and chloride salts following long-term storage

  11. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  12. Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model.

    Science.gov (United States)

    Pin, Jean-Mathieu; Behazin, Ehsan; Misra, Manjusri; Mohanty, Amar

    2018-05-02

    The dynamic thermal history impact of poly(vinyl chloride) (PVC) has been explored for a wide range of pre-cooling rates, from 1 to 30 °C min-1. A first macroscopic insight into the dynamic thermal history influence has been highlighted through a decrease in the apparent activation energy (Eapp) in the first stage of the glass transition. The overall glass transition Eapp surface was successfully modeled in a polynomial fashion regarding the pre-cooling range. Raman scattering was used to associate the Eapp variations along the glass transition conversion with the stereochemistry evolution during the polymeric relaxation. Herein, the selection of atactic PVC as the polymer model permits us to monitor the glassy polymer segment stereodynamics during the heating ramp through the C-Cl stretching. The intermolecular H-Cl dipole interactions, as well as intramolecular conformational reorganizations among syndiotactic, isotactic and heterotactic polymer sequences, have been associated with non-cooperative and cooperative motions, i.e. the β- and α-process, respectively. The fruitful comparison of the two extreme values of the pre-cooling rates permits us to propose a thermokinetic scenario that explains the occurrence, intensity, and inter-dependence of β- and α-processes in the glassy state and during the glass transition. This scenario could potentially be generalized to all the other polymeric glass-formers.

  13. Fabrication of 3D interconnected porous TiO{sub 2} nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Joo Hwan; Koh, Jong Kwan; Seo, Jin Ah; Kim, Jong Hak [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Jong-Shik, E-mail: jonghak@yonsei.ac.kr [Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2011-09-07

    Porous TiO{sub 2} nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 {mu}m long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO{sub 2} sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO{sub 2} nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M{sub w}) and 0.74% for high M{sub w} polymer electrolytes.

  14. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H.N. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Hobbs, M.Y. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Nuclear Waste Management Organization (NWMO), 22 St. Clair Avenue East, M4T 2S3 Toronto, Ontario (Canada); Frape, S.K. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ{sup 37}Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  15. Determinations of phase transitions in nylon 6-12, nylon-6, polyvinyl chloride and polyethylene terephthalate by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Camacho Reyes, M.J.

    1993-01-01

    Positron annihilation lifetime spectroscopy (PALS) was used to investigate the phase transitions, mainly the glass transition, of poly(vinyl chloride) (PVC), Nylon-6,12, Nylon-6, poly(ethylene terephthalate) during the thermal treatment of these polymers. The longest lived component lifetime and intensity, indicative of ortho-Positronium pick-off exhibit thermal dependencies that can be attributed to the anticipated free volume changes associated with structural transitions. Positron lifetime measurements were performed using an E G and G Ortec standard fast-fast coincidence system. Three spectra were collected at each temperature, each consisting of a peak height of approximately 25000 counts. The resulting spectra were consistently modeled with a three component fit using the computer program PATFIT. For nylon-6,12, nylon-6, PVC systems three transitions were obtained in both tau-3 and I-3 as a function of temperature. Changes in the slope of the curves appear for both parameters, these could be attributed to T g1 , T g2 and T c , respectively. In the case of PET analysis two transitions were obtained as is shown by the variations of tau-3 as a function of the heating temperature. These transitions can be attributed to T g1 and T g2 . Similar changes can be observed for I-3 in relation with temperature. Glass transition behavior was evident in the lifetime behavior of polymers. Increases in slope of the lifetime temperature plots were interpreted free-volume cavity expansion as temperature is increased. The intensity responses in the vicinity of the upper glass transition were consistent with the association of this transition with the reduction of crystalline constraint of segmental mobility in the amorphous phase. (Author)

  16. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  17. Corrosion Study of Stainless Steels in Peracetic Acid Bleach Media With and Without Chloride and Chelant

    Directory of Open Access Journals (Sweden)

    Rohtash

    2014-12-01

    Full Text Available The paper industries are adopting non-chlorine containing chemicals e.g. peroxide, ozone, peracids etc. as alternate of chlorine based bleach chemicals e.g. chlorine and chlorine dioxide etc. with the aim of eco-friend atmospheres. Changeover to the new chemicals in the bleaching process is likely to affect the metallurgy of the existing bleach plants due to change in the corrosivity of the media. Accordingly, corrosion investigations were performed in a peracid namely peracetic acid to test the suitability of austenitic stainless steels 654SMO, 265SMO, 2205, 317L and 316L. The performance of above stainless steels was evaluated through long term immersion tests and Electrochemical polarization measurements in peracetic acid (PAA bleach media at pH value 4 maintaining concentration 0.2 % as active oxygen along with three chloride levels 0, 500 and 1000 ppm in pulp-free laboratory. To study the effect of corrosion inhibitors with extending limit of chloride in liquors, measurements were also made with two types of chelants- EDTA & MgSO4. The results showed that corrosivity of PAA reduced by addition of chelant while increased with concentration of Cl¯. The results also exhibited that EDTA is better inhibitor than MgSO4.

  18. Effects of low-temperature pretreatment on enhancing properties of refuse-derived fuel via microwave irradiation.

    Science.gov (United States)

    Liu, Zhen; Wang, Han-Qing; Zhou, Yue-Yun; Zhang, Xiao-Dong; Liu, Jian-Wen

    2017-07-01

    The present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃. We found that the microwave absorbability of RDF was enhanced after being partly carbonized. Moreover, with the increasing of the final temperature, the organochlorine removal ratio was greatly increased to 80% and the content of chlorine was dramatically decreased to an extremely low level. It was also interesting to find that the chlorine of RDF was mainly released as HCl rather than organic chloride volatiles. The finding is just the same as the polyvinyl chloride pyrolysis process. In addition, pores and channels emerged during the modifying operation and the modified RDF has better combustibility and combustion stability than traditional RDF. This work revealed that low-temperature modification of RDF via microwave irradiation is significant for enhancing the quality of RDF and avoiding HCl erosion of equipment substantially.

  19. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  20. Chlorides behavior in raw fly ash washing experiments

    International Nuclear Information System (INIS)

    Zhu Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-01-01

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl 2 , and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl 2 decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al 2 O 3 .CaCl 2 ) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl 2 . Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl 2 .

  1. Chlorine isotope fractionation during supergene enrichment of copper

    Science.gov (United States)

    Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.

    2017-12-01

    Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. The Cu-hydroxychloride atacamite is a major component of supergene zones in this region whereas in similar deposits elsewhere it is rare. Atacamite requires saline water to form and dissolves rapidly when exposed to fresh, meteoric water. Previous chlorine stable isotope data [1] for atacamite mineralization at the Radomiro Tomic, Chuquicamata and Mina Sur Cu deposits show δ37Cl values that range from -0.1 to +0.2‰, indicating a similar nonmagmatic source for the introduction of chloride. However, distal atacamite mineralization on the periphery of these orebodies show more fractionated and lighter δ37Cl values (-3.2 to -0.1‰). Although little disagreement currently exists about the involvement of saline groundwater during the formation of atacamite [2], no δ37Cl data are currently available for atacamite within a single deposit and/or supergene enrichment profile that allow explaining the aforementioned differences in the observed δ37Cl values. Furthermore, no experimental data for chlorine isotope fractionation between Cu-hydroxychloride minerals and water exist that help evaluate possible mechanisms of fractionation along the groundwater flow path. Here we present a new database that combines detailed mineralogical observations with δ37Cl data of atacamite along a thick ( 100 m) supergene enrichment profile at the Barreal Seco IOCG deposit in the Atacama Desert of northern Chile. Chlorine stable isotope data of atacamite vary between -0.62 and +2.1 ‰ and show a well-defined trend where δ37Cl values progressively decrease (become lighter) with depth. These data, when combined with new experimental determinations of chlorine isotope fractionation between atacamite and water, point to changes triggered by the progressive deepening of groundwater tables during Andean uplift and the extreme desiccation of

  2. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...

  3. Migration of plasticizers from poly(vinyl chloride) and multilayer infusion bags using selective extraction and GC-MS.

    Science.gov (United States)

    Haned, Zohra; Moulay, Saad; Lacorte, Silvia

    2018-04-12

    Flexible poly(vinyl chloride) (PVC) is widely used in the pharmaceutical industry for the manufacture of medical devices (tubes, probes, bags, primary packaging, etc.). The objective of the present study was to develop a procedure to evaluate the migration potential of nine plastic additives in aqueous infusion bags (NaCl 0.9% and glucose 5%): five phthalates, one adipate, two alkylphenols, and benzophenone. Two types of materials were analyzed: (i) new and outdated plasticized PVC (containing 40% of diethylhexyl phthalate DEHP); and (ii) tri-laminate polyethylene-polyamide-polypropylene, a multilayer material presumably exempt from DEHP. In addition, we evaluated the migration of plasticizers from PVC raw materials (film and grain) under controlled conditions to compare the migration levels according to Regulation 2011/10. Solid phase extraction and liquid-liquid extraction with gas-chromatography coupled to mass spectrometry were used in all tests. The migration of DEHP in PVC grain exceeded the maximum regulated level of 5000 μg/kg, whereas the levels were much lower in films. In new PVC bags, DEHP was the only compound detected at 4.31 ± 0.5 μg/L in NaCl 0.9% and 4.29 ± 0.25 μg/L in glucose 5% serums, whereas the levels increased 10 times in three-year shelf-life bags. In multilayer bags, DEHP was not found but instead, two plasticizers were detected namely dibuthylphthalate (DBP) and diethylphthalate (DEP) at 0.7 ± 0.1 μg/L and 4.14 ± 0.6 μg/L, respectively. These plasticizers are not mentioned as additives allowed in materials intended for parenteral use (European Pharmacopoeia 8.0, 3.1.5. and 3.1.6.). Caprolactam was tentatively identified and could have stemmed from the polyamide of the multilayer composite. The levels of phthalates remained low but not negligible and might constitute a risk to public health in the case of reiterative infusions. Copyright © 2018. Published by Elsevier B.V.

  4. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  5. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Maslehuddin, M.; Garwan, M.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.; Khateeb-ur-Rehman

    2010-01-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  6. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M.; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-03-15

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  7. Chlorination of (PheboxIr(mesityl(OAc by Thionyl Chloride

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2015-06-01

    Full Text Available Pincer (PheboxIr(mesityl(OAc (2 (Phebox = 3,5-dimethylphenyl-2,6-bis(oxazolinyl complex, formed by benzylic C-H activation of mesitylene (1,3,5-trimethylbenzene using (PheboxIr(OAc2OH2 (1, was treated with thionyl chloride to rapidly form 1-(chloromethyl-3,5-dimethylbenzene in 50% yield at 23 °C. A green species was obtained at the end of reaction, which decomposed during flash column chromatography to form (PheboxIrCl2OH2 in 87% yield.

  8. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guo-Dong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Wang, Yu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Zhou, Dong-Mei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A kinetic model was used to predict the radical species and their distributions. Black-Right-Pointing-Pointer The generated radical species were identified by EPR. Black-Right-Pointing-Pointer The second-order rate constants of sulfate radical with PCBs were determined. - Abstract: Advanced oxidation processes (AOPs) based on sulfate radical (SO{sub 4}{center_dot}{sup -}) have been recently used for soil and groundwater remediation. The presence of chloride ion in natural or wastewater decreases the reactivity of sulfate radical system, but explanations for this behavior were inconsistent, and the mechanisms are poorly understood. Therefore, in this paper we investigated the effect of chloride ion on the degradation of 2,4,4 Prime -CB (PCB28) and biphenyl (BP) by persulfate, based on the produced SO{sub 4}{center_dot}{sup -}. The results showed that the presence of chloride ion greatly inhibited the transformation of PCB28 and BP. Transformation intermediates of BP were monitored, suggesting that the chloride ion can react with SO{sub 4}{center_dot}{sup -} to produce chlorine radical, which reacts with BP to generate chlorinated compounds. To better understand the underlying mechanisms of these processes, a kinetic model was developed for predicting the effect of chloride ion on the types of radical species and their distributions. The results showed that chloride ion could influence the selectivity of radical species and their distribution, and increase the concentration of the sum of radical species. In addition, the second-order rate constants of sulfate radical with PCBs were determined, and quantum-chemical descriptors were introduced to predict the rate constants of other PCBs based on our experimental data.

  9. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  10. Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy

    International Nuclear Information System (INIS)

    Yan, M.; Liu, Y.; Liu, Y.B.; Kong, C.; Schaffer, G.B.; Qian, M.

    2012-01-01

    A detailed transmission electron microscopy analysis has revealed that small additions of yttrium hydride to a powder metallurgy Ti–2.25Mo–1.5Fe alloy resulted in the formation of both chlorine-free yttrium oxides and essentially oxygen-free yttrium chlorides. The oxides and chlorides showed distinctly different morphologies and spatial distribution. Yttrium acted as a potent getter for both oxygen and chlorine. Additionally, the β-Ti phase was free of nanoscaled α-Ti in the presence of yttrium. These microstructural changes contribute to the substantially increased ductility (∼90%).

  11. Direct chlorination of alcohols with chlorodimethylsilane catalyzed by a gallium trichloride/tartrate system under neutral conditions.

    Science.gov (United States)

    Yasuda, Makoto; Shimizu, Kenji; Yamasaki, Satoshi; Baba, Akio

    2008-08-07

    The reaction of secondary alcohols 1 with chlorodimethylsilane (HSiMe(2)Cl) proceeded in the presence of a catalytic amount of GaCl(3)/diethyl tartrate to give the corresponding organic chlorides 3. In the catalytic cycle, the reaction of diethyl tartrate 4a with HSiMe(2)Cl 2 gives the chlorosilyl ether 5 with generation of H(2). Alcohol-exchange between the formed chlorosilyl ether 5 and the substrate alcohol 1 affords alkoxychlorosilane 6, which reacts with catalytic GaCl(3) to give the chlorinated product 3. The moderate Lewis acidity of GaCl(3) facilitates chlorination. Strong Lewis acids did not give product due to excessive affinity for the oxy-functionalities. Although tertiary alcohols were chlorinated by this system even in the absence of diethyl tartrate, certain alcohols that are less likely to give carbocationic species were effectively chlorinated using the GaCl(3)/diethyl tartrate system.

