WorldWideScience

Sample records for chlorinated organic compounds

  1. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  2. Chlorinated organic compounds produced by Fusarium graminearum.

    Science.gov (United States)

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  3. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - A review

    International Nuclear Information System (INIS)

    Sonochemical processes have been widely used in chemistry and chemical engineering field. Recently, these processes have found new applications in the environmental field, because of advantages in terms of operational simplicity, secondary pollutant formation and safety. Several studies have reported on sonochemical degradation of organic compounds that are toxic in nature. The objective of this review was to identify and examine some of the studies on sonochmical degradation of chlorinated organic compounds, phenolic compounds and organic dyes. This review also examines the basic theory of sonochemical reactions and the use of sonochemical reactors for environmental applications

  4. Field-usable portable analyzer for chlorinated organic compounds

    International Nuclear Information System (INIS)

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996

  5. Field-usable portable analyzer for chlorinated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R. [Transducer Research, Inc., Naperville, IL (United States)

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  6. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  7. TOXICITY OF RESIDUAL CHLORINE COMPOUNDS TO AQUATIC ORGANISMS

    Science.gov (United States)

    Laboratory studies on the acute and chronic toxicity of chlorine and inorganic chloramines to trout, salmon, minnows, bullhead, largemouth bass, and bluegill were conducted. Acute toxicity under continuous and intermittent patterns of exposure as well as behavioral, reproduction,...

  8. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products.

    Science.gov (United States)

    Odabasi, Mustafa

    2008-03-01

    Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and

  9. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water

    Institute of Scientific and Technical Information of China (English)

    TONG Shao-ping; WEI Hong; MA Chun-an; LIU Wei-ping

    2005-01-01

    Detoxification of chlorinated organic compounds via reaction with nickel/iron powder was implemented in aqueous solution. Compared to iron, nickel/iron bimetallic powder had higher hydrodechlorination activities for both atrazine (ATR) and p-chlorophenol (pCP); nickel/iron (2.96%, w/w) was shown to have the largest specific surface area and the optimum proportion for the dechlorination of both ATR and pCP. Electrochemical measurements showed that the adsorbed hydrogen atom on the nickel must have been the dominant reductive agent for the dechlorination of both ATR andpCP in this system.

  10. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  11. Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water

    Science.gov (United States)

    Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4

  12. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy's Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  13. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy`s Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  14. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Johnson, Mark A.; Fleck, William B.

    1997-01-01

    Ground-water contaminant plumes that are flowing toward or currently discharging to wetland areas present unique remediation problems because of the hydrologic connections between ground water and surface water and the sensitive habitats in wetlands. Because wetlands typically have a large diversity of microorganisms and redox conditions that could enhance biodegradation, they are ideal environments for natural attenuation of organic contaminants, which is a treatment method that would leave the ecosystem largely undisturbed and be cost effective. During 1992-97, the U.S. Geological Survey investigated the natural attenuation of chlorinated volatile organic compounds (VOC's) in a contaminant plume that discharges from a sand aquifer to a freshwater tidal wetland along the West Branch Canal Creek at Aberdeen Proving Ground, Maryland. Characterization of the hydrogeology and geochemistry along flowpaths in the wetland area and determination of the occurrence and rates of biodegradation and sorption show that natural attenuation could be a feasible remediation method for the contaminant plume that extends along the West Branch Canal Creek.

  15. DETERMINATION OF CHLORINATED ORGANIC COMPOUNDS IN THE MAIN DRAINAGE CHANNEL OF KONYA

    OpenAIRE

    AYDIN, Mehmet Emin

    2000-01-01

    The main drainage channel of Konya collects drainage waters from farmlands of Konya and discharges to the salt lake. Since there is not any city municipal sewarage system in Konya sewage of the city also discharged to the main drainage channel. Along the channel, farmers use the channels water for irrigation purposes. Therefore a through examination of wastewater and determination of chlorinated compounds were necessary. In this research, analyses were carried by gas chromatography (GC) on wa...

  16. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  17. DETERMINATION OF CHLORINATED ORGANIC COMPOUNDS IN THE MAIN DRAINAGE CHANNEL OF KONYA

    Directory of Open Access Journals (Sweden)

    Mehmet Emin AYDIN

    2000-03-01

    Full Text Available The main drainage channel of Konya collects drainage waters from farmlands of Konya and discharges to the salt lake. Since there is not any city municipal sewarage system in Konya sewage of the city also discharged to the main drainage channel. Along the channel, farmers use the channels water for irrigation purposes. Therefore a through examination of wastewater and determination of chlorinated compounds were necessary. In this research, analyses were carried by gas chromatography (GC on water samples collected hourly, daily and monthly from the channel.

  18. A hand-portable instrument system for the real-time analysis of chlorinated organic compound contamination

    International Nuclear Information System (INIS)

    Working with the DOE Morgantown Energy Technology Center, Transducer Research, Inc. (TRI) recently developed a new chemical monitor which responds selectively to vapors of chlorinated solvents. No response is observed with common hydrocarbon organic compounds such as BTXs (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no nonhalogen containing chemical has been identified which induces a measurable response. This instrument, the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the hand-portable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on groundwater with a unique closed-loop sampler. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5,000 ppm and in water and other condensed media from 10 to over 10,000 ppbwt. The performance of RCL MONITOR was demonstrated at several DOE facilities and applications have been identified in which the selective and sensitive measurement and monitoring of chlorinated hydrocarbons is essential. Case studies are currently underway at DOE Hanford and the Idaho National Engineering Laboratory

  19. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds

    Institute of Scientific and Technical Information of China (English)

    LI XiaoMin; LI YongTao; LI FangBai; ZHOU ShunGui; FENG ChunHua; LIU TongXu

    2009-01-01

    The interactively interfacial reactions between the iron-reducing bacterium (Shewanella decolorationis,S12) and iron oxide (α-FeOOH) were investigated to determine reductive dechlorination transformation of chlorinated organic compounds (chloroform and pentachlorophenol).The results showed that the interactive system of S12+ α-FeOOH exhibited relatively high dechlorination rate.By comparison,the S12 biotic system alone had no obvious dechlorination,and the α-FeOOH abiotic system showed low dechlorination rate.The enhanced dechlorination of chloroform and pentachlorophenol in the interactive system of S12+α-FeOOH was derived from the promoted generation of adsorbed Fe(Ⅱ) by S12.A decrease in redox potential of the Fe (Ⅲ)/Fe (Ⅱ) couple in the interactive reaction system was determined by cyclic voltammetry.Our results will give new insight into interactively interfacial reaction between iron-reducing bacterium and iron oxides for degradation of chlorinated organic compounds under anaerobic condition.

  20. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: Field evidence of anaerobic biodegradation

    Science.gov (United States)

    Lorah, M.M.; Olsen, L.D.

    1999-01-01

    Field evidence collected along two groundwater flow paths shows that anaerobic biodegradation naturally attenuates a plume of chlorinated volatile organic compounds as it discharges from an aerobic sand aquifer through wetland sediments. A decrease in concentrations of two parent contaminants, trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA), and a concomitant increase in concentrations of anaerobic daughter products occurs along upward flow paths through the Wetland sediments. The daughter products 1,2-dichloroethylene, vinyl chloride, 1,1,2-trichloroethane, and 1,2-dichloroethane are produced from hydrogenolysis of TCE and from PCA degradation through hydrogenolysis and dichloroelimination (reductive dechlorination) pathways. Total concentrations of TCE, PCA, and their degradation products, however, decrease to below detection levels within 0.15-0.30 m of land surface. The enhanced reductive dechlorination of TCE and PCA in the wetland sediments is associated with the naturally higher concentrations of dissolved organic carbon and the lower redox state of the groundwater compared to the aquifer. This field study indicates that wetlands and similar organic-rich environments at groundwater/surface-water interfaces may be important in intercepting groundwater contaminated with chlorinated organics and in naturally reducing concentrations and toxicity before sensitive surface-water receptors are reached.

  1. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels

    International Nuclear Information System (INIS)

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  2. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  3. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy`s Office of Technology Development`s Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies.

  4. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  5. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. PMID:25016450

  6. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    Science.gov (United States)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a

  7. Toxicity evaluation of chlorinated organic compounds using immortalized rat hepatocytes; Fushika rat kansaibo wo mochiita yuki enso kagobutsu no dokusei hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Sone, H.; Nakajima, M.; Yonemoto, J. [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    Chlorinated organic compounds has high priority for toxicity screening among environmental hazardous chemicals. In the present study, we used immortalized rat hepatocytes as a liver model in vitro to evaluate the toxicity of nine chlorinated organic compounds. Toxicity of nine chlorinated organic compounds were evaluated to cellular viability of immortalized rat hapatocytes. The potency of the toxicity based on 50% inhibitory concentration (IC50) value was in the following order: triclocalban>triclosan>3,4-dichloroaniline>2,5-diclorophenol> 2,5-dichloroanisole>p-dichlorobenzene> p-chloroaniline>o-dichlorobenzene=tris (2-chloroethyl) phosphate. The rank order of cytotoxic potency of nine chemicals was compared with toxicity information using animals. The rank order of cytotoxic potency did not relative to the order referenced mean lethal dose (LD50) as an index of acute toxicity of rats or mice. However, the rank order of cytotoxic potency relatively correlated non-observed adverse effect level (NOAEL) under the exposure duration adjusted for chronic toxicity in vivo. These data suggests that the origin of testing cell had better to make match target organ of toxic chemicals for extrapolation from data of bioassay in vitro to in vivo. 16 refs., 2 figs., 3 tabs.

  8. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  9. In Situ and Laboratory Studies on the Fate of Specific Organic Compounds in an Anerobic Landfill Leachate Plume, 2. Fate of Aromatic and Chlorinated Aliphatic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Bjarnadóttir, Helga; Winter, Pia L.; Christensen, Thomas Højlund

    1995-01-01

    landfill in Fe(IIl)-reducing conditions but not in NO3-reducing conditions at 350 m from the landfill. Abiotic processes apparently contributed to the transformation of tetrachloromethane. A local variation in the transformation of the chlorinated aliphatic hydrocarbons was observed at 2 m from the...

  10. Chlorination of organic material in different soil types

    OpenAIRE

    Gustavsson, Malin

    2009-01-01

    Research has shown that formation of chlorinated organic matter occurs naturally and that organic chlorine is as abundant as the chloride ion in organic soils. A large number of organisms are known to convert inorganic chloride (Clin) to organic chlorine (Clorg) (e.g. bacteria, lichen, fungi and algae) and some enzymes associated to these organisms are capable of chlorinating soil organic matter. The aim with the study was to compare organic matter chlorination rates in soils from several dif...

  11. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta, M. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)], E-mail: mfontcub@aspb.es; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)

    2008-01-15

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan {alpha}, {beta} or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements.

  12. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    International Nuclear Information System (INIS)

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan α, β or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements

  13. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4-chloro......-chloroindoleacetic acid from pea and in the cancerostatic maytansinoids. Many compounds are chlorohydrins isolated along with the related epoxides. Some compounds, like gibberellin A6 hydrochloride from bean, are perhaps artefacts....

  14. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  15. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O3), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O3) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  16. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  17. Chlorine dioxide as an oxidant for organoboron compounds

    International Nuclear Information System (INIS)

    Practicability of using chlorine dioxide aqueous solution as an oxidant for terpene organoboron compounds prepared by hydroborating (+)α-pinene (1) and (-)β-pinene (2) is studied. By the methods of IR spectroscopy and 13C NMR it is shown that products of 1 and 2 oxidation are (-)-isopinocampheol and (-)-cis-myrtanol, which are formed with a high yield. In terms of its efficiency chlorine dioxide is no worse than hydrogen peroxide in reactions of organoboric compounds oxidation

  18. Microbial Consortia Development and Microcosm and Column Experiments for Enhanced Bioremediation of Chlorinated Volatile Organic Compounds, West Branch Canal Creek Wetland Area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Majcher, Emily H.; Jones, Elizabeth J.; Voytek, Mary A.

    2008-01-01

    Chlorinated solvents, including 1,1,2,2-tetrachloroethane, tetrachloroethene, trichloroethene, carbon tetrachloride, and chloroform, are reaching land surface in localized areas of focused ground-water discharge (seeps) in a wetland and tidal creek in the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland. In cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, the U.S. Geological Survey is developing enhanced bioremediation methods that simulate the natural anaerobic degradation that occurs without intervention in non-seep areas of the wetland. A combination of natural attenuation and enhanced bioremediation could provide a remedy for the discharging ground-water plumes that would minimize disturbance to the sensitive wetland ecosystem. Biostimulation (addition of organic substrate or nutrients) and bioaugmentation (addition of microbial consortium), applied either by direct injection at depth in the wetland sediments or by construction of a permeable reactive mat at the seep surface, were tested as possible methods to enhance anaerobic degradation in the seep areas. For the first phase of developing enhanced bioremediation methods for the contaminant mixtures in the seeps, laboratory studies were conducted to develop a microbial consortium to degrade 1,1,2,2-tetrachloroethane and its chlorinated daughter products under anaerobic conditions, and to test biostimulation and bioaugmentation of wetland sediment and reactive mat matrices in microcosms. The individual components required for the direct injection and reactive mat methods were then combined in column experiments to test them under groundwater- flow rates and contaminant concentrations observed in the field. Results showed that both direct injection and the reactive mat are promising remediation methods, although the success of direct injection likely would depend on adequately distributing and maintaining organic substrate throughout the wetland sediment in the seep

  19. Identification of Some AOX Compounds Formed in Wool Chlorination Using Model Chemicals

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; HE Jin-xin; DAJ Jin-jin

    2002-01-01

    The AOX (adsorbable organic halogens) problem in wool shrinkproofing effluents has attracted more attention in recent years. The probable origins and structures of AOX compounds were proved by the reaction of DCCA with the model substances of different amino acid residues.The GC-MS results indicated that available chlorine could chlorinate the side chain of tyrosine, histidine and trypotophan and generate AOX load in the effluent.

  20. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Organic Compounds' Impact on Indoor Air Quality Volatile Organic Compounds' Impact on Indoor Air Quality On this page: ... Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds (VOCs) are emitted as gases from certain solids ...

  1. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-12-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  2. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    DEFF Research Database (Denmark)

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.;

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...... in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do...... not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules....

  3. Reactions of phenylurea compounds with aqueous chlorine: Implications for herbicide transformation during drinking water disinfection

    International Nuclear Information System (INIS)

    Highlights: ► Mechanism of chlorine reaction with phenylurea compounds has been studied. ► It depends on both chlorinating species and substitutents on the compounds. ► Main products were identified using LC–MS/MS and authentic standards. ► Their transformation under normal drinking water disinfection was predicted. - Abstract: Phenylurea herbicides have been known to contaminate surface waters serving as potable supplies. To access the potential for transformation of these compounds during drinking water treatment, reactions of phenylurea compounds with aqueous chlorine at different pHs were investigated. The effect of substitution at the amino-N on the rate of transformation depends upon pH. Under acidic conditions, all of the phenylurea studied except 3,4-dichloro-3′-N-methylphenylurea (3,4-DCMPU) exhibited third-order kinetics, second order with respect to chlorine and first order with respect to phenylurea, while the reactions of 3,4-DCMPU were first order with respect to both chlorine and the organic compound. Under neutral and alkaline conditions, all compounds exhibited second-order kinetics that was first order with respect to chlorine and the organic compound. Apparent second-order rate constants at 25 °C and pH 7 were 0.76 ± 0.16, 0.52 ± 0.11, 0.39 ± 0.02, 0.27 ± 0.04 and 0.23 ± 0.05 M−1 s−1 for phenylurea, 3, 4-dichlorophenylurea, 3, 4-DCMPU, metoxuron and monuron, respectively. Studies of the chlorination products, monitored by LC/MS/MS, under different pH values indicated the reaction to take place at both N atoms and also at ortho- and para- positions of the phenylurea aromatic group. The main chlorinating species were found to be different in different pH ranges. Under conditions typically encountered in drinking water treatment systems, transformation of these compounds by chlorine will be incomplete.

  4. Complete Detoxification of Short Chain Chlorinated Aliphatic Compounds: Isolation of Halorespiring Organisms and Biochemical Studies of the Dehalogenating Enzyme Systems - Final Report; FINAL

    International Nuclear Information System (INIS)

    Work focused on the isolation and characterization of halorespiring populations, and the initial investigation of the dechlorinating enzyme systems. In addition, tools to evaluate the presence/activity to halorespiring populations in the environment were developed. The tools developed in this work (measurements of hydrogen consumption thresholds, molecular probes) are relevant for regulatory agencies in order to facilitate decisions on which bioremediation technology (biostimulation or bioaugmentation) is most promising at a particular site. In addition, a better understanding of the physiology of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems enhances our knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites

  5. Complete Detoxification of Short Chain Chlorinated Aliphatic Compounds: Isolation of Halorespiring Organisms and Biochemical Studies of the Dehalogenating Enzyme Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, J.M.

    1999-10-01

    Work focused on the isolation and characterization of halorespiring populations, and the initial investigation of the dechlorinating enzyme systems. In addition, tools to evaluate the presence/activity to halorespiring populations in the environment were developed. The tools developed in this work (measurements of hydrogen consumption thresholds, molecular probes) are relevant for regulatory agencies in order to facilitate decisions on which bioremediation technology (biostimulation or bioaugmentation) is most promising at a particular site. In addition, a better understanding of the physiology of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems enhances our knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites.

  6. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China.

    Science.gov (United States)

    Zhang, Lifei; Yang, Wenlong; Zhang, Linli; Li, Xiaoxiu

    2015-08-01

    The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely. PMID:25777670

  7. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13C/12C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  8. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  9. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    OpenAIRE

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of...

  10. Occurence of chlorinated aromatic compounds in filter deposits of an incinerator plant for radioactive waste. Pt. 2

    International Nuclear Information System (INIS)

    The catalytic chlorination of chrysene, pyrene and fluoranthene yields complex mixtures of partly isomeric chlorine substituted PAHs. Their distribution resembles that of chlorine compounds previously found in filter deposits of an incineration plant for radioactive waste. In the micro fluctuation test these chlorinated products are strong mutagens to Salmonella typhimurium even without enzymatic activation. Frameshift mutations as well as basepair alterations take place. (Author)

  11. A marine sink for chlorine in natural organic matter

    Science.gov (United States)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  12. Organic compounds in meteorites

    Science.gov (United States)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  13. Chlorine

    Science.gov (United States)

    ... chlorine gas are inhaled. Fluid in the lungs (pulmonary edema) that may be delayed for a few hours ... health problems such as fluid in the lungs (pulmonary edema) following the initial exposure. How people can protect ...

  14. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    Science.gov (United States)

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  15. Volatile organic compounds

    International Nuclear Information System (INIS)

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  16. Comparative application of solid-phase microextraction fibre assemblies and semi-permeable membrane devices as passive air samplers for semi-volatile chlorinated organic compounds. A case study on the landfill 'Grube Antonie' in Bitterfeld, Germany

    International Nuclear Information System (INIS)

    Solid phase microextraction (SPME) fibres coated with Carbowax/divinylbenzene and semi-permeable membrane devices (SPMDs) of standard configuration were used to obtain time-weighted average (TWA) field air concentrations of selected chlorinated semi-volatile compounds on a landfill, where large amounts of lindane by-products were deposited, together with other hazardous chemical residues in the past. Additionally, spot sampling with SPME fibres was performed to identify the emission hotspot and sampling rates were determined/predicted for the substances of interest. Both samplers yield comparable TWA air concentrations of lindane and its isomers and of DDT with its metabolites and gain in certainty about the landfill as remaining source of air pollution with these compounds in the region. Both SPME fibres and SPMDs (respective their modifications) can be recommended as sampling tools in process studies and larger air monitoring programmes. However, further calibration studies and field tests are necessary to obtain reliable sampling rates for a wider range of semi-volatile compounds. - Solid-phase microextraction fibre assemblies and semi-permeable membrane devices provide time-weighted average air concentrations

  17. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    OpenAIRE

    Li, Bing-zhi; Xu, Xiang-Yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-c...

  18. Biodegradation of halogenated organic compounds.

    Science.gov (United States)

    Chaudhry, G R; Chapalamadugu, S

    1991-03-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  19. Metals elements and chlorinated compounds in cetaceans; Elementi metallici e composti organoclorurati in cetacei

    Energy Technology Data Exchange (ETDEWEB)

    Cardellicchio, N. [Consiglio Nazionale delle Ricerche. Ist. Sperimentale Talassografico, Taranto (Italy)

    1997-01-01

    Non-degradable pollutants determination in cetacea, high tropic level organisms, represents an evaluating element both for bioaccumulation phenomena and sea ecosystem quality. In this paper is shown determination results for metals, chlorinated pesticides, and polychlorinated biphenyls (PCB) in Stenella coeruleoalba specimens, beached along the coast of Puglia (Italy), in the period February-June 1987. Chemical-toxicological surveys verified that in there Mediterranean marine mammals pollutant accumulation is higher than in Atlantic species. Lipophylous toxical compounds transferred from mothers to offspring represents a high risk for their survival. even though this survey failed to establish a direct cause-effect relationship between pollutant levels and anatomical-pathological lesions, it is apparent that sea pollution phenomena are reflected negatively in the top of the food chains.

  20. Occurence of chlorinated aromatic compounds in filter deposits of an incinerator plant for radioactive waste. Pt. 1

    International Nuclear Information System (INIS)

    Filter deposits of an incinerator plant for radioactive waste were investigated for their organic components. The concentrated Soxhlet extracts of the deposits were separated by gas chromatography. Detection was performed by an electron capture detector (ECD) connected in series to a flame ionization detector (FID). For compound identification the samples were analyzed in addition by combined gas chromatography/mass spectrometry (GS/MS). Besides polycyclic aromatic hydrocarbons (PAHs) and a few polycyclic heteroaromatics (N-, S-, O-PACs) relative high concentrations of chlorine compounds were found. These about 30 partly isomeric derivatives of a few parent PAHs had up to 4 chlorosubstituents. The reference substances necessary to verify the interpretation of the mass spectra were prepared by catalytic chlorination of the parent PAHs. (Author)

  1. Synthesis Organic Compound

    OpenAIRE

    Rasyid, Herlina; Firdaus; Hariani, Nunuk

    2015-01-01

    Abstract. Synthesis of metil ??-(p-hidroksifenil)akrilic from ??-(p-hidroksifenil)akrilat acid and methanol using Dean Stark Trap method had been done. Synthesis of ths compound intended to form the starting material in the subsequent synthesis of amide???s compound through the formation of ester compound. This synthesis using H2SO4 catalyst and Dean Stark Trap method, some of benzena which is added to remove the water that resulting from the reaction. Synthesis of this compound be held at re...

  2. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). PMID:27231877

  3. Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Holm, John V.; Rügge, Kirsten; Bjerg, Poul Løgstrup;

    1995-01-01

    Usually landfill leachates contain specific organic compounds as BTEXs (benzene, toluene, ethylbenzene, and xylenes), chlorinated aliphatic hydrocarbons and chlorobenzenes originating from household chemicals and waste from small businesses (I). However, where industrial waste has been landfilled......, the leachate may contain many other organic compounds (2). Another paper of ours (3) described the distribution of commonly found organic compounds in the leachate plume downgradient of the Grindsted Landfill and discussed the fate of the organic compounds in view of the redox environments determined...

  4. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens; Ledin, Anna

    Information regarding the contents of xenobiotic organic compounds (XOCs) in wastewater is limited, but it has been shown that at least 900 different compounds / compound groups could potentially be present in grey wastewater. Analyses of Danish grey wastewater revealed the presence of several...... hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...... aquatic toxicity were present and that data for environmental fate could only be retrieved for about half of the compounds....

  5. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens;

    2002-01-01

    Information regarding the contents of xenobiotic organic compounds (XOCs) in wastewater is limited, but it has been shown that at least 900 different compounds / compound groups could potentially be present in grey wastewater. Analyses of Danish grey wastewater revealed the presence of several...... hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...... aquatic toxicity were present and that data for environmental fate could only be retrieved for about half of the compounds....

  6. Organic Compounds in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  7. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    OpenAIRE

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01

    Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue...

  8. Organic Compounds in Stardust

    Science.gov (United States)

    McKay, David S.; Clemett. Simon J.; Sandford, Scott A.; Nakamura-Messenger, Keiko; Hoerz, Fredrich

    2011-01-01

    The successful return of the STARDUST spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from Comet 81P/Wild-2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry (L2MS) demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N-rich. Spectral analysis in combination with instrumental detection sensitivities suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C N). While organic species in the STARDUST samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N-containing species in comets has astrobiological implications since comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.

  9. Organophosphorus Compounds in Organic Electronics.

    Science.gov (United States)

    Shameem, Muhammad Anwar; Orthaber, Andreas

    2016-07-25

    This Minireview describes recent advances of organophosphorus compounds as opto-electronic materials in the field of organic electronics. The progress of (hetero-) phospholes, unsaturated phosphanes, and trivalent and pentavalent phosphanes since 2010 is covered. The described applications of organophosphorus materials range from single molecule sensors, field effect transistors, organic light emitting diodes, to polymeric materials for organic photovoltaic applications. PMID:27276233

  10. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B., E-mail: B.Maniscalco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); Abbas, A.; Bowers, J.W.; Kaminski, P.M.; Bass, K. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); West, G. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom)

    2015-05-01

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl{sub 2}) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl{sub 4}), cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}), hydrochloric acid (HCl) and zinc chloride (ZnCl{sub 2}). TeCl{sub 4} was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH{sub 3}CO{sub 2}){sub 2}) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl{sub 2} was employed as an alternative to CdCl{sub 2}. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl{sub 2}) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances.