  12. The effect of iatrogenic Staphylococcus epidermidis intercellar adhesion operon on the formation of bacterial biofilm on polyvinyl chloride surfaces.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Guangqiang, Zhao; Kun, Yang; Xing, Liu; Fengli, Guo

    2014-12-01

    The intercellular adhesion gene (ica) of Staphylococcus epidermidis is a key factor for bacterial aggregation. This study explored the effect of ica on the formation of bacterial biofilm on polyvinyl chloride (PVC) surfaces. Genes related to bacterial biofilm formation, including 16S rRNA, autolysin (atlE), fibrinogen binding protein gene (fbe), and ica were identified and sequenced from 112 clinical isolates of iatrogenic S. epidermidis by polymerase chain reaction (PCR) and gene sequencing. Based on the sequencing result, ica operon-positive (icaADB+/atlE+/fbe+) and ica operon-negative (icaADB-/atlE+/fbe+) strains were separated and co-cultivated with PVC material. After 6, 12, 18, 24, and 30 h of co-culture, the thickness of the bacterial biofilm and quantity of bacterial colony on the PVC surface were measured under the confocal laser scanning microscope and scanning electron microscope. The positive rate of S. epidermidis-specific 16SrRNA in 112 iatrogenic strains was 100% (112/112). The genotype of ica-positive (icaADB+/atlE+/fbe+) strains accounted for 57.1% (64/112), and genotype of ica-negative (icaADB-/atlE+/fbe+) strains accounted for 37.5% (42/112). During 30 h of co-culture, no obvious bacterial biofilm formed on the surface of PVC in the ica-positive group, however, mature bacterial biofilm structure formed after 24 h. For all time points, thickness of bacterial biofilm and quantity of bacterial colony on PVC surfaces in the ica operon-positive group were significantly higher than those in ica operon-negative group (poperon-negative and ica operon-positive strains. The ica operon plays an important role in bacterial biofilm formation and bacterial multiplication on PVC material.

  13. Preliminary treatment of chlorinated waste streams containing fission products

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, Damien; Bardez, Isabelle; Bart, Florence [CEA Marcoule DTCD/SECM/LM2C, BP 17171, 30207 Bagnols sur Ceze (France); Deniard, Philippe; Jobic, Stephane [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, BP 32229, 44322 Nantes cedex 3 (France); Rakhmatullin, Aydar [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Bessada, Catherine [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Universite d' Orleans, Faculte des Sciences, BP 6749, 45067 Orleans cedex 2 (France)

    2008-07-01

    Separating actinides from fission products (FP) by electrolytic techniques in a molten chloride medium produces high-level waste which, because of its high chlorine content, cannot be directly and quantitatively loaded in a glass matrix and therefore requires the development of new management methods. In this regard the strategy of submitting chlorinated waste streams to a preliminary treatment consists in separating the various types of FP from the solvent to minimize the ultimate high-level waste volume. Selective precipitation of the rare earth elements by NH{sub 4}H{sub 2}PO{sub 4} was investigated in a LiCl-KCl medium, and could constitute the first step in the purification process. Unlike the use of alkali orthophosphate, this method provides similar conversion factors with the simple addition of stoichiometric phosphorus (P:rare-earth = 1) and does not require excess phosphate (P:rare-earth = 5). This prevents the formation of a secondary Li{sub 3}PO{sub 4} phase. Moreover, NH{sub 4}H{sub 2}PO{sub 4} also allows chlorine bound to rare earth elements to be eliminated as NH{sub 4}Cl. The formation of HCl is highly probable.

  14. Contribution of garbage burning to chloride and PM2.5 in Mexico City

    Directory of Open Access Journals (Sweden)

    N. Bei

    2012-09-01

    Full Text Available The contribution of garbage burning (GB emissions to chloride and PM2.5 in the Mexico City Metropolitan Area (MCMA has been investigated for the period of 24 to 29 March during the MILAGRO-2006 campaign using the WRF-CHEM model. When the MCMA 2006 official emission inventory without biomass burning is used in the simulations, the WRF-CHEM model significantly underestimates the observed particulate chloride in the urban and the suburban areas. The inclusion of GB emissions substantially improves the simulations of particulate chloride; GB contributes more than 60% of the observation, indicating that it is a major source of particulate chloride in Mexico City. GB yields up to 3 pbb HCl at the ground level in the city, which is mainly caused by the burning of polyvinyl chloride (PVC in the garbage. GB is also an important source of PM2.5, contributing about 3–30% simulated PM2.5 mass on average. More modeling work is needed to evaluate the GB contribution to hazardous air toxics, such as dioxin, which is found to be released at high level from PVC burning in laboratory experiments.

  15. Chlorides behavior in raw fly ash washing experiments.

    Science.gov (United States)

    Zhu, Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-06-15

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl(2), and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl(2) decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al(2)O(3).CaCl(2)) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl(2). Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl(2). Copyright 2010 Elsevier B.V. All rights reserved.

  16. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature

    International Nuclear Information System (INIS)

    Chang Mingyu; Yu Geping

    1993-01-01

    Pitting corrosion of Inconel 600 was examined in chloride and sulfate solutions through usage of potentiodynamic polarization techniques. The effects of chloride and sulfate concentration were investigated in the range of 0.0001 to 0.1 M. Increasing chloride concentrations resulted in active shifts of the pit nucleation potential. Immunity to pitting corrosion was evident at a chloride level below 0.005 M. Increasing sulfate concentrations resulted in improved pitting resistance of Inconel 600 in chloride solutions. Detrimental effects associated with pitting were evident with low-level sulfate being added to dilute chloride media. The density of pits increased with increasing chloride concentrations or temperature between room temperature and 70 C. Systematic trends for the depth of pits were not evident. The observations of pitting corrosion in open immersion were consistent with those in polarization methods. Corrosion products contained in the pits were enriched in nickel, chromium and iron with a small amount of titanium and silicon. The enrichment of chlorine or sulfur was still, however, not found. (orig.)

  17. Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene

    Science.gov (United States)

    Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.

    1999-06-01

    6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.

  18. A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Adib, K.; Barteau, Mark A.

    2004-05-01

    Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.

  19. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  20. Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Eto, Shuzo; Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi; Tanaka, Masayoshi Y.

    2014-11-01

    The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm2 within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously.

  1. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Sankar, N.; Kumaraswamy, P.; Santhanam, V.S.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  2. Cooling-water chlorination: the kinetics of chlorine, bromine, and ammonia in sea water

    International Nuclear Information System (INIS)

    Johnson, J.D.; Inman, G.W. Jr.; Trofe, T.W.

    1982-11-01

    The major inorganic reaction pathways for the chlorination of saline waters were measured by a variety of techniques including: (1) amperometric titration, (2) amperometric membrane covered electrode, (3) uv spectrophotometry, (4) conventional kinetics methods for slow reactions, and (5) stopped-flow kinetics measurements with a microcomputer data acquisition system. The major reactions studied were: (1) the competitive reactions of ammonia and bromide ion with hypochlorous acid, (2) bromide oxidation by hypochlorous acid, (3) monochloramine formation in sea water, (4) monobromamine formation and subsequent disproportionation to form dibromamine, and (5) monochloramine oxidation of bromide to form bromochloramine. Reaction rates were determined in sodium chloride and sea water as a function of reactant concentration, pH, salinity, and ammonia concentration. Rate constants and corresponding rate laws and mechanisms were developed for each reaction

  3. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan; Nida, Aqdas; Ng, Kim  Choon; Chua, Kian  Jon

    2015-01-01

    were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor

  4. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.

    2002-01-01

    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  5. Biosynthesis of chlorine-containing compounds in Menispermum Dauricum root cultures

    International Nuclear Information System (INIS)

    Babiker, Hind Ahmed Ali

    2002-03-01

    Effects of chloride ion on production of acutumine and dechloroactumine, by Menispermum dauricum root culture, were studied. The chloride ion contents in the medium play a key role in production of both alkaloids. A medium with low chloride contents promoted production of dechloroactumine and suppressed that of acutumine. Production of the two alkaloids during the 60 days culture period was closely associated with root biomass. Both alkaloids accumulated in the roots and a relatively small proportion was exuded into the medium. The intact plant produced very little amounts of both alkaloids. On the average roots contained 22 and 75-fold more acutumine and dechloroactumine, respectively, than the intact plants. The biosythetic relationship between acutumine and dechloroactumine was studied using 13 C -labeled tyrosine and 3H-labeled dechloroactumine as tracers. 13 C -NMR spectra of 13 C -labeled acutumine and dechloroactumine showed that the alkaloids, each composed of two molecules of tyrosine, are derived from the same biosythetic pathway. Feeding Menispermum dauricum roots, cultured in a chloride-enriched medium, with 3 H -labeled dechloroactumine demonstrated that actumine is the only alkaloid metabolite of dechloroactumine. Conversion (5%) of the exogenously applied dechloroactumine, taken up by the roots, into acutumine showed that dechloroactumine is the precursor of acutumine. Incomplete conversion of dechloroactumine into acutumine suggests accumulation of the exogenously applied dechloroactumine in cell organelles and/or compartmentation of the enzymes involved in the biosynthesis of acutumine. In addition to acutumine, acutumidine and two new chlorine-containing alkaloids, named 1-epiacutumine, and 1-piacutumine, were isolated from M. Dauricum root cultures and the intact plants. Their structures were determined based on MS and 1H and 13C NMR spectra. Accumulations of these alkaloids were found to be low in the intact plant compared with the cultured

  6. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO{sub 2} thin films for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Ahn, Sung Hoon; Seo, Jin Ah; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of)

    2012-07-15

    A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO{sub 2}) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol-gel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO{sub 2} film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO{sub 2} film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2 % at 100 mW/cm{sup 2}, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO{sub 2} film.

  7. Chain dechlorination of organic chlorinated compounds in alcohol solutions by 60Co gamma-rays, (1)

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Shimokawa, Toshinari; Sawai, Teruko; Hosoda, Ieji; Kondo, Masaharu.

    1975-01-01

    A study was made on radiolytic dechlorination of pentachlorobenzene in alkaline alcohol solutions. The dechlorination yield (G(Cl - )) was found to depend on the alcohols used as solvent and the concentrations of the chlorinated benzene and hydroxide ion. The high yields obtained in alkaline 2-propanol, sec-butanol and ethanol indicate a chain process in the dechlorination reaction. The value of G(Cl - ) was highest in 2-propanol, and the principal products generated were potassium chloride, acetone and the lower chlorinated benzenes, while a decrease was seen in the hydroxide ion concentration. The concentrations produced of potassium chloride and acetone, as well as the decrease in hydroxide ion concentration, are all roughly equal at all doses. With increasing irradiation dose, pentachlorobenzene was dechlorinated to tetra, tri, di and monochlorobenzene. 1,2,4,5-tetrachlorobenzene, 1,2,4-trichlorobenzene and 1,4-dichlorobenzene were main products. A discussion is given of the detailed mechanism of the dechlorination in alkaline alcohols and the effect of alcohols on G(Cl - ). (auth.)

  8. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  10. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  12. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    International Nuclear Information System (INIS)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-01-01

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  13. Bank security dye packs: synthesis, isolation, and characterization of chlorinated products of bleached 1-(methylamino)anthraquinone.

    Science.gov (United States)

    Egan, James M; Rickenbach, Michael; Mooney, Kim E; Palenik, Chris S; Golombeck, Rebecca; Mueller, Karl T

    2006-11-01

    Banknote evidence is often submitted after a suspect has attempted to disguise or remove red dye stain that has been released because of an anti-theft device that activates after banknotes have been unlawfully removed from bank premises. Three chlorinated compounds have been synthesized as forensic chemical standards to indicate bank security dye bleaching as a suspect's intentional method for masking a robbery involving dye pack release on banknotes. A novel, facile synthetic method to provide three chlorinated derivatives of 1-(methylamino)anthraquinone (MAAQ) is presented. The synthetic route involved Ultra Clorox bleach as the chlorine source, iron chloride as the catalyst, and MAAQ as the starting material and resulted in a three-component product mixture. Two mono-chlorinated isomers (2-chloro-1-(methylamino)anthraquinone and 4-chloro-1-(methylamino)anthraquinone) and one di-chlorinated compound (2,4-dichloro-1-(methylamino)anthraquinone) of the MAAQ parent molecule were detected by gas chromatography mass spectrometry (GC-MS), and subsequently isolated by liquid chromatography (LC) with postcolumn fraction collection. Although GC-MS is sensitive enough to detect all of the chlorinated products, it is not definitive enough to identify the structural isomers. Liquid-state nuclear magnetic resonance (NMR) spectroscopy was utilized to elucidate structurally the ortho- and para-mono-chlorinated isomers once enough material was properly isolated. A reaction mechanism involving iron is proposed to explain the presence of chlorinated MAAQ species on stolen banknotes after attempted bleaching.

  14. Concentration Distribution of Chloride Ion under the Influence of the Convection-Diffusion Coupling

    Directory of Open Access Journals (Sweden)

    Q. L. Zhao

    2017-01-01

    Full Text Available The transfer process of chloride ion under the action of the convection-diffusion coupling was analyzed in order to predict the corrosion of reinforcement and the durability of structure more accurately. Considering the time-varying properties of diffusion coefficient and the space-time effect of the convection velocity, the differential equation for chloride ion transfer under the action of the convection-diffusion coupling was constructed. And then the chloride ion transfer model was validated by the existing experimental datum and the actual project datum. The results showed that when only diffusion was considered, the chlorine ion concentration increased with the time and decreased with the decay index of time. Under the action of the convection-diffusion coupling, at each point of coupling region, the chloride ion concentration first increased and then decreased and tended to stabilize, and the maximum appeared at the moment of convection velocity being 0; in the diffusion zone, the chloride ion concentration increased over time, and the chloride ion concentration of the same location increased with the depth of convection (in the later period, the velocity of convection (in the early period, and the chloride ion concentration of the surface.

  15. Suitability of Polyvinyl Waste Powder as Partial Replacement for ...

    African Journals Online (AJOL)

    B Up to 50% by weight of cement was replaced with PWP at interval of 10%. The parameters investigated are: the chemical composition of polyvinyl waste powder (PWP) and the setting times of cement-polyvinyl paste. Also investigated in concrete containing polyvinyl powder were: workability, density, compressive strength ...

  16. Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties.

    Science.gov (United States)

    Li, Weisi; Belmont, Barry; Greve, Joan M; Manders, Adam B; Downey, Brian C; Zhang, Xi; Xu, Zhen; Guo, Dongming; Shih, Albert

    2016-10-01

    The mechanical and imaging properties of polyvinyl chloride (PVC) can be adjusted to meet the needs of researchers as a tissue-mimicking material. For instance, the hardness can be adjusted by changing the ratio of softener to PVC polymer, mineral oil can be added for lubrication in needle insertion, and glass beads can be added to scatter acoustic energy similar to biological tissue. Through this research, the authors sought to develop a regression model to design formulations of PVC with targeted mechanical and multimodal medical imaging properties. The design of experiment was conducted by varying three factors-(1) the ratio of softener to PVC polymer, (2) the mass fraction of mineral oil, and (3) the mass fraction of glass beads-and measuring the mechanical properties (elastic modulus, hardness, viscoelastic relaxation time constant, and needle insertion friction force) and the medical imaging properties [speed of sound, acoustic attenuation coefficient, magnetic resonance imaging time constants T 1 and T 2 , and the transmittance of the visible light at wavelengths of 695 nm (T λ695 ) and 532 nm (T λ532 )] on twelve soft PVC samples. A regression model was built to describe the relationship between the mechanical and medical imaging properties and the values of the three composition factors of PVC. The model was validated by testing the properties of a PVC sample with a formulation distinct from the twelve samples. The tested soft PVC had elastic moduli from 6 to 45 kPa, hardnesses from 5 to 50 Shore OOO-S, viscoelastic stress relaxation time constants from 114.1 to 191.9 s, friction forces of 18 gauge needle insertion from 0.005 to 0.086 N/mm, speeds of sound from 1393 to 1407 m/s, acoustic attenuation coefficients from 0.38 to 0.61 (dB/cm)/MHz, T 1 relaxation times from 426.3 to 450.2 ms, T 2 relaxation times from 21.5 to 28.4 ms, T λ695 from 46.8% to 92.6%, and T λ532 from 41.1% to 86.3%. Statistically significant factors of each property were

  17. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    Science.gov (United States)

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  18. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  19. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2014-01-01

    Full Text Available Bubble electrospinning exhibits profound prospect of industrialization of macro/ nano materials. Starch is the most abundant and inexpensive biopolymer. With the drawbacks of poor strength, water resistibility, thermal stability and processability of pure starch, some biodegradable synthetic polymers such as poly (lactic acid, polyvinyl alcohol were composited to electrospinning. To the best of our knowledge, composite nanofibers of polyvinyl alcohol/starch from bubble electrospinning have never been investigated. In the present study, nanofibers of polyvinyl alcohol/starch were prepared from bubble electrospinning. The processability and the morphology were affected by the weight ratio of polyvinyl alcohol and starchy. The rheological studies were in agreement with the spinnability of the electrospinning solutions.

  20. Determination of organic-bound chlorine and bromine in human body fluids by neutron activation analysis

    International Nuclear Information System (INIS)

    McKinney, J.D.; Abusamra, A.; Reed, J.H.

    1983-01-01

    The levels of organic-bound chlorine and bromine in human milk and serum are determined by neutron activation analysis. Desalted milk and serum fractions are irradiated with neutrons in a nuclear reactor and the resulting γ-rays of 38 Cl and 80 Br are measured. The desalting procedure, achieved by using Bio-Gel molecular sieves, virtually removes all ionic chloride and bromides from milk and serum. Radioactive tracer studies with polychlorinated biphenyl- 14 C indicate a recovery of 90% through the Bio-Gel column. The total organic chlorine in 2.2-(4-chlorophenyl)-1,1-dichloroethane spiked milk and heptachlor spiked milk, determined after being desalted and irradiated according to this procedure, substantiates a good recovery of the added spike. The lower limits of detection of organic-bound chlorine and bromine in milk or serum are 50 and 5 parts per billion (ppb), respectively

  1. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    Science.gov (United States)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  2. Experimental investigations on potassium permanganate doped polyvinyl alcohol - polyvinyl pyrrolidone blend

    Science.gov (United States)

    Veena, G.; Lobo, Blaise

    2018-04-01

    Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.

  3. Application of an electrochemical chlorine-generation system combined with solar energy as appropriate technology for water disinfection.

    Science.gov (United States)

    Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong

    2013-02-01

    Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.

  4. 76 FR 13982 - Antidumping Duty Order: Polyvinyl Alcohol From Taiwan

    Science.gov (United States)

    2011-03-15

    ...: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration, International Trade Administration, Department... on polyvinyl alcohol (PVA) from Taiwan. DATES: Effective Date: March 15, 2011. FOR FURTHER... from Taiwan. See Polyvinyl Alcohol From Taiwan: Final Determination of Sales at Less Than Fair Value...

  5. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Shirin R. King

    2015-08-01

    Full Text Available Aqueous solutions of tetrachloroauric acid of high purity and stability were synthesised using the known reaction of gold metal with chlorine gas. The straightforward procedure developed here allows the resulting solution to be used directly for gold nanoparticle synthesis. The procedure involves bubbling chlorine gas through pure water containing a pellet of gold. The reaction is quantitative and progressed at a satisfactory rate at 50 °C. The gold(III chloride solutions produced by this method show no evidence of returning to metallic gold over at least twelve months. This procedure also provides a straightforward method to determine the concentration of the resulting solution using the initial mass of gold and volume of water.

  7. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    Science.gov (United States)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  8. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  9. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  10. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  11. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  12. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  13. Extraction of actinides from chloride medium using pentaalkylpropanediamides

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Musikas, C.

    1991-01-01

    Pyrometallurgical processes for the purification of plutonium create waste solutions containing actinides, mainly americium, in chloride medium. Studies have been undertaken to study the extraction of actinides in chloride medium (hydrochloric acid mixed with concentrated salts such as LiCl, CaCl 2 , MgCl 2 , KCl) using pentaalkylpropanediamides as extractants. Plutonium (IV) is very easily extracted, Am (III) needs a salting out agent such as LiCl. Back extraction of trivalent cations is easy in HCl <5M. Plutonium(IV) and (VI) can be stripped by reduction either with ascorbic acid or hydroxylammonium salts in weak acid medium. Several diluents can be used (aromatic, chlorinated or even aliphatic) with addition of decanol to prevent third phase formation. In conclusion diamides can be used for various wastes declassification, they are potentially completely incinerable, and, as the synthesis has been optimized, they appear to be promising extractants

  14. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  15. suitability of polyvinyl waste powder as partial replacement

    African Journals Online (AJOL)

    eobe

    as partial replacement of cement in the production o. PWP at interval ... conducted to assess the suitability of polyvinyl waste p polyvinyl waste p .... pose a serious environmental threat because of the fact that they ... served as the control. 2.2.3.

  16. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  17. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  18. Fast and Simple Analytical Method for Direct Determination of Total Chlorine Content in Polyglycerol by ICP-MS.

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna

    2018-02-23

    The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.

  19. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  20. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Jawaid, M.; Al-Shuja’a, O.M.

    2014-01-01

    Highlights: • Increasing fiber content decreased tensile strength and strain. • Tensile modulus was increasing with increase in fiber content. • SEM showed fiber/matrix poor adhesion. • Impact strength was decreasing with increase in fiber content. • Lower thermal stability with increase in fiber content was observed. - Abstract: Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m 2 ). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m 2 ; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix

  1. Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter

    Czech Academy of Sciences Publication Activity Database

    Bastviken, D.; Thomsen, F.; Svensson, T.; Karlsson, S.; Sandén, P.; Shaw, G.; Matucha, Miroslav; Öberg, G.

    2007-01-01

    Roč. 71, č. 13 (2007), s. 3182-3192 ISSN 0016-7037 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : CHLOROACETIC ACIDS * BOUND CHLORINE * DEGRADATION Subject RIV: DF - Soil Science Impact factor: 3.665, year: 2007

  2. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    Science.gov (United States)

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Maternal residential proximity to chlorinated solvent emissions and birth defects in offspring: a case-control study.

    Science.gov (United States)

    Brender, Jean D; Shinde, Mayura U; Zhan, F Benjamin; Gong, Xi; Langlois, Peter H

    2014-11-19

    Some studies have noted an association between maternal occupational exposures to chlorinated solvents and birth defects in offspring, but data are lacking on the potential impact of industrial air emissions of these solvents on birth defects. With data from the Texas Birth Defects Registry for births occurring in 1996-2008, we examined the relation between maternal residential proximity to industrial air releases of chlorinated solvents and birth defects in offspring of 60,613 case-mothers and 244,927 control-mothers. Maternal residential exposures to solvent emissions were estimated with metrics that took into account residential distances to industrial sources and annual amounts of chemicals released. Logistic regression was used to generate odds ratios and 95% confidence intervals for the associations between residential proximity to emissions of 14 chlorinated solvents and selected birth defects, including neural tube, oral cleft, limb deficiency, and congenital heart defects. All risk estimates were adjusted for year of delivery and maternal age, education, race/ethnicity, and public health region of residence. Relative to exposure risk values of 0, neural tube defects were associated with maternal residential exposures (exposure risk values >0) to several types of chlorinated solvents, most notably carbon tetrachloride (adjusted odds ratio [aOR] 1.42, 95% confidence interval [CI] 1.09, 1.86); chloroform (aOR 1.40, 95% CI 1.04, 1.87); ethyl chloride (aOR 1.39, 95% CI 1.08, 1.79); 1,1,2-trichloroethane (aOR 1.56, 95% CI 1.11, 2.18); and 1,2,3-trichloropropane (aOR 1.49, 95% CI 1.08, 2.06). Significant associations were also noted between a few chlorinated solvents and oral cleft, limb deficiency, and congenital heart defects. We observed stronger associations between some emissions and neural tube, oral cleft, and heart defects in offspring of mothers 35 years or older, such as spina bifida with carbon tetrachloride (aOR 2.49, 95% CI 1.09, 5.72), cleft palate

  4. Physical chemistry of the chlorination reactions of metals and alloys

    International Nuclear Information System (INIS)

    De Micco, Georgina

    2007-01-01

    This thesis has contributed towards the knowledge of complex systems.The chlorination reactions are non-catalytic solid-gas heterogeneous reactions which, in addition to the difficulties associated with the reactions occurring in an interface, have the particular features of chlorides compounds and their interactions.The questions arising from this type of study can not be solved by the application of an individual analysis technique.From the experimental point of view it is complicated, and many instrumental techniques need to be applied in order to obtain significant results as well as meaningful interpretations.The system under study is the chlorination of ternary and binary alloys containing Al, Cu and Zn and the pure metals, as these elements belong to the spent nuclear fuel cladding.The aim of the research has been to develop a process that eliminates most of the aluminium, which is the more abundant specie. In this way, the amount of material to be conditioned (vitrified) is reduced.The objectives proposed for each system have been achieved, and the results obtained can also be applied to similar systems for metal recycling [es

  5. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  6. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  7. Chlorine in the stratosphere

    OpenAIRE

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  8. InCl3/NaClO: a reagent for allylic chlorination of terminal olefins

    International Nuclear Information System (INIS)

    Pisoni, Diego S.; Gamba, Douglas; Fonseca, Carlos V.; Costa, Jesse S. da; Petzhold, Cesar L.; Oliveira, Eduardo R. de; Ceschi, Marco A.

    2006-01-01

    Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of β-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes. (author)

  9. Leaching of copper concentrates with high arsenic content in chlorine-chloride media; Lixiviacion de concentrados de cobre con alto contenido de arsenico en medio cloro-cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-07-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs.

  10. Synthesis of Zirconium Lower Chlorides

    International Nuclear Information System (INIS)

    Gaviria, Juan P.

    2002-01-01

    This research is accurately related to the Halox concept of research reactor spent fuel element treatment.The aim of this project is to work the conditioning through selected chlorination of the element that make the spent fuel element. This research studied the physical chemistry conditions which produce formation of the lower zirconium chlorides through the reaction between metallic Zr and gaseous ZrCl 4 in a silica reactor.This work focused special attention in the analysis and confrontation of the published results among the different authors in order to reveal coincidences and contradictions.Experimental section consisted in a set of synthesis with different reaction conditions and reactor design. After reaction were analyzed the products on Zr shavings and the deposit growth on wall reactor.The products were strongly dependent of reactor design. It was observed that as the distance between Zr and wall reactor increased greater was tendency to lower chlorides formation.In reactors with small distance the reaction follows other way without formation of lower chlorides.Analysis on deposit growth on reactor showed that may be formed to a mixture of Si x Zr y intermetallics and zirconium oxides.Presence of oxygen in Zr and Zr-Si compounds on wall reactor reveals that there is an interaction between quartz and reactants.This interaction is in gaseous phase because contamination is observed in experiences where Zr was not in contact with reactor.Finally, it was made a global analysis of all experiences and a possible mechanism that interprets reaction ways is proposed

  11. Chlorination of antimony and its volatilization treatment of waste antimony-uranium composite oxide catalyst

    International Nuclear Information System (INIS)

    Sawada, K.; Enokida, Y.

    2011-01-01

    For the waste antimony-uranium composite oxide catalyst, the chlorination of antimony and its volatilization treatment were proposed, and evaluated using hydrogen chloride gas at 873-1173 K. During the treatment, the weight loss of the composite oxide sample, which resulted from the volatilization of antimony, was confirmed. An X-ray diffraction analysis showed that uranium oxide, U 3 O 8 , was formed during the reaction. After the treatment at 1173 K for 1 h, almost all the uranium contained in the waste catalyst was dissolved by a 3 M nitric acid solution at 353 K within 10 min, although that of the non-treated catalyst was less than 0.1%. It was found that the chlorination and volatilization treatment was effective to separate antimony from the composite oxide catalyst and change uranium into its removable form. (orig.)

  12. Floorward thinking.

    Science.gov (United States)

    Fisher, B E

    1999-07-01

    From its creation to its disposal, there are environmental and health problems associated with polyvinyl chloride (vinyl), the major component of vinyl flooring. The production of vinyl creates toxic waste that must be dumped or incinerated. Because very little vinyl is recycled, the waste material must also be landfilled or burned. Furthermore, the heavy chlorine content of these materials result in the release of dioxins into the environment. A new flooring alternative to vinyl recently entered the market. Stratica, manufactured by Amtico Company Limited based in Coventry, United Kingdom, is made from polymer resins and offers the durability of vinyl without the environmental impact.