  11. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    International Nuclear Information System (INIS)

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl2) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl4), cadmium acetate (Cd(CH3CO2)2), hydrochloric acid (HCl) and zinc chloride (ZnCl2). TeCl4 was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH3CO2)2) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl2 was employed as an alternative to CdCl2. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl2) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances

  12. POTENTIAL FOR BIODEGRADATION OF ORGANO-CHLORINE COMPOUNDS IN GROUNDWATER

    Science.gov (United States)

    Halogenated aliphatic and aromatic hydrocarbons are the most important organic contaminants of shallow water-table aquifers. Such aquifers have recently been shown to harbor an indigenous microflora. Organisms in authentic and uncontaminated samples of unconsolidated subsurface m...

  13. Natural solar photolysis of total organic chlorine, bromine and iodine in water.

    Science.gov (United States)

    Abusallout, Ibrahim; Hua, Guanghui

    2016-04-01

    Municipal wastewater has been increasingly used to augment drinking water supplies due to the growing water scarcity. Wastewater-derived disinfection byproducts (DBPs) may negatively affect the aquatic ecosystems and human health of downstream communities during water reuse. The objective of this research was to determine the degradation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) in water by natural sunlight irradiation. Outdoor solar photolysis experiments were performed to investigate photolytic degradation of the total organic halogen (TOX) formed by fulvic acid and real water and wastewater samples. The results showed that TOX degradation by sunlight irradiation followed the first-order kinetics with half-lives in the range of 2.6-10.7 h for different TOX compounds produced by fulvic acid. The TOX degradation rates were generally in the order of TOI > TOBr ≅ TOCl(NH2Cl) > TOCl(Cl2). High molecular weight TOX was more susceptible to solar photolysis than corresponding low molecular weight halogenated compounds. The nitrate and sulfite induced indirect TOX photolysis rates were less than 50% of the direct photolysis rates under the conditions of this study. Fulvic acid and turbidity in water reduced TOX photodegradation. These results contribute to a better understanding of the fate of chlorinated, brominated and iodinated DBPs in surface waters. PMID:26841230

  14. Contribution to the study of chlorine, fluorine and oxygen compounds

    International Nuclear Information System (INIS)

    The combustion heat of excess hydrogen in chloro fluoride compounds ClF, ClF3, ClF5 and oxychloro fluoride compounds O2ClF, O3ClF, OClF3 were determined in an original bomb calorimeter. This apparatus which can work at temperature up to 473K and under 10 atmospheres pressure as two compartments and high frequency electric spark ignition. The enthalpies of formation and bond energies are calculated. The temperature and enthalpies of the solid/solid and solid/liquid transformations were determined with a differential micro-calorimeter, of the fluxmeter type (M.C.B.) (sensibility 70μV detector/mW.cell, temperature range 80-1000K, maximal pressure 15 atmospheres)

  15. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. PMID:26490534

  16. Sulfated compounds from marine organisms.

    Science.gov (United States)

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  17. Field-scale investigations on the biodegradation of chlorinated aromatic compounds and HCH in the subsurface environment

    Science.gov (United States)

    Feidieker, Doris; Kämpfer, Peter; Dott, Wolfgang

    1995-08-01

    The biological in situ remediation of a former pesticide production site, highly contaminated with chlorobenzenes, chlorophenols and hexachlorocyclohexanes, was studied for a period of one year. Field experiments testing the remediation technology were carried out in the subsurface to a depth of 5.5 m. Detailed monitoring of several chemical and microbiological parameters was made in order to evaluate the remediation success. The initial pollution of this site ranged from 0.03-0.30 g EOX (extractable halogenated organic compounds)/kg soil in the saturated layer to 1-20 g kg -1 EOX in the unsaturated layer, whereas the impounded water was polluted with 8-13 mg L -1 AOX (adsorbable halogenated organic compounds). No significant decrease of the pollutants in the subsoil was observed, although oxygen and nutrients were supplied in sufficient concentrations. In contrast, several of the chlorinated organic compounds were eliminated from the water treatment plant, either by physical or biological processes. Based on measurements of AOX in different parts of the plant, 26% of the pollutants was found adsorbed on the activated carbon and 3% was found in the sludge of the filter back-wash. Dependent on these measurements, elimination of ˜ 70% of the pollutants was attributed to microbial degradation. The latter fact is supported by oxygen consumption data, by increase in the microbial counts and by changes in the distribution of the pollutants in the plant effluent. Among the chlorobenzenes, 1,2,4-trichlorobenzene, and among the hexachlorocyclohexanes, a-hexachlorocyclohexane were eliminated preferentially. The results suggest that an in situ remediation of a site polluted with chlorinated organic compounds cannot be recommended; however, an on site circulation water treatment is possible by a combination of physical and biological processes.

  18. Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics

    Science.gov (United States)

    KANG, S.; Jeong, H. Y.

    2013-12-01

    Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

  19. Use of membrane bioreactors for the bioremediation of groundwater polluted by chlorinated compounds

    OpenAIRE

    Manigas, Luisa

    2008-01-01

    The aim of this experimental work has been the application of a new polluted waters treatment technology for the selection of a bacterial population capable of bioremediating a synthetic groundwater polluted by four different chlorinated compounds. The innovative technology applied in this study was the biological treatment system known as MSBR (Membrane Sequencing Bioreactor), which consists of a Sequencing Batch Reactor (SBR) coupled to a membrane module for the filtration of the biological...

  20. Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

    Science.gov (United States)

    Cappelletti, M.; Di Gennaro, P.; D’Ursi, P.; Orro, A.; Mezzelani, A.; Landini, M.; Fedi, S.; Frascari, D.; Presentato, A.; Milanesi, L.

    2013-01-01

    Rhodococcus sp. strain BCP1 cometabolizes chlorinated compounds and mineralizes a broad range of alkanes, as it is highly tolerant to them. The high-quality draft genome sequence of Rhodococcus sp. strain BCP1, consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNA genes, is presented here. PMID:24158549

  1. Students' Categorizations of Organic Compounds

    Science.gov (United States)

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  2. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Miao, Shiyu; Liu, Huijuan; Qu, Jiuhui

    2016-10-01

    The prechlorination-induced algal organic matter (AOM) released from Microcystis aeruginosa (M. aeruginosa) cells has been reported to serve as a source of precursors for chlorinated disinfection byproducts (DBPs). However, previous studies have mainly focused on the precursors either extracted directly from the cell suspension or derived immediately after algal suspension prechlorination. This study aims to investigate the impacts of water transportation time after algal suspension prechlorination on cell integrity, AOM release, and DBP formation during the dissolved phase chlorination. The damage to cell integrity after prechlorination was indicated to depend not only on chlorine dose but also on transportation time. The highest dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) values were observed at 2 mg/L chlorine preoxidation before transportation, but were obtained at 0.4 mg/L chlorine after 480-min simulated transportation. The variation of DON with transportation time was indicated to be mainly influenced by the small molecular weight nitrogenous organic compounds, such as amino acids. Additionally, formation of the corresponding chlorinated carbonaceous disinfection byproducts (C-DBPs) and nitrogenous disinfection byproducts (N-DBPs) during the dissolved phase chlorination showed the same variation tendency as DOC and DON respectively. The highest C-DBP (98.4 μg/L) and N-DBP (5.5 μg/L) values were obtained at 0.4 mg/L chlorine preoxidation after 480-min simulated transportation. Therefore, when prechlorination is applied for algae-laden water pretreatment, not only chlorine dose but also transportation time needs to be considered with regard to their effects on cell integrity, AOM release, and chlorinated DBP formation. PMID:27348194

  3. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.

    Science.gov (United States)

    Yang, Xin; Guo, Wanhong; Lee, Wontae

    2013-06-01

    Chlorine dioxide (ClO2) is often used as an oxidant to remove taste, odor and color during water treatment. Due to the concerns of the chlorite formation, chlorination or chloramination is often applied after ClO2 preoxidation. We investigated the formation of regulated and emerging disinfection byproducts (DBPs) in sequential ClO2-chlorination and ClO2-chloramination processes. To clarify the relationship between the formation of DBPs and the characteristics of natural organic matter (NOM), changes in the properties of NOM before and after ClO2 oxidation were characterized by fluorescence, Fourier transform infrared spectroscopy (FTIR), and size and resin fractionation techniques. ClO2 preoxidation destroyed the aromatic and conjugated structures of NOM and transformed large aromatic and long aliphatic chain organics to small and hydrophilic organics. Treatment with ClO2 alone did not produce significant amount of trihalomethanes (THMs) and haloacetic acids (HAAs), but produced chlorite. ClO2 preoxidation reduced THMs, HAAs, haloacetonitriles (HANs) and chloral hydrate (CH) during subsequent chlorination, but no reduction of THMs was observed during chloramination. Increasing ClO2 doses enhanced the reduction of most DBPs except halonitromethanes (HNMs) and haloketones (HKs). The presence of bromide increased the formation of total amount of DBPs and also shifted DBPs to more brominated ones. Bromine incorporation was higher in ClO2 treated samples. The results indicated that ClO2 preoxidation prior to chlorination is applicable for control of THM, HAA and HAN in both pristine and polluted waters, but chlorite formation is a concern and HNMs and HKs are not effectively controlled by ClO2 preoxidation. PMID:23312737

  4. Nomenclature on an organic compound (I)

    International Nuclear Information System (INIS)

    This book is about nomenclature on an organic compound, which includes introduction with general principle on nomenclature on compounds it describes hydrocarbon like terpene hydrocarbon, basic heterocyclic organic compound including carbon, hydrogen, oxygen, nitrogen, halogen, sulfur, selenium and tellurium such as nomenclature system, halogen derivatives, alcohol and phenol derivatives, compound with sulfur, amino, nitroso and nitro compound, amino radical ion, azo and azoxy compound, compound including an atom group, hydrazine and derivatives.

  5. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.

    Science.gov (United States)

    Parshikov, Igor A; Woodling, Kellie A; Sutherland, John B

    2015-09-01

    Many different organic compounds may be converted by microbial biotransformation to high-value products for the chemical and pharmaceutical industries. This review summarizes the use of strains of Aspergillus niger, a well-known filamentous fungus used in numerous biotechnological processes, for biochemical transformations of organic compounds. The substrates transformed include monocyclic, bicyclic, and polycyclic aromatic hydrocarbons; azaarenes, epoxides, chlorinated hydrocarbons, and other aliphatic and aromatic compounds. The types of reactions performed by A. niger, although not unique to this species, are extremely diverse. They include hydroxylation, oxidation of various functional groups, reduction of double bonds, demethylation, sulfation, epoxide hydrolysis, dechlorination, ring cleavage, and conjugation. Some of the products may be useful as new investigational drugs or chemical intermediates. PMID:26162670

  6. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  7. Volatile organic compound sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  8. Nomenclature on an organic compound (II)

    International Nuclear Information System (INIS)

    This book deals with nomenclature on an organic compound except carbon, hydrogen, oxygen, nitrogen, halogen, sulfur, selenium and tellurium. It mentions introduction, nomenclature system, coordination compound, an organo-metallic compound, homogeneous chains and rings with regular form of heteroatoms, organic compound including arsenic, phosphorus and bismuth, stereochemistry, nomenclature of compound related a natural substance, modified compound in to an isotope. The last chapter has recommendation on general principle and instruction for nomenclature.

  9. Partitioning and budget of inorganic and organic chlorine observed by MIPAS-B and TELIS in the Arctic in January 2010 and March 2011

    Science.gov (United States)

    Wetzel, Gerald; Birk, Manfred; de Lange, Arno; Oelhaf, Hermann; Friedl-Vallon, Felix; Kirner, Oliver; Kleinert, Anne; Maucher, Guido; Nordmeyer, Hans; Orphal, Johannes; Ruhnke, Roland; Sinnhuber, Björn-Martin

    2014-05-01

    Arctic winters 2009/2010 and 2010/2011 were characterized by strong vortices with extremely cold temperatures in the lower stratosphere above northern Scandinavia. Hence, the occurrence of widespread polar stratospheric clouds enabled a strong activation of chlorine compounds (ClOx) which rapidly destroyed ozone when sunlight returned after winter solstice. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) balloon measurements obtained in northern Sweden on 24 January 2010 and 31 March 2011 inside the polar vortices have provided vertical profiles of inorganic and organic chlorine species as well as diurnal variations of ClO around sunrise over the whole altitude range in which chlorine is undergoing activation and deactivation. The first flight was carried out in very cold chlorine-activated air with widespread polar stratospheric clouds. The second one was performed at the end of the winter during the last phase of ClOx deactivation. The Terahertz and submillimeter Limb Sounder TELIS was mounted on the MIPAS balloon gondola. TELIS is able to detect the chlorine species ClO and HCl. The complete inorganic and organic chlorine partitioning and budget in the stratosphere has been derived by combining MIPAS-B and TELIS simultaneously observed molecules. Observations are compared and discussed with calculations performed with the 3-dimensional Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry).

  10. Levels of persistent fluorinated, chlorinated and brominated compounds in human blood collected in Sweden in 1997-2000

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, G.; Kaerrman, A.; Bavel, B. van [MTM Research Centre, Oerebro Univ. (Sweden); Hardell, L. [Dept. of Oncology, Univ. Hospital, Oerebro (Sweden); Hedlund, B. [Environmental Monitoring Section, Swedish EPA, Stockholm (Sweden)

    2004-09-15

    Levels of persistent fluorinated, chlorinated and brominated compounds in blood collected from the Swedish population have been determined in connection with several exposure and monitoring studies at the MTM Research Centre. A data base with 631 individual congener specific measurements on halogenated POPs such as dioxins, PCBs, HCB, DDE, chlordanes, PBDEs and PFAs including information on residency, age, BMI, diet, occupation, number of children, smoking habits, immunological status etc. has been compiled from samples collected between 1994 and 2004. A brief overview focusing on levels of some persistent chlorinated, brominated and fluorinated, compounds in blood collected in a background population group (n=83) in 1997-2000 is given here.

  11. Chromium as a potential catalyst in the thermal formation of chlorinated aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, T. [T. Oeberg Konsult AB, Lyckeby (Sweden); Bergstroem, J. [Bergstroem und Oehrstroem, Nykoeping (Sweden)

    2004-09-15

    Chlorinated aromatic compounds were detected in fly ash from municipal solid waste incinerators in the late 1970s. It was later shown that this fly ash possess catalytic properties enhancing the formation of PCDD/PCDF also at moderate temperatures. Copper is a well-known active oxychlorination catalyst in the Deacon process and is postulated to be responsible for this the lowtemperature formation of chlorinated aromatics. The catalytic activity of copper has also been demonstrated in both laboratory experiments and full-scale trials. However, copper is not the only metal that is an active oxychlorination catalyst. A substantial number of other transition elements also possess similar activity and interactions are well known. It is therefore of interest to widen the scope to include the fly ash metal composition as a whole. The number of studies with other elements than copper is limited. The element composition of municipal waste is not constant, but changing both between sources and over time. These variations could provide the means to study the influence from fuel composition on the thermal formation of chlorinated aromatics, and such studies have been attempted. Unfortunately process related factors will hide correlations in the observation data, making this approach difficult. An experimental study can be more successful in providing information about the effect from fuel and fly ash composition. Previous investigations in Sweden of the influence from different separation schemes on waste fuel composition can provide data suitable for evaluating the link between element composition in the fly ash, catalytic activity and the formation of polychlorinated benzenes, phenols, dibenzo-pdioxins and dibensofurans. Here we will attempt to re-evaluate the analytical results from a series of 16 trials with different waste fuels in the same combustion plant.

  12. Detection of sewage organic chlorination products that are resistant to dechlorination with sulfite

    Energy Technology Data Exchange (ETDEWEB)

    MacCrehan, W.A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Analytical Chemistry Div.; Jensen, J.S.; Helz, G.R. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry

    1998-11-15

    Most of the 36 billion gal of treated sewage wastewater discharged daily into the environment in the United States is disinfected via chlorination. To minimize toxicity. dechlorination with sulfite or sulfur dioxide is often performed. Although dechlorination is considered instantaneous and complete, several studies have found residual toxicity of chlorinated/dechlorinated effluent to aquatic life. The authors investigated chlorination/dechlorination of the organic nitrogen components of sewage wastewater using both iodometric titration and a novel LC method. For LC, a postcolumn reaction with iodide rendered submicromolar chloramine concentrations detectable with amperometry. Using a gradient-elution LC separation, the retention and dechlorination behavior of a suite of model amines was determined, representing primary and secondary aliphatic, peptide, and protein-N. Chlorination/dechlorination experiments on freshly collected, tertiary-treated wastewater showed a fraction of the organic N-chloramines are dechlorinated slowly by sulfite with half-lives of >20 min. Chromatographic retention and kinetic behavior of the sewage N-chloramines was consistent with the behavior of the model peptides and proteins. Proteolytic hydrolysis markedly increased the peptide fraction observed upon chlorination of the wastewater. These results suggest that peptides and proteins contribute to slow dechlorination of sewage and may be a factor in the toxicity noted for chlorine-disinfected wastewater.

  13. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  14. Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011

    Science.gov (United States)

    Wetzel, G.; Oelhaf, H.; Birk, M.; de Lange, A.; Engel, A.; Friedl-Vallon, F.; Kirner, O.; Kleinert, A.; Maucher, G.; Nordmeyer, H.; Orphal, J.; Ruhnke, R.; Sinnhuber, B.-M.; Vogt, P.

    2015-07-01

    The Arctic winter 2010/2011 was characterized by a persistent vortex with extremely low temperatures in the lower stratosphere above northern Scandinavia leading to a strong activation of chlorine compounds (ClOx) like Cl, Cl2, ClO, ClOOCl, OClO, and HOCl, which rapidly destroyed ozone when sunlight returned after winter solstice. The MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding) and TELIS (TErahertz and submillimeter LImb Sounder) balloon measurements obtained in northern Sweden on 31 March 2011 inside the polar vortex have provided vertical profiles of inorganic and organic chlorine species as well as diurnal variations of ClO around sunrise over the whole altitude range in which chlorine has been undergoing activation and deactivation. This flight was performed at the end of the winter during the last phase of ClOx deactivation. The complete inorganic and organic chlorine partitioning and budget for 31 March 2011, assumed to be representative for the late-winter Arctic stratosphere, has been derived by combining MIPAS-B and TELIS simultaneously observed molecules. A total chlorine amount of 3.41 ± 0.30 parts per billion by volume is inferred from the measurements (above 24 km). This value is in line with previous stratospheric observations carried out outside the tropics confirming the slightly decreasing chlorine amount in the stratosphere. Observations are compared and discussed with the output of a multi-year simulation performed with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry). The simulated stratospheric total chlorine amount is in accordance with the MIPAS-B/TELIS observations, taking into account the fact that some chlorine source gases and very short-lived species are not included in the model.

  15. Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011

    Directory of Open Access Journals (Sweden)

    G. Wetzel

    2015-02-01

    Full Text Available The Arctic winter 2010/11 was characterized by a persisting vortex with extremely cold temperatures in the lower stratosphere above northern Scandinavia leading to a strong activation of chlorine compounds (ClOx like Cl, Cl2, ClO, ClOOCl, OClO, and HOCl which rapidly destroyed ozone when sunlight returned after winter solstice. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding and TELIS (Terahertz and submillimeter Limb Sounder balloon measurements obtained in northern Sweden on 31 March 2011 inside the polar vortex have provided vertical profiles of inorganic and organic chlorine species as well as diurnal variations of ClO around sunrise over the whole altitude range in which chlorine is undergoing activation and deactivation. This flight was performed at the end of the winter during the last phase of ClOx deactivation. The complete inorganic and organic chlorine partitioning and budget in the stratosphere has been derived by combining MIPAS-B and TELIS simultaneously observed molecules. A total chlorine amount of 3.41 ± 0.30 ppbv is inferred from the measurements. This value is in line with previously carried out stratospheric observations confirming the slightly decreasing chlorine trend in the stratosphere. Observations are compared and discussed with the output of a multi-year simulation performed with the Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry. The simulated stratospheric total chlorine amount is in accordance with the MIPAS-B/TELIS observation taking into account the fact that some chlorine source gases and very short lived species are not included in the model.

  16. Dechlorination progress of chlorinated organic pollutants degraded by use of ionizing radiation in aqueous solutions

    International Nuclear Information System (INIS)

    Kinetics and mechanisms of dechlorination of chlorinated organic pollutants induced by ionizing radiation were described in this article. The progress on the dechlorination of chlorophenols, polychlorinated biphenyl, trichloroethylene, and perchloroethylene involved in radiolysis was also reviewed. In oxidative condition, hydroxyl radical (·OH) would attack chlorophenol to form ·OH-adducts, which could be dechlorinated gradually. However, chlorophenol can be directly reduced by hydrated electron (eaq-) to release Cl-. It was found that radiolytic degradation of polychlorinated biphenyls in organic solvent would release chlorine atoms gradually by chain reactions and the final products were Cl- and biphenyl. Trichloroethylene and tetrachloroethylene mainly reacted with ·OH with the final products of CO2, HCOOH and HCI. As conclusion, the reductive dechlorination of chlorinated organic pollutants possesses advantages of high degradation efficiency, simple products and relatively low radiation dose compared with the oxidation methods. (authors)

  17. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.

    Science.gov (United States)

    Wenk, Jannis; Aeschbacher, Michael; Salhi, Elisabeth; Canonica, Silvio; von Gunten, Urs; Sander, Michael

    2013-10-01

    In water treatment dissolved organic matter (DOM) is typically the major sink for chemical oxidants. The resulting changes in DOM, such as its optical properties have been measured to follow the oxidation processes. However, such measurements contain only limited information on the changes in the oxidation states of and the reactive moieties in the DOM. In this study, we used mediated electrochemical oxidation to quantify changes in the electron donating capacities (EDCs), and hence the redox states, of three different types of DOM during oxidation with chlorine dioxide (ClO2), chlorine (as HOCl/OCl(-)), and ozone (O3). Treatment with ClO2 and HOCl resulted in comparable and prominent decreases in EDCs, while the UV light absorbances of the DOM decreased only slightly. Conversely, ozonation resulted in only small decreases of the EDCs but pronounced absorbance losses of the DOM. These results suggest that ClO2 and HOCl primarily reacted as oxidants by accepting electrons from electron-rich phenolic and hydroquinone moieties in the DOM, while O3 reacted via electrophilic addition to aromatic moieties, followed by ring cleavage. This study highlights the potential of combined EDC-UV measurements to monitor chemical oxidation of DOM, to assess the nature of the reactive moieties and to study the underlying reaction pathways. PMID:23978074

  18. Spatial patterns and storage of organic chlorine and chloride in coniferous forest soil in south-east Sweden

    OpenAIRE

    Wesström, Karin

    2002-01-01

    The concentration and storage of organic chlorine and chloride were determined in soil, to a depth of 40 cm, in a coniferous forest in the Stubbetorp catchment area in south-east Sweden. Also, the spatial distribution of the two forms of chlorine was determined. Soil samples were collected at 49 of the nodes in a grid with approximately 105 m between the nodes. The analysis of spatial variability suggested that no spatial autocorrelation was present either within the variable organic chlorine...

  19. Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Holm, John V.; Rügge, Kirsten; Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1995-01-01

    Usually landfill leachates contain specific organic compounds as BTEXs (benzene, toluene, ethylbenzene, and xylenes), chlorinated aliphatic hydrocarbons and chlorobenzenes originating from household chemicals and waste from small businesses (I). However, where industrial waste has been landfilled......, the leachate may contain many other organic compounds (2). Another paper of ours (3) described the distribution of commonly found organic compounds in the leachate plume downgradient of the Grindsted Landfill and discussed the fate of the organic compounds in view of the redox environments determined...... in the plume (4). In this paper, we describe the occurrence and distribution of organic compounds originating from waste from the pharmaceutical industry in the groundwater downgradient of the same landfill. According to our knowledge, this is the first report on pharmaceutical compounds in a...

  20. Organic halogen compounds in the environment

    International Nuclear Information System (INIS)

    There are 20 research reports on selected problems concerning the analysis, the occurence, and the behaviour of a wide spectrum of organic halogen compounds. The work was carried out in the framework of the project 'Organic Halogen Compounds in the Environment', financed by the BMFT, between 1975 and 1978. (orig.)

  1. Chemical aspects of incinerating highly chlorinated and actinide α contaminated organic waste: application to the Iris process

    International Nuclear Information System (INIS)

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide α radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  2. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin

    Science.gov (United States)

    Hong, Huachang; Qian, Lingya; Xiao, Zhuoqun; Zhang, Jianqing; Chen, Jianrong; Lin, Hongjun; Yu, Haiying; Shen, Liguo; Liang, Yan

    2015-12-01

    Occurrence of halonitromethanes (HNMs) in drinking water has been a public concern due to the potential risks to human health. Though quite a lot of work has been carried out to understand the formation of HNMs, the relationship between HNMs formation and the nitrite remains unclear. In this study, the effects of nitrite on the formation of HNMs during chlorination of organic matter from different origin were assessed. Organic matter (OM) derived from phoenix tree (fallen leaves: FLOM; green leaves: GLOM) and Microcystis aeruginosa (intracellular organic matter: IOM) were used to mimic the allochthonous and autochthonous organic matter in surface water, respectively. Results showed that HNMs yields were significantly enhanced with the addition of nitrite, and the highest enhancement was observed for FLOM, successively followed by GLOM and IOM, suggesting that the contribution of nitrite to HNMs formation was positively related with SUVA (an indicator for aromaticity) of OM. Therefore, the nitrite contamination should be strictly controlled for the source water dominated by allochthonous OM, which may significantly reduce the formation of HNMs during chlorination. Moreover, given a certain nitrite level, the higher pH resulted in higher stimulation of HNM formation, yet the chlorine dose (always added in excess resulting in residual reactive chlorine), reaction time and temperature did not show obvious influence.