  13. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor.

    Science.gov (United States)

    Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun

    2008-02-11

    The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.

  14. OLGA experiments with {sup 261}104 under chlorinating and brominating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W.; Eichler, B.; Jost, D.T.; Piguet, D.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Buklanov, G.; Lebedev, V.; Timokhin, S.; Vedeev, M.V.; Yakushev, A.; Zvara, I. [FLNR, Dubna (Russian Federation); Huebener, S. [FZR (Germany)

    1997-09-01

    With the On-Line Gas chemistry Apparatus OLGA III the retention times of element 104 chloride and bromide was measured in a quartz column using the isotope {sup 261}104 with a half-life of 78 s. With HCl as chlorinating agent element 104 was found to quantitatively pass through the column at 150{sup o}C, whereas with HBr this temperature shifted to about 300{sup o}C. Under both halogenating conditions, the homologuous element Hf passed through the column at higher temperatures than element 104, in agreement with expectations. (author) 2 figs., 2 refs.

  15. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  16. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  17. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  18. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-01-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the “bound” water in hydrogels is 50–70% and independent of gel fraction content. In addition to “bound” and “free” states, water in hydrogels is also present in the intermediate state. - Highlights: • The synthesis and the properties of poly(vinyl alcohol) hydrogels were studied. • PVA was modified by glycidyl methacrylate before gamma cross-linking. • The modification results in decreasing of PVA cross-linking dose by 3 orders lower. • The gel fraction and water content of the hydrogels were measured. • A fraction of the “bound” water in hydrogels is independent of gel fraction content

  19. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Wolff, H.; Alwast, H.; Buttgereit, R.

    1994-01-01

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.) [de

  20. Microbial Chlorination of Organic Matter in Forest Soil: Investigation Using Cl-36-Chloride and Its Methodology

    Czech Academy of Sciences Publication Activity Database

    Rohlenová, Jana; Gryndler, Milan; Forczek, Sándor; Fuksová, Květoslava; Handová, V.; Matucha, Miroslav

    2009-01-01

    Roč. 43, č. 10 (2009), s. 3652-3655 ISSN 0013-936X R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : BOUND CHLORINE * CHLOROACETIC ACIDS * HUMIC SUBSTANCES Subject RIV: DF - Soil Science Impact factor: 4.630, year: 2009

  1. Chlorination and chloramines formation

    International Nuclear Information System (INIS)

    Yee, Lim Fang; Mohd Pauzi Abdullah; Sadia Ata; Abbas Abdullah; Basar IShak; Khairul Nidzham

    2008-01-01

    Chlorination is the most important method of disinfection in Malaysia which aims at ensuring an acceptable and safe drinking water quality. The dosing of chlorine to surface water containing ammonia and nitrogen compounds may form chloramines in the treated water. During this reaction, inorganic and organic chloramines are formed. The recommended maximum acceptable concentration (MAC) for chloramines in drinking water is 3000 μg/L. The production of monochloramine, dichloramine and trichloramine is highly dependent upon pH, contact time and the chlorine to ammonia molar ratio. The purpose of this study is to examine the formation of chloramines that occur upon the chlorination during the treatment process. Chloramines were determined using the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method. The influences of ammonia, pH and chlorine dosage on the chloramines formation were also studied. This paper presents a modeling approach based on regression analysis which is designed to estimate the formation of chloramines. The correlation between the concentration of chloramines and the ammonia, pH and chlorine dosage was examined. In all cases, the quantity of chloramines formed depended linearly upon the amount of chlorine dosage. On the basis of this study it reveals that the concentration of chloramines is a function of chlorine dosage and the ammonia concentration to the chlorination process. PH seems to not significantly affect the formation of chloramines. (author)

  2. Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome

    International Nuclear Information System (INIS)

    Guardiola, John J.; Beier, Juliane I.; Falkner, K. Cameron; Wheeler, Benjamin; McClain, Craig James; Cave, Matt

    2016-01-01

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS 2 analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated that the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity. - Highlights:

  3. Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, John J. [University of Louisville Department of Medicine, Louisville, KY 40206 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Falkner, K. Cameron; Wheeler, Benjamin [Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); McClain, Craig James [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206 (United States); The Kentucky One Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202 (United States); Cave, Matt, E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206 (United States); The Kentucky One Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, Louisville, KY, 40202 (United States)

    2016-12-15

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS{sup 2} analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated that the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity

  4. The synthesis of poly(vinyl chloride) nanocomposite films containing ZrO2 nanoparticles modified with vitamin B1 with the aim of improving the mechanical, thermal and optical properties.

    Science.gov (United States)

    Mallakpour, Shadpour; Shafiee, Elaheh

    2017-01-01

    In the present investigation, solution casting method was used for the preparation of nanocomposite (NC) films. At first, the surface of ZrO 2 nanoparticles (NPs) was modified with vitamin B 1 (VB 1 ) as a bioactive coupling agent to achieve a better dispersion and compatibility of NPs within the poly(vinyl chloride) (PVC) matrix. The grafting of modifier on the surface of ZrO 2 was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA). Finally, the resulting modified ZrO 2 (ZrO 2 -VB 1 ), was used as a nano-filler and incorporated into the PVC matrix to improve its mechanical and thermal properties. These processes were carried out under ultrasonic irradiation conditions, which is an economical and eco-friendly method. The effect of ZrO 2 -VB 1 on the properties and morphology of the PVC matrix was characterized by various techniques. Field emission scanning electron microscopy and transmission electron microscopy analyses showed a good dispersion of fillers into the PVC matrix with the average diameter of 37-40 nm. UV-Vis spectroscopy was used to study optical behavior of the obtained NC films. TGA analysis has confirmed the presence of about 7 wt% VB 1 on the surface of ZrO 2 . Also, the data indicated that the thermal and mechanical properties of the NC films were enhanced.

  5. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.

    1976-01-01

    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  6. Origin of unusual sintering phenomena in compacts of chloride-derived 3Y-TZP nanopowders

    Directory of Open Access Journals (Sweden)

    Sweeney Sean M.

    2014-01-01

    Full Text Available After evaluating three alternative possibilities, the present study shows that seemingly minor amounts (at least as low as 0.06 wt% of chlorine impurities are responsible for the poor sintering behavior observed in chloride-derived 3 mol% yttria stabilized zirconia (3Y-TZP nanopowders. Models and quantitative estimates are used to explain the role of evolved HCl and ZrCl4 gases in such anomalous behaviors as reduced sintered densities for higher green densities, de-densification, improved sintering in nitrogen over oxygen, and formation of a dense shell microstructure. Two solutions to problematic residual chlorides are compared: 1 a thermal treatment composed of an extended hold at 1000°C to allow HCl gas removal before the onset of closed porosity, and 2 a chemical treatment performed by washing bisque-fired samples at room temperature using a concentrated ammonium hydroxide solution to remove chlorides. The thermal treatment was found to be superior.

  7. Compatibility of butorphanol and droperidol in 0.9% sodium chloride injection.

    Science.gov (United States)

    Chen, Fu-Chao; Fang, Bao-Xia; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2013-03-15

    The compatibility and stability of butorphanol tartrate and droperidol in polyvinyl chloride (PVC) bags and glass bottles stored at 4°C and 25°C for up to 15 days were studied. Admixtures were assessed initially and for 15 days after preparation in PVC bags and glass bottles using 0.9% sodium chloride injection as a diluent and stored at 4°C and 25°C. The initial drug concentrations were 0.08 mg/mL for butorphanol tartrate and 0.05 mg/mL for droperidol. Samples were withdrawn from each container immediately after preparation and at predetermined intervals (2, 4, 8, 24, 48, 72, 120, 168, 240, and 360 hours after preparation). The solutions were visually inspected for precipitation, cloudiness, and discoloration at each sampling interval. Drug concentrations were determined using a validated high-pressure liquid chromatography method. After 15 days of storage, all formulations tested retained >98% of the initial concentrations of both drugs. The drug mixtures were clear in appearance, and no color change or precipitation was observed. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and droperidol 0.05 mg/mL in 0.9% sodium chloride injection were stable for at least 360 hours when stored in PVC bags or glass bottles at 4°C and 25°C and protected from light.

  8. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  9. In vitro evaluation of di(2-ethylhexyl)terephthalate-plasticized polyvinyl chloride blood bags for red blood cell storage in AS-1 and PAGGSM additive solutions.

    Science.gov (United States)

    Graminske, Sharon; Puca, Kathleen; Schmidt, Anna; Brooks, Scott; Boerner, Amanda; Heldke, Sybil; de Arruda Indig, Monika; Brucks, Mark; Kossor, David

    2018-05-01

    Di(2-ethylhexyl)phthalate (DEHP) makes polyvinyl chloride flexible for use in blood bags and stabilizes the red blood cell (RBC) membrane preventing excessive hemolysis. DEHP migrates into the blood product and rodent studies have suggested that DEHP exposure may be associated with adverse health effects albeit at high dosages. Although structurally and functionally similar to DEHP, di(2-ethylhexyl)terephthalate (DEHT; or Eastman 168 SG [Eastman Chemical Company]) is metabolically distinct with a comprehensive and benign toxicology profile. This study evaluated RBC stability in DEHT-plasticized bags with AS-1 and PAGGSM compared to conventional DEHP-plasticized bags with AS-1. Thirty-six whole blood units were collected into CPD solution, leukoreduced, centrifuged, and divided into RBCs and plasma. To limit donor-related variability, three ABO-identical RBCs were mixed together and then divided equally and stored among the three different plasticizer and additive solution combinations. RBCs from 12 trios were analyzed for a standard panel of in vitro variables on Day 0 and after storage. No individual bag on Day 42 exceeded the US 1.0% hemolysis criteria. While hemolysis during storage was higher in the DEHT bags, the PAGGSM RBCs were close to the control RBCs (0.38% vs. 0.32%, respectively). ATP retention was higher than 70% and potassium levels were similar regardless of plasticizer. Additional RBC variables exhibited some significant differences but were not viewed as clinically important. DEHT/PAGGSM provides similar hemolysis protection to that of DEHP/AS-1. Although hemolysis values with DEHT and AS-1 are higher than that of DEHP, DEHT is a potential DEHP alternative. © 2018 AABB.

  10. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  11. Conservation of minimally processed pineapple using calcium chloride, edible coating and gamma radiation

    International Nuclear Information System (INIS)

    Pilon, Lucimeire

    2007-01-01

    The aim of this study was to obtain a convenience type pineapple subjected to fresh-cut process and calcium chloride, wheat gluten and alginate-base edible coating and irradiation treatments. The fruits were washed, sanitized with Sumaveg (Sodium Dichloro-s-Triazinetrione) in a 200 mg L-1 chlorine-free solution at 7 deg C for 15 minutes, and then manually peeled. The peeled fruits were sliced into 1 cm thick slices, rinsed in 20 mg L-1 chlorine-free solution for 3 minutes and drained for 3 minutes. In the first experiment, the samples were treated with: 1% calcium chloride + vital wheat gluten solution; 1% calcium chloride + 1% alginate solution; and control. In the second experiment, the samples were treated with: 1% calcium chloride + vital wheat gluten solution + 2.3 kGy; 1% calcium chloride + 2.3kGy; irradiation with 2.3kGy; and control. The packing consisted of rigid polyethylene terephthalate (PET) trays with around 250 g of fruit. The irradiation was performed in a Cobalt-60 multipurpose irradiator with 92 kCi activity and dose value of 2.3 kGy h-1. The samples were stored at 5 ± 1 deg C and evaluated every other day for 12 days. In the first experiment pH and titratable acidity values showed slight variations but were similar between the treatments. There was a decrease in ascorbic acid values in all treatments. Browning was noticed in all treatments over the storage period. Although the values between the treatments were similar, the pineapple treated with calcium chloride + gluten showed firmer texture, less liquid loss, and lower values of polyphenoloxidase and peroxidase activities and CO 2 and ethylene production. Mesophiles and mold and yeast counts were also reduced. No Salmonella and E. coli were detected. Total coliform counts were low in all the treatments and appeared in just a few isolated samples during the storage period. Sensory analyses showed that the samples treated with calcium chloride + gluten had the lower scores for texture

  12. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    Science.gov (United States)

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  13. Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & horseradish peroxidase onto plasticized polyvinyl chloride (PVC strip & its application in serum triglyceride determination

    Directory of Open Access Journals (Sweden)

    Nidhi Chauhan

    2014-01-01

    Full Text Available Background & objectives:Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK, glycerol-3-phosphate oxidase (GPO and peroxidase (HRP directly onto plasticized polyvinyl chloride (PVC strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35 o C and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99 was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4 o C. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also.

  14. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  15. Some reactions of uranium chloride pentafluoride

    International Nuclear Information System (INIS)

    Downs, A.J.; Gardner, C.J.

    1986-01-01

    The molecule UF 5 Cl has been isolated, together with an excess of UF 6 , in a solid matrix of Ar, N 2 , or CO and characterised by its i.r. spectrum. Under these conditions it dissociates under the action of radiation having wavelengths close to 500 nm to give UF 5 ; OCCl and OCClF are also formed on photolysis in a solid CO matrix, whereas a species believed to be U 2 F 11 is formed on photolysis in a solid N 2 matrix. CCl 3 F solutions of fluoride-rich mixtures of uranium(VI) chloride fluorides have been shown to function as chlorinating, fluorinating, or chlorofluorinating reagents in their reactions with various unsaturated molecules at temperatures low enough to preclude thermal decomposition of the mixed halides ( 0 C). (author)

  16. Formation of aryl-chlorinated aromatic acids and precursors for chloroform in chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Galan, L.

    1985-01-01

    The formation of chloroform when humic substances are chlorinated is well known. Other chlorinated products that may be formed are chloral, di- and trichloroacetic acid, chlorinated C-4 diacids, and α-chlorinated aliphatic acids. Several of these compounds are formed in molar yields comparable

  17. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent

    Directory of Open Access Journals (Sweden)

    Maliheh Akhlaghi

    2018-06-01

    Full Text Available Disinfection of water refers to a special operation that is doing to kill or disable causative organisms (i.e. Pathogens and in particular, intestinal bacteria. The aim of this pilot study is comparison of disinfection power of Chlorine dioxide and chlorine in a real dairy wastewater effluent. In this regard, firstly prepared two 220-l tanks made of polyethylene as reaction tanks and filled by effluent of a dairy wastewater treatment plant. Both tanks were equipped with mechanical stirrer. Then a Diaphragm dosing pumps with the maximum capacity of 3.9 l per hour were used for the chlorine dioxide and chlorine (Calcium hypochlorite 0.5 up to 3 ppm injection. Residual level of Chlorine dioxide and Chlorine were measured by portable photometric method DT4B kit, Germany. Finally, the Multiple-Tube Fermentation, Brilliant Green Bile Broth (BGB and Eosin methylene blue Agar (EMB technique was used for microbial analysis and the results were reported as the most probable number index (MPN respectively. The data showed that the residual of chlorine dioxide could stood more active than residual of chlorine in the aqueous environment significantly. Therefore, Use of chlorine dioxide is more effective than chlorine for removal fecal and total coliform from dairy wastewater effluent. Keywords: Disinfection, Chlorine dioxide, Chlorine, Total coliform, Fecal coliform

  18. Study on the method of predicting service life of coated steel sheets, (5)

    International Nuclear Information System (INIS)

    Takeshima, Eiki; Kawano, Toshinori; Takamura, Hisao; Awa, Katsumasa

    1983-01-01

    Study was made of the coating effect of chrome yellow when applied as a coloring pigment for a polyvinyl chloride resin film and also of the applicability of an X-ray radiation test as an accelerated deterioration test of polyvinyl chloride resin. The results show that: (1) As compared with the non-coating chrome yellow not subjected to coating treatment, the heavy-coating chrome yellow with the surface coated with alumina and silica is chemically stable. The coating effect is evaluated by the generation of coating crack, discoloring, decomposition of the chrome yellow and generation of lead chloride in the X-ray radiation test and the dew cycle weatherometer test. (2) In the X-ray radiation test, dew cycle weatherometer test and outdoor weathering test, the decomposition of polyvinyl chloride resing changed with time exponentially, indicating a correlation among them. In the X-ray radiation test, the polyvinyl chloride resin decomposed at a rate 10 4 times higher than in the outdoor weathering test, which indicates that it is possible by the X-ray radiation test of a very short time to estimate the decomposition rate of polyvinyl chloride resin in the dew cycle weatherometer test or outdoor weathering test. (author)

  19. Study on removing chlorin by conversion-aborption of chlorin resin

    International Nuclear Information System (INIS)

    Huang Yunbai; Zhao Jinfang; Tang Zhijuan; Huang Qijin; Deng Jianguo

    2012-01-01

    Theon version of chlorin resin and the reclamation of acid and uranium in converting solution were investigated. The results indicated the residual chlorin can meet the requirement after converting, acid and uranium in converting solution can be reclaimed. (authors)

  20. Xylanase-Aided Chlorine Dioxide Bleaching of Bagasse Pulp to Reduce AOX Formation

    Directory of Open Access Journals (Sweden)

    Yi Dai

    2016-02-01

    Full Text Available Xylanase pretreatment was used to improve the chlorine dioxide bleaching of bagasse pulp. The pulp was pretreated with xylanase, which was followed by a chlorine dioxide bleaching stage. The HexA content of the pulp and the AOX content of the bleaching effluent were measured using UV-Vis and GC-MS methods, respectively. The results showed that a good correlation occurred between HexA and kappa number. HexA content of the pulp decreased significantly after the xylanase pretreatment. The AOX content of the bleaching effluent decreased as HexA was removed from the pulp. It was found that AOX could be reduced by up to 29.8%, comparing XD0 with a D0 stage. Fourier transform infrared spectroscopy (FTIR was employed to determine the breakage of chemical bonds in the pulp. It revealed that some lignin and hemicellulose were removed after xylanase treatment. The GC-MS results showed that some toxic chloride such as 2,4,6-trichlorophenol could be completely removed after xylanase pretreatment.

  1. Kinetics of molybdenum and chlorine interaction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Nazarov, Yu.N.; Sarkarov, T.Eh.; Tulyakov, N.V.

    1977-01-01

    The kinetics is studied of molybdenite chlorination with gaseous chlorine. The time dependences of the depth and degree of molybdenite chlorination are given along with the dependence on chlorine concentration of molybdenite chlorination rate. Active interaction is shown to take place at 450-470 deg C. At 350-435 deg C, chlorination occurs in the kinetic range, the apparent activation energy being equal to 22.2 kcal/mole and the order of reaction by chlorine to 0.77. At 435-610 deg C, the process takes place in the diffusion range and is restricted by dissipation of the reaction products (activation energy - 4.05 kcal/mole; order of reaction by chlorine - 0.6)

  2. The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides)

    International Nuclear Information System (INIS)

    Eichler, B.

    1996-01-01

    Thermochemical relationships are derived describing the gas adsorption chromatographic transport of carrier-free radionuclides. Especially, complex adsorption processes such as dissociative, associative and substitutive adsorption are dealt with. The comparison of experimental with calculated data allows the determination of the type of adsorption reaction, which is the basis of the respective gas chromatographic process. The behaviour of carrier-free radionuclides of elements Pu, Ce, Ru, Co and Cr in thermochromatographic experiments with chlorinating carrier gases can be described as dissociative adsorption of chlorides in higher oxidation states. The gas adsorption chromatographic transport of Zr with oxygen and chlorine containing carrier gas is shown to be a substitutive adsorption process. The consequences of superimposed chemical reactions on the interpretation of results and the conception of gas adsorption chromatographic experiments with carrier-free radionuclides in isothermal columns and in temperature gradient tubes is discussed. (orig.)

  3. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.

    Science.gov (United States)

    Aghdam, Ehsan; Xiang, Yingying; Sun, Jianliang; Shang, Chii; Yang, Xin; Fang, Jingyun

    2017-08-01

    The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H 2 O 2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H 2 O 2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H 2 O 2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO. Copyright © 2017. Published by Elsevier B.V.

  4. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Working out microsyntheses for different chlorinated biphenyls and preparation of 2,2'-dichlorobiphenyl-14C and 2,4'-dichlorobiphenyl-14C

    International Nuclear Information System (INIS)

    Geuenich, H.H.

    1972-01-01

    The microsyntheses for the preparation of chlorated biphenyls starting with benzene were worked out. 2,2'-dichlorobiphenyl- 14 C and 2,4'-dichlorobiphenyl- 14 C were prepared. 42 mCi benzene- 14 C were converted into nitrobenzene with nitrating acid, which was reduced to aniline by tin(II) chloride/hydrochloric acid. Following the acetylation of aniline with acetic anhydride, it was monochlorated in glacial acetic acid with chloride of lime, and the chlorination mixture was chromatographically separated in columns. 5.8 mCi o'-chloroanaline were diazotized and converted in ammoniacal copper(I) salt solution. 2 μCi 2,2'-dichlorobiphenyl were obtained. (orig./LH) [de

  6. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    Science.gov (United States)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  7. Pourbaix Diagrams for Copper in 5 m Chloride Solution

    International Nuclear Information System (INIS)

    Beverskog, Bjoern; Pettersson, Sven-Olof

    2002-12-01

    Pourbaix diagrams for the copper in 5 molal chlorine at 5-100 deg C have been calculated. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of dissolved copper, 10 -4 and 10 -6 molal, have been used in the calculations. ChIoride is the predominating chlorine species in aqueous solutions. Therefore Pourbaix diagrams for chlorine can be used to discuss the effect of chloride solutions on the corrosion behavior of a metal. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. Copper corrodes in 5 molal chloride by formation Of CuCl 3 2- in acid and alkaline solutions. At higher potentials in acid solutions CuCl 3 2- is oxidized to CuCl 2 (aq), which at increasing potentials can form CuCI + , Cu 2+ or CuClO 3 + . Copper passivates by formation of Cu 2 O(cr), CuO(cr), or CUO 2 3 Cu(OH) 2 (s). Cu 2 O(cr) does not form at [Cu(aq)] tot = 10 -6 molal in 5 m C1-, which results in a corrosion area between the immunity and passivity areas. Copper at the anticipated repository potentials and pH corrodes at 100 deg C at [Cu(aq)] tot = 10 -4 molal and at 80-100 deg C at [Cu(aq)] tot = 10 -6 molal. Copper at the anticipated repository potentials and pH can corrode at 80 deg C at [Cu(aq)] tot = 10 -4 molal and at 50 deg C at [Cu(aq)] tot = 10 -6 molal. The bentonite clay and copper canisters in the deep repository can be considered as a 'closed' system from macroscopic point of view. The clay barrier limits both inward diffusion of oxygen and aggressive anions as well as outward diffusion of corrosion products from the canisters. Both diffusion phenomena will drive the corrosion potential into the immunity area of the Pourbaix diagram for copper. The corrosion will thereby stop by an automatic mechanism. However, this is only valid if no macro cracks occur in the clay. The auto-stop is valid for the initial, main and

  8. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  9. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  10. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.

    2017-01-16

    In this study, two hygroscopic materials, inorganic lithium chloride (LiCl) and organic triethylene glycol (TEG) were separately added to poly(vinyl alcohol) (PVA) to form blend membranes for air dehumidification. Water vapor permeation, dehumidification performance and long-term durability of the membranes were studied systematically. Membrane hydrophilicity and water vapor sorbability increased significantly with higher the hygroscopic material contents. Water vapor permeance of the membranes increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy when hygroscopic content increases. Comparatively, PVA/TEG has less corrosive problems and is more environmentally friendly than PVA/LiCl. A membrane with PVA/TEG is observed to be highly durable and is suitable for dehumidification applications.

  11. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    Science.gov (United States)

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.

  12. Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism, and analytical application

    International Nuclear Information System (INIS)

    Suliyanti, Maria Margaretha; Sardy, Sar; Kusnowo, Anung; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Lie, T.J.; Pardede, Marincan; Kagawa, Kiichiro; Tjia, M.O.

    2005-01-01

    An Nd-YAG laser (1064 nm, 120 mJ, 8 ns) was focused on various types of solid organic samples such as a black acrylic plate, a black polyvinyl chloride plastic sheet, and a methoxy polyaniline film coated on the surface of a glass substrate, under a surrounding air pressure of 2 Torr. A modulated plasma technique was used to study the mechanism of excitation of the emission of the organic material. As a result, we conclude that ablated atoms and molecules are excited by a shock-wave mechanism, similar to the case of hard samples such as metal. The ablation speed of hydrogen emission (H I 656.2 nm) was examined and the results show that the release speed of the ablated atoms is relatively low (less than Mach 10) and persists for a longer period of time (around 1 μs); this phenomenon can be understood by assuming that the soft target absorbs recoil energy, causing a low release speed of ablated atoms which would form the shock wave. This was overcome by placing a subtarget on the back of the soft sample so as to enhance the repelling force, thus increasing the release speed of the atoms. A possible application of the low-pressure plasma on an organic solid was demonstrated in the detection of chlorine in a black polyvinyl chloride plastic sheet

  13. Smart carbon nanotube/fiber and PVA fiber-reinforced composites for stress sensing and chloride ion detection

    Science.gov (United States)

    Hoheneder, Joshua

    Fiber reinforced composites (FRC) with polyvinyl alcohol (PVA) fibers and carbon nanofibers (CNF) had an excellent flexural strength in excess of 18.5 MPa compared to reference samples of 15.8 MPa. It was found that the developed, depending on applied stress and exposure to chloride solutions, composites exhibit some electrical conductivity, from 4.20×10 -4 (Ω-1m-1 to 4.13×10 -4 Ω-1m-1. These dependences can be characterized by piezioresistive and chemoresistive coefficients demonstrating that the material possesses self-sensing capabilities. The sensitivity to stain and chloride solutions can be enhanced by incorporating small amounts of carbon nanofibers (CNF) or carbon nanotube (CNT) into composite structure. Conducted research has demonstrated a strong dependency of electrical properties of composite on crack formation in moist environments. The developed procedure is scalable for industrial application in concrete structures that require nondestructive stress monitoring, integrity under high service loads and stability in harsh environments.

  14. Potentiometric titration of polyhexamethylene biguanide hydrochloride with potassium poly(vinyl sulfate) solution using a cationic surfactant-selective electrode.

    Science.gov (United States)

    Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki

    2008-03-01

    A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.

  15. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.

    Science.gov (United States)

    Umile, Thomas P; Wang, Dong; Groves, John T

    2011-10-17

    Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate

  16. Where does Chlorine-36 go?

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Chlorine-36 and Iodine-129 are the unique long-life radionuclides in the halogen family and halogens are known to be very mobile in the environment. Chlorine-36 is present in slight quantities in radioactive wastes containing carbon or issued from spent fuel reprocessing. The migration of Chlorine-36 in the environment has been very little studied, so a collaboration between the French institute of protection and nuclear safety (IPSN) and the Ukrainian institute for agricultural radioecology (UIAR) has been launched. IPSN will study the migration of Chlorine-36 in soils and UIAR will be in charge of studying the transfer of Chlorine-36 from soil to plants. (A.C.)

  17. Inkjet-printed Polyvinyl Alcohol Multilayers.

    Science.gov (United States)

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  18. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  19. Treatment of domestic wastewater by anaerobic denitrification ...

    African Journals Online (AJOL)

    Eighteen Erlenmeyer flask containing six different support media [pozzolan, polyvinyl chloride1 (PVC1), polyvinyl chloride2 (PVC2), foam, polyethylene terephthalate (PET) and polystyrene (PS)] were subject to identical volumetric organic loadings and hydraulic retention time in treating synthetic protein ± carbohydrate ...

  20. Charging transient in polyvinyl formal

    Indian Academy of Sciences (India)

    Unknown

    401–406. © Indian Academy of Sciences. 401. Charging transient in polyvinyl formal. P K KHARE*, P L JAIN† and R K PANDEY‡. Department of Postgraduate Studies & Research in Physics & Electronics, Rani Durgavati University,. Jabalpur 482 001, India. †Department of Physics, Government PG College, Damoh 470 ...

  1. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Science.gov (United States)

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  2. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    Science.gov (United States)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  3. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  4. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Garrett, W.E. Jr.; Laylor, M.M.