  3. Two-stage bioreactor to destroy chlorinated and nonchlorinated organic groundwater contaminants

    International Nuclear Information System (INIS)

    Both chlorinated and nonchlorinated volatile organic compounds are found as common contaminants of groundwater across the nation. Two field-pilot bioreactors successfully treated contaminated groundwater at Robins Air Force Base (AFB). The fluidized-bed bioreactor (FBR) effectively removed >97% of the 1,2-dichlorobenzene (DCB) and >95% of the benzene, toluene, ethylbenzene, and xylene(s) (BTEX) from more than 210,000 gal of contaminated groundwater. The FBR removed 84% of the trichloroethylene (TCE), also found in this groundwater, based on a total mass balance beyond carbon adsorption. Enhanced operational stability was demonstrated for the gas-phase reactor (GPR) with 10 months of continuous operation in the laboratory and 2 months in the field. TCE concentrations in contaminated air entering the pilot GPR were reduced by 75% on average. Capital and operating costs for the FBR system were compared to other treatment options including ultraviolet (UV)-peroxidation, air stripping with carbon adsorption, and wet carbon adsorption. GPR economics were compared to carbon adsorption at two TCE concentrations. These bioreactor systems provide economical, destructive technologies for treating either contaminated water or contaminated air originating from air stripping, air sparging, or soil vapor extraction operations and will be effective remedial options at many sites

  4. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  5. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chu Wenhai, E-mail: 1world1water@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Deng Yang, E-mail: yang.deng@upr.edu [Department of Civil Engineering and Surveying, University of Puerto Rico, P.O. Box 9041, Mayaguez, Puerto Rico, 00681-9041 (Puerto Rico)

    2010-01-15

    The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.

  6. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid

    International Nuclear Information System (INIS)

    The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.

  7. Methods of making organic compounds by metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  8. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    Science.gov (United States)

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  9. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    International Nuclear Information System (INIS)

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines

  10. Organocatalytic Asymmetric α-Chlorination of 1,3-Dicarbonyl Compounds Catalyzed by 2-Aminobenzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Daniel Serrano Sánchez

    2016-01-01

    Full Text Available Bifunctional chiral 2-aminobenzimidazole derivatives 1 and 2 catalyze the enantioselective stereodivergent α-chlorination of β-ketoesters and 1,3-diketone derivatives with up to 50% ee using N-chlorosuccinimide (NCS or 2,3,4,4,5,6-hexachloro-2,5-cyclohexadien-1-one as electrophilic chlorine sources.

  11. Organic electronic devices using phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  12. Organic electronic devices using phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  13. Organic electronic devices using phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  14. Volatile organic compound emissions from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  15. Chlorinated pesticides in stream sediments from organic, integrated and conventional farms

    International Nuclear Information System (INIS)

    To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds. -- Highlights: •Pesticides were measured in streams in organic, integrated, and conventional farms. •Higher concentrations of some pesticides were found in conventional sites. •Streams in organic and integrated sites were not pesticide free. •Mean pesticide concentrations were below the recommended toxicity thresholds. -- Higher concentrations of several chlorinated pesticides were found in conventional farms; however, organic and integrated practices were not pesticide-free

  16. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Bonnie A.; Cory, Rose M.; Weinberg, Howard S., E-mail: howard_weinberg@unc.edu

    2014-01-15

    Highlights: • DBP formation from UV-chlorine/chloramine drinking water treatment was measured. • The effect of UV on DBP precursors was evaluated by fluorescence and PARAFAC. • UV alone decreased protein/tryptophan- and humic-like fluorescence. • Loss of two components correlated with cyanogen chloride formation (R{sup 2} = 0.79–0.91). • Loss of the components also correlated with chloral hydrate formation (R{sup 2} = 0.95–1.000). -- Abstract: Ultraviolet (UV) irradiation is being increasingly used to help drinking water utilities meet finished water quality regulations, but its influence on disinfection byproduct (DBP) precursors and DBP formation is not completely understood. This study investigated the effect of medium pressure (MP) UV combined with chlorination/chloramination on the fluorescent fraction of dissolved organic matter (DOM) isolated from a United States surface water with median total organic carbon content. Parallel factor analysis was used to understand how UV may alter the capacity of DOM to form DBPs of potential human health concern. The production of chloral hydrate and cyanogen chloride from MP UV followed by chlorine or chloramine, respectively, correlated with a decrease in fluorescence intensity of a protein/tryptophan-like component (R{sup 2} = 0.79–0.99) and a humic-like component (R{sup 2} = 0.91–1.00). This suggests that the UV-induced precursors to these compounds originated from DOM with similar characteristics to these components. The fluorescent DOM components identified in this study are similar to reoccurring components that have been previously identified in a range of raw and treated waters, and this work demonstrates the value of using fluorescence analysis of DOM to understand the relationships between DOM source and DBP formation under a range of treatment conditions.

  17. Microbial communities in a chlorinated solvent contaminated tidal freshwater wetland: molecular techniques for assessing potentially important biodegrading organisms

    Science.gov (United States)

    Kirshtein, J. D.; Voytek, M. A.; Lorah, M m

    2001-05-01

    Aberdeen Proving Ground MD (APG) is a hazardous waste site where a chlorinated solvent plume discharges into anaerobic sediments in a tidal freshwater wetland. Wetlands can be ideal sites for intrinsic remediation of chlorinated volatile organic compounds (VOCs) due to availability of organic substrates and the wide range of redox zones. And indeed natural attenuation of these compounds appears to be an important process at this site. The biodegradation of chlorinated VOCs such as PCA can follow several pathways: 1) sequential hydrogenolysis of PCA to ethane or ethene via TCA 2) dichloroelimation of TCA to vinyl chloride (VC) or 3) dichloroelimination of PCA to DCE, and hydrogenolysis of DCE to VC. Pathways 2 and 3 can result in the accumulation of VC which is considered more hazardous than the original parent compounds. Identifying microbial components involved in the series of degradation steps of each pathway can provide a better understanding of factors controlling the intrinsic bioremediation of these compounds. PCA-amended microcosm experiments were conducted during two seasons, March-April, and July-August 1999 at APG using wetland sediments collected from two distinct sites (one is methanogenic and one is both iron reducing and methanogenic). During the course of the experiments, VOCs, methane, ferrous iron and sulfate were measured. Terminal restriction fragment polymorphism (tRFLP) analysis provides a molecularly-derived microbial "fingerprint" and was used to document the total microbial abundance and characterize the diversity of the bacterial and methanogen communities. Higher rates of degradation observed during the spring sampling were associated with higher biomass and microbial diversity. As the microcosm proceeded, shifts in redox conditions and associated degradation rates and pathways were observed. These shifts were tracked by changes in the microbial community. Three phylotypes were identified that appear to be important in controlling the

  18. Real-time monitoring of volatile chlorinated compounds in the subsurface environment using a HaloSnif/cone penetrometer system

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency (EPA) has regulatory jurisdiction for the cleanup of hazardous wastes sites designated by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and Superfund Amendments and Reauthorization Act (SARA). According to EPA's guidance specific activities are required to characterize a site listed under CERCLA or SARA. This activity includes a preliminary site investigation followed by a comprehensive remedial site investigation. During remedial investigation site activities, various environmental samples are collected including air, water, and soils and sediments. Because of the sheer volume of samples sent to the laboratory for analysis and the high analytical cost associated to produce legally defensible analytical data, remedial investigations costs have skyrocketed. Clearly, alternative characterization technologies are needed. A new innovative technology being evaluated couples a cone penetrometer system to a chlorinated compound specific detector system (HaloSnif). The cone penetrometer provides access to the subsurface environment and the HaloSnif system measures the concentrations of volatile chlorinated compounds in the gas phase (soil gas) in real-time. Testing of the cone penetrometer/HaloSnif system was conducted at the US Department of Energy's Hanford Site located in southeastern Washington State. The test location was adjacent to several cribs that received from 500 to 1,500 tons of CCl4. An in-depth description of the HaloSnif technology, concentration profiles of volatile chlorinated compounds as a function of depth and time, and other relevant observations will be presented

  19. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  20. Comparative application of solid-phase microextraction fibre assemblies and semi-permeable membrane devices as passive air samplers for semi-volatile chlorinated organic compounds. A case study on the landfill 'Grube Antonie' in Bitterfeld, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Paschke, Albrecht [Department of Ecological Chemistry, UFZ Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig (Germany)]. E-mail: albrecht.paschke@ufz.de; Vrana, Branislav [Department of Ecological Chemistry, UFZ Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig (Germany); Popp, Peter [Department of Analytical Chemistry, UFZ Centre for Environmental Research, 04318 Leipzig (Germany); Schueuermann, Gerrit [Department of Ecological Chemistry, UFZ Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig (Germany)

    2006-11-15

    Solid phase microextraction (SPME) fibres coated with Carbowax/divinylbenzene and semi-permeable membrane devices (SPMDs) of standard configuration were used to obtain time-weighted average (TWA) field air concentrations of selected chlorinated semi-volatile compounds on a landfill, where large amounts of lindane by-products were deposited, together with other hazardous chemical residues in the past. Additionally, spot sampling with SPME fibres was performed to identify the emission hotspot and sampling rates were determined/predicted for the substances of interest. Both samplers yield comparable TWA air concentrations of lindane and its isomers and of DDT with its metabolites and gain in certainty about the landfill as remaining source of air pollution with these compounds in the region. Both SPME fibres and SPMDs (respective their modifications) can be recommended as sampling tools in process studies and larger air monitoring programmes. However, further calibration studies and field tests are necessary to obtain reliable sampling rates for a wider range of semi-volatile compounds. - Solid-phase microextraction fibre assemblies and semi-permeable membrane devices provide time-weighted average air concentrations.

  1. Organic halogen compounds and surface water pollution; Composti organoalogenati alifatici e contaminazione delle acque superficiali

    Energy Technology Data Exchange (ETDEWEB)

    Cocchioni, M.; Pellegrini, M. G.; Grappasonni, I.; Nacciarriti, L.; Bernacchia, G. [Camerino, Univ. (Italy). Dipt. di Scienze Igienistiche e Sanitarie-Ambientali

    1997-03-01

    A brief review of the effects of halogenated organic compounds on the fluvial ecosystem is followed by results from a detailed monitoring of these substances in all the Marches Region rivers. The results show generally modest concentrations, except for sporadic peaks for chloroform. Sites revealing significant concentrations of halogenated organic compounds also manifested a worsening of the biological quality of the waters with lessening of E.B.I. Attention is drawn to the negative effects of indiscriminate chlorination of purification plant outputs, as this practice often fails to resolve infective problems and in itself adds toxicity to the watercourse.

  2. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    OpenAIRE

    P. B. Shepson; Cavender, A. E.; Biesenthal, T. A.; J. W. Bottenheim

    2008-01-01

    Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photoche...

  3. Reflectance spectroscopy of organic compounds: 1. Alkanes

    Science.gov (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  4. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    Science.gov (United States)

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  5. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    International Nuclear Information System (INIS)

    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several additional low-level radioactive waste sites being considered throughout the United States. The production of chlorinated volatile organic compounds due to the interaction of ionizing radiation with chloro-plastic materials has been well-established in both this work and past studies. This occurs as a result of gamma, beta, and alpha particle interactions with the plastic material. The assemblage of organic compounds generated depends on the type of plastic material, the type of ionizing radiation, the gaseous environment present and the irradiation temperature. In the authors' experiments, gas generation data were obtained by mounting representative plastics near (3 mm) an alpha particle source (Am-241 foil). This assembly was placed in an irradiation vessel which contained air, nitrogen, or a hydrogen/carbon dioxide mixture, at near-atmospheric pressures, to simulate the range of atmospheres likely to be encountered in the subsurface. The gas phase in the vessels are periodically sampled for net gas production. The gas phase concentrations are monitored over time to determine trends and calculate the radiolytic yield for the various gaseous products

  6. Decomposition of volatile organic compounds and polycyclic aromatic hydrocarbons in industrial off-gas by electron beams: A review

    International Nuclear Information System (INIS)

    The electron beam induced decomposition of volatile organic compounds (e.g. aromatic compounds, esters, chlorinated hydrocarbons) and polycyclic aromatic hydrocarbons (e.g. chlorinated dibenzo-dioxins) in industrial off gas has been investigated by several research groups in Germany and Japan. The method was shown to be effective for cleaning the waste gas of a paint factory, the waste air discharged from an automobile tunnel, the off gas cleaning from a groundwater remediation plant and the flue gas of a waste incinerator. The electron beam process achieves high removal efficiencies for volatile organic compounds. Reaction models have been developed, which suggest that the organic compounds are oxidized by hydroxyl radicals. The electron beam process may treat very large off-gas volumes at ambient temperatures and has a low energy consumption. The production of secondary wastes can be avoided or minimized. Compared to conventional methods the investment and operation costs of the process seem to be attractive for selected applications

  7. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens;

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  8. The isotopic fractionation of organic compounds

    International Nuclear Information System (INIS)

    Isotopic fractionation of organic compounds is the observation of their chromatographic separation caused solely by differing isotopic content. The phenomenon has been observed for over 35 years by investigators in various disciplines working with labeled compounds on GC, TLC, and HPLC. Over 100 reports of such separations for organic compounds labeled with 2H, 3H, 13C, and 14C are scattered throughout the literature, and it has been over twenty years since the topic was adequately reviewed. This paper will highlight the existing literature and examples from the author's own laboratory as well as emphasize the thoroughness and caution that one must exercise before invoking this explanation for anomalous chromatographic behavior of organic isotopomers

  9. Reaction products of aquatic humic substances with chlorine.

    OpenAIRE

    Johnson, J D; Christman, R F; Norwood, D L; Millington, D S

    1982-01-01

    A major concern of the chlorination of aquatic humic materials is the ubiquitous production of trihalomethanes. A large number of other chlorinated organic compounds, however, have been shown to be formed by chlorine's reaction with humic substances. In this study, humic material was concentrated from a coastal North Carolina lake and chlorinated at a chlorine to carbon mole ratio of 1.5 at pH 12. A high pH was necessary for complete dissolution of the humic material and for production of ade...

  10. Photostimulated exoemission from some organic compounds

    International Nuclear Information System (INIS)

    Photostimulated exoemission from polyethylene and some organic low-molecular model compounds: C22H46 and C19H38O containing functional C=O group, was investigated. Time dependences of intensity of photostimulated exoemission when illuminating with a mercury-quartz lamp and spectral photoemission distribution for initial specimens and for specimens subjected to ultraviolet radiation (photolysis) or 60Co gamma radiation (radiolysis) have been investigated. The developed approach to the investigation of phenomena of photostimulated emission from organic compounds based on simultaneous recording of photocurrent and photochemical transformations permits to elucidate the formation mechanism of surface traps during illumination, stabilization of charges formed and the trap nature

  11. Occurrence and availability of prioritary compounds (chlorinated pesticides, polybrominated diphenyl ethers, alkylphenols and heavy metals) in freshwater sediments and fish

    International Nuclear Information System (INIS)

    Full text: The aim of this work was to determine priority organic and inorganic compounds in river sediments and fish and to study their availability. Twelve organ chlorinated compounds (OC), 40 polybromodiphenyl ethers (PBDEs), 2 alkylphenols (nonylphenol and octylphenol) (AP), and 9 heavy metals (HM) were investigated in samples taken in 20 locations along the Ebro river, in north east Spain. Sediment samples represent a stable matrix which indicate recent pollution episodes, whereas fish samples are good sentinels to monitor bioavailability and bioaccumulation. Compound selection was based on their inclusion in European priority lists (Directives 76/464/CEE and 60/2000/EU). The study area covered the Ebro hydrographic basin which is the main tributary in Spain and flows through large agricultural areas characterized by wines, corn and maize and represents an important water source for the many industrial and urban activities settled along its course. To control the quality of the river basin, and in accordance with EU Directives, priority pollutants have been determined in sediment and fish to determine most ubiquitous compounds, geographical distribution and bioavailability of pollutants to two different fish species. For such purpose, different analytical methods were developed to analyse all the above mentioned chemical species in the upper 2 cm sediment layer and in whole fish (Barbus graellsii, Cyprinus carpio). Among compounds studied, hexachlorocyclohexane, pentachlorophenol, aldrin, dieldrin and isodrin, and trichlorobenzene were never detected. All samples contained organic pollutants at total levels between 134 and 3199 μg/Kg-dw and total HM from 60.9 and 5131 mg/kg-dw, depending on sample location. For 18 of the 20 samples points, a correlation of 0.53 was found between total organic and total inorganic concentration. In sediment samples, among the 4 chemical groups studied, HM were present at levels between 0.17 and 4036 mg/kg dry weight (dw), being

  12. Occurrence and availability of prioritary compounds (chlorinated pesticides, polybrominated diphenyl ethers, alkylphenols and heavy metals) in freshwater sediments and fish

    International Nuclear Information System (INIS)

    Full text: The aim of this work was to determine priority organic and inorganic compounds in river sediments and fish and to study their availability. Twelve organ chlorinated compounds (OC), 40 polybromodiphenyl ethers (PBDEs), 2 alkylphenols (nonylphenol and octylphenol) (AP), and 9 heavy metals (HM) were investigated in samples taken in 20 locations along the Ebro river, in north east Spain. Sediment samples represent a stable matrix which indicate recent pollution episodes, whereas fish samples are good sentinels to monitor bioavailability and bioaccumulation. Compound selection was based on their inclusion in European priority lists (Directives 76/464/CEE and 60/2000/EU). The study area covered the Ebro hydrographic basin which is the main tributary in Spain and flows through large agricultural areas characterized by wines, corn and maize and represents an important water source for the many industrial and urban activities settled along its course. To control the quality of the river basin, and in accordance with EU Directives, priority pollutants have been determined in sediment and fish to determine most ubiquitous compounds, geographical distribution and bioavailability of pollutants to two different fish species. For such purpose, different analytical methods were developed to analyse all the above mentioned chemical species in the upper 2 cm sediment layer and in whole fish (Barbus graellsii, Cyprinus carpio). Among compounds studied, hexachlorocyclohexane, pentachlorophenol, aldrin, dieldrin and isodrin, and trichlorobenzene were never detected. All samples contained organic pollutants at total levels between 134 and 3199 μg/Kg-dw and total HM from 60.9 and 5131 mg/kg-dw, depending on sample location. For 18 of the 20 samples points, a correlation of 0.53 was found between total organic and total inorganic concentration. In sediment samples, among the 4 chemical groups studied, HM were present at levels between 0.17 and 4036 mg/kg dry weight (dw), being

  13. Semivolatile organic compounds in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W.W.

    2008-01-01

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame...... retardants. This paper critically examines equilibrium partitioning of SVOCs among indoor compartments. It proceeds to evaluate kinetic constraints on sorptive partitioning to organic matter on fixed surfaces and airborne particles. Analyses indicate that equilibrium partitioning is achieved faster for...

  14. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and...

  15. Quantification of Degradation of Chlorinated Hydrocarbons in Saturated Low Permeability Sediments Using Compound-Specific Isotope Analysis.

    Science.gov (United States)

    Wanner, Philipp; Parker, Beth L; Chapman, Steven W; Aravena, Ramon; Hunkeler, Daniel

    2016-06-01

    This field and modeling study aims to reveal if degradation of chlorinated hydrocarbons in low permeability sediments can be quantified using compound-specific isotope analysis (CSIA). For that purpose, the well-characterized Borden research site was selected, where an aquifer-aquitard system was artificially contaminated by a three component chlorinated solvent mixture (tetrachloroethene (PCE) 45 vol %, trichloroethene (TCE) 45 vol %, and chloroform (TCM) 10 vol %). Nearly 15 years after the contaminant release, several high-resolution concentration and CSIA profiles were determined for the chlorinated hydrocarbons that had diffused into the clayey aquitard. The CSIA profiles showed large shifts of carbon isotope ratios with depth (up to 24‰) suggesting that degradation occurs in the aquitard despite the small pore sizes. Simulated scenarios without or with uniform degradation failed to reproduce the isotope data, while a scenario with decreasing degradation with depth fit the data well. This suggests that nutrients had diffused into the aquitard favoring stronger degradation close to the aquifer-aquitard interface than with increasing depth. Moreover, the different simulation scenarios showed that CSIA profiles are more sensitive to different degradation conditions compared to concentration profiles highlighting the power of CSIA to constrain degradation activities in aquitards. PMID:27153381

  16. Recent advances in high energy electron beam irradiation for the treatment of hazardous organic compounds

    International Nuclear Information System (INIS)

    We have initiated a long-term project which has as its goal the development of the use of high energy electron beam irradiation for the removal and ultimate destruction of toxic and hazardous organic compounds from water, waste water, groundwater, and waters containing suspended sediments (sludges). The research has focused on several classes of compounds: trihalomethanes, of interest in water treatment; chlorinated solvents, e.g. trichloroethylene and tetrachloroethylene, of interest in ground water contamination; benzene and substituted benzenes, of interest in leaking underground storage tanks. This paper presents an overview of the progress we have made to date. (author)

  17. Clean process for the treatment of volatile organic compounds by selective absorption; Procede propre de traitement de COV par absorption selective

    Energy Technology Data Exchange (ETDEWEB)

    Hadjoudj, R.; Monnier, H.; Lapicque, F.; Roizard, C. [Ecole Nationale Superieure des Industries Chimiques, Lab. des Sciences du Genie Chimique-Groupe ENSIC, 54 - Nancy (France)

    2001-07-01

    This study concerns the development of a selective absorption process for the processing of chlorinated and oxygenated volatile organic compounds (VOCs). One or several solvents will be selected according to their capacity of absorption, to their selectiveness with respect to the other compounds present in the gaseous effluent, to their capacity to be regenerated, and to their low volatility and toxicity. (J.S.)

  18. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  19. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m3 and for xylene between 218-870 mg/m3. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO2 and H2O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  20. Organic compounds as indicators of air pollution

    DEFF Research Database (Denmark)

    Mølhave, Lars

    2003-01-01

    suchstandards. A major research need exist on the less adverse pollutants beforerecommendations or guidelines can be established. In the interim period a pre-caution principle should lead to an ALARA principle for these secondary cau-salities. It should be noted that volatile organic compound (VOC) as an...... IAQproblem still is in the end of a phase of ad hoc solutions, in the middle of aresearch phase and only in the beginning of a regulatory phase. Any final officialregulation in this area will have to be tentative and the final regulation mustawait further research. Total volatile organic compound (TVOC) is...... an indicatorfor the presence of VOC indoors. The TVOC indicator can be used in relation toexposure characterization and source identification but for VOCs only, not as anindictor of other pollutants and their health effects. In risk assessment the TVOCindicator can only be used as a screening tool...

  1. Characterization of A New Organic Photochromic Compound

    Institute of Scientific and Technical Information of China (English)

    LIU,Guang-Fei; LIU,Lang; JIA,Dian-Zeng; HU,Xin; YU,Kai-Bei

    2004-01-01

    @@ A new organic photochromic compound, 1-phenyl-3-methyl-4-(4-fluoro)-benzal-5-pyrazolone ethanyl-thiosemicarbazone (PM4FBP-ETSC) was found to undergo photochromic reactions in the solid state. Upon irradiation with 365nm light the white powder sample turned light yellow. The photochromic properties were characterized by the time-dependent UV-vis reflective spectra. The structure of PM4FBP-ETSC was determined by single crystal X-ray diffraction.

  2. Emissions of volatile organic compounds from wood

    OpenAIRE

    Granström, Karin

    2005-01-01

    The central aim of this thesis is to support the efforts to counteract certain environmental problems caused by emissions of volatile organic compounds. The purpose of this work was (1) to develop a method to establish the amount of emitted substances from dryers, (2) to determine the effect of drying medium temperature and end moisture content of the processed material on emissions of monoterpenes and other hydrocarbons, (3) to examine the emissions of monoterpenes during production of pelle...

  3. Elimination of Pt Organic Compounds from Groundwater

    Czech Academy of Sciences Publication Activity Database

    Papežová, Barbora; Matějková, Martina; Kaštánek, František; Šolcová, Olga

    Maribor : IOS, Inštitut za okoljevarstvo in senzorje d.o.o, 2015 - (Lobnik, A.), PO1 ISBN 978-961-92863-3-3. [International Conference on Nanomaterials & Applications (NANOAPP 2015) /2./. Maribor (SI), 23.06.2015-26.06.2015] R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 Keywords : organic compounds * groundwater * decontamination techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Metabolic Reactions among Organic Sulfur Compounds

    Science.gov (United States)

    Schulte, M.; Rogers, K.