    1995-01-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  5. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Labutin, Timur A., E-mail: timurla@laser.chem.msu.ru [Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1-3, Moscow 119991 (Russian Federation); Popov, Andrey M.; Zaytsev, Sergey M.; Zorov, Nikita B. [Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1-3, Moscow 119991 (Russian Federation); Belkov, Mikhail V.; Kiris, Vasilii V.; Raikov, Sergey N. [B.I. Stepanov Institute of Physics, Nezavisimosti Ave. 68, Minsk 220072 (Belarus)

    2014-09-01

    Accurate and reliable quantitative determination of non-metal corrosion agents in concrete is still an actual task of analytical use of LIBS. Two double-pulse LIBS systems were tested as a tool for the determination of chlorine, sulfur and carbon in concretes. Both systems had collinear configuration; a laboratory setup was equipped with an ICCD and two lasers (355/532 nm + 540 nm), but a CCD was a detector for a mobile system with one laser (1064 nm). Analytical lines of Cl I at 837.59 nm, S I at 921 nm and C I at 247.86 nm were used to plot calibration curves. Optimal interpulse delays for the laboratory setup were 4 μs for chlorine and 2.8 μs for carbon, while an interpulse delay of 2 μs was optimal for chlorine and sulfur determination with the mobile system. We suggested the normalization of the Cl I line at 837.59 nm to the Mg II line at 279.08 nm (visible at 837.23 nm in the third order) to compensate for pulse-to-pulse fluctuations of chlorine lines. It provided the decrease of the detection limit of chlorine from 400 ppm to 50 ppm. Therefore, we reported that LIBS can be used to determine main corrosive active substances under ambient conditions in concrete below critical threshold values. Moreover, the application of the mobile system for in-situ qualitative assessment of corrosion way of a steel cage of a swimming pool dome was also demonstrated. It was found that chloride corrosion due to the disinfection of water was the main way for corrosion of the open part steel and the steel rebar inside the concrete. - Highlights: • Determination of chlorine, sulfur and carbon in concrete in the air. • Comparison of mobile and laboratory LIBS systems. • LOD by double-pulse LIBS under ambient conditions: for sulfur 1500 ppm, for chlorine — 50 ppm. • Background level of carbon content in concrete is about 0.27% wt.

  6. Influence of vinyl chloride monomer and vinyl chloride monomer derivatives on hepatic DNA synthesis

    International Nuclear Information System (INIS)

    Brenner, E.A.

    1982-01-01

    Vinyl chloride monomer (VCM) is used extensively in the chemical industry, mainly in the production of polyvinyl chloride. It has recently been found to cause hepatic angiosarcoma. As VCM has also been shown to be mutagenic after metabolic activation the effect of VCM on DNA synthesis was investigated. [ 3 H]Thymidine incorporation into DNA was used to measure the rate of DNA synthesis in regenerating rat liver. A possible direct toxic effect of VCM or its metabolites on liver cell metabolism was examined by two unrelated techniques, viz. the measurement of adenine nucleotide concentrations in regenerating livers and the influence on transmembrane potentials in hepatocytes. The distribution of radioactivity in subcellular fractions following [ 14 C]VCM administration suggested microsomal conversion of VCM to an active form which was selectively retained in the nuclear fraction. Measurement of the activities of thymidine kinase and DNA polymerase in regenerating liver indicated that the induction of these enzymes which normally occurs after partial hepatectomy was not prevented by VCM treatment. Three techniques were used to test the hypothesis that the retardation in DNA synthesis was due to DNA damage: the prophage lambda induction test for DNA damage, autoradiographic detection of unscheduled thymidine incorporation into DNA, and detection of DNA strand breaks in alkaline sucrose gradients. All three provided evidence of DNA damage and led to the development of a novel technique to confirm these findings. This involved centrifugation in neutral sucrose gradients on intact double-stranded DNA contained in hepatocyte nucleoids and showed conclusively that VCM administration causes DNA strand breaks. Subsequent repair of DNA was also assessed by this technique. The site of the VCM/metabolite: DNA reaction was characterized by DNA thermal denaturation and renaturation studies

  7. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination

    International Nuclear Information System (INIS)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin; Golon, Katja

    2015-01-01

    Solid state chlorination with NH 4 Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH 4 Cl and heating up to NH 4 Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH 4 Cl to fluorescent lamp scraps, which were varied systematically.

  8. Corrosion of copper by chlorine trifluoride

    International Nuclear Information System (INIS)

    Vincent, L.

    1966-01-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF 3 simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [fr

  9. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  10. Graft copolymerization of styrene onto poly(vinyl alcohol) initiated by potassium diperiodatocuprate (III)

    International Nuclear Information System (INIS)

    Bai, L.; Wang, Ch.; Jin, J.; Liu, Y.

    2009-01-01

    The graft copolymerization of styrene onto poly(vinyl alcohol) is studied by using a novel redox system of potassium diperiodatocuprate-poly(vinyl alcohol) (Cu(III)poly(vinyl alcohol) in alkaline medium. Cu(III)-poly(vinyl alcohol) redox pair is an efficient initiator for this graft copolymerization which is proved by high graft efficiency (>97%) and high percentage of graft (>300%). Reaction conditions (monomer-to-poly(vinyl alcohol) weight ratio, initiator concentration, p H, time and temperature) affect the graft parameters which have been investigated systematically. The optimum reaction conditions are found as St/poly(vinyl alcohol) = 5.4; [Cu(III)] = 1*10 -2 M; p H = 12.7; temperature = 50 d eg C ; time = 3.5 h. Further, the equation of the overall polymerization rate can be written as follows: R p = k C 1.9 (St) C 1.7 (Cu(III)). The overall activation energy was calculated to be 42.0 kJ/mol based on the experimental data of the relations between R p and C(St); R p and C(Cu(III)); and R p and temperature. A mechanism is proposed to explain the formation of radicals and the initiation. The structure of the graft copolymers is confirmed by Fourier transfer infrared spectroscopy. Some peaks were compared with poly(vinyl alcohol) at 3080.34-3001.79 cm -1 (=C-H stretching in the phenyl ring), 1600.34-1450.95 cm -1 (C=C stretching in the phenyl ring), 755.17 cm -1 and 698.64 cm -1 (=C-H out-off-plane bending in phenyl ring) which are considered to belong to the characteristic absorption bands of phenyl group of polystyrene. Therefore it proves that the graft copolymer is composed of poly(vinyl alcohol) and polystyrene. thermal gravimetric analysis thermo grams of poly(vinyl alcohol) and poly(vinyl alcohol)-graft-polystyrene are investigated as well. As it is shown the initial decomposition temperature of poly(vinyl alcohol)-g-polystyrene(377.3 d eg C ) is much higher than that of poly(vinyl alcohol) (241.8 d eg C ), which indicates that the thermal stability of the

  11. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    Science.gov (United States)

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H 2 O 2 /Cl - system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Preparation and Characterization of Formalated Polyvinyl Alcohol Hydrogel Film

    International Nuclear Information System (INIS)

    Than Than Aye; Nyunt Win; San Myint

    2011-12-01

    A feasible hydrogen film was prepared from polyvinyl alcohol (PVA) sample. The effect of chemical grafting on polyvinyl alcohol film was studied. Polyvinyl alcohol sample was mixed with distilled water and autoclaved at 121C for 60 minutes. An aqueous solution of polyvinyl alcohol was casted into a steel plate and dried for a certain time at room temperature. The obtained PVA film was immersed in formalation bath containing aqueous formaldehyde, sulphuric acid, anhydrous sodium sulphate with a weight ratio of (64:95:300) and 1 liter of distilled water at 60C for various hours. Effect of formalation time was studied varying 6, 12, 24, 36 and 48 hours. Degree of formalation was also evaluated. Physical properties of the hydrogel film such as gel fraction, degree of swelling and mechanical properties such as tensile strength, elongation and hardness were determined before and after formalation of the PVA film. Fourier Transform Infrared Spectroscopic (FTIR) analysis, Thermogravimetric / Differential thermal analysis (DTA / TG) were also studied for characterization. It was found that the appropriate condition for formalation was occured at 24 hours formalation time of with the calculated degree of formalation 65.35% with the determined values (9.04 Mpa) for tensile strength, (241.92%) for elongation, (45.30 Shore D) for hardness, (280.36%) for degree of swelling and (68.32%) for gel fraction.

  13. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen and chlorine isotope compositions

    Science.gov (United States)

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-01-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and View the MathML source values range from +0.2‰ to +1.9‰ (average=+1.0±0.4‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004 and Leeman et al., 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. View the MathML source values of the lavas range from −0.1 to +0.8‰ (average = +0.4±0.3‰). Our results suggest that the predominantly positive View the MathML source values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with View the MathML source values >+1.0‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor–liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid–rock interaction in order to improve volatile flux estimates through

  14. Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water.

    Science.gov (United States)

    Ma, Xiaoyan; Deng, Jing; Feng, Jiao; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Dietrich, Andrea M

    2016-10-01

    Unregulated disinfection byproducts (DBPs), including nitrogenous disinfection byproducts (N-DBPs), originating from chlorination of the precursor amino acid phenylalanine in aqueous systems, were identified in laboratory reactions and distributed tap. The major N-DBP identified was phenylacetonitrile, and minor DBPs of benzyl chloride, phenylacetaldehyde, 2-chlorobenzyl cyanide, and 2, 6-diphenylpyridine were also formed. Phenylacetonitrile was generated through decarboxylation, dechlorination and/or hydrolysis processes. With an aromatic structure, phenylacetonitrile has an unpleasant odor of various descriptors and an odor threshold concentration of 0.2 ppt-v as measured through gas chromatography-olfactometry. The half-life of phenylacetonitrile in reagent water and chlorinated water at 19 °C were 121 h and 792 h, respectively. The occurrence of phenylacetonitrile as an N-DBP in tap water was investigated for the first time; the results revealed that μg/L concentrations were present in nine different distributed drinking waters in China and the United States. Phenylacetonitrile deteriorates the aesthetic quality of drinking water and may present risk due to its prolonged existence in drinking water, especially in the presence of residual chlorine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Occurrence, characterization and analysis of vinyl chloride as a degradation product of chloro ethenes from waste sites. Vorkommen, Beurteilung und Analytik von Vinylchlorid als Abbauprodukt chlorierter Ethene in Altlasten

    Energy Technology Data Exchange (ETDEWEB)

    Koester, M. (Harress Geotechnik GmbH, Harburg (Germany, F.R.))

    1989-12-01

    Reductive dehalogenation reactions occuring within the central part of contaminated areas may result in the formation of vinyl chloride as a product of chlorinated hydrocarbon degradation. This degradation takes place in an anaerobic environment, and proceeds from tetrachloroethene through trichloroethene and dichloroethene (cis, trans) to vinyl chloride. The analysis of vinyl chloride from gas and water samples is performed by means of capillary gas chromatography, using a flame ionization detector (FID). It could be shown from the analysis of some 200 samples from various tetrachloroethene and trichloroethene waste sites, that high dichloroethene concentrations were correlated with elevated vinyl chloride concentrations. The ratio between dichloroethene and vinyl chloride although depending on the chemical and physical properties of the subsoil, is roughly 10:1. Since vinyl chloride is known to be carcinogenic, action levels and clean-up standards are accordingly low, resulting in new requirement for remedial activities. (orig.).

  16. Alternative methods for chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F; Rook, J J; Duguet, J P

    1985-12-01

    Existing disinfectants are oxidative agents which all present negative effects on subsequent treatment processes. None of them has decisive advantages over chlorine, although chlorine-dioxide and chloramines might at times be preferable. Optimum treatment practices will improve the removal of organic precursors before final disinfection which could then consist in a light chlorine addition. A philosophy of radical change in water treatment technology encompassing physical treatment without chemicals such as membrane filtration, solid disinfectants is presented.

  17. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    Science.gov (United States)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  18. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g −1 and 257 mg g −1 , respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol −1 or 121 mg g −1 ), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  19. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Bahngmi [Department of Earth and Environmental Sciences, Wright State University, Dayton, OH 45435-0001 (United States)], E-mail: jung.bahngmi@gmail.com; Batchelor, Bill [Department of Civil Engineering, Texas A and M University, College Station, TX 77843-3136 (United States)

    2008-03-21

    Degradative solidification/stabilization with ferrous iron (DS/S-Fe(II)) has been found to be effective in degrading a number of chlorinated aliphatic hydrocarbons including 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), tetrachloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), carbon tetrachloride (CT) and chloroform (CF). Previous studies have characterized degradation kinetics in DS/S-Fe(II) systems as affected by Fe(II) dose, pH and initial target organic concentration. The goal of this study is to investigate the importance of various chemical properties on degradation kinetics of DS/S-Fe(II). This was accomplished by first measuring rate constants for degradation of 1,1,1-TCA, 1,1,2,2-TeCA and 1,2-dichloroethane (1,2-DCA) in individual batch experiments. Rate constants developed in these experiments and those obtained from the literature were related to thermodynamic parameters including one-electron reduction potential, two-electron reduction potential, bond dissociation energy and lowest unoccupied molecular orbital energies. Degradation kinetics by Fe(II) in cement slurries were generally represented by a pseudo-first-order rate law. The results showed that the rate constants for chlorinated methanes (e.g. CT, CF) and chlorinated ethanes (e.g. 1,1,1-TCA) were higher than those for chlorinated ethylenes (e.g. PCE, TCE, 1,1-DCE and VC) under similar experimental conditions. The log of the pseudo-first-order rate constant (k) was found to correlate better with lowest unoccupied molecular orbital energies (E{sub LUMO}) (R{sup 2} = 0.874) than with other thermodynamic parameter descriptors.

  20. Colorful and transparent poly(vinyl alcohol) composite films filled with layered zinc hydroxide salts, intercalated with anionic orange azo dyes (methyl orange and orange II)

    International Nuclear Information System (INIS)

    Neves da Silva, Marlon Luiz; Marangoni, Rafael; Cursino, Ana Cristina Trindade; Schreiner, Wido Herwig; Wypych, Fernando

    2012-01-01

    Highlights: ► Zinc hydroxide salts were successfully intercalated with anionic orange azo dyes. ► The anionic dye was co-intercalated with hydrated chloride anions. ► The orange materials were used as fillers for poly(vinyl alcohol). ► Transparent, homogeneous, colorful PVA films were obtained by wet casting. ► Some composites stored at lower humidity exhibited improved mechanical properties. - Abstract: Layered zinc hydroxide salts (zinc LHS) were intercalated with anionic orange azo dyes, namely methyl orange (MO) and orange II (OII), and co-intercalated with hydrated chloride anions. After characterization by X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), the materials were used as fillers for poly(vinyl alcohol) (PVA). Colorful transparent films were obtained by wet casting, revealing good dispersion of the material into the polymer. In the case of zinc LHS/OII, PVA was intercalated between the zinc LHS layers. Evaluation of the mechanical properties of the PVA composite films revealed that the layered colorful materials were able to increase the mechanical properties of the PVA films only when the films were stored under lower relative humidity. As expected, films with higher water content displayed reduced tensile strength and modulus because of the plasticizing effect of water. As for the films stored at 43% relative humidity, more pronounced improvement of modulus was observed for 1 and 4% zinc LHS/OII, and enhanced tensile strength was achieved for 0.5 and 1% zinc LHS/OII. This effect can be attributed to better dispersion of the layered filler and its better adhesion to the PVA matrix.

  1. Pourbaix Diagrams for Copper in 5 m Chloride Solution

    Energy Technology Data Exchange (ETDEWEB)

    Beverskog, Bjoern [OECD Halden Reactor Project (Norway); Pettersson, Sven-Olof [ChemIT, Nykoeping (Sweden)

    2002-12-01

    Pourbaix diagrams for the copper in 5 molal chlorine at 5-100 deg C have been calculated. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of dissolved copper, 10{sup -4} and 10{sup -6} molal, have been used in the calculations. ChIoride is the predominating chlorine species in aqueous solutions. Therefore Pourbaix diagrams for chlorine can be used to discuss the effect of chloride solutions on the corrosion behavior of a metal. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. Copper corrodes in 5 molal chloride by formation Of CuCl{sub 3}{sup 2-} in acid and alkaline solutions. At higher potentials in acid solutions CuCl{sub 3}{sup 2-} is oxidized to CuCl{sub 2}(aq), which at increasing potentials can form CuCI{sup +}, Cu{sup 2+} or CuClO{sub 3}{sup +}. Copper passivates by formation of Cu{sub 2}O(cr), CuO(cr), or CUO{sub 2} 3 Cu(OH){sub 2}(s). Cu{sub 2}O(cr) does not form at [Cu(aq)]{sub tot} = 10{sup -6} molal in 5 m C1-, which results in a corrosion area between the immunity and passivity areas. Copper at the anticipated repository potentials and pH corrodes at 100 deg C at [Cu(aq)]{sub tot} = 10{sup -4} molal and at 80-100 deg C at [Cu(aq)]{sub tot} = 10{sup -6} molal. Copper at the anticipated repository potentials and pH can corrode at 80 deg C at [Cu(aq)]{sub tot} = 10{sup -4} molal and at 50 deg C at [Cu(aq)]{sub tot} = 10{sup -6} molal. The bentonite clay and copper canisters in the deep repository can be considered as a 'closed' system from macroscopic point of view. The clay barrier limits both inward diffusion of oxygen and aggressive anions as well as outward diffusion of corrosion products from the canisters. Both diffusion phenomena will drive the corrosion potential into the immunity area of the Pourbaix diagram for copper. The corrosion will thereby stop by an automatic

  2. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Science.gov (United States)

    Liu, Yiming; Fan, Qi; Chen, Xiaoyang; Zhao, Jun; Ling, Zhenhao; Hong, Yingying; Li, Weibiao; Chen, Xunlai; Wang, Mingjie; Wei, Xiaolin

    2018-02-01

    Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl-, leading to enhanced heterogeneous reactions between Cl- and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl-, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m-3, 773 pptv, and 1.5 × 103 molecule cm-3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3

  3. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  4. Effect of Saponification Condition on the Morphology and Diameter of the Electrospun Poly(vinyl acetate) Nanofibers for the Fabrication of Poly(vinyl alcohol) Nanofiber Mats

    OpenAIRE

    Seong Baek Yang; Jong Won Kim; Jeong Hyun Yeum

    2016-01-01

    Novel poly(vinyl alcohol) (PVA) nanofiber mats were prepared for the first time through heterogeneous saponification of electrospun poly(vinyl acetate) (PVAc) nanofibers. The effect of varying the saponification conditions, including temperature, time, and concentration of the alkaline solution, on the morphology of the saponified PVA fibers were evaluated by field-emission scanning electron microscopy. At 25 °C, the saponified PVA fibers exhibited a broad diameter distribution. The average f...

  5. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    Science.gov (United States)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  6. Demonstration of pyropartitioning process by using genuine high-level liquid waste. Reductive-extraction of actinide elements from chlorination product

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Iizuka, Masatoshi; Kurata, Masaki; Ougier, Michel; Malmbeck, Rikard; Winckel, Stefaan van

    2009-01-01

    The pyropartitioning process separates the minor actinide elements (MAs) together with uranium and plutonium from the high-level liquid waste generated at the Purex reprocessing of spent LWR fuel and introduces them to metallic fuel cycle. For the demonstration of this technology, a series experiment using 520g of genuine high-level liquid waste was started and the conversion of actinide elements to their chlorides was already demonstrated by denitration and chlorination. In the present study, a reductive extraction experiment in molten salt/liquid cadmium system to recover actinide elements from the chlorination product of the genuine high-level liquid waste was performed. The results of the experiment are as following; 1) By the addition of the cadmium-lithium alloy reductant, almost all of plutonium and MAs in the initial high-level liquid waste were recovered in the cadmium phase. It means no mass loss during denitration, chlorination, and reductive-extraction. 2) The separation factor values of plutonium, MAs, and rare-earth fission product elements versus uranium agreed with the literature values. Therefore, actinide elements will be separated from fission product elements in the actual system. Hence, the pyropartitioning process was successfully demonstrated. (author)

  7. Quantifying Short-Chain Chlorinated Paraffin Congener Groups

    NARCIS (Netherlands)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A.; Alsberg, Tomas; Wit, de Cynthia A.

    2017-01-01

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are

  8. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  9. Basic and engineering studies of radiation induced reactions in the liquid phase. Final technical report, June 1, 1970-May 31, 1974

    International Nuclear Information System (INIS)

    1978-06-01

    Laboratory studies reported on are ionic polymerization under superdry conditions, emulsion polymerization, and vinyl chloride polymerization. Engineering studies include the effect of moisture level on radiation-induced solution polymerization, effect of dose rate on radiation-induced emulsion polymerization of styrene, the effect of soap exchange in styrene emulsion polymerization, pilot plant studies of radiation induced emulsion polymerization of vinyl chloride, pilot plant studies of radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate, pilot plant study of radiation-induced graft emulsion polymerization of styrene onto polyvinyl chloride and poly(vinyl chloride-vinyl acetate), and radiation-induced precipitation polymerization of vinyl chloride in a flow reactor

  10. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    Science.gov (United States)

    Chen, Xi; Hung, Yen-Con

    2018-05-22

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  11. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  12. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28 ISSN 0964-8305 Grant - others:GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  13. Studies on chlorinated bromide salt for microfouling control

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Rajmohan, R.; Rao, T.S.; Nair, K.V.K.; Mathur, P.K.

    1995-01-01

    The Fast Breeder Test reactor (FBTR) at Kalpakkam has been facing various problems in cooling water systems in spite of intermittent chlorination.Effects of chlorinated-bromide mixture was evaluated against heterotrophic bacteria (TVC) and iron oxidising bacteria (IOB) vis-a-vis chlorine. Results indicated that chlorinated-bromide mixture was far superior (2 orders of magnitude for TVC and 2 times for IOB) to chlorine in microfouling control. Results also showed that at bromide to chlorine ratio of one effectiveness of chlorinated-bromide was at its maximum. (author). 9 refs., 1 tab

  14. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  15. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  16. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Labutin, Timur A.; Popov, Andrey M.; Zaytsev, Sergey M.; Zorov, Nikita B.; Belkov, Mikhail V.; Kiris, Vasilii V.; Raikov, Sergey N.

    2014-09-01

    Accurate and reliable quantitative determination of non-metal corrosion agents in concrete is still an actual task of analytical use of LIBS. Two double-pulse LIBS systems were tested as a tool for the determination of chlorine, sulfur and carbon in concretes. Both systems had collinear configuration; a laboratory setup was equipped with an ICCD and two lasers (355/532 nm + 540 nm), but a CCD was a detector for a mobile system with one laser (1064 nm). Analytical lines of Cl I at 837.59 nm, S I at 921 nm and C I at 247.86 nm were used to plot calibration curves. Optimal interpulse delays for the laboratory setup were 4 μs for chlorine and 2.8 μs for carbon, while an interpulse delay of 2 μs was optimal for chlorine and sulfur determination with the mobile system. We suggested the normalization of the Cl I line at 837.59 nm to the Mg II line at 279.08 nm (visible at 837.23 nm in the third order) to compensate for pulse-to-pulse fluctuations of chlorine lines. It provided the decrease of the detection limit of chlorine from 400 ppm to 50 ppm. Therefore, we reported that LIBS can be used to determine main corrosive active substances under ambient conditions in concrete below critical threshold values. Moreover, the application of the mobile system for in-situ qualitative assessment of corrosion way of a steel cage of a swimming pool dome was also demonstrated. It was found that chloride corrosion due to the disinfection of water was the main way for corrosion of the open part steel and the steel rebar inside the concrete.

  17. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    Science.gov (United States)

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  19. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  20. Analysis of a novel chlorine recycling process based on anhydrous HCl oxidation

    International Nuclear Information System (INIS)

    Martinez, Isai Gonzalez; Vidaković-Koch, Tanja; Kuwertz, Rafael; Kunz, Ulrich; Turek, Thomas; Sundmacher, Kai

    2014-01-01

    Graphical abstract: - Highlights: • Gas phase HCl electrolysis combined with oxygen reduction reaction (oxygen depolarized cathode) for chlorine production. • Determination of potential losses in half-cell measurements under technically relevant conditions. • Optimization of gas diffusion electrodes with respect to Nafion and catalyst loadings. • The optimal Nafion content in the catalyst layer for HCl oxidation is much higher than for other gas phase reactions, such as the oxygen reduction in the cathode. • Nafion improves catalyst dispersion, but catalyst utilization depends on the diffusion and absorption properties of the educts in the ionomer phase. - Abstract: A novel process for the recycling of chlorine based on the gaseous HCl oxidation on gas diffusion electrodes has been investigated. The cathodic and anodic reactions have been analyzed separately as half-cell reactions in a cyclone flow cell and optimized regarding catalyst as well as ionomer loadings. For the anodic hydrogen chloride oxidation, an optimal value of ca. 60 wt% Nafion has been found, whereas for the cathodic oxygen reduction a value below 37 wt% has been obtained. This discrepancy was mainly attributed to the different absorption and transport properties of HCl in Nafion compared to oxygen. The main potential losses in the reactor were identified at the cathode

  1. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium

    Directory of Open Access Journals (Sweden)

    Pauline Chaignaud

    2017-09-01

    Full Text Available Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially

  2. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-02-01

    Full Text Available Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC was developed for the first time, including emissions of hydrogen chloride (HCl and molecular chlorine (Cl2 from coal combustion and prescribed waste incineration (waste incineration plant. The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile

  3. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    Science.gov (United States)

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  4. Chlorine trifluoride (1963)

    International Nuclear Information System (INIS)

    Vincent, L.M.; Gillardeau, J.

    1963-01-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [fr

  5. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37 Ar and the question of the constancy of the production rate of 37 Ar are given special emphasis

  6. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  7. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    Science.gov (United States)

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  9. Chlorine

    Science.gov (United States)

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly as possible. Removing and disposing of clothing: Quickly take off clothing that has liquid chlorine on it. Any clothing that has to ...

  10. Rheology and structure of aqueous bentonite–polyvinyl alcohol ...

    Indian Academy of Sciences (India)

    Keywords. Bentonite–polyvinyl alcohol dispersions; rheology; zeta potential; particle size analysis; SEM; FTIR studies. 1. .... sity and interception of the linear portion of the curve ..... applications for decolourizing or moisture absorption purpose.

  11. A comparative study on the radiation induced degradation of chlorinated organics and water

    International Nuclear Information System (INIS)

    Bekboelet, M.; Balcioglu, A.I.; Getoff, N.

    1998-01-01

    Complete text of publication follows. Radiation induced degradation of chlorinated benzaldehydes has been studied by the application of UV-photolysis, UV-assisted catalytic oxidation and gamma radiolysis processes. The degradation was followed in terms of the substrate removal and formation of the decomposition products such as chloride and formaldehyde. Formation of the acidic compounds were also determined by the pH decrease during irradiation periods. The below given table summarizes the obtained results in terms of photochemical G (G PH )values. The main idea of this paper was to evaluate the applied processes in relation to the end products rather and to compare the efficiency of the methods. Besides, chloride and formaldehyde formation, the substrate degradation and formation of the stable end products, were followed by HPLC analyses. Hydroxylated parent compounds chlorophenols, benzaldehyde were also detected. Formation of muconic acid through ring opening as well as the formation of lower molecular weight organic acids by decomposition such as oxalic, citric, tartaric and formic acids were observed with respect the applied oxidation process. Depending on the formed stable end products and the related probable reaction mechanisms, isomeric positions were found to be selective toward oxidative degradation

  12. Effects of ionizing radiation on plastic food packaging materials: a review. 1. Chemical and physical changes

    International Nuclear Information System (INIS)

    Buchalla, R.; Schuttler, C.; Bögl, K.W.

    1993-01-01

    Irradiation of prepackaged food causes chemical and physical changes in plastic packaging materials. The effects of ionizing radiation on these materials have been studied for almost 40 years; the respective literature is reviewed to provide the basis for a safety evaluation of plastics for use in food irradiation. Permeability of plastic films is generally not affected; deterioration of mechanical properties, that may occur with certain polymers, can usually be controlled with adequate stabilizers; and changes in infrared and UV/VIS spectra are slight at food irradiation doses. Gaseous radiolysis products include hydrogen, methane, CO 2 , CO, hydrocarbons, and for chlorine-containing polymers, hydrogen chloride. A range of volatile products, mainly hydrocarbons, alcohols, aldehydes, ketones, and carboxylic acids, has been characterized for low density polyethylene and polypropylene, other important materials, e.g., polystyrene and poly(vinyl chloride), are less well-investigated. Comparatively little is known on the effect of irradiation on multilayer structures. Radiation-induced changes are shown to depend on the chemical structure of the polymer, on the composition (additives) and processing history of the plastic, and on the irradiation conditions

  13. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic.