    2005-01-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

  5. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  6. The Atmospheric Fate of Organic Nitrogen Compounds

    Science.gov (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  7. Surface microlayer enrichment of volatile organic compounds and semivolatile organic compounds in drinking water source

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi; ZHOU Wen; YU Ya-juan; ZHANG Ai-qian; HAN Shuo-kui; WANG Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0. 16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  8. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  9. Sono-catalytic degradation of organic compounds

    International Nuclear Information System (INIS)

    Unlike aqueous effluents from the PUREX process, aqueous effluents from advanced separation processes developed to separate the minor actinides (Am, Cm) contain organic reagents in large amounts. To minimize the impact of these organic compounds on the next steps of the process, and to respect standard discharges, it is necessary to develop new techniques of degradation of organic compounds. Sono-chemistry appears as a very promising solution to eliminate organic species in aqueous nuclear effluents. Indeed, the propagation of an ultrasonic wave in a liquid medium induces the appearance of cavitation bubbles which will quickly grow and implode, causing local conditions and extreme temperatures and pressures. Each cavitation bubble can then be considered as a microreactor at high temperature and high pressure able to destroy organic molecules without the addition of specific reagents. The first studies on the effect of ultrasonic frequency on sono-luminescence and sono-lysis of formic acid have shown that the degradation of formic acid occurs at the bubble/liquid interface. The most striking difference between low-frequency and high-frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates secondary reactions not observed at 20 kHz. However, despite a much higher sono-chemical activity at high frequency, highly concentrated carboxylic acids in the aqueous effluents from advanced separation processes cannot be destroyed by ultrasound alone. To increase the efficiency of sono-chemical reactions, the addition of supported platinum catalysts has been studied. In these conditions, an increase of the kinetics of destruction of carboxylic acids such as oxalic acid is observed. (author)

  10. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species

  11. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  12. Organic compounds trapped in aqueous fluid inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Ruble, T.E.D.; George, S.C.; Lisk, M.; Quezada, R.A. [CSIRO Div. of Petroleum Resources, North Ryde (Australia)

    1998-12-31

    Fluid inclusion samples from several Australian oil wells have been analysed to document the prevalence and composition of volatile hydrocarbons contained within aqueous inclusions. These results clearly establish that trapped palaeo formation waters can be a source of such compounds, which are frequently predominant in samples with a low content of oil-bearing inclusions. The apparent ``anomalous`` hydrocarbons distributions derived from aqueous inclusions contain abundant water-soluble compounds, such as benzene and toluene, which may originate from interaction of formation waters with subsurface petroleum accumulations. Aqueous inclusions are also often enriched in alkenes and oxygenated species, such as furans, which are minor constituents of petroleum but could form via secondary processes such as anoxic microbial degradation in formation waters. The co-occurrence of aqueous-derived organic compounds within samples containing oil inclusions suggest the need for caution when interpreting volatile hydrocarbon distributions. However, the presence of these components in samples from dry wells could be used as a tool to substantiate the proximity of a petroleum accumulation in an area which would otherwise be considered to have low prospectivity. (author)

  13. Oceanic protection of prebiotic organic compounds from UV radiation

    OpenAIRE

    Cleaves, H. James; Miller, Stanley L.

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecul...

  14. Viscoelastic Properties of Organic Hybrid of Chlorinated Polythylene and Small Molecule

    Institute of Scientific and Technical Information of China (English)

    Chifei Wu

    2000-01-01

    Viscoelastic properties of an organic hybrid of chlorinated polyethylene (CPE) and N,Ndicyclohexyl-benzthiazyl-2-sulfenaamid (DZ) are investigated. All CPE/DZ hybrids show a single loss tangent (Fan δ ) peak. Its position shift linearly to higher temperature and its maximum value increases nonlinearly with increasing DZ content. The energy absorptinity (EA, a ratio of loss modulus to complex modulus) is used to characterize these hybrids. The DZ content dependence of EA changes at a critical value. The existence of a bending point in the DZ content dependence of glass transition temperature and energy absorptinity is due to the microseparation and the crystallization of DZ molecules in CPE/DZ hybrids with high DZ content. The molecular structural model can successfully explain the influence of dispersion state of DZ molecules in the matrix polymer CPE on the maximum value and the position of Tan δ of CPE/DZ hybrids.

  15. Biosynthesis of chlorine-containing compounds in Menispermum Dauricum root cultures

    International Nuclear Information System (INIS)

    Effects of chloride ion on production of acutumine and dechloroactumine, by Menispermum dauricum root culture, were studied. The chloride ion contents in the medium play a key role in production of both alkaloids. A medium with low chloride contents promoted production of dechloroactumine and suppressed that of acutumine. Production of the two alkaloids during the 60 days culture period was closely associated with root biomass. Both alkaloids accumulated in the roots and a relatively small proportion was exuded into the medium. The intact plant produced very little amounts of both alkaloids. On the average roots contained 22 and 75-fold more acutumine and dechloroactumine, respectively, than the intact plants. The biosythetic relationship between acutumine and dechloroactumine was studied using 13C-labeled tyrosine and 3H-labeled dechloroactumine as tracers. 13C-NMR spectra of 13C-labeled acutumine and dechloroactumine showed that the alkaloids, each composed of two molecules of tyrosine, are derived from the same biosythetic pathway. Feeding Menispermum dauricum roots, cultured in a chloride-enriched medium, with 3H-labeled dechloroactumine demonstrated that actumine is the only alkaloid metabolite of dechloroactumine. Conversion (5%) of the exogenously applied dechloroactumine, taken up by the roots, into acutumine showed that dechloroactumine is the precursor of acutumine. Incomplete conversion of dechloroactumine into acutumine suggests accumulation of the exogenously applied dechloroactumine in cell organelles and/or compartmentation of the enzymes involved in the biosynthesis of acutumine. In addition to acutumine, acutumidine and two new chlorine-containing alkaloids, named 1-epiacutumine, and 1-piacutumine, were isolated from M. Dauricum root cultures and the intact plants. Their structures were determined based on MS and 1H and 13C NMR spectra. Accumulations of these alkaloids were found to be low in the intact plant compared with the cultured roots. Crude

  16. Emission of volatile chlorinated hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    The emission of simple chlorinated compounds has been analyzed at five different cases at the district heating plant in Tranaas. The aim of this project has been to investigate the possibilities of finding a method for continuous monitoring of the emissions of chlorinated organic compounds from combustion. Samples were taken only after flue gas condensation. Three easily detectable chlorinated compounds could be quantified in spite of extremely low chlorine content in the fuel: * trichloroethylene, * tetrachloroethylene, * mono chlorinated benzene. Total amount of these compounds were > 0.2 mg/nm3. It is hard to find correlations between the emissions of chlorinated hydrocarbons and combustion conditions. One reason can be the sampling method which did not come up to our expectations. The high volatility of the solvent caused ice in the sampling train and most probably there has been great losses of the most volatile compounds. In spite of the fact that the combustion parameters in several samples were very good with low values of CO (0.2 mg/nm3 of monochlorinated benzene could be detected in the flue gas. Due to the unsatisfactory sampling method the real concentrations of the detected compounds are probably higher than the reported values. The amounts of chlorinated compounds detected are, in this plant, too low for continuous measurements. ( 6 refs., 14 figs., 4 tabs.)

  17. Comparison of purge and trap GC/MS and purgeable organic chloride analysis for monitoring volatile chlorinated hydrocarbons

    Science.gov (United States)

    Barber, Larry B.; Thurman, E. Michael; Takahashi, Yoshi; Noriega, Mary C.

    1992-01-01

    A combined field and laboratory study was conducted to compare purge and trap gas chromatography/mass spectrometry (PT-GC/MS) and purgeable organic chloride (POCl) analysis for measuring volatile chlorinated hydrocarbons (VCH) in ground water. Distilled-water spike and recovery experiments using 10 VCH indicate that at concentrations greater than 1 ??g/l recovery is more than 80 percent for both methods with relative standard deviations of about 10 percent. Ground-water samples were collected from a site on Cape Cod, Massachusetts, where a shallow unconfined aquifer has been contaminated by VCH, and were analyzed by both methods. Results for PT-GC/MS and POCl analysis of the ground-water samples were not significantly different (alpha = 0.05, paired t-test analysis) and indicated little bias between the two methods. Similar conclusions about concentrations and distributions of VCH in the ground-water contamination plume were drawn from the two data sets. However, only PT-GC/MS analysis identified the individual compounds present and determined their concentrations, which was necessary for toxicological and biogeochemical evaluation of the contaminated ground water. POCl analysis was a complimentary method for use with PT-GC/MS analysis for identifying samples with VCH concentrations below the detection limit or with high VCH concentrations that require dilution. Use of POCl as a complimentary monitoring method for PT-GC/MS can result in more efficient use of analytical resources.

  18. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    -order kinetics and occurred in parallel with the oxidation of methane. TeCM, CFC-11, and CFC-12 were not degradable in presence of oxygen and degradation of these compounds in the oxidative zone in landfill top covers is therefore expected to be limited. However these compounds were found degradable in the......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...... anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role in...

  19. Bromoform production in tropical open-ocean waters: OTEC chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  20. VOLATILE ORGANIC COMPOUNDS REMOVAL METHODS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Aydin Berenjian

    2012-01-01

    Full Text Available Volatile Organic Compounds (VOCs are among the most toxic chemicals which are detrimental to humans and environment. There is a significant need of fully satisfactory method for removal of VOCs. There are several methods including physical, chemical and biological treatments available to remove VOCs by either recovery or destruction. The aim of the present study is to summarize the available methods for VOC removal; trying to find a promising method among the available techniques. A wide range of VOCs can be treated biologically in which it offers advantages over more traditional processes including lower operating and capital costs and a smaller carbon footprint. However, due to a complex nature and diversity of VOCs it is hard to find a simple and promising method. Treatment still requires more research to solve the associate problems with available VOC elimination techniques.

  1. Precipitation of organic compounds in soils

    International Nuclear Information System (INIS)

    Precipitation samples collected in Hannover in 1990/1991 were analyzed for various organic compound classes. The following average concentrations were observed: formaldehyde (111 μg/l), acetaldehyde (12.0 μg/l), propionaldehyde (4.7 μg/l), n-alkanes from n-C18H38 to n-C33H68 (52.2 μg/l), polycyclic aromatic hydrocarbons (PAHs) (in summer 1989: 351.0 ng/l, in fall 1989: 765 ng/l) higher fatty acids from C9-C26 (24.9 μg/l), phenol (8.4 μg/l), 3-/4-methylphenol (3.3 μg/l), 2-nitrophenol (0.18 μg/l) 4-nitrophenol (6.1. μg/l) and higher alkanols. These compounds are of predominantly biogenic origin (n-alkanes, fatty acids, n-alkanols), formed by photochemical reaction in the atmosphere (aldehydes, phenols) or due to direct antropogenic sources (PAHs). (orig.)

  2. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I.; Fu, Shanlin;

    2015-01-01

    and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity...... toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and...... oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium...

  3. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  4. Organic compounds in meteorites and their origins

    Science.gov (United States)

    Hayatsu, R.; Anders, E.

    1981-01-01

    The current investigation represents an extensively updated version of a review conducted by Anders et al. (1973). The investigation takes into account the literature through mid-1980. It is pointed out that Type 1 carbonaceous chondrites (C1) contain 6% of their cosmic complement of carbon, mainly in the form of organic matter. Most authors now agree that this material represents primitive prebiotic matter. The principal questions remaining are what abiotic processes formed the organic matter, and to what extent these processes took place in locales other than the solar nebula, such as interstellar clouds or meteorite parent bodes. The problem is approached in three stages. It is attempted to reconstruct the physical conditions during condensation from the clues contained in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is determined on the basis of thermodynamic calculations. Model experiments on the condensation of carbon are performed, and the synthesized compounds are compared with those actually found in meteorites.

  5. The formation and fate of chlorinated organic substances in temperate and boreal forest soils

    Czech Academy of Sciences Publication Activity Database

    Clarke, N.; Fuksová, Květoslava; Gryndler, Milan; Lachmanová, Z.; Liste, H. H.; Rohlenová, Jana; Schroll, R.; Schröder, P.; Matucha, Miroslav

    2009-01-01

    Roč. 16, č. 2 (2009), s. 127-143. ISSN 0944-1344 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : Carbon cycle * Chlorination * Chlorine biogeochemistry Subject RIV: GK - Forestry Impact factor: 2.411, year: 2009

  6. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao

    2015-12-02

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  7. Tritium labeling of organic compounds deposited on porous structures

    Science.gov (United States)

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  8. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds

    International Nuclear Information System (INIS)

    The industrial release of hydrocarbons and chlorine-containing organic molecules into the environment continues to attract considerable public concern, which in turn has led to governmental attempts to control such emissions. The challenge is to reduce pollution without stifling economic growth. Chlorine-containing pollutants are known to be particularly stable, and at present the main industrial process for their destruction involves thermal oxidation at 1,000oC, an expensive process that can lead to the formation of highly toxic by-products such as dioxins and dibenzofurans. Catalytic combustion at lower temperatures could potentially destroy pollutants more efficiently (in terms of energy requirements) and without forming toxic by-products. Current industrial catalysts are based on precious metals that are deactivated rapidly by organochlorine compounds. Here we report that catalysts based on uranium oxide efficiently destroy a range of hydrocarbon and chlorine-containing pollutants, and that these catalysts are resistant to deactivation. We show that benzene, toluene, chlorobutane and chlorobenzene can be destroyed at moderate temperatures (oC) and industrially relevant flow rates. (Author)

  9. Biodegradation of organ chlorine pesticides in contaminated soil collected from Yen Tap, Cam Khe, Phu Tho

    International Nuclear Information System (INIS)

    Biodegradation of POPs contaminant in soil collected from Phu Tho province and Nghe An province had carried out. The process comprises treating soil, which contains anaerobic and aerobic microbes capable of transforming lindane and DDT into harmless material and being under anaerobic and aerobic steps. Significant biodegradation of POPs contaminants occurred in there tests. But some of toxic organic compounds remained. (author)

  10. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    International Nuclear Information System (INIS)

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 μg/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult

  11. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    International Nuclear Information System (INIS)

    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C6H5C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example

  12. Clean production of chlorine from hydrogen chloride with Mn-compound as intermediate☆

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Yong Sun; Jinping Zhang; Zuohu Li; Yunshan Wang

    2015-01-01

    A new process is developed by using compound Mn as intermediate to produce Cl2 from HCl, with the following steps. (1) HCl steam is decomposed by intermediate Mn2O3 to produce Cl2 and MnCl2 at 500 °C. (2) Produced MnCl2 is oxidized by water steam to produce MnO at 450 °C. (3) The MnO compound is oxidized by air to yield Mn2O3. The X-ray diffraction (XRD) crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions. Long term experiments for continuous conversion of HCl to Cl2 by using Mn2O3 as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2 on stream of 30 h. The production of Cl2 from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.

  13. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O2, H2O and CO2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  14. Decomplexing metallic cations from metallo-organic compounds

    OpenAIRE

    Melian, C.I.; Kapteijn F.; Moulijn, J.A.

    2006-01-01

    The invention is directed to a process for liberating metallic cations from metallo-organic compounds, said process comprising contacting an aqueous solution of the metallo-organic compound with an oxidising agent, thereby oxidising the organic component and obtaining the free cation

  15. Organic compounds in concrete from demolition works.

    Science.gov (United States)

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  16. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  17. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  18. Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes.

    Science.gov (United States)

    Das, Siva Prasad; Ganguly, Rakesh; Li, Yongxin; Soo, Han Sen

    2016-09-14

    A growing number of halogenated organic compounds have been identified as hazardous pollutants. Although numerous advanced oxidative processes have been developed to degrade organohalide compounds, reductive and nucleophilic molecular approaches to dehalogenate organic compounds have rarely been reported. In this manuscript, we employ nickel(ii)-ate complexes bearing the o-phenylenebis(N-methyloxamide) (Me2opba) tetraanionic ligand as nucleophilic reagents that can react with alkyl halides (methyl up to the bulky isobutyl) by O-alkylation to give their respective imidate products. Four new nickel(ii) complexes have been characterized by X-ray crystallography, and the salient structural parameters and FT-IR vibrational bands (∼1655 cm(-1)) concur with their assignment as the imidate tautomeric form. To the best of our knowledge, this is the first report on the nucleophilic reactivity of Ni(II)(Me2opba) with halogenated organic compounds. The parent nickel(ii) Me2opba complex exhibits reversible electrochemical oxidation and reduction behavior. As a proof of concept, Ni(II)(Me2opba) and its alkylated congeners were utilized for the electrocatalytic reduction of chloroform, as a representative, simple polyhalogenated organic molecule that could arise from the oxidative treatment of organic compounds by chlorination. Modest turnover numbers of up to 6 were recorded, with dichloromethane identified as one of the possible products. Future efforts are directed towards bulkier -ate complexes that possess metal-centered instead of ligand-centered nucleophilic activity to create more effective electrocatalysts for the reduction of halogenated organic compounds. PMID:27506275

  19. Secondary organic aerosol from biogenic volatile organic compound mixtures

    Science.gov (United States)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  20. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  1. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (Ktw) are measured. • Measured Ktw values are nearly the same as the respective Kow. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (Ktw) for organic compounds, the log Ktw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log Ktw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log Ktw are closely related to their respective log Kow (octanol–water), with log Kow = 1.9 to 6.5. A significant difference is observed between the present and early measured log Ktw for compounds with log Kow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log Kaw/lipid) are virtually identical to the respective log Ktw values, which manifests the dominant lipid-partition effect of the compounds with algae

  2. 40 CFR 60.712 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  3. 40 CFR 60.742 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  4. 40 CFR 60.452 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  5. 40 CFR 60.492 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  6. 40 CFR 60.602 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  7. 40 CFR 60.462 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  8. 40 CFR 60.722 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  9. 40 CFR 60.582 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  10. 40 CFR 60.622 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  11. Volatile organic compound sources for Southern Finland

    Science.gov (United States)

    Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

    2014-05-01

    Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in

  12. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater. PMID:25213288

  13. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke.

    Science.gov (United States)

    Shawwa, A R; Smith, D W; Sego, D C

    2001-03-01

    Delayed petroleum coke, a waste by-product from the oil sand industry, was utilized in the production of activated carbon. The activated carbon was then evaluated for color and chlorinated organics reduction from pulp mill wastewater. The activation of the petroleum coke was evaluated using a fixed bed reactor involving carbonization and activation steps at temperature of 850 degrees C and using steam as the activation medium. The activation results showed that the maximum surface area of the activated coke was achieved at an activation period of 4 h. The maximum surface area occurred at burnoff and water efficiency of 48.5 and 54.3%, respectively. Increasing the activation period to 6 h resulted in a decrease in the surface area. Methylene blue adsorption results indicated that the activation process was successful. Methylene blue adsorbed per 100 g of applied activated coke was 10 times higher than that adsorbed by raw petroleum coke. Adsorption equilibrium results of the bleached wastewater and the activated coke showed that significant color, COD, DOC and AOX removal (> 90%) was achieved when the activated coke dose exceeded 15,000 mg/L. Adsorption isotherms, in terms of COD, DOC, UV and color were developed based on the batch equilibrium data. Based on these isotherms, the amount of activated coke required to achieve certain removal of color and AOX can be predicted. The utilization of the petroleum coke for the production of activated carbon can provide an excellent disposal option for the oil sand industry at the same time would provide a cheap and valuable activated carbon. PMID:11228973

  14. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    International Nuclear Information System (INIS)

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N2 adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm3. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  15. Kineic Modelling of Degradation of Organic Compounds in Soils

    Institute of Scientific and Technical Information of China (English)

    WANGZONGSHENG; ZHANGSHUIMING; 等

    1997-01-01

    A set of equations in suggested to describe the kinetics of degradation of organic ompounds applied to soils ad the kinetics of growth of the inolved microorganisms:-dx/dt=jx+kxm dm/dt=-fm+gxm where x is the concentration of organic compound at time t,m is the numer of microorganisms capable of degrading the organic compound at time t,while j,k,f and g are positive constants,This model can satisfactorily be used to explain the degradation curve of organic compounds and the growth curve of the involved microorganisms.

  16. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  17. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  18. Effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter from sewage treatment plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter(DOM) from sewage treatment plants was investigated in this study.The results show that ozone pre-oxidation enhanced the photobacteria acute toxicity of the water samples.DOM before and after ozone pre-oxidation was fractionated by resins into six kinds of hydrophobic and hydrophilic organics.The six fractions were chlorinated individually and the photobacteria acute toxicity before and after chlorination was tested.It was found that the percentage of hydrophilic organics in DOM significantly increased after ozone pre-oxidation and hydrophilic organics exhibited remarkably higher acute toxicity than hydrophobic organics.In view of potentiometric titration and fourier transform infrared(FTIR) analysis,the hydrophilic organics showed a rather higher content of ph-OH structures than hydrophobic organics.

  19. Mutagenic and Estrogenic Effects of Organic Compounds in Water Treated by Different Processes:A Pilot Study

    Institute of Scientific and Technical Information of China (English)

    LU Yi; LYU Xue Min; XIAO San Hua; YANG Xiao Ming; WANG Ya Zhou; TANG Fei

    2015-01-01

    Objective In this study, a pilot-scale investigation was conducted to examine and compare the biotoxicity of the organic compounds in effluents from five treatment processes (P1-P5) where each process was combination of preoxidation (O3), coagulation, sedimentation, sand filtration, ozonation, granular activated carbon, biological activated carbon and chlorination (NaClO). Methods Organic compounds were extracted by XAD-2 resins and eluted with acetone and dichlormethane (DCM). The eluents were evaporated and redissolved with DMSO or DCM. The mutagenicity and estrogenicity of the extracts were assayed with the Ames test and yeast estrogen screen (YES assay), respectively. The organic compounds were detected by GC-MS. Results The results indicated that the mutation ratio (MR) of organic compounds in source water was higher than that for treated water. GC-MS showed that more than 48 organic compounds were identified in all samples and that treated water had significantly fewer types and concentrations of organic compounds than source water. Conclusion To different extents, all water treatment processes could reduce both the mutagenicity and estrogenicity, relative to source water. P2, P3, and P5 reduced mutagenicity more effectively, while P1 reduced estrogenicity, most effectively. Water treatment processes in this pilot plant had weak abilities to remove Di-n-butyl phthalate or 1, 2-Benzene dicarboxylic acid.

  20. Fate of effluent organic matter during soil aquifer treatment: biodegradability, chlorine reactivity and genotoxicity.

    Science.gov (United States)

    Quanrud, David M; Arnold, Robert G; Lansey, Kevin E; Begay, Carmen; Ela, Wendell; Gandolfi, A Jay

    2003-03-01

    Hydrophobic acid (HPO-A) and transphilic acid (TPI-A) fractions of dissolved organic matter (DOM) were isolated from a domestic secondary wastewater effluent that was polished via soil aquifer treatment (SAT). Fractions were isolated using XAD resin adsorption chromatography from samples obtained along the vadose zone flowpath at a full-scale basin recharge facility in Tucson, Arizona. Changes in isolate character during SAT were established via biodegradability (batch test), specific ultraviolet light absorbance (SUVA), trihalomethane formation potential (THMFP), and Ames mutagenicity assays. The dissolved organic carbon (DOC) concentration decreased by >90% during SAT. A significant fraction (up to 20%) of isolated post-SAT HPO-A was biodegradable. The (apparent) refractory nature of DOM that survives SAT may be a consequence of low DOC concentration in groundwater as well as the nature of the compounds themselves. Specific THMFP (microg THM per mg DOC) of HPO-A and TPI-A varied little as a consequence of SAT, averaging 52 and 49 microg THM per mg DOC, respectively. The nonbiodegradable fractions of HPO-A and TPI-A exhibited higher reactivities: 89 and 95 microg THM per mg DOC, respectively. Genotoxicity of HPO-A (on a per mass basis) increased after SAT, suggesting that responsible compounds are removed less efficiently than bulk organics during vadose zone transport. PMID:15384271

  1. Organic compounds in circumstellar and interstellar environments.

    Science.gov (United States)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth. PMID:25720971

  2. Organic Compounds in Circumstellar and Interstellar Environments

    Science.gov (United States)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  3. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.;

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs and...... it proposes a method for the measurement of this TVOC entity. Within the specified range, the measured concentrations of identified VOCs (including 64 target compounds) are summed up, concentrations of non-identified compounds in toluene equivalents are added and, together with the identified VOCs...

  4. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan;

    2009-01-01

    air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...... compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not...... affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection....

  5. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  6. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  7. SITE DEMONSTRATION OF ENHANCED IN SITU BIOREMEDIATION OF CHLORINATED AND NON-CHLORINATED ORGANIC COMPOUNDS IN FRACTURED BEDROCK

    Science.gov (United States)

    A field demonstration of an enhanced in situ bioremediation technology was conducted between March 1998 and August 1999 at the ITT Industries Nithg Vision (ITTNV) Division plant in Roanoke, Virginia. The bioremediation process was evaluated for its effectiveness in treating both ...

  8. Green chemistry principles in organic compound synthesis and analysis

    OpenAIRE

    Ruchi Verma; Lalit Kumar; Vijay Bhaskar Kurba

    2014-01-01

    The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  9. Predicting the emission of volatile organic compounds from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  10. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    Science.gov (United States)

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  11. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new carbon-functiona

  12. An investigation of recalcitrant organic compounds in leachates

    OpenAIRE

    Yunus, Anika

    2009-01-01

    Recalcitrant organic compounds remain a key challenge in landfill leachate management as they are resistant to microbial degradation and have potential to damage the water environment. Conventional leachate characterisation methods are time consuming and limited by their inability to provide compositional analysis. This research therefore investigates the characteristics of recalcitrant organic compounds in leachates and undertakes a feasibility study of the possible use of UV absorption and ...

  13. On the nomenclature of isotope-labelled organic compounds

    International Nuclear Information System (INIS)

    After shortly reviewing previously proposed nomenclature systems a compilation is given of the most essential rules out of 35 issued by the IUPAC Commission on Nomenclature of Organic Compounds in 1978 and governing the nomenclature of isotope-labelled organic compounds. Terms defined in detail are assigned to each other. Equivalent English and Russian expressions are given for frequently used terms. Additional rules proposed by a CMEA working group are cited. (author)

  14. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  15. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  16. Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter

    Czech Academy of Sciences Publication Activity Database

    Bastviken, D.; Thomsen, F.; Svensson, T.; Karlsson, S.; Sandén, P.; Shaw, G.; Matucha, Miroslav; Öberg, G.

    2007-01-01

    Roč. 71, č. 13 (2007), s. 3182-3192. ISSN 0016-7037 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : CHLOROACETIC ACIDS * BOUND CHLORINE * DEGRADATION Subject RIV: DF - Soil Science Impact factor: 3.665, year: 2007

  17. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, J.S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  18. Sorption of Organic Compounds in Soil Organic Matter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Soil organic matter (SOM)is the predominant component for sorption of hydrophobic organic compouds in soil and sorption by SOM ultimately affects chemical fate and availability in soil ,and the degree of remedia tion success of contaminated soils. This paper summarizes the latest development on sorption of organic com pounds in soil (natural) organic matter, addresses four sorption mechanisms: surface adsorption, solid - phase partitioning,dual-mode sorption,and fixed-pore sorption model ,and presents future research directions as well.

  19. Prevention of marine biofouling using natural compounds from marine organisms.

    Science.gov (United States)

    Armstrong, E; Boyd, K G; Burgess, J G

    2000-01-01

    All surfaces that are submerged in the sea rapidly become covered by a biofilm. This process, called biofouling, has substantial economic consequences. Paints containing tri-butyl-tin (TBT) and copper compounds are used to protect marine structures by reducing biofouling. However, these compounds have damaging effects on the marine environment, as they are not biodegradable. It has been noted that many seaweeds and invertebrates found in the sea are not covered by a mature biofilm. This is due to the release of compounds into the surrounding seawater that deter the settlement of fouling organisms. In addition, seaweeds and invertebrates have bacteria on their surfaces that produce compounds to deter settling organisms. The production of compounds by bacteria and their living hosts work in concert to protect the hosts' surfaces. All of these compounds can be collected so they may be natural alternatives to TBT and copper compounds. However, the benefits associated with the use of bacteria as sources of these compounds means that bacteria are the organisms of choice for obtaining natural products for antifouling coatings. PMID:11193296

  20. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    Science.gov (United States)

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  1. Leveraging the beneficial compounds of organic and pasture milk

    Science.gov (United States)

    Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

  2. 40 CFR 60.432 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  3. 40 CFR 60.392 - Standards for volatile organic compounds

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  4. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...

  5. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  6. In Situ and Laboratory Studies on the Fate of Specific Organic Compounds in an Anerobic Landfill Leachate Plume, 1. Experimental Conditions and Fate of Phenolic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Albrechtsen, Hans-Jørgen; Heron, Gorm;

    1995-01-01

    microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as...

  7. Metals, pesticides, and semivolatile organic compounds in sediment in Valley Forge National Historical Park, Montgomery County, Pennsylvania

    Science.gov (United States)

    Reif, Andrew G.; Sloto, Ronald A.

    1997-01-01

    The Schuylkill River flows through Valley Forge National Historical Park in Lower Providence and West Norriton Townships in Montgomery County, Pa. The concentration of selected metals, pesticides, semivolatile organic compounds, and total carbon in stream-bottom sediments from Valley Forge National Historical Park were determined for samples collected once at 12 sites in and around the Schuylkill River. Relatively low concentrations of arsenic, chromium, copper, and lead were detected in all samples. The concentrations of these metals are similar to concentrations in other stream-bottom sediment samples collected in the region. The concentrations of iron, manganese, and zinc were elevated in samples from four sites in the Schuylkill River, and the concentration of mercury was elevated in a sample from an impoundment along the river. The organophosphorus insecticide diazinon was detected in relatively low concentrations in half of the 12 samples analyzed. The organo-chlorine insecticide DDE was detected in all 12 samples analyzed; dieldrin was detected in 10 samples, chlordane, DDD, and DDT were detected in 9 samples, and heptachlor epoxide was detected in one sample. The concentrations of organo-chlorine and organophosphorus insecticides were relatively low and similar to concentrations in samples collected in the region. Detectable concentrations of 17 semivolatile organic compounds were measured in the 12 samples analyzed. The most commonly detected compounds were fluoranthene, phenanthrene, and pyrene. The maximum concentration detected was 4,800 micrograms per kilogram of phenanthrene. The highest concentrations of compounds were detected in Lamb Run, a small tributary to the Schuylkill River with headwaters in an industrial corporate center. The concentration of compounds in the Schuylkill River below Lamb Run is higher than the Schuylkill River above Lamb Run, indicating that sediment from Lamb Run is increasing the concentration of semivolatile organic

  8. Chlorination and dechlorination rates in a forest soil - A combined modelling and experimental approach.

    Science.gov (United States)

    Montelius, Malin; Svensson, Teresia; Lourino-Cabana, Beatriz; Thiry, Yves; Bastviken, David

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Clorg). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Clorg are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl(-) transformed to Clorg per time unit) and specific dechlorination (i.e., fraction of Clorg transformed to Cl(-) per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d(-1) and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01-0.03d(-1) and were similar among all treatments. This study finds that soil Clorg levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Clorg compounds, while another Clorg pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. PMID:26950634

  9. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Nung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chiou, Cary T., E-mail: carychio@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China); U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Lin, Tsair-Fuh, E-mail: tflin@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-30

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K{sub tw}) are measured. • Measured K{sub tw} values are nearly the same as the respective K{sub ow}. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K{sub tw}) for organic compounds, the log K{sub tw} values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K{sub tw} determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K{sub tw} are closely related to their respective log K{sub ow} (octanol–water), with log K{sub ow} = 1.9 to 6.5. A significant difference is observed between the present and early measured log K{sub tw} for compounds with log K{sub ow} > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K{sub aw/lipid}) are virtually identical to the respective log K{sub tw} values, which manifests the dominant lipid-partition effect of the compounds with algae.

  10. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na+ and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  11. The dominant spin relaxation mechanism in compound organic semiconductors

    OpenAIRE

    Bandyopadhyay, Supriyo

    2010-01-01

    Despite the recent interest in "organic spintronics", the dominant spin relaxation mechanism of electrons or holes in an organic compound semiconductor has not been conclusively identified. There have been sporadic suggestions that it might be hyperfine interaction caused by background nuclear spins, but no confirmatory evidence to support this has ever been presented. Here, we report the electric-field dependence of the spin diffusion length in an organic spin-valve structure consisting of a...

  12. Well-purging criteria for sampling purgeable organic compounds

    Science.gov (United States)

    Gibs, J.; Imbrigiotta, T.E.

    1990-01-01

    The results indicate that 1) purgeable organic compound concentrations stabilized when three casing volume were purged in only 55% of the cases evaluated in this study, 2) purgeable organic compounds concentrations did not consistently follow the temporal variation of, nor stabilize at the same time as, the measure field characteristics, and 3) purging to achieve hydraulic equilibrium between casing and aquifer water consistently underestimated the time and casing volumes needed to achieve stable values of water-quality measurements in highly transmissive aquifers. The conclusion from these data is that none of the previously recommended criteria for purging a well can be applied reliably to collecting a "representative' sample of purgeable organic compounds. These results indicate that the criteria for purging a well prior to sampling for purgeable organic compounds must take into account other factors, such as the unique hydrogeologic characteristics of a site, the nature and extent of purgeable organic compounds present, and areal extent of the contamination, the well construction, and the sampling objectives of the investigation. -from Authors

  13. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; Mahaffy, P.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  14. Occurence of chlorinated aromatic compounds in filter deposits of an incinerator plant for radioactive waste. Pt. 3

    International Nuclear Information System (INIS)

    Filter deposits of an incinerator plant for radioactive waste containing considerable amounts of chlorinated PAHs (56 μg/g) were analyzed for tetrachlorinated dibenzo-p-dioxines (TCDDs). 2.3 ng/g 2,3,7,8-TCDD and a total TCDD amount of 12.0 ng/g were found. These concentrations are in the same range as published for fly ash samples on municipal incineration plants. (Author)

  15. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.; Ceaurriz, J. de; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A.C.; Risse, U.; Rothweiler, H.; Seifert, B.; Younes, M.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs and...... it proposes a method for the measurement of this TVOC entity. Within the specified range, the measured concentrations of identified VOCs (including 64 target compounds) are summed up, concentrations of non-identified compounds in toluene equivalents are added and, together with the identified VOCs......, they give the TVOC value. The report reviews the TVOC concept with respect to its usefulness for exposure assessment and control and for the prediction of health or comfort effects. Although the report concludes that at present it is not possible to use TVOC as an effect predictor, it affirms the...

  16. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.; Sundin, P.; Wesen, C.

    2004-01-01

    that of the unchlorinated fatty acids. Lipids of the Arctic grayling (Thymallus arcticus), a fish resident to the spawning lake of the salmon, contained higher concentrations of chlorinated fatty acids than grayling in a lake without migratory salmon. This may reflect a food-chain transfer of the...... organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration....... The decrease was correlated with that of triacylglycerols in the salmon muscle, indicating the chlorinated fatty acids to be mobilized and metabolized to approximately the same extent as the other fatty acids. Chlorinated fatty acids were also transferred to the maturing roe in a manner similar to...

  17. Methods in plant foliar volatile organic compounds research 1

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  18. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  19. Biokinetics and dosimetry of radioactively labelled organic C-14 compounds

    International Nuclear Information System (INIS)

    The report starts with summarising research work and the resulting scientific information in connection with the dosimetry of C-14 labelled organic compounds. Biokinetic models are developed for compounds such as benzene, phenol, aniline, nitrobenzene, and a selection of pharmaceuticals, in order to show the radioactivity distribution after administration of the C-14 labelled substances. Based on the those models, dose coefficients and excretion rates are derived. The following synoptic view of the available data library leads on to a discussion of various aspects, as eg. the question of whether and how monitoring for detection of incorporation of C-14 administered with labelled organic compounds is possible. None of the questions and aspects arising in connection with this subject can be adequately dealt with in the present document, but concepts and methods are presented which permit an interpretation of radioactivity excretion data measured after incorporation of C-14 labelled organic substances. (orig./CB)

  20. Search for bioorganic compounds and organisms on Mars

    International Nuclear Information System (INIS)

    From the experiment with accelerator beams, simulating interactions of cosmic rays with atmosphere in primitive planets and satellites, we concluded that the bioorganic compounds like amino acids is easily formed in a simple gas mixture by bombarding charged particles, even if they are not a strongly deduced gas such as CH4 and HN3. Organic compounds might be formed in primitive Mars, because a substantial amount of water had existed in Mars 4 billion years ago. On the other hand, we found that cosmic rays is one of the most effective energy source for chemical evolution not only in the heliosphere as well as in interstellar space. Although neither organic compounds nor organisms were detected in Mars by Viking in 1970's, we cannot exclude their existences in Mars. Because, the soil samples, which were collected from the Mars surface, might be irradiated by ultraviolet sunlight and might be strongly oxidizing soils. We plan to send a new instrument to the places where the traces of water were found or near the poles of Mars. The proposed instrument consists of a quadrupole mass spectrometer to detect chemical compounds and a fluorescent microscope system to detect organisms (cells) and bioorganic compounds in bulk. We propose to carry out this program as an international cooperative work with scientists and technicians in the world, who are interested or already working in this field. (author). Abstract only

  1. Secondary Organic Aerosol Formation From Select Volatile Organic Compounds

    OpenAIRE

    Chen, Chia-Li

    2015-01-01

    This thesis enhances our understanding of secondary organic aerosol (SOA) formation from select anthropogenic sources including polycyclic aromatic hydrocarbons (PAHs), PAHs mixed with m-xylene and an atmospheric surrogate, and unburned whole gasoline vapors. Major SOA chemical characteristics and physical properties were explored along with SOA formation within the UCR CE-CERT environmental chamber. SOA formation was significant for all three PAHs precursors during photooxidation under high ...

  2. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  3. Synthesis of Organic Compounds over Selected Types of Catalysts

    Directory of Open Access Journals (Sweden)

    Omar Mohamed Saad Ismail

    2011-05-01

    Full Text Available This study provides an overview for the utilization of different catalytic material in the synthesis of organic compounds for important reactions such as heck reaction, aldol reaction, Diels- Alder and other reactions. Comparisons between multiple catalysts for the same reaction and justifications for developing new catalyzed materials are discussed. The following topics are introduced in this work; (1 solid base catalysts, (2 clay catalysts, (3 palladium catalysts, and (4 catalysts to produce organic compound from CO2. The features of these catalysts a long with the conjugated reactions and their selectivity are explained in details, also, some alternatives for toxic or polluting catalysts used in industry are suggested.

  4. Inventory of volatile organic compound emissions in Finland, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mroueh, U.M. [Helsinki Univ. of Technology, Espoo (Finland). Chem. Lab.

    1988-12-31

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive.

  5. Inventory of volatile organic compound emissions in Finland, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mroueh, U.M. (Helsinki Univ. of Technology, Espoo (Finland). Chem. Lab.)

    1988-01-01

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive.

  6. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  7. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds

    International Nuclear Information System (INIS)

    Highlights: ► Surfactant modified zeolite could greatly retain organic pollutants. ► Uptake of organic compounds was due to the loaded surfactant. ► kow is crucial for the uptake of both ionizable and non-ionizable organic solutes. ► pKa is another factor affecting adsorption process of ionizable organic pollutants. ► Adsorption mechanisms of the two kinds of organic pollutants were proposed. - Abstract: The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pKa) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na6Al6Si10O32·12H2O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [1 0 0] and 2.8 Å × 4.8 Å [1 0 1]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to kow value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the

  8. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jie; Meng, Wenna [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Wu, Deyi, E-mail: dywu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Zhang, Zhenjia; Kong, Hainan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Surfactant modified zeolite could greatly retain organic pollutants. Black-Right-Pointing-Pointer Uptake of organic compounds was due to the loaded surfactant. Black-Right-Pointing-Pointer k{sub ow} is crucial for the uptake of both ionizable and non-ionizable organic solutes. Black-Right-Pointing-Pointer pK{sub a} is another factor affecting adsorption process of ionizable organic pollutants. Black-Right-Pointing-Pointer Adsorption mechanisms of the two kinds of organic pollutants were proposed. - Abstract: The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK{sub a}) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na{sub 6}Al{sub 6}Si{sub 10}O{sub 32}{center_dot}12H{sub 2}O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Angstrom-Sign Multiplication-Sign 4.5 Angstrom-Sign [1 0 0] and 2.8 Angstrom-Sign Multiplication-Sign 4.8 Angstrom-Sign [1 0 1]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k{sub ow} value, suggesting that more hydrophobic organic contaminants are more easily retained

  9. Determination of total organic halogens (TOX); Bias from a non-halogenated organic compound

    Energy Technology Data Exchange (ETDEWEB)

    Gron, C. [Technical Univ. of Denmark, Lyngby (Denmark); Dybdahl, H.P. [Water Quality Institute, Harsholm (Denmark)

    1996-08-01

    Determination of total organic halogens (TOX) has proven susceptible to bia high concentrations of a non-halogenated organic compound, N-butylbenzenesulfonamide (NBSA). High apparent TOX values occurred with more than 5-10 mg of NBSA applied to the carbon columns of the TOX procedure. Other non-halogenated organic compounds and inorganic sulfide may bias the method as well. When the TOX method is used as a measure of total organic halogens in environmental regulation and control, the risk of positive bias from non-halogenated compounds should always be emphasized. 16 refs., 3 figs.

  10. [Pollution characteristics of volatile organic compounds from wastewater treatment system of vitamin C production].

    Science.gov (United States)

    Guo, Bin; Lu, Guo-Li; Ren, Ai-Ling; Du, Zhao; Xing, Zhi-Xian; Han, Peng; Gao, Bo; Liu, Shu-Ya

    2013-12-01

    Using a portable gas chromatography and mass spectrometry (GC-MS), the volatile organic compounds (VOCs) pollution in each unit of the wastewater treatment system for vitamin C production was studied, and the species characteristics of volatile organic compounds (VOCs) were analyzed and summarized. The results showed that 32 kinds of volatile organic compounds were identified, and the total mass concentration range of volatilizing VOCs was 0.9629-32.0970 mg x m(-3). The most species and the largest concentration (25 and 32.0970 mg x m(-3)) of volatilizing VOCs were found in grit chamber, which was located in the most front-end of the wastewater treatment system and was in semi-closed state. The proportion of molecular sulfide in the grit chamber was as high as 30.02%; Higher proportions of aromatic hydrocarbons were monitored in the subsequent processing units, with percentages of 21.06%-31.48%. The main types of VOCs monitored were chlorinated hydrocarbons and ketones, accounting for 6.39%-55.80% and 10.40%-58.08% of the total amount, respectively; 14 kinds of VOCs were detected in every unit of the wastewater treatment system: acetone, 2-butanone, n-hexane, chloroform, chlorobenzene etc, among which, vinyl chloride, styrene and 1,3-butadiene belong to the highly toxic substances. The vinyl chloride concentration exceeded the standard of "atmospheric pollutants emission standards" (GB 16297-1996), while 1,3-butadiene and other pollutants have no national standard limits. The results of this study provide a scientific basis for the revision of China's pharmaceutical wastewater VOCs emission standards. PMID:24640904

  11. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    International Nuclear Information System (INIS)

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  12. Sonochemical Treatment of Water Polluted by Chlorinated Organocompounds. A Review

    Directory of Open Access Journals (Sweden)

    Olivier Louisnard

    2010-02-01

    Full Text Available As one of several types of pollutants in water, chlorinated compounds have been routinely subjected to sonochemical analysis to check the environmental applications of this technology. In this review, an extensive study of the influence of the initial concentration, ultrasonic intensity and frequency on the kinetics, degradation efficiency and mechanism has been analyzed. The sonochemical degradation follows a radical mechanism which yields a very wide range of chlorinated compounds in very low concentrations. Special attention has been paid to the mass balance comparing the results from several analytical techniques. As a conclusion, sonochemical degradation alone is not an efficient treatment to reduce the organic pollutant level in waste water.

  13. Separation of organic compounds binding risk elements in plant biomass

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, D.; Pavlík, Milan; Tlustoš, P.; Balík, J.; Vašíčková, Soňa; Száková, J.

    Vol. 1. Nyíregyháza: Continent-Ph Ltd, 2005 - (Simon, L.), s. 277-282 ISBN 963 86918 16. [International Scientific Conference Innovation and Utility in the Visegrad Fours. Nyíregyháza (HU), 13.10.2005-15.10.2005] R&D Projects: GA MŠk(CZ) OC 631.002 Institutional research plan: CEZ:AV0Z40550506 Keywords : plant biomass * organic compounds binding risk elements * spinach Subject RIV: CC - Organic Chemistry

  14. Research of volatile organic compounds from petrol filling stations

    OpenAIRE

    Bikbajeva, Žana

    2008-01-01

    The research focuses on the environmental problem of volatile organic compounds in ambient air of petrol filling stations. The literature review of the issues, arising from petrol-related VOCs, with actual and proposed VOC emissions trends in Europe, have been performed. Besides petrol filling station’s typical technology layout, petrol nature and composition, applicable petrol vapour recovery solutions and their efficiency were examinated. The volatile organic compounds’ experimental researc...

  15. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob;

    2013-01-01

    The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...... distributed bioactive zones with partial degradation to ethene were identified in the clay till matrix (thickness from 0.10 to 0.22 m). In one sub-section profile the presence of Dhc with the vcrA gene supported the occurrence of degradation of cis-DCE and VC, and in another enriched δ13C for TCE, cis-DCE and...

  16. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    OpenAIRE

    Ni, Z

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquifer thermal energy storage (ATES) appears attractive because such integration provides a promising solution for redevelopment of urban areas in terms of improving the local environmental quality as well as achieving ...

  17. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooy, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was developed to

  18. OXYGENATED ORGANIC COMPOUND CONCENTRATIONS NEAR A ROADWAY IN LITHUANIA, SSR

    Science.gov (United States)

    During the period June 1 to June 9, 1989, aldehyde and other oxygenated organic compound concentrations were examined at sites 3, 10, and 80 meters northeast of the Vilnius-Kaunas highway in Lithuania, SSR by collecting 120 liter (1 L/min for 120 min) samples on 2,4-dinitrophenyl...

  19. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  20. Qualitative analysis of volatile organic compounds on biochar

    Science.gov (United States)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  1. 40 CFR 60.442 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  2. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine;

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and...

  3. Instrument for Analysis of Organic Compounds on Other Planets

    Science.gov (United States)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  4. Modeling emissions of volatile organic compounds from silage

    Science.gov (United States)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  5. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds.

    Science.gov (United States)

    Öztürk, Sadullah; Kösemen, Arif; Şen, Zafer; Kılınç, Necmettin; Harbeck, Mika

    2016-01-01

    Poly(3-methylthiophene) (PMeT) thin films were electrochemically deposited on quartz crystal microbalance QCM transducers to investigate their volatile organic compound (VOC) sensing properties depending on ambient conditions. Twelve different VOCs including alcohols, ketones, chlorinated compounds, amines, and the organosphosphate dimethyl methylphosphonate (DMMP) were used as analytes. The responses of the chemical sensors against DMMP were the highest among the tested analytes; thus, fabricated chemical sensors based on PMeT can be evaluated as potential candidates for selectively detecting DMMP. Generally, detection limits in the low ppm range could be achieved. The gas sensing measurements were recorded at various humid air conditions to investigate the effects of the humidity on the gas sensing properties. The sensing performance of the chemical sensors was slightly reduced in the presence of humidity in ambient conditions. While a decrease in sensitivity was observed for humidity levels up to 50% r.h., the sensitivity was nearly unaffected for higher humidity levels and a reliable detection of the VOCs and DMMP was possible with detection limits in the low ppm range. PMID:27023539

  6. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds

    Science.gov (United States)

    Öztürk, Sadullah; Kösemen, Arif; Şen, Zafer; Kılınç, Necmettin; Harbeck, Mika

    2016-01-01

    Poly(3-methylthiophene) (PMeT) thin films were electrochemically deposited on quartz crystal microbalance QCM transducers to investigate their volatile organic compound (VOC) sensing properties depending on ambient conditions. Twelve different VOCs including alcohols, ketones, chlorinated compounds, amines, and the organosphosphate dimethyl methylphosphonate (DMMP) were used as analytes. The responses of the chemical sensors against DMMP were the highest among the tested analytes; thus, fabricated chemical sensors based on PMeT can be evaluated as potential candidates for selectively detecting DMMP. Generally, detection limits in the low ppm range could be achieved. The gas sensing measurements were recorded at various humid air conditions to investigate the effects of the humidity on the gas sensing properties. The sensing performance of the chemical sensors was slightly reduced in the presence of humidity in ambient conditions. While a decrease in sensitivity was observed for humidity levels up to 50% r.h., the sensitivity was nearly unaffected for higher humidity levels and a reliable detection of the VOCs and DMMP was possible with detection limits in the low ppm range. PMID:27023539

  7. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  8. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Single crystals of [C10H26N2][(UO2)(SeO4)2(H2O)](H2SeO4)0.85(H2O)2 (1), [C10H26N2][(UO2)(SeO4)2] (H2SeO4)0.50(H2O) (2), and [C8H20N]2[(UO2)(SeO4)2(H2O)] (H2O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO7 and SeO4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO2(SeO4)2(H2O)]2- chains are separated by mixed organic-inorganic layers comprising from [NH3(CH2)10NH3]2+ molecules, H2O molecules, and disordered electroneutral (H2SeO4) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO2(SeO4)2]2- sheet. The structure of 3 does not contain disordered (H2SeO4) groups but is based upon alternating [UO2(SeO4)2(H2O)]2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH3(CH2)7CH3]+. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into an organic substructure is necessary; (c) the inclination angle of the amine chains may vary in order to modify

  9. Diurnal Variations of Air-Soil Exchange of Semivolatile Organic Compounds (PAHs, PCBs, OCPs, and PBDEs) in a Central European Receptor Area.

    Science.gov (United States)

    Degrendele, Céline; Audy, Ondřej; Hofman, Jakub; Kučerik, Jiři; Kukučka, Petr; Mulder, Marie D; Přibylová, Petra; Prokeš, Roman; Šáňka, Milan; Schaumann, Gabriele E; Lammel, Gerhard

    2016-04-19

    Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) in air and soil, their fugacities, and the experimental soil-air partitioning coefficient (KSA) were determined at two background sites in the Gt. Hungarian Plain in August 2013. The concentrations of the semivolatile organic compounds (SOCs) in the soil were not correlated with the organic carbon content but with two indirect parameters of mineralization and aromaticity, suggesting that soil organic matter quality is an important parameter affecting the sorption of SOCs onto soils. Predictions based on the assumption that absorption is the dominant process were in good agreement with the measurements for PAHs, OCPs, and the low chlorinated PCBs. In general, soils were found to be a source of PAHs, high chlorinated PCBs, the majority of OCPs and PBDEs, and a sink for the low chlorinated PCBs and γ-hexachlorocyclohexane. Diurnal variations in the direction of the soil-air exchange were found for two compounds (i.e., pentachlorobenzene and p,p'-dichlorodiphenyldichloroethane), with volatilization during the day and deposition in the night. The concentrations of most SOCs in the near-ground atmosphere were dominated by revolatilization from the soil. PMID:27007480

  10. Biodiversity of volatile organic compounds from five French ferns.

    Science.gov (United States)

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  11. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  12. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    OpenAIRE

    Rey Martínez, María Dolores; Font Montesinos, Rafael; Aracil, Ignacio

    2013-01-01

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes...

  13. Introduction of tritium into organic compounds by isotope exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Myasoedov, N.F. (AN SSSR, Moscow (Russian Federation). Inst. Molekulyarnoj Genetiki)

    1993-05-01

    Various isotope exchange reactions for the introduction of tritium into a range of organic compounds have been investigated. The influence of the catalyst, solvent and reaction conditions on the yield and specific activities of a number of steroids, phytohormones and sugars are reported. Heterogeneous hydrogen isotope exchange with gaseous tritium has also been used to label a number of nonpolar compounds. Similarly the potential of solid state hydrogen isotope exchange has been explored. The reaction mechanism is discussed as well as the influence of the reaction conditions on the specific activity and the label distribution. (author).