    Science.gov (United States)

    Tang, Yijing; Huang, Qunxing; Sun, Kai; Chi, Yong; Yan, Jianhua

    2018-02-01

    In this work, typical organic food waste (soybean protein (SP)) and typical chlorine enriched plastic waste (polyvinyl chloride (PVC)) were chosen as principal MSW components and their interaction during co-pyrolysis was investigated. Results indicate that the interaction accelerated the reaction during co-pyrolysis. The activation energies needed were 2-13% lower for the decomposition of mixture compared with linear calculation while the maximum reaction rates were 12-16% higher than calculation. In the fixed-bed experiments, interaction was observed to reduce the yield of tar by 2-69% and promote the yield of char by 13-39% compared with linear calculation. In addition, 2-6 times more heavy components and 61-93% less nitrogen-containing components were formed for tar derived from mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  15. Toxic effects of chlorinated cake flour in rats.

    Science.gov (United States)

    Cunningham, H M; Lawrence, G A; Tryphonas, L

    1977-05-01

    Four experiments were conducted using weanling Wistar rats to determine whether chlorinated cake flour or its constituents were toxic. Levels of 0.2 and 1.0% chlorine added to unbleached cake flour significantly (p less than 0.01) reduced growth rate by 20.7 and 85.2% and increased liver weight relative to body weight by 16.7 and 25.3%, respectively. Lipids extracted from flour chlorinated at the same levels had similar effects. Rat chow diets containing 0.2 and 0.6% chlorine in the form of chlorinated wheat gluten reduced growth rate and increased liver weight as a percentage of body weight. A rat chow diet containing 0.2% chlorine as chlorinated flour lipids increased absolute liver weight by 40%, kidney by 20%, and heart by 10% compared to pair-fed controls.

  16. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  17. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Costa, N.G.; Albuquerque Brocchi, E. de

    1990-01-01

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  18. Stratospheric chlorine: Blaming it on nature

    International Nuclear Information System (INIS)

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  19. Study of the hydrolysis reaction of the copper-chloride hybrid thermochemical cycle using optical spectrometries

    International Nuclear Information System (INIS)

    Doizi, D.; Borgard, J.M.; Dauvois, V.; Roujou, J.L.; Zanella, Y.; Croize, L.; Cartes, Ph.; Hartmann, J.M.

    2010-01-01

    The copper-chloride hybrid thermochemical cycle is one of the best potential low temperature thermochemical cycles for the massive production of hydrogen. It could be used with nuclear reactors such as the sodium fast reactor or the supercritical water reactor. Nevertheless, this thermochemical cycle is composed of an electrochemical reaction and two thermal reactions. Its efficiency has to be compared with other hydrogen production processes like alkaline electrolysis for example. The purpose of this article is to study the viability of the copper chloride thermochemical cycle by studying the hydrolysis reaction of CuCl 2 which is not favoured thermodynamically. To better understand the occurrence of possible side reactions, together with a good control of the kinetics of the hydrolysis reaction, the use of optical absorption spectrometries, UV visible spectrometry to detect molecular chlorine which may be formed in side reactions, FTIR spectrometry to follow the concentrations of H 2 O and HCl is proposed. (authors)

  20. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  1. Determination of chlorine in nuclear-grade uranium compounds

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan

    1988-01-01

    The determination of chlorine in nuclear-grade uranium compounds is discribed. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800 ∼ 900 deg C. Chlorine is volatilized as hydrochloric acid, absorbed in a dilute alkaline solution and measured with chlorine-selective electrode. This method covers the concentration range of 10 ∼ 500 pm chlorine in uranium oxide. Precision of at least ± 10% and recovery of 85 ∼ 108% have been reported

  2. Electric current arising from unpolarized polyvinyl formal

    Indian Academy of Sciences (India)

    Unknown

    An appreciable electric current is observed in a system consisting of a polyvinyl formal (PVF) film in a sandwich ... Electric current; open circuit voltage; water activated phenomenon; plasticization effect. 1. Introduction ... either the trapping parameters or the distribution of the ..... For this reason contact potential drop between.

  3. Thermal degradation of sucralose: a combination of analytical methods to determine stability and chlorinated byproducts

    Science.gov (United States)

    de Oliveira, Diogo N.; de Menezes, Maico; Catharino, Rodrigo R.

    2015-04-01

    In the late years, much attention has been brought to the scientific community regarding the safety of sucralose and its industrial applications. Although it is the most used artificial sweetener in foods and pharmaceuticals, many questions still arise on its potential to form chlorinated byproducts in high temperatures, as demonstrated by several recent studies. In the present contribution, we use a combination of differential scanning calorimetry and thermogravimetric analysis coupled with infrared spectroscopy (DSC/TGA/IR), Hot-stage microscopy (HSM) and high-resolution mass spectrometry (HRMS) on samples submitted to water bath at mild temperatures to evaluate a broad spectrum of hazardous compounds formed in the degradation of this product. TGA/IR has revealed that there is effective decomposition in form of CO2 along with the formation of hydrogen chloride and other minor compounds. HSM results have provided accurate information, where the melting of the crystals was observed, followed by decomposition. Chlorinated derivatives, including polychlorinated aromatic hydrocarbons (PCAHs) were also confirmed by HRMS. These findings not only corroborate the suspected instability of sucralose to high temperatures, but also indicate that even exposed to mild conditions the formation of hazardous polychlorinated compounds is observed.

  4. Radiation-Initiated Chlorination of 1, 2-Dichloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Danno, A.; Abe, T.; Washino, M.; Souda, T.; Shimada, K. [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Watanuki-machi, Takasaki-shi, Gunma-ken (Japan)

    1969-12-15

    Radiation-initiated chlorination of 1,2-dichloroethane was carried out with a batch system to study the chlorination reaction in the laboratory and also with a flow system to obtain information on its scale-up. It was found that the direct chlorination of 1,2-dichloroethane in the presence of gamma radiation takes place by a free-radical chain reaction with a high G-value of the order of 10{sup 5}. Successive chlorination of 1,2-dichloroethane gives 1,1, 2-trichloroethane, 1,1,1, 2- and 1,1, 2, 2-tetrachloroethane, pentachloroethane and hexachloroethane. No products other than these polychloro ethanes were detected. The composition of the reaction products depends on the degree of chlorination; it is independent of the dose rate and the chlorine feed rate. A promising application of this process is to produce trichloroethylene and perchloroethylene by thermal dehydrochlorination of a mixture of tetrachloroethane and pentachloroethane. The optimum conditions of producing these compounds with high yields depend on the feed rate of 1, 2-dichloroethane and chlorine gas, the dose rate and the reaction temperature. A pilot experimental facility with a 2-litre reaction vessel has been completed and is now in operation. (author)

  5. Rapid quantitative estimation of chlorinated methane utilizing bacteria in drinking water and the effect of nanosilver on biodegradation of the trichloromethane in the environment.

    Science.gov (United States)

    Zamani, Isaac; Bouzari, Majid; Emtiazi, Giti; Fanaei, Maryam

    2015-03-01

    Halomethanes are toxic and carcinogenic chemicals, which are widely used in industry. Also they can be formed during water disinfection by chlorine. Biodegradation by methylotrophs is the most important way to remove these pollutants from the environment. This study aimed to represent a simple and rapid method for quantitative study of halomethanes utilizing bacteria in drinking water and also a method to facilitate the biodegradation of these compounds in the environment compared to cometabolism. Enumeration of chlorinated methane utilizing bacteria in drinking water was carried out by most probable number (MPN) method in two steps. First, the presence and the number of methylotroph bacteria were confirmed on methanol-containing medium. Then, utilization of dichloromethane was determined by measuring the released chloride after the addition of 0.04 mol/L of it to the growth medium. Also, the effect of nanosilver particles on biodegradation of multiple chlorinated methanes was studied by bacterial growth on Bushnell-Haas Broth containing chloroform (trichloromethane) that was treated with 0.2 ppm nanosilver. Most probable number of methylotrophs and chlorinated methane utilizing bacteria in tested drinking water were 10 and 4 MPN Index/L, respectively. Chloroform treatment by nanosilver leads to dechlorination and the production of formaldehyde. The highest growth of bacteria and formic acid production were observed in the tubes containing 1% chloroform treated with nanosilver. By combining the two tests, a rapid approach to estimation of most probable number of chlorinated methane utilizing bacteria is introduced. Treatment by nanosilver particles was resulted in the easier and faster biodegradation of chloroform by bacteria. Thus, degradation of these chlorinated compounds is more efficient compared to cometabolism.

  6. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Lim, Fang Yee; Mohd Pauzi Abdullah

    2008-01-01

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  7. Achievement report for fiscal 2000 on development of technology related to new recycled products. Research and development of simultaneous recovery of chlorine contained in waste plastics and alkali contained in waste glass bottles; 2000 nendo shinki recycle seihin nado kanren gijutsu kaihatsu seika hokokusho. Hai plastic gan'yu enso to hai glass bin gan'yu alkali no doji kaishu ni kakawaru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researches have been made on a technology to have alkali contained in waste glass bottles reacted with chlorine contained in waste plastics to separate and remove salt, and reuse the residues as a resource for cement raw material. This paper summarizes the achievements in fiscal 2000. In the research, glass powder pulverized to 5 to 10 {mu} m, calcium carbonate, iron oxide, and alumina were used to prepare raw material for the ordinary Portland cement. Vinyl chloride pulverized to 3 mm was added into this cement raw material so that chlorine-alkali equivalent ration will be 1.0, and the material was sintered in a rotary kiln at 800 to 1,400 degrees C. As a result, it was discovered that salt is produced from the alkali in glass and the chlorine in vinyl chloride, whereas the produced salt volatilizes when heated to 1,200 degrees C or higher, and clinker containing low chlorine and alkali can be produced. The test result reveals that the control range of the chlorine and alkali ratio is from 1.0 to 1.1. The remaining problems are measures against carbon monoxide and dioxin contained in the exhaust gas, and treatment of dust containing salt. (NEDO)

  8. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  9. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  10. Influence of structure of basis grounds and clays on formation of chlorides of Indium and Titanium at their atomic emission spectral definition

    International Nuclear Information System (INIS)

    Pachadjanov, D.N.; Gazieva, M.T.; Djulaev, A.S.; Pometun, E.A.; Kabgov, Kh.B.

    2008-01-01

    It is established that the structure of a basis of grounds and clays can influence on chloride formation of small amounts of the titanium and indium. It is showed that this influence is caused by deficiency chlorine of its reagent which cooperates not only with investigated metals, but also with macro-components of a basis. Influence of structure of a basis can be removed if appropriate macro-components to transfer in iodides

  11. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation.

    Science.gov (United States)

    Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua

    2015-01-23

    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  13. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section 177... Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated use in...

  14. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  15. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species

    International Nuclear Information System (INIS)

    Agarwal, Hans; Romero, Carlos E.; Stenger, Harvey G.

    2007-01-01

    Several researchers have performed experimental work in attempts to explain the effects of various flue-gas components on the oxidation of elemental mercury (Hg 0 ). Some have concluded that water (H 2 O) inhibits Hg oxidation by chlorine (Cl 2 ). In recently published work, it was found that sulfur dioxide (SO 2 ) and nitric oxide (NO) also have an inhibitory effect on Hg oxidation. This paper aims to serve three purposes. First, to present data obtained in a laboratory scale apparatus, designed to test the effects of Cl 2 on the oxidation of Hg 0 with respect to temperature. The results show that as temperature increases, Cl 2 is less effective as an Hg oxidizing agent. Second, this paper presents a consolidation of data taken from several sources, where the effects of various flue-gas components on the oxidation of Hg 0 is observed and discussed. The summary of these results shows the following general trends: at high temperatures, hydrogen chloride (HCl) is the primary chlorine species responsible for Hg 0 oxidation, while at lower temperatures, Cl 2 is the dominant species. Third, a simple two reaction model is suggested to predict the experimental data shown in this paper. The results show that the predicted percent Hg oxidation values correspond very well with the observed experimental values

  16. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  17. Time-dependent micro-Raman scattering studies of polyvinyl ...

    Indian Academy of Sciences (India)

    2014-02-15

    Feb 15, 2014 ... Micro-Raman scattering; surface plasmons; silver nanoparticles; polyvinyl alcohol. PACS Nos 74.25.nd; ... as well as their characterization. Added .... 3.2 Surface plasmon absorption of thin films of PVA + AgNO3. The surface ...

  18. Tailor-made starch-based conjugates containing well-defined poly(vinyl acetate and its derivative poly(vinyl alcohol

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Reversible addition-fragmentation chain transfer (RAFT polymerization was adopted to synthesize starch-based conjugates that possessed controllable architecture and properties. Starch-based xanthate agent was prepared and applied as chain transfer agent to conduct the living/controlled polymerization (LCP of vinyl acetate, which generated tailor-made conjugates of starch and well-defined poly(vinyl acetate (SVAc. The relevant derivatives, conjugates of starch and chain length-controlled poly(vinyl alcohol (SVA, were obtained subsequently. Various characterizations such as Fourier transform infrared spectra (FTIR, ultraviolet-visible spectroscopy (UV, proton nuclear magnetic resonance (1H NMR, gel permeation chromatography (GPC, X-ray diffraction (XRD, Thermogravimetric analysis (TGA, and dynamic mechanical thermal analysis (DMTA were performed to examine the structure of intermediates and the starch-based conjugates. Static contact angle measurements revealed that the hydrophilic character of starch-based conjugates was tunable. Well-defined SVAc was amphiphilic and it was able to self-assemble into size controllable micelles, which was verified by contact angles, transmission electron microscopy (TEM and dynamic light scattering (DLS tests. SVA exhibited much higher capability to form physically cross-linked hydrogel than starch did. Both the characteristic of SVAc and SVA were chain length-dependent.

  19. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    International Nuclear Information System (INIS)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca 2+ to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl 2 and aqueous (NH 4 ) 2 HPO 4 were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  20. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi, E-mail: tmizutan@mail.doshisha.ac.jp

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca{sup 2+} to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl{sub 2} and aqueous (NH{sub 4}){sub 2}HPO{sub 4} were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.