  14. Introduction of tritium into organic compounds by isotope exchange reactions

    International Nuclear Information System (INIS)

    Various isotope exchange reactions for the introduction of tritium into a range of organic compounds have been investigated. The influence of the catalyst, solvent and reaction conditions on the yield and specific activities of a number of steroids, phytohormones and sugars are reported. Heterogeneous hydrogen isotope exchange with gaseous tritium has also been used to label a number of nonpolar compounds. Similarly the potential of solid state hydrogen isotope exchange has been explored. The reaction mechanism is discussed as well as the influence of the reaction conditions on the specific activity and the label distribution. (author)

  15. Diel Variation of Biogenic Volatile Organic Compound Emissions

    DEFF Research Database (Denmark)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during...... the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α...

  16. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  17. The impact of ice clouds on retrieval of ozone and chlorine compounds in the UTLS from SMILES data - an error analysis

    Science.gov (United States)

    Mendrok, J.; Kasai, Y. J.; Takahashi, C.; Buehler, S.; Mission Team, S.

    2006-12-01

    The Superconducting Submillimeter-Wave Limb Emission Sounder SMILES, planned to be operated on the Japanese Experimental Module (JEM) of the International Space Station (ISS) from the year 2008, has been designed to measure various trace gases that are important for a detailed understanding of atmospheric chemistry related to ozone destruction. One of the most unique characteristics of JEM/SMILES will be its exceptionally low noise, and thus high sensitivity in detecting atmospheric limb emission of the sub-mm wave range, allowing the observation of trace gases that have only weak spetroscopic signatures. Furthermore, the high sensitivity of the instrument may facilitate the detection of even thin ice clouds in the upper troposphere and lower stratosphere (UTLS), which are supposed to increase the efficiency of chemical processes leading to ozone loss. On the other hand, when not taken into account in the retrieval, the change in broadband spectral signal caused by ice clouds introduces further uncertainty in the estimation of background continuum and retrieved trace gas profiles around the UTLS. Within this work we analyse the error budget, that is introduced by not accounting for ice clouds in the retrieval of UTLS profiles of ozone and chlorine compounds like ClO, HOCl and HCl. For that, SMILES observations of a wide variety of cirrus clouds are simulated by the radiative transfer model SARTre, which is capable to model scattering of microwave radiation in a spherical atmosphere. From the simulated measurements profile retrievals of ozone and chlorine compounds are performed using SMOCO, the official retrieval code for SMILES L2 processing. The error budget introduced by cirrus is evaluated and compared to other error sources (like instrumental effects, spectroscopic errors, etc.), that have been analysed within previous studies.

  18. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    Science.gov (United States)

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  19. Development of technology performance specifications for volatile organic compounds

    International Nuclear Information System (INIS)

    The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management of the Department of Energy has a mission to deliver needed and usable technologies to its customers. The primary customers are individuals and organizations performing environmental characterization and remediation, waste cleanup, and pollution prevention at DOE sites. DOE faces a monumental task in cleaning up the dozen or so major sites and hundreds of smaller sites that were or are used to produce the US nuclear weapons arsenal and to develop nuclear technologies for national defense and for peaceful purposes. Contaminants and waste materials include the radionuclides associated with nuclear weapons, such as plutonium and tritium, and more common pollutants and wastes of industrial activity such as chromium, chlorinated solvents, and polychlorinated biphenyls (PCBs). Quite frequently hazardous wastes regulated by the Environmental Protection Agency are co-mingled with radioactive wastes regulated by the Nuclear Regulatory Commission to yield a open-quotes mixed waste,close quotes which increases the cleanup challenges from several perspectives. To help OTD and its investigators meet DOE's cleanup goal, technology performance specifications are being implemented for research and development and DT ampersand E projects. Technology performance specifications or open-quotes performance goalsclose quotes describe, quantitatively where possible, the technology development needs being addressed. These specifications are used to establish milestones, evaluate the status of ongoing projects, and determine the success of completed projects

  20. Hydrothermal Oxidative Degradation of Organic Compounds Derived From Produced Water

    International Nuclear Information System (INIS)

    Produced water contains various hazardous organic compounds such as BTEX (benzene, toluene, ethyl benzene and xylene), phenolics and polycyclic aromatic hydrocarbons (PAHs). These compounds are stable and difficult to degrade by conventional wastewater treatment method. Aqueous based hydrothermal oxidative method is viewed as a promising approach for produced water treatment. The experiment was conducted in a micro-bomb reactor at subcritical water condition (200-300 degree Celsius) and 30 minute reaction time. Hydrogen peroxide was used as an oxidant. The reaction products were analyzed using a Fourier Transform Infra-Red (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS). The hydrothermal treatment in the absence of an oxidant showed minimal degradation of organics for the temperature range investigated. With the presence of an oxidant, the organics degradation increased drastically to near completion within the 30 minute reaction time at 300 degree Celsius. The results indicated that most of the organic compounds found in the produced water were successfully degraded using hydrothermal oxidative method. (author)

  1. Natural organic compounds as tracers for biomass combustion in aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

    1995-08-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

  2. Ionogel fibres of bis(trifluoromethanesulfonyl)imide anion-based ionic liquids for the headspace solid-phase microextraction of chlorinated organic pollutants.

    Science.gov (United States)

    Pena-Pereira, F; Marcinkowski, Ł; Kloskowski, A; Namieśnik, J

    2015-11-01

    Ionogels, a family of hybrid materials in which ionic liquids (ILs) are confined in a sol-gel network, are receiving much attention in a variety of scientific and technological fields. In this work, ionogels derived from three different ILs based on the anion bis(trifluoromethanesulfonyl)imide (TFSI), namely 1-butyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([C4C1Py][TFSI]), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4C1Pyrr][TFSI]), and 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide ([C4C1Pip][TFSI]) were obtained on the outer surface of optical fibres by sol-gel technology. The obtained hybrid materials were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX), and subsequently evaluated as sorbent coatings for the headspace solid-phase microextraction (HS-SPME) of volatile chlorinated organic compounds in combination with gas chromatography with barrier ionization discharge detection (GC-BID). The ionogel based on [C4C1Pyrr][TFSI] exhibited the highest extractability for target analytes. The experimental parameters that affect the extraction process were optimized by means of a central composite design. Under optimal conditions, the proposed method yielded excellent enrichment factors (EFs) in the range 3889-20 919 and limits of detection (LODs) between 11 and 151 ng L(-1) for the target compounds. The inter-day repeatability, intra-day reproducibility and fibre-to-fibre reproducibility, were less than 8.5, 9.6 and 16.9%, respectively. Finally, the developed method was applied to the analysis of water samples, showing recovery values in the range 95-106%. PMID:26364989

  3. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.

    2003-01-01

    soils, regressions or models are in use, which were not intended to be used for tree fruits. A simple model for uptake of neutral organic contaminants into fruits is developed. It considers xylem and phloem transport to fruits through the stem. The mass balance is solved for the steady-state, and an...... example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based) of...... > 1. No empirical data are available to support this prediction. For very lipophilic compounds (log K-OW > 5), T&A overestimates the uptake. The conclusion from the Fruit Tree Model is that the transfer of lipophilic compounds into fruits is not relevant. This was also found by an empirical study with...

  4. A comprehensive screen for volatile organic compounds in biological fluids.

    Science.gov (United States)

    Sharp, M E

    2001-10-01

    A headspace gas chromatographic (GC) screen for common volatile organic compounds in biological fluids is reported. Common GC phases, DB-1 and DB-WAX, with split injection provide separation and identification of more than 40 compounds in a single 20-min run. In addition, this method easily accommodates quantitation. The screen detects commonly encountered volatile compounds at levels below 4 mg%. A control mixture, providing qualitative and semiquantitative information, is described. For comparison, elution of the volatiles on a specialty phase, DB-624, is reported. This method is an expansion and modification of a screen that had been used for more than 20 years. During its first year of use, the expanded screen has proven to be advantageous in routine forensic casework. PMID:11599614

  5. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    OpenAIRE

    T. R. Chaparro; E. C. Pires

    2011-01-01

    This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand), DOC (dissolved organic carbon), AOX (adsorbable organic halogen), ASL (acid soluble lignin), color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and g...

  6. Organic Electrofluorescent Materials Using Pyridine-Containing Macrocyclic Compounds

    Institute of Scientific and Technical Information of China (English)

    Tingxi LI; Long FU; Wenwen YU; Renhe HUANG

    2008-01-01

    Novel pyridine-containing macrocyclic compounds, such as 6,12,19,25-tetramethyl-7,11,20,24-dinitrilo-dibenzo[b,m]l,4,12,15-tetra-azacyclodoc osine (TMCD), were synthesized and used as electron transport layer in organic electroluminescent devices. Devices with a structure of glass/indium-tin oxide/arylamine derivative/tris(quinolinolato)aluminum(Ⅲ) (AIq)/TMCD/LiF/AI exhibited green emission from the Alq layer with external quantum efficiency of 0.84% and luminous efficiency of 1.3 lm/W. The derivatives of TMCD were synthesized and characterized as well. These compounds were also found to be useful as the electron-transporting materials in organic electroluminescent devices.

  7. Advanced Methods for Treatment of Organic Compounds Contamined Water

    OpenAIRE

    PREDESCU Andra; A.Predescu; Ecaterina MATEI

    2009-01-01

    The progress recorded in the field of science and advanced engineering at nanometric scale supplies largeopportunities for more efficient (from the point of view of the costs) and more ecological approach of the processes ofwater purifying. This paper delivers a short description of the possibilities of using advanced materials in purifying thecontamined water with toxic metallic ions, organic and anorganic compounds. The opportunities and challenges werealso emphasized when nanomaterials wer...

  8. Advanced Methods for Treatment of Organic Compounds Contamined Water

    Directory of Open Access Journals (Sweden)

    PREDESCU Andra

    2009-08-01

    Full Text Available The progress recorded in the field of science and advanced engineering at nanometric scale supplies largeopportunities for more efficient (from the point of view of the costs and more ecological approach of the processes ofwater purifying. This paper delivers a short description of the possibilities of using advanced materials in purifying thecontamined water with toxic metallic ions, organic and anorganic compounds. The opportunities and challenges werealso emphasized when nanomaterials were used for the surface, underground and industrial used waters treatment.

  9. ANAEROBIC BIODEGRADATION OF ORGANIC COMPOUNDS IN MICROBIAL FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Samkov A. A.

    2014-09-01

    Full Text Available МF-4SК membrane-based microbial fuel cell (MFC was used for an anaerobic utilization of organic com-pounds of various liquid wastes. During incubation in short circuit mode, decreasing of the COD value on range 30-87 % depending on the type of wastes was detected. The dependence of the microbial fuel cell output power on the value of the external load was determined by a number of structural characteristics of MFC

  10. Volatile Organic Compound Optical Fiber Sensors: A Review

    OpenAIRE

    Francisco J. Arregui; Candido Bariain; Matias, Ignacio R.; Cesar Elosua

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the po...

  11. Comprehensive Mapping of Volatile Organic Compounds in Fruits

    OpenAIRE

    Ghaste, Manoj Shahaji

    2015-01-01

    Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study o...

  12. Synthesis of Organic Compounds over Selected Types of Catalysts

    OpenAIRE

    Omar Mohamed Saad Ismail

    2011-01-01

    This study provides an overview for the utilization of different catalytic material in the synthesis of organic compounds for important reactions such as heck reaction, aldol reaction, Diels- Alder and other reactions. Comparisons between multiple catalysts for the same reaction and justifications for developing new catalyzed materials are discussed. The following topics are introduced in this work; (1) solid base catalysts, (2) clay catalysts, (3) palladium catalysts, and (4) catalysts to pr...

  13. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    OpenAIRE

    Sobri S.; Jasni J.; Yasin Faizah M.; Jamal Siti Hasnawati; Janudin Nurjahirah; Mohd Kasim Noor Azilah

    2016-01-01

    In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane) towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD) method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman Spectroscopy. The variation of resist...

  14. Carbon dioxide capture by means of cyclic organic nitrogen compounds

    OpenAIRE

    García Abuín, Alicia

    2012-01-01

    The research work included in present PhD Thesis involves the research studies to capture carbon dioxide using different cyclic nitrogen organic compounds (glucosamine (GA), chitosan (C), alkyl-pyrrolidones, pyrrolidine (PYR) and piperidine (PIP). This investigation is based on the study of three experimental systems. Each of them has characteristics potentially suitable to achieve the aim of this work, that is to say, to improve the carbon dioxide capture process, which is pre...

  15. Volatile organic compounds released by barley roots attract wireworms

    OpenAIRE

    Barsics, Fanny; Fiers, Marie; Haubruge, Eric; Verheggen, François

    2012-01-01

    Wireworms are the soil dwelling larvae of click beetles and are pests of many crops worldwide. Alternatives to insecticide treatments are needed in order to develop integrated management strategies. Our work consists in elucidating the role of barley root-emitted volatile organic compounds on the orientation behaviour of Agriotes sordidus wireworms. Using a dual choice olfactometer we have evaluated the attractiveness of a variety of baits ranging from barley roots themselves to isolated root...

  16. Speciation of volatile organic compounds from poultry production

    Science.gov (United States)

    Trabue, Steven; Scoggin, Kenwood; Li, Hong; Burns, Robert; Xin, Hongwei; Hatfield, Jerry

    2010-09-01

    Volatile organic compounds (VOCs) emitted from poultry production are leading source of air quality problems. However, little is known about the speciation and levels of VOCs from poultry production. The objective of this study was the speciation of VOCs from a poultry facility using evacuated canisters and sorbent tubes. Samples were taken during active poultry production cycle and between production cycles. Levels of VOCs were highest in areas with birds and the compounds in those areas had a higher percentage of polar compounds (89%) compared to aliphatic hydrocarbons (2.2%). In areas without birds, levels of VOCs were 1/3 those with birds present and compounds had a higher total percentage of aliphatic hydrocarbons (25%). Of the VOCs quantified in this study, no single sampling method was capable of quantifying more than 55% of compounds and in several sections of the building each sampling method quantified less than 50% of the quantifiable VOCs. Key classes of chemicals quantified using evacuated canisters included both alcohols and ketones, while sorbent tube samples included volatile fatty acids and ketones. The top five compounds made up close to 70% of VOCs and included: 1) acetic acid (830.1 μg m -3); 2) 2,3-butanedione (680.6 μg m -3); 3) methanol (195.8 μg m -3); 4) acetone (104.6 μg m -3); and 5) ethanol (101.9 μg m -3). Location variations for top five compounds averaged 49.5% in each section of the building and averaged 87% for the entire building.

  17. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO2 and H2O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO2 and H2O. (author)

  18. Characterisation of polar organic compounds in fog water

    Science.gov (United States)

    Kiss, Gyula; Varga, Bálint; Gelencsér, András; Krivácsy, Zoltán; Molnár, Ágnes; Alsberg, Tomas; Persson, Linn; Hansson, Hans-Christen; Cristina Facchini, Maria

    In this paper the results of a systematic liquid chromatographic investigation are described to characterise water-soluble organic compounds in fog. A diode array detector is used to record the UV spectrum of the components during separation and a mass spectrometer is applied to obtain information on the ion masses of the constituents. The combination of UV and mass spectra reveal that the organic carbon content of fog water is distributed among a great number of acidic compounds which have polar functional groups and polyconjugated systems absorbing up to 500 nm. Due to the complexity of the organic fraction in fog water an unresolved hump of ions was recorded by the mass spectrometer from m/ z=100-600 the most intense peaks being detected around m/ z=200-250. Tannin and fulvic acid were also examined under the same conditions. In terms of complexity and ion distribution the mass spectrum of the organic fraction was similar to that of a fulvic acid reference material rather than to that of tannin.

  19. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  20. Simulation of Comet Impact and Survivability of Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B T; Lomov, I N; Blank, J G; Antoun, T H

    2007-07-18

    Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeled as water ice for simplicity, was calculated using three criteria: (1) peak temperatures, (2) the thermodynamic phase of H{sub 2}O, and (3) final temperature upon isentropic unloading. For impact angles greater than or equal to 30{sup o}, no organic material is expected to survive the impact. For the 15{sup o} impact, most of the material survives the initial impact and significant fractions (55%, 25%, and 44%, respectively) satisfy each survival criterion at 1 second. Heating due to deceleration, in addition to shock heating, plays a role in the heating of the cometary material for nonnormal impacts. This effect is more noticeable for more oblique impacts, resulting in significant deviations from estimates using scaling of normal impacts. The deceleration heating of the material at late times requires further modeling of breakup and mixing.

  1. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl4) contamination located near the center of the Hanford Site. The movement of CCl4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  2. Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (NPCS)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qing; WANG Lian-Sheng

    2007-01-01

    20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G* and 6-311G* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-1gEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -1gEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.

  3. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Phillips, Jana Randolph [ORNL

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  4. Effects of organic compounds on actinoid transfer in natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Senoo, Muneaki; Nagao, Seiya; Sakamoto, Yoshiaki

    1996-01-01

    For safety evaluation of geological disposal of radioactive wastes, it seems necessary to elucidate the geological transfer of radioactive nuclides in the soil and the undersea sediments. It has been known that there exist various organic compounds highly potential to form a complex with TRU elements, uranium, copper etc. in the soil and the sediments and those compounds may play an important role for geological transfer of nuclides. In this study, fluorescent substances contained in underground and river water were focused as the measures to identify the molecular species of organic compounds in natural water and their interactions with radionuclides and minor metals, and their geological transfers were investigated. Spectrophotometric properties of humic acid obtained in the market were examined. Its fluorescent intensity was strongest at pH 10 and stable for 2 weeks or more. Then, highly polluted river water was taken from Yamato river to determine the contents of humic acid and other fluorescent substances. Further, the effects of the additions of Cu and Fe on the fluorescent intensity were examined. (M.N.)

  5. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  6. A new sensor for the assessment of personal exposure to volatile organic compounds

    Science.gov (United States)

    Chen, Cheng; Driggs Campbell, Katherine; Negi, Indira; Iglesias, Rodrigo A.; Owens, Patrick; Tao, Nongjian; Tsow, Francis; Forzani, Erica S.

    2012-07-01

    To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real-time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts-per-billion (ppb), with a detection range of 4 ppb-1000 ppm (parts-per-million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r2 > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology.

  7. Effectiveness of chlorine, organic acids and UV treatments in reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples.

    Science.gov (United States)

    Escudero, M E; Velázquez, L; Favier, G; de Guzmán, A M

    2003-06-01

    This study assessed the effectiveness of 200 and 500 ppm of chlorine and organic acids (0.5% lactic acid and 0.5% citric acid) in wash solutions, and UV radiation for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples contaminated by two different methods. Residual levels of these pathogens after different treatments were compared. On dip inoculated apples, Y. enterocolitica reductions of 2.66 and 2.77 logs were obtained with 200 and 500 ppm chlorine combined with 0.5% lactic acid, respectively. The E. coli O157:H7 population decreased 3.35 log with 0.5% lactic acid wash solution, and 2.72 and 2.62 logs after 500 ppm chlorine and 500 ppm chlorine plus 0.5% lactic acid treatments, respectively. Similar reductions were obtained with UV radiation. On spot inoculated apples, significant (p lactic acid treatment as compared with the control. In sectioned apples, microorganisms infiltrated in inner core region and pulp were not significantly (p lactic acid solution were very proximal to the 5-log score required by FDA for apple disinfection. PMID:12884547

  8. Natural attenuation of organic compounds in the unsaturated zone

    International Nuclear Information System (INIS)

    Full text of publication follows: Contaminated land poses a serious problem with respect to soil quality and the risk of spreading of pollutants into other compartments of the environment. A major concern at most contaminated sites is the risk of groundwater pollution by organic and inorganic compounds. Since the remediation of all of the contaminated sites is economically not feasible in many countries, groundwater risk assessment procedures are needed for the ranking of sites, decision making on further use and remedial actions. Recently 'Natural Attenuation' of organic pollutants received much interest as a remediation strategy in groundwater. Studies on natural attenuation in the unsaturated zone, however, are very limited although processes like aerobic degradation and volatilization of organic compounds are very likely more efficient than in the water saturated zone. This contribution presents results on scenario-specific modelling of natural attenuation of petroleum hydrocarbons volatilizing from complex organic mixtures ('fuels') in the unsaturated zone. The model is validated with data from a unique field experiment conducted at a Airforce base in Denmark. Hydrocarbons can reach the groundwater by transport with seepage water and by spreading in the soil-gas. Degradation processes can limit the spreading in the unsaturated soil zone and - in the best case - restrict the contamination to the unsaturated zone. The objective of this study was to use numerical simulations to elucidate the processes/parameters which are relevant in contaminant spreading and thus for groundwater risk assessment. The modelling results compare well to data from the well-controlled field test with an emplaced kerosene source. Sensitivity analyses were performed accounting for physical-chemical properties of fuel constituents and soil properties. Scenario-specific numerical simulations illustrate that the overall biodegradation rates depend mainly on properties of the organic

  9. Structure and function of vanadium compounds in living organisms.

    Science.gov (United States)

    Rehder, D

    1992-01-01

    Vanadium has been recognized as a metal of biological importance only recently. In this mini-review, its main functions uncovered during the past few years are addressed. These encompass (i) the regulation of phosphate metabolizing enzymes (which is exemplified for the inhibition of ribonucleases by vanadate), (ii) the halogenation of organic compounds by vanadate-dependent non-heme peroxidases from seaweeds, (iii) the reductive protonation of nitrogen (nitrogen fixation) by alternative, i.e. vanadium-containing, nitrogenases from N2-fixing bacteria, (iv) vanadium sequestering by sea squirts (ascidians), and (v) amavadine, a low molecular weight complex of V(IV) accumulated in the fly agaric and related toadstools. The function of vanadium, while still illusive in ascidians and toadstools, begins to be understood in vanadium-enzyme interaction. Investigations into the structure and function of model compounds play an increasingly important role in elucidating the biological significance of vanadium. PMID:1392470

  10. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  11. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    Science.gov (United States)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  12. Molar extinction coefficients of solutions of some organic compounds

    Science.gov (United States)

    Singh, Kulwant; Sandhu, G. K.; Lark, B. S.

    2004-05-01

    Molar extinction coefficients of aqueous solutions of some organic compounds, viz. formamide (CH_{3}NO), N-methylformamide (C_{2}H_{5}NO), NN-dimethylformamide (C_{3}H_{7}NO), NN-dimethylacetamide (C_{4}H_{9}NO), 1,4-dioxane (C_{4}H_{8}O_{2}), succinimide (C_{4}H_{5}NO_{2}) and solutions of acetamide (C_{2}H_{5}NO) and benzoic acid (C_{7}H_{6}O_{2}) in 1,4-dioxane (C_{4}H_{8}O_{2}) have been determined by narrow beam gamma-ray transmission method at 81, 356, 511, 662, 1173 and 1332 keV. The experimental values of mass attenuation coefficients of these compounds have been used to calculate effective atomic numbers and electron densities. The additivity rule earlier used for aqueous solution has been extended to non-aqueous (1,4-dioxane) solutions.

  13. Heterogeneous reactions of volatile organic compounds in the atmosphere

    Science.gov (United States)

    Shen, Xiaoli; Zhao, Yue; Chen, Zhongming; Huang, Dao

    2013-04-01

    Volatile organic compounds (VOCs) are of central importance in the atmosphere because of their close relation to air quality and climate change. As a significant sink for VOCs, the fate of VOCs via heterogeneous reactions may explain the big gap between field and model studies. These reactions play as yet unclear but potentially crucial role in atmospheric processes. In order to better evaluate this reaction pathway, we present the first specific review for the progress of heterogeneous reaction studies on VOCs, including carbonyl compounds, organic acids, alcohols, and so on. Our review focuses on the processes for heterogeneous reactions of VOCs under varying experimental conditions, as well as their implications for trace gas and HOx budget, secondary organic aerosol (SOA) formation, physicochemical properties of aerosols, and human health. Finally, we propose the future direction for laboratory studies of heterogeneous chemistry of VOCs that should be carried out under more atmospherically relevant conditions, with a special emphasis on the effects of relative humidity and illumination, the multicomponent reaction systems, and reactivity of aged and authentic particles. In particular, more reliable uptake coefficients, based on the abundant elaborate laboratory studies, appropriate calibration, and logical choice criterion, are urgently required in atmospheric models.

  14. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples

    Science.gov (United States)

    Magenheim, A. J.; Spivack, A. J.; Volpe, C.; Ransom, B.

    1994-07-01

    Investigation of stable chlorine isotopes in geological materials has been hindered by large sample requirements and/or lack of analytical precision. Here we describe precise methods for the extraction, isolation, and isotopic analysis of low levels of chlorine in both silicate and aerosol samples. Our standard procedure uses 2 μg of Cl for each isotopic analysis. External reproducibility (1 σ) is 0.25%. for the 37Cl /35Cl measurements. Chlorine is extracted from silicate samples (typically containing at least 20 μg of Cl) via pyrohydrolysis using induction heating and water vapor as the carrier, and the volatilized chlorine is condensed in aqueous solution. Atmospheric aerosols collected on filters are simply dissolved in water. Prior to isotopic measurement, removal of high levels of SO 42-, F -, and organic compounds is necessary for the production of stable ion beams. Sulfate is removed by BaSCO 4 precipitation, F - by CaF 2 precipitation, and organic compounds are extracted with activated carbon. Chlorine is converted to stoichiometric CsCl by cation exchange, and isotopic ratios are determined by thermal ionization mass spectrometry of Cs 2Cl +. We demonstrate that the sensitivity and precision of this method allow resolution of natural variations in chlorine isotopic composition, and thereby provide insight to some fundamental aspects of chlorine geochemistry.

  15. Spatial Arrangment of Organic Compounds on a Model Mineral Surface: Implications for Soil Organic Matter Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas [ORNL; Ambaye, Haile Arena [ORNL; Jagadamma, Sindhu [ORNL; Kilbey, S. Michael [University of Tennessee, Knoxville (UTK); Lokitz, Bradley S [ORNL; Lauter, Valeria [ORNL; Mayes, Melanie [ORNL

    2014-01-01

    The complexity of the mineral organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise

  16. Impact of Chlorine Dioxide Gas Sterilization on Nosocomial Organism Viability in a Hospital Room

    OpenAIRE

    Hewlett, Angela L.; Smith, Philip W.; Gibbs, Shawn G.; Iwen, Peter C.; Lowe, John J.

    2013-01-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied ...

  17. The sampling apparatus of volatile organic compounds for wood composites

    Institute of Scientific and Technical Information of China (English)

    SHENJun; ZHAOLin-bo; LIUYu

    2005-01-01

    Terpenes, aldehydes, ketones, benzene, and toluene are the important volatile organic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for wood composites was designed and manufactured by Northeast Forestry University in China.The concentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing, and furniture can be sampled in a small stainless steel chambers. A protocol is also developed in this study to sample and measure the new and representative specimens. Preliminary research showed that the properties of the equipment have good stability. The sort and the amount of different components can be detected from it. The apparatus is practicable.

  18. Metal(loid)organic compounds in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Hirner, A.V.; Grueter, U.M.; Kresimon, J. [Univ. of Essen (Germany). Inst. of Environmental Analytical Chemistry

    2000-10-01

    13 samples of soils contaminated with petrol, coaly residues, shredder and domestic waste have been investigated by low temperature gas chromatography with plasma mass spectrometry detection after sample derivatisation by hydride generation (HG/LT-GC/ICP-MS). 24 organic compounds of 9 elements could be analysed, one fifth of them exceeding the concentration of 1 {mu}g/kg. These results are roughly comparable with those on harbour and river sediments, and are discussed in respect to a preliminary evaluation of the emission potential of solid waste and contaminated soil as well as waste treatment processes. (orig.)

  19. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  20. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either......,000-fold higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the...

  1. Review on Volatile Organic Compounds Emission from Wood Composites

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; YU Yaoming; SHEN Jun; LIU Ming

    2006-01-01

    The problem of indoor air quality (IAQ) is mainly caused by the volatile organic compounds (VOC) emission from the wood-based composites. As a material for decoration, furniture manufacturing or building, wood-based composite is one of the sources of VOC emissions. Most of them are formaldehyde, terpene, ketone and benzene. The paper reviews on VOC emission of wood-based composites at home and abroad, including the source of the VOC, its impacts on IAQ, its emission during processing and using, the usual sampling and analyse methods of VOC in different conditions. Meanwhile, main problems existed in the past researches are summarized and some suggestions are put forward.

  2. Comparison of stratospheric nitrogen and chlorine compounds observed during the MANTRA 1998 balloon campaign with the Canadian Middle Atmosphere Model

    Science.gov (United States)

    Melo, S. M.; McLandress, C.; Strong, K.; Shepherd, T.; McElroy, C. T.; Davies, J.; Quine, B.; Fogal, P.; Blatherwick, R.; Bassford, M.

    2003-04-01

    Observations of nitrogen and chlorine species are of primary importance in studies of ozone chemistry and climate change. Stratospheric circulation and the distribution of O3 control the transport of long-lived greenhouse gases to regions of photochemical loss as well as the penetration of solar UV into the atmosphere. At the same time, many of these gases (e.g., N2O and CFCs) supply ozone-depleting radicals (e.g., NO and Cl) to the stratosphere, providing a feedback between the gas and its loss rate. Middle Atmospheric Nitrogen TRend Assessment (MANTRA) is a set of balloon campaigns aimed at investigating the changing chemical balance of the mid-latitude stratosphere. This paper deals with results from the campaign conducted in 1998, which involved the launch of an 11.6 million cubic feet balloon from Vanscoy, Saskatchewan, Canada (52 N, 107 W) on August 24th. Vertical distributions of O3, NO2, N2O, HNO3, HCl, CFC-11, CFC-12 and CH4 were measured by the combination of a Fourier transform infra-red spectrometer, infrared radiometers, and a UV-visible grating spectrometer. In addition, ozone profiles were obtained from 12 ozonesondes launched between August 6 and 24. As part of the campaign, a ground-based UV-visible spectrometer was operated from August 18 to 25, measuring scattered sunlight in a zenith-sky configuration. O3 and NO2 slant column densities were extracted from those measurements as a function of solar zenith angle, and NO2 vertical profiles were retrieved from the NO2 slant column values. In this paper we compare the constituents measured during the 1998 MANTRA campaign with the output of the Canadian Middle Atmosphere Model (CMAM), a fully interactive chemistry-climate model. Late summer is an ideal time to make such a comparison because of low dynamical variability. It is shown that by comparing both the profiles of individual species as well as the correlations between long-lived species, model biases in transport and in chemistry can be

  3. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills

    OpenAIRE

    Elanur Adar; Mehmet Sinan Bilgili

    2015-01-01

    The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite) which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the...

  4. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ13C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ13C of each dechlorination product was always more negative than the δ13C of the corresponding precursor. In addition, the δ13C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  5. Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils.

    Science.gov (United States)

    Navarro, Irene; de la Torre, Adrián; Sanz, Paloma; Pro, Javier; Carbonell, Gregoria; Martínez, María de Los Ángeles

    2016-08-01

    In the present work, the bioaccumulation behavior of 49 target emerging organic compounds (20 perfluoroalkyl substances, PFASs, and 29 halogenated flame retardants, HFRs) was studied in soil invertebrates (Eisenia andrei). Multi species soil systems (MS·3) were used to assess the fate and the effects associated with the application of four biosolids in agricultural soil on terrestrial soil organisms. Biosolid amendment increased concentrations 1.5-14-fold for PFASs, 1.1-2.4-fold for polybrominated diphenyl ethers, PBDEs, and 1.1-3.6-fold for chlorinated flame retardants, CFRs. Perfluorooctanesulfonate, PFOS, (25%) and BDE-209 (60%) were the predominant PFAS and HFR compounds, respectively, in biosolids-amended soils. Total concentrations (ng/g dry weight) in earthworms from biosolid-amended soils ranged from 9.9 to 101 for PFASs, from 45 to 76 for PBDEs and 0.3-32 for CFRs. Bioaccumulation factors (BAFs) were calculated to evaluate the degree of exposure of pollutants in earthworms. The mean BAF ranged from 2.2 to 198 for PFASs, 0.6-17 for PBDEs and 0.5-20 for CFRs. The relationship of PFAS and PBDE BAFs in earthworms and their log Kow were compared: PFAS BAFs increased while PBDE BAFs declined with increasing log Kow values. The effect of the aging (21 days) on the bioavailability of the pollutants in amended soils was also assessed: the residence time affected differently to the compounds studied. PMID:27174781

  6. Measurement and Comparison of Organic Compound Concentrations in Plasma, Whole Blood, and Dried Blood Spot Samples

    Science.gov (United States)

    Batterman, Stuart A.; Chernyak, Sergey; Su, Feng-Chiao

    2016-01-01

    The preferred sampling medium for measuring human exposures of persistent organic compounds (POPs) is blood, and relevant sample types include whole blood, plasma, and dried blood spots (DBS). Because information regarding the performance and comparability of measurements across these sample types is limited, it is difficult to compare across studies. This study evaluates the performance of POP measurements in plasma, whole blood and DBS, and presents the distribution coefficients needed to convert concentrations among the three sample types. Blood samples were collected from adult volunteers, along with demographic and smoking information, and analyzed by GC/MS for organochlorine pesticides (OCPs), chlorinated hydrocarbons (CHCs), polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (PBDEs). Regression models were used to evaluate the relationships between the sample types and possible effects of personal covariates. Distribution coefficients also were calculated using physically-based models. Across all compounds, concentrations in plasma were consistently the highest; concentrations in whole blood and DBS samples were comparable. Distribution coefficients for plasma to whole blood concentrations ranged from 1.74 to 2.26 for pesticides/CHCs, averaged 1.69 ± 0.06 for the PCBs, and averaged 1.65 ± 0.03 for the PBDEs. Regression models closely fit most chemicals (R2 > 0.80), and whole blood and DBS samples generally showed very good agreement. Distribution coefficients estimated using biologically-based models were near one and did not explain the observed distribution. Among the study population, median concentrations of several pesticides/CHCs and PBDEs exceeded levels reported in the 2007–2008 National Health and Nutrition Examination Survey, while levels of other OCPs and PBDEs were comparable or lower. Race and smoking status appeared to slightly affect plasma/blood concentration ratios for several POPs. The experimentally

  7. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  8. Organic production: does it enhance the health-promoting compounds in berries?

    OpenAIRE

    Anttonen, Mikko; Karjalainen, Reijo

    2007-01-01

    We have analyzed phenolic compounds from organically and conventionally grown blackcurrants and strawberries to test the idea if organically grown berries contain a higher amount of health-promoting phenolic compounds.

  9. Identity and biodegradability of organic compounds migrating from PEX pipes used in water installations in buildings

    DEFF Research Database (Denmark)

    Arvin, Erik; Albrechtsen, Hans-Jørgen; Corfitzen, Charlotte B.;

    2012-01-01

    Migration of organic compounds from PEX pipes used in water installations in buildings was investigated by batch set ups. Several compounds were identified and quantified. The organic compounds released to the water phase could support microbial growth and a few of the identified compounds...

  10. Laboratory Studies of Organic Compounds With Reflectance Spectroscopy

    Science.gov (United States)

    Curchin, J. M.; Clark, R. N.; Hoefen, T. M.

    2007-12-01

    In order to properly interpret reflectance spectra of any solar system surface from the earth to the Oort cloud, laboratory spectra of candidate materials for comparative analysis are needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics from room to cryogenic temperatures at visible to near infrared wavelengths. Reflectance spectra not only enhance weak or unseen transmission features, they are also more analogous to spectra obtained by spacecraft that are imaging such bodies as giant planet moons, kuiper belt objects, centaurs, comets and asteroids, as well as remote sensing of the earth. The USGS Spectroscopy Laboratory is measuring reflectance spectra of organic compounds from room to cryogenic temperatures over the spectral range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of C, H, O, and N molecular bonds. Because most organic compounds belong to families whose members have similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. By measuring spectral reflectance of the pure laboratory samples from the visible through the near and mid-infrared, absorption bands unique to each can be observed, cataloged, and compared to planetary reflectance data. We present here spectra of organic compounds belonging to five families: the alkanes, alkenes, alkynes, aromatics, and cyanides. Common to all of these are the deep C-H stretch fundamental absorptions, which shift shortward from 3.35+ microns in alkanes to 3.25+ microns in aromatics, to 3.2+ microns in alkenes, and down to 3.0+ microns in alkynes. Mid-IR absorptions due to C-H bending deformations at 6.8+ and 7.2+ microns are also identified. In the near infrared these stretching and bending fundamentals yield a diagnostic set of combination

  11. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.; Franz, H. B.; Kashyap, S.; Malespin, C. A.; Martin, M.; Millan, M.; Miller, K.; Navarro-González, R.; Prats, B. D.; Steele, A.; Teinturier, S.; Mahaffy, P. R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.

  12. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  13. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  14. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  15. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    Science.gov (United States)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, Tănase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  16. Screening of Soil for Alcohol-Extracted Organic Compounds by Turbidity Analysis

    OpenAIRE

    Sakai, Hiroyuki; Okada, Akira; Fujita, Takeshi; Wada, Shin-ichiro

    2011-01-01

    To quickly detect organic compounds in soil, a low-cost screening method has been developed to use a simple procedure without requiring specific reagents or equipment.This method semi-quantitatively detects organic compounds and indicates at concentration levels of 2,000 to 15,000 mg kg-1. The indication will be helpful to know where grounds are polluted with organic compounds at a site, especially when tracking organic compounds in soil during remediation work.

  17. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela

    2010-04-01

    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  18. Anti-photoaging and photoprotective compounds derived from marine organisms.

    Science.gov (United States)

    Pallela, Ramjee; Na-Young, Yoon; Kim, Se-Kwon

    2010-01-01

    Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries. PMID:20479974

  19. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.

    Science.gov (United States)

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-28

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  20. Development and Mining of a Volatile Organic Compound Database

    Science.gov (United States)

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md.; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  1. Use of Sonification for In-Well Softening of Semivolatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Robert W.; Manning, John L.; Ayyiliz, Onder; Wilkey, Michael L.

    2003-03-26

    This study examined an integrated sonication/vapor stripping system's ability to remove/destroy chlorinated organics from groundwater. Chlorinated solvents studied included carbon tetrachloride, trichloroethylene, trichloroethane and tetrachloroethylene. Contaminant concentrations ranged from {approx}1 to {approx}100 mg/L. The sonicator had an ultrasonic frequency of 20 kHz; applied power intensities were 12.3-, 25.3- and 35.8-W/cm2. Batch reactions were operated for up to 10 minutes treatment time, with samples drawn for GC analysis every 2 minutes. Batch experimental results were obtained using sonication, vapor stripping and combined sonication/vapor stripping. For the chlorinated solvents, the first order rate constants were in the range of 0.02 to 0.06 min-1, 0.23 to 0.53 min-1 and 0.34 to 0.90 min-1 for sonication, vapor stripping and combined sonication/vapor stripping. For the chlorinated organics (treatment time {approx}10 min.), the fraction remaining after sonication and vapor stripping ranged from 62% to 82%, while less than 3% remained from the combined sonication/vapor stripping system.

  2. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  3. Critical review of relations for predicting the normal freezing point of organic compounds

    OpenAIRE

    Jovanović Jovan D.; Grozdanić Dušan K.

    2005-01-01

    This paper presents empirical relations for predicting the normal freezing point of organic compounds. Nine relations were tested with 90 organic compounds. The Meyer-van der Wyk and Kreglewski-Marano-Holder models are recommended for normal alkanes, and the Constantinou-Gani and Wen-Qiang II models for all tested organic compounds.

  4. The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins

    International Nuclear Information System (INIS)

    Nanosized objects made of various materials are gaining increasing attention as promising vehicles for the delivery of therapeutic and diagnostic agents for cancer. Photodynamic therapy (PDT) appears to offer a very attractive opportunity to implement drug delivery systems since no release of the sensitizer is needed to obtain the therapeutic effect and the design of the nanovehicle should be much easier. The aim of our study was to investigate the use of organic-modified silica nanoparticles (NPs) for the delivery of the second-generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) to cancer cells in vitro. mTHPC was entrapped in NPs (∼33 nm diameter) in a monomeric form which produced singlet oxygen with a high efficiency. In aqueous media with high salt concentrations, the NPs underwent aggregation and precipitation but their stability could be preserved in the presence of foetal bovine serum. The cellular uptake, localization and phototoxic activity of mTHPC was determined comparatively in human oesophageal cancer cells after its delivery by the NPs and the standard solvent ethanol/poly(ethylene glycol) 400/water (20:30:50, by vol). The NP formulation reduced the cellular uptake of mTHPC by about 50% in comparison to standard solvent while it did not affect the concentration-dependent photokilling activity of mTHPC and its intracellular localization. Fluorescence resonance energy transfer measurements, using NPs with mTHPC physically entrapped and a cyanine covalently linked, and ultracentrifugation experiments indicated that mTHPC is transferred from NPs to serum proteins when present in the medium. However, the coating of the NP surface with poly(ethylene glycol) largely prevented the transfer to proteins. In conclusion, mTHPC is rapidly transferred from the uncoated nanoparticles to the serum proteins and then internalized by the cells as a protein complex, irrespective of its modality of delivery.

  5. The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins

    Energy Technology Data Exchange (ETDEWEB)

    Compagnin, Chiara; Mognato, Maddalena; Celotti, Lucia; Moret, Francesca; Fede, Caterina; Selvestrel, Francesco; Echevarria, Iria M Rio; Reddi, Elena [Department of Biology, University of Padova, via Ugo Bassi 58/B, I-35131 Padova (Italy); Bau, Luca; Arduini, Maria; Mancin, Fabrizio [Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova (Italy); Miotto, Giovanni, E-mail: elena.reddi@unipd.i [Department of Biological Chemistry, University of Padova, via Ugo Bassi 58/B, I-35131 Padova (Italy)

    2009-08-26

    Nanosized objects made of various materials are gaining increasing attention as promising vehicles for the delivery of therapeutic and diagnostic agents for cancer. Photodynamic therapy (PDT) appears to offer a very attractive opportunity to implement drug delivery systems since no release of the sensitizer is needed to obtain the therapeutic effect and the design of the nanovehicle should be much easier. The aim of our study was to investigate the use of organic-modified silica nanoparticles (NPs) for the delivery of the second-generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) to cancer cells in vitro. mTHPC was entrapped in NPs ({approx}33 nm diameter) in a monomeric form which produced singlet oxygen with a high efficiency. In aqueous media with high salt concentrations, the NPs underwent aggregation and precipitation but their stability could be preserved in the presence of foetal bovine serum. The cellular uptake, localization and phototoxic activity of mTHPC was determined comparatively in human oesophageal cancer cells after its delivery by the NPs and the standard solvent ethanol/poly(ethylene glycol) 400/water (20:30:50, by vol). The NP formulation reduced the cellular uptake of mTHPC by about 50% in comparison to standard solvent while it did not affect the concentration-dependent photokilling activity of mTHPC and its intracellular localization. Fluorescence resonance energy transfer measurements, using NPs with mTHPC physically entrapped and a cyanine covalently linked, and ultracentrifugation experiments indicated that mTHPC is transferred from NPs to serum proteins when present in the medium. However, the coating of the NP surface with poly(ethylene glycol) largely prevented the transfer to proteins. In conclusion, mTHPC is rapidly transferred from the uncoated nanoparticles to the serum proteins and then internalized by the cells as a protein complex, irrespective of its modality of delivery.

  6. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons.

    Science.gov (United States)

    Atashgahi, Siavash; Maphosa, Farai; De Vrieze, Jo; Haest, Pieter Jan; Boon, Nico; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2014-03-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that provide a sustainable electron source for organohalide respiring bacteria. In this study, wood chips, hay, straw, tree bark and shrimp waste, were assessed for their long term applicability as an electron donor for OHR of cis-dichloroethene (cDCE) and vinyl chloride (VC) in sediment microcosms. The initial release of fermentation products, such as acetate, propionate and butyrate led to the onset of extensive methane production especially in microcosms amended with shrimp waste, straw and hay, while no considerable stimulation of VC dechlorination was obtained in any of the SPOM amended microcosms. However, in the longer term, short chain fatty acids accumulation decreased as well as methanogenesis, whereas high dechlorination rates of VC and cDCE were established with concomitant increase of Dehalococcoides mccartyi and vcrA and bvcA gene numbers both in the sediment and on the SPOMs. A numeric simulation indicated that a capping layer of 40 cm with hay, straw, tree bark or shrimp waste is suffice to reduce the groundwater VC concentration below the threshold level of 5 μg/l before discharging into the Zenne River, Belgium. Of all SPOMs, the persistent colonization of tree bark by D. mccartyi combined with the lowest stimulation of methanogenesis singled out tree bark as a long-term electron donor for OHR of cDCE/VC in bioreactive caps. PMID:23955471

  7. Expanded uncertainties of preconcentration neutron activation measurements of extractable organo-chlorine, bromine and iodine compounds in bovine milk lipids

    International Nuclear Information System (INIS)

    Milk is known to contain organohalogen compounds. A mixture of hexane and isopropanol was used to extract lipids from bovine milk and neutron activation analysis (NAA) was employed to measure extractable organohalogens in the lipids. The samples were irradiated in a neutron flux of 2.5 × 1011 cm2 s-1 for 10 min, allowed to decay for 2 min, and counted for 10 min. Uncertainties associated with the preconcentration NAA measurements were investigated in detail. The mass fractions of halogens in mg kg-1 and their relative expanded uncertainties in percent in bovine milk lipids were: 32 (8.4 %), 2.65 (9.8 %) and 0.211 (6.6 %) for Cl, Br and I, respectively. (author)

  8. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  9. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    International Nuclear Information System (INIS)

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  10. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO2 + H2O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m3. Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  11. Organic carbon transformation in agricultural soils : radiocarbon analysis of organic matter fractions and biomarker compounds

    OpenAIRE

    Rethemeyer, Janet

    2004-01-01

    Radiocarbon analyses of physical and chemical soil organic matter fractions as well as of individual compounds provided information on the origin, transformation and stabilisation of organic carbon in agricultural soils. A contamination of the soil at the study site at Halle/Saale (Germany) with fossil, lignite-derived carbon was identified by high apparent 14C ages of the organic matter in the plough horizon of about 5000 years BP and a decrease in 14C age with increasing soil depth. The fos...

  12. Reaction products from the chlorination of seawater. Final report 15 Jul 75-14 Jul 80

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.H.; Smith, C.A.; Zika, R.G.

    1981-03-01

    Chemical treatment of natural waters, in particular the use of chlorine as a biocide, modifies the chemistry of these waters in ways that are not fully understood. The research described in this report examined both inorganic and organic reaction products from the chlorination of seawater using a variety of analytical approaches. Some analytical methods in widespread current use underestimate the residual oxidants in chlorinated seawater by as much as 70% depending upon the detail of the procedures. The chlorination of seawater in the presence of light produces substantial quantities of bromate ions which can influence standard analytical procedures and represents an unknown factor in estuarine and coastal waters. The copper complexing capacity of Biscayne Bay, Florida water was found to be substantially reduced with the addition of chlorine. Analysis was made by anodic stripping voltammetry on water samples after successive additions of copper sulfate solution. Laboratory chlorination of water from the intake of the Port Everglades, Florida power plant produces bromoform levels comparable to that found in the plant discharge. These results are in contrast to results reported in the literature for a power plant on the Patuxent estuary in Maryland, so that bromoform production appears to be site-specific. Chloroform extracts of chlorinated Biscayne Bay water are found to contain halogenated compounds which are new and different, and which pose unusual analytical problems. Studies using GC/ECD, GC/MS, HPLC, H NMR, differential pulsed polarography and other techniques on natural extracts and synthesized compounds are reported.

  13. Compound-Specific Stable Isotopes of Organic Compounds From Lake Sediments Track Recent Environmental Changes in an Alpine Ecosystem, Rocky Mountain National Park, Colorado (United States of America)

    Science.gov (United States)

    Enders, S. K.; Pagani, M.; Pantoja, S.; Baron, J. S.; Wolfe, A. P.; Pedentchouk, N.; Nuñez, L.

    2007-12-01

    Sediments from high altitude lakes in the North American Cordillera reveal rapid changes in both the composition of diatom communities and bulk organic δ15N over the past c. 60 years. In this study, compound- specific nitrogen, carbon, and hydrogen isotope records from Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to identify the factors contributing to ecological change. Our results from the nitrogen isotopic compositions of purified algal chlorins indicate that the magnitude of isotopic change is larger than implied from bulk organic δ15N, and support a substantial shift in nitrogen (N)-cycling in the region. Temporal changes in the growth characteristics of lichen surrounding Sky Pond, as well as a -60‰ excursion in δD values of algal-derived palmitic acid, are coincident with changes in N-cycling, indicating alterations in catchment hydrology and nutrient delivery. The confluence of these trends is attributed to an increase in anthropogenic N deposition caused by both expansion anthropogenic influences and temporal changes in regional hydrology associated with snow, glacier, and permafrost melt.

  14. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    Science.gov (United States)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  15. Study on photocatalytic degradation of several volatile organic compounds.

    Science.gov (United States)

    Zuo, Guo-Min; Cheng, Zhen-Xing; Chen, Hong; Li, Guo-Wen; Miao, Ting

    2006-02-01

    The gas-phase photolytic and photocatalytic reactions of several aromatics and chlorohydrocarbons were investigated. The experimental results revealed that chlorohydrocarbons like trichloroethylene, dichloromethane and chloroform could be degraded through either photolysis or photocatalysis under irradiation of germicidal lamp, and the elimination rate of chlorohydrocarbons through photolysis was quicker than that through photocatalysis. UV light from a germicidal lamp could directly lead to degradation of toluene but could hardly act on benzene. The photodegradation rate for these volatile organic compounds (VOCs) through photolysis followed an order: trichloroethylene>chloroform>dichloromethane>toluene>benzene>carbon tetrachloride, and through photocatalysis followed: trichloroethylene>chloroform>toluene>dichloromethane>benzene>carbon tetrachloride. Besides, a series of modified TiO2 photocatalysts were prepared by depositing noble metal, doping with transition metal ion, recombining with metal oxides and modifying with super strong acid. Activity of these catalysts was examined upon photocatalytic degradation of benzene as a typical compound that was hard to be degraded. It indicated that these modification methods could promote the activity of TiO2 catalyst to different extent. The apparent zero-order reaction rate constant for degrading benzene over SnO2/TiO2 catalyst had the highest value, which was nearly three times as that over P25 TiO2. But it simultaneously had the lowest rate for mineralizing the objective compound. In spite that Fe3+/TiO2 catalyst behaved slightly less active than SnO2/TiO2 for degradation of benzene, the mineralization rate over Fe3+/TiO2 was the highest one among the prepared catalysts. PMID:16157448

  16. Modeling secondary organic aerosol formation through cloud processing of organic compounds

    Directory of Open Access Journals (Sweden)

    J. Chen

    2007-06-01

    Full Text Available Interest in the potential formation of secondary organic aerosol (SOA through reactions of organic compounds in condensed aqueous phases is growing. In this study, the potential formation of SOA from irreversible aqueous-phase reactions of organic species in clouds was investigated. A new proposed aqueous-phase chemistry mechanism (AqChem is coupled with the existing gas-phase Caltech Atmospheric Chemistry Mechanism (CACM and the Model to Predict the Multiphase Partitioning of Organics (MPMPO that simulate SOA formation. AqChem treats irreversible organic reactions that lead mainly to the formation of carboxylic acids, which are usually less volatile than the corresponding aldehydic compounds. Zero-dimensional model simulations were performed for tropospheric conditions with clouds present for three consecutive hours per day. Zero-dimensional model simulations show that 48-h averaged SOA formation are increased by 27% for a rural scenario with strong monoterpene emissions and 7% for an urban scenario with strong emissions of aromatic compounds, respectively, when irreversible organic reactions in clouds are considered. AqChem was also incorporated into the Community Multiscale Air Quality Model (CMAQ version 4.4 with CACM/MPMPO and applied to a previously studied photochemical episode (3–4 August 2004 focusing on the eastern United States. The CMAQ study indicates that the maximum contribution of SOA formation from irreversible reactions of organics in clouds is 0.28 μg m−3 for 24-h average concentrations and 0.60 μg m−3 for one-hour average concentrations at certain locations. On average, domain-wide surface SOA predictions for the episode are increased by 8.6% when irreversible, in-cloud processing of organics is considered.

  17. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  18. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  19. PDMS-coated fiber volatile organic compounds sensors.

    Science.gov (United States)

    Ning, Xiangping; Yang, Jingyi; Zhao, Chun Liu; Chan, Chi Chiu

    2016-05-01

    The functionality of poly(dimethylsiloxane) (PDMS)-based interferometric fiber sensors for volatile organic compounds (VOCs) detection is investigated and experimentally demonstrated. Two interferometric configurations are considered in this work, namely Fabry-Perot (FP) and Sagnac interferometers (SI). Both sensors are functionalized with a thin layer of VOC-sensitive polymer: PDMS, whose degree of swelling varies as a function of VOC concentrations. This swelling effect will result in an optical path length and birefringence modulation for FP and SI sensors, respectively. In this paper, the two common VOCs, ethanol and 2-propanol, were detected by the proposed sensor and the inverse matrix method was used to differentiate the VOC in gas mixture. PMID:27140369

  20. [Definition and Control Indicators of Volatile Organic Compounds in China].

    Science.gov (United States)

    Jiang, Mei; Zou, Lan; Li, Xiao-qian; Che, Fei; Zhao, Guo-hua; Li, Gang; Zhang, Guo-ning

    2015-09-01

    Volatile organic compounds (VOCs) are the most complex of a wide range of pollutants that harms human health and ecological environment. However, various countries around the world differ on its definition and control indicators. Its definition, control indicators and monitoring methods of our country and local standards were also different. Based on detailed analysis of the definitions and control indicators of VOCs, the recommendations were proposed: the definition of VOCs should be different according to the different concerns between "air quality management" and "pollution emissions management"; base on different control way from production source, technological process, terminal emission, total discharge control, the control indicators system consists of 10 indicators; to formulate industry VOCs emissions standards, the most effective control way and indicators should be chosen according to characteristics of production process, way of VOCs emissions and possible control measures, etc. PMID:26717719

  1. Organically modified hydrotalcite for compounding and spinning of polyethylene nanocomposites

    Directory of Open Access Journals (Sweden)

    L. Fambri

    2013-11-01

    Full Text Available Organically modified hydrotalcite is a recent class of organoclay based on layered double hydroxides (LDH, which is anionically modified with environmental friendly ligands such as fatty acids. In this paper the influence of hydrotalcite compounded/dispersed by means of two different processes for production of plates and fibers of polyolefin nanocomposites will be compared. A polyethylene matrix, suitable for fiber production, was firstly compounded with various amounts of hydrotalcite in the range of 0.5–5% by weight, and then compression moulded in plates whose thermomechanical properties were evaluated. Similar compositions were processed by using a co-rotating twin screw extruder in order to directly produce melt-spun fibers. The incorporation of clay into both bulk and fiber nanocomposites enhanced the thermal stability and induced heterogeneous nucleation of polyethylene crystals. Hydrotalcite manifested a satisfactory dispersion into the polymer matrix, and hence positively affected the mechanical properties in term of an increase of both Young’s modulus and tensile strength. Tenacity of nanocomposite as spun fibers was increased up to 30% with respect to the neat polymer. Moreover, the addition of LDH filler induced an increase of the tensile modulus of drawn fibers from 5.0 GPa (neat HDPE up to 5.6–5.8 GPa.

  2. Multifunctional slow-release organic-inorganic compound fertilizer.

    Science.gov (United States)

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture. PMID:21058723

  3. Biogenic Emissions of Volatile Organic Compounds by Urban Forests

    Institute of Scientific and Technical Information of China (English)

    CENTRITTOMauro; LIUShirong; LORETOFrancesco

    2005-01-01

    All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds (BVOC). BVOC emissions have received increased scientific attention in the last two decades because they may profoundly influence the chemical and physical properties of the atmosphere, and may modulate plant tolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insect interactions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOC could have important consequence for the quality of air and contribute to pollution episodes. A screening of BVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to be reliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plant physiology and micrometeorology on selected urban forests, will allow detailed quantitative information on the inventory of BVOC emissions by urban vegetation to be compiled. This information will make it possible to propose an innovative management of urban vegetation in cities characterised by heavy emissions of anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selection of non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestation areas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and the conurbations.

  4. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  5. Cytotoxic Compounds from Aerial Organs of Xanthium strumarium.

    Science.gov (United States)

    Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés

    2016-03-01

    Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity. PMID:27169184

  6. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2012-07-01

    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  7. Emissions of biogenic volatile organic compounds & their photochemical transformation

    Science.gov (United States)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  8. Experimental cancer studies of chlorinated by-products

    International Nuclear Information System (INIS)

    Chlorinated drinking water contains a number of different by-products formed during the chlorination process from organic matter. The carcinogenicity of only a fraction of them have been evaluated in experimental animals. The focus has been on compounds and groups of compounds that are most abundant in chlorinated drinking water or the in vitro toxicity data have suggested genotoxic potential. From trihalomethanes, chloroform causes liver tumors in mice and female rats and renal tumors in male mice and rats. Tumor formation by chloroform is strongly associated with cytotoxicity and regenerative cell proliferation in tissues and that has been considered to be one determinant of its carcinogenicity. From halogenic acetic acids, dichloroacetic acid (DCA) and trichlotoacetic acid (TCA) are hepatocarcinogenic in mice and DCA in male rats. Their genotoxicity is equivocal and nongenotoxic mechanisms, such as peroxisome proliferation and hypomethylation of DNA in the liver, likely contribute to tumor development. From chlorinated furanones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a multisite carcinogen in rats (e.g. in thyroid glands and liver) and it has caused DNA damage in vivo. MX may be a complete carcinogen because it also has promoter properties in vitro. Chlorinated drinking water may also contain brominated by-products providing the raw water contains bromide. At least some of them (bromodichloromethane, bromoform) have been shown to be carcinogenic in laboratory animals. Altogether, although several by-products have been shown to have carcinogenic potential in laboratory animals, it not yet possible to state which compounds or groups of by-products cause the cancer risk in chlorinated drinking water. The cellular mechanisms of their effects and these effects at low concentrations are still poorly understood. The few studies with mixtures of these by-products suggest that the mixture effects may be complex and unpredictable (inhibitory

  9. The effect of surfactants on the distribution of organic compounds in the soil solid/water system

    International Nuclear Information System (INIS)

    The efficiency of soil remediation by surfactant washing was evaluated via the measured distribution coefficients of a number of nonpolar compounds in several soil-water mixtures. The studied compounds (contaminants) are BTEX (benzene, toluene, ethylbenzene, and p-xylene) and three chlorinated pesticides (lindane, α-BHC, and heptachlor epoxide), which span several orders of magnitude in water solubility (Sw). A peat, and two natural soils were used that comprise a wide range in soil organic matter (SOM) content. The surfactants tested included cationic, anionic and nonionic types, with concentrations up to five to six times the critical micelle concentration (CMC). The Kd*/Kd, values were used to evaluate the remediation efficiency under various operation conditions. For relatively water soluble BTEX compounds, the surfactant adsorption on the soil surface is the deciding factor on contaminant desorption from soil. For the less-soluble pesticides, surfactant micelles in solution influence the contaminant desorption more. The contaminants partitioning to SOM or adsorbed surfactants lowers the desorption efficiency. Anionic surfactants are found to be a better choice on soil remediation because they do not form admicelle on soil surface that enhances the SOM content. Cationic surfactant, which adsorb onto soil surfaces, leads to poor remediation efficiency. An improper selection of surfactant would result in inefficiency in soil remediation by surfactant washing

  10. Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Hatzinger, P.B.; Alexander, M. [Cornell Univ., Ithaca, NY (United States)

    1997-11-01

    A study was conducted using model solids to determine whether the time-dependent decline in availability for biodegradation of organic pollutants in soil might result from the entrapment of these compounds in porous or nonporous solids. A strain of Pseudomonas mineralized phenanthrene in solid alkanes containing 18 to 32 carbons, three waxes, and low-molecular-weight polycaprolactone, polyethylene, and polypropylene. The rates were appreciably slower than when the substrate was not initially present within these nonporous solids. From 1.4 to 63.4% of the polycyclic aromatic hydrocarbon added to the solids was mineralized in 90 d. The rates and extents of partitioning of phenanthrene varied markedly among the solids. The rates of partitioning and biodegradation of phenanthrene initially present in the alkanes were positively correlated. The bacterium rapidly and extensively mineralized phenanthrene provided in calcium alginate beads containing varying amounts of soluble soil organic matter. The rates and extents of phenanthrene mineralization declined as the percentage of the substrate in the nanopores within silica particles increased, but the reductions in rate, extent, or both were less pronounced than with nonporous solids. The rate of 4-nitrophenol biodegradation also declined with increasing percentages of the compound in these nanopores. The data are consistent with hypotheses that the sequestration and consequent decrease in bioavailability of organic compounds that persist in soil result from their partitioning into organic matter or their presence within nanopores in soil.

  11. Controlled Burning of Forest Detritus Altering Spectroscopic Characteristics and Chlorine Reactivity of Dissolved Organic Matter: Effects of Temperature and Oxygen Availability.

    Science.gov (United States)

    Wang, Jun-Jian; Dahlgren, Randy A; Chow, Alex T

    2015-12-15

    Forest fires occur with increasing frequency and severity in the western United States, potentially altering the chemistry and quantity of dissolved organic matter (DOM) and disinfection byproduct (DBP) precursors exported from forested watersheds. However, little is known concerning effects of the fire triangle (heat, oxygen, and fuel) on DOM alteration. Using detritus from Pinus ponderosa and Abies concolor (dominant species in forests in the western United States), we prepared DOM from unburned and burned detritus under hypoxic (pyrolysis) and oxic conditions (thermal oxidation) at 250 and 400 °C. DOM characteristics and chlorine reactivity were evaluated by absorption and fluorescence spectroscopy and chlorination-based DBP formation potential tests. Spectroscopic results suggest that burned-detritus extracts had lower molecular weight (reflected by increased E2:E3 and fluorescence index) and divergent aromaticity (reflected by SUVA254) depending on oxygen availability. Temperature and oxygen availability interacted to alter the chlorine reactivity of fire-affected DOM. Increasing temperature from 50 to 400 °C resulted in decreased reactivities for trihalomethane and chloral hydrate formation and divergent reactivities for haloacetonitrile formation (unchanged for pyrolysis and increased for oxidation) and haloketone formation (increased for pyrolysis and decreased for oxidation). We demonstrate that DBP precursors in fire-affected forest detritus are highly dependent on temperature and oxygen availability. PMID:26496434

  12. Terminal restriction fragment length polymorphism analysis of soil microbial communities reveals interaction of fungi and chlorine bound in organic matter

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Hršelová, Hana; Lachmanová, Z.; Clarke, N.; Matucha, Miroslav

    2011-01-01

    Roč. 56, č. 5 (2011), s. 477-481. ISSN 0015-5632 R&D Projects: GA MŠk 7F09026 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : NATURAL CHLORINE * FOREST SOIL * ORGANOHALOGENS Subject RIV: EE - Microbiology, Virology Impact factor: 0.677, year: 2011

  13. [Volatile organic compounds (VOCs) emitted from furniture and electrical appliances].

    Science.gov (United States)

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Furukawa, Yoko; Nishimura, Tetsuji

    2010-01-01

    Organic chemicals are widely used as ingredients in household products. Therefore, furniture and other household products as well as building products may influence the indoor air quality. This study was performed to estimate quantitatively influence of household products on indoor air quality. Volatile organic compound (VOC) emissions were investigated for 10 products including furniture (chest, desk, dining table, sofa, cupboard) and electrical appliances (refrigerator, electric heater, desktop personal computer, liquid crystal display television and audio) by the large chamber test method (JIS A 1912) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Emission rate of total VOC (TVOC) from the sofa showed the highest; over 7900 microg toluene-equivalent/unit/h. Relatively high TVOC emissions were observed also from desk and chest. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment for the sofa was 911 microg/m3, accounting for almost 230% of the provisional target value, 400 microg/m3. The values of estimated increment of toluene emitted from cupboard and styrene emitted from refrigerator were 10% and 16% of guideline values, respectively. These results revealed that VOC emissions from household products may influence significantly indoor air quality. PMID:21381398

  14. Determination of organic compounds formed in simulated interstellar dust environment

    International Nuclear Information System (INIS)

    Abiotic formation of amino acid precursors by irradiation of simulated interstellar dust (ISD) components were quantitatively examined. Ultraviolet light and cosmic rays are believed to be two major energy sources for organic formation in space. In order to investigate the formation of organic compound in ISDs, gas mixture including a C-source (carbon monoxide) and a N-source (nitrogen or ammonia) was irradiated with UV light from a deuterium lamp, soft X-rays from an electron synchrotron, high energy protons or electrons from accelerators, and γ-rays from 60Co. A wide variety of amino acids were detected after acid hydrolysis in all the products but those by UV irradiated of carbon monoxide, nitrogen and water. Total amount of glycine depended on the total deposited energy in the mixture of carbon monoxide, ammonia and water, while it was independent from those energy sources. The present analytical results suggest that the yield of amino acids in ISDs depend on their total deposited energy of UV and cosmic rays. (author)

  15. Emerging site characterization technologies for volatile organic compounds

    International Nuclear Information System (INIS)

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters

  16. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; Cabane, Michel; Coll, Patrice; Conrad, Pamela; Dworkin, Jason; Grotzinger, John; Ming, Douglas; Navarro-Gonzales, Rafael; Steele, Andrew; Szopa, Cyril

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  17. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    OpenAIRE

    Brusseau, Mark L.; Narter, Matthew

    2013-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on...

  18. Volatile organic compound recovery by Brayton cycle Heat Pump

    International Nuclear Information System (INIS)

    Organic solvent emissions from industrial processes are a major source of volatile organic compounds (VOCs). VOCs contribute to the formation of photochemical ozone, a major component of smog. Over 90 percent of the organic solvents used in industry are emitted. Not only does this represent a significant source of air pollution, but it also represents a waste of energy resources. A pound of solvent requires an average of 23,000 Btu of energy to produce, in the form of the feedstock and processing energy expenditures. In 1988, the total amount of solvents emitted in the United States was over 4 billion pounds and represent 100 trillion Btu in energy loss. In the mid-1970's, the 3M Company began developing the Brayton Cycle Heat Pump for solvent recovery (BCSRHP). In 1979, the US Department of Energy (DOE) began a project to fabricate and install a BCSRHP in a 3M plant in Hutchinson, Minnesota. DOE has continued sponsoring the development of a large BCSRHP system with 3M, and NUCON International (NUCON). In 1989 DOE and NUCON, with cosponsorship from the Electric Power Research Institute and Southern California Edison Company began development of a small-scale system for use by small emitters. To obtain data for design of the small-scale system, a small, mobile pilot plant was built by NUCON. Between 1990 and 1991, the pilot plant was demonstrated at four industrial sites in Southern California. The operation of the pilot plant was continuously monitored during the demonstrations, and its ability to remove VOCS, utility consumption and other operating characteristics were recorded and its performance quantified

  19. Chemiluminescent Labeled Organic Reagents and Their Use in Analysis of Organic Compounds

    OpenAIRE

    Hummelen, Jan C.; Wynberg, Hans

    1990-01-01

    Thermochemically induced luminescence is generated in a fluorescent labeled organic compound containing a covalently bonded fluorescent label which is a polycyclic aromatic radical having at least three linearly fused benzene rings and capable of being excited to a fluorescent electronic excited state by energy transfer from an energy donor molecule or radical having an electronic excited state, by a process comprising generating an energy donor radical or molecule by a thermochemical reactio...

  20. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  1. Aqueous processing of organic compounds in carbonaceous asteroids

    Science.gov (United States)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  2. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    International Nuclear Information System (INIS)

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  3. Attenuation of trace organic compounds (TOrCs) inbioelectrochemical systems

    KAUST Repository

    Werner, Craig M.

    2015-04-01

    Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4=-1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater

  4. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  5. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    Science.gov (United States)

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  6. Microtrapping of volatile organic compounds with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Chaudhery Mustansar Hussain

    2010-10-01

    Full Text Available Micro-sorbent traps referred to as microtraps serve as integrated concentration-injection devices for continuousmonitoring in gas phase streams. The application of carbon nanotubes as unique sorbents for the fabrication of microtrapsfor the nano-scale adsorption/desorption of volatile organic molecules is presented in this paper. The microtrap applicationrequires high adsorption capacity as well as easy desorbability; the latter being critical for injection mode of these integrateddevices. The micro-sorbent characteristics of single and multi-walled carbon nanotubes for gas phase adsorption/desorptionof several volatile organic compounds like DCM, ethanol and benzene etc. has been studied. The nonporous nature of carbonnanotubes (CNTs eliminates the mass transfer resistance related to diffusion into pore structures, thus allowing easydesorbability. At the same time, their high aspect ratios lead to large breakthrough volumes. As compared to a commercialsorbent carbopackTM, the breakthrough volume was as much as an order of magnitude higher in the CNTs, while the higherrate of desorption measured as the peak width at half height of the desorption band was found nearly eight times lower (i.e.,0.26 seconds with SWNT and 1.89 seconds with carbopackTM. The trapping and desorption characteristics of single andmulti walled nanotubes were found to be comparable. We also found that the presence of disordered carbon impurities,which could be removed by controlled oxidative annealing, could greatly degrade the performance of CNTs. This researchhas suggested that CNTs can be used in micro-sorbent traps and surprisingly enhance the efficiency of the integrated concentration-injection devices. Consequently, this will open the doors to the application of high-capacity, CNTs-based sorbentsas a better alternative to conventional sorbent in continuous monitoring devices.

  7. 77 FR 14279 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Science.gov (United States)

    2012-03-09

    ... AGENCY 40 CFR Part 59 RIN 2060-AR37 National Volatile Organic Compound Emission Standards for Aerosol... taking direct final action to amend the National Volatile Organic Compound Emission Standards for Aerosol... comment to: EPA Docket Center (6102T), Air and Radiation Docket, National Volatile Organic...

  8. Organic compounds in PM1 in Mlada Boleslav 2013 and Ostrava 2014 in winter season

    OpenAIRE

    Křůmal, Kamil

    2014-01-01

    In this work the organic compounds and organic markers used for the identification of sources of aerosols were measured. Monosaccharide anhydrides and resin acids (emissions from biomass combustion) and polyaromatic hydrocarbons (emissions from traffic and incomplete combustion) were observed especially. Hopanes, steranes (traffic, coal combustion) and alkanes were next groups of analysed organic compounds.

  9. Organic compounds in PM1 in Ostrava and Mlada Boleslav in winter season

    OpenAIRE

    Křůmal, Kamil

    2015-01-01

    In this work the organic compounds and organic markers used for the identification of sources of aerosols were measured. Monosaccharide anhydrides and resin acids (emissions from biomass combustion) and polyaromatic hydrocarbons (emissions from traffic and incomplete combustion) were observed especially. Hopanes, steranes (traffic, coal combustion) and alkanes were next groups of analysed organic compounds.

  10. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates

    International Nuclear Information System (INIS)

    The functionalization of porous metal-organic frameworks (Cu3(BTC)2) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N2 and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols (C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius-Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs. - Graphical Abstract: The adsorption behavior of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates has been systematically evaluated. Highlights: → Functionalization of MOFs was achieved by incorporating Keggin-type POMs. → Introduction of POMs improved the thermal stability and adsorption capacity. → Alkali metal ion-exchange modified the inclusion state and also enhanced the adsorption. → Adsorption enthalpies were estimated to study the impact of POMs and alkali metal cations.

  11. Predicting carcinogenicity of organic compounds based on CPDB.

    Science.gov (United States)

    Wu, Xiuchao; Zhang, Qingzhu; Wang, Hui; Hu, Jingtian

    2015-11-01

    Cancer is a major killer of human health and predictions for the carcinogenicity of chemicals are of great importance. In this article, predictive models for the carcinogenicity of organic compounds using QSAR methods for rats and mice were developed based on the data from CPDB. The models was developed based on the data of specific target site liver and classified according to sex of rats and mice. Meanwhile, models were also classified according to whether there is a ring in the molecular structure in order to reduce the diversity of molecular structure. Therefore, eight local models were developed in the final. Taking into account the complexity of carcinogenesis and in order to obtain as much information, DRAGON descriptors were selected as the variables used to develop models. Fitting ability, robustness and predictive power of the models were assessed according to the OECD principles. The external predictive coefficients for validation sets of each model were in the range of 0.711-0.906, and for the whole data in each model were all greater than 0.8, which represents that all models have good predictivity. In order to study the mechanism of carcinogenesis, standardized regression coefficients were calculated for all predictor variables. In addition, the effect of animal sex on carcinogenesis was compared and a trend that female showed stronger tolerance for cancerogen than male in both species was appeared. PMID:26070146

  12. A biogenic volatile organic compounds emission inventory for Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hui; BAI Yu-hua; ZHANG Shu-yu

    2005-01-01

    The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVl) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km × 5 km and a time resolution of 1 h.Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 × 1012 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 × 1011 gCfor isoprene, 2.1 × 1011 gC for monoterpenes, and 2.6 × 1011 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.

  13. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  14. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    Science.gov (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  15. Volatile organic compounds in the atmosphere of Mexico City

    Science.gov (United States)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  16. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  17. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    Science.gov (United States)

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. PMID:25788118

  18. Volatile organic compound monitoring by photo acoustic radiometry

    International Nuclear Information System (INIS)

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 μm. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations

  19. Analysis of Organohalogen Products From Chlorination of Natural Waters Under Simulated Biofouling Control Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bean, R. M.; Mann, D. C.; Riley, R. G.

    1980-06-01

    The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractions according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.

  20. 水中氯代烃单体碳同位素分析中预富集方法进展%Review on Pre-enrichment Methods in Compound Specific Carbon Isotope Analysis of Chlorinated Hydrocarbon in Water

    Institute of Scientific and Technical Information of China (English)

    凌媛; 黄毅; 尚文郁; 谢曼曼; 刘舒波; 孙青

    2011-01-01

    Highly accurate determination of Compound Specific Carbon Isotope Analysis ( CSIA ) of chlorinated hydrocarbons is of great significance in tracing the source and revealing the biodegradating progress of pollutants. The isotopic composition of organic contaminations may be stable or varied in the process of environmental transformation. We can trace the source of contaminations if the composition is stable and can evaluate the probability and degree of degradation of contaminations. This paper summarizes solid-phase microextraction, static headspace analysis, purge and trap method and compound specific isotope analyses of chlorinated hydrocarbon in water, using combinations of these pretreatment methods, Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry ( GC-C-IRMS ), and comparesthe three methods. Compared with liquid-liquid extraction, solid-phase micro extraction, static headspace analysis, purge and trap method are all solvent-free enrichment techniques, producing no secondary pollution, less interference, and the resolution and accuracy of the analysis of GC-C-IRMS is improved. No, or little, isotopic mass fractionation occurred during the isotope analysis of chlorinated hydrocarbon in water by combining these solvent-free enrichment techniques with GC-C-IRMS, of which the precision of the analysis is less than l%e. The detection limit decreased along with the methods of static headspace analysis, solid-phase micro extraction, purge and trap method. Purge and trap is the most popular method because of its good reproducibility and low detection limit for the compound specific isotope analysis of chlorinated hydrocarbon in Water. The combinations of in-needle microextraction, in-tube microextraction, stir bar sorptive extraction or headspace sorptive extraction with GC-C-IRMS have a bright future.%高精度准确测定氯代烃单体碳同位素对示踪污染物来源,了解污染物的生物降解过程具有重要意义.在环境转化过程中,

  1. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    Science.gov (United States)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  2. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    Science.gov (United States)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  3. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    International Nuclear Information System (INIS)

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ∼4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h−1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh−1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (−1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  4. VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS).

    Science.gov (United States)

    Li, Mengkai; Qiang, Zhimin; Hou, Pin; Bolton, James R; Qu, Jiuhui; Li, Peng; Wang, Chen

    2016-06-01

    Vacuum ultraviolet (VUV) and ultraviolet (UV)/chlorine processes are regarded as two of many advanced oxidation processes (AOPs). Because of the similar cost of VUV/UV and UV lamps, a combination of VUV and UV/chlorine (i.e., VUV/UV/chlorine) may enhance the removal of organic pollutants in water but without any additional power input. In this paper, a mini-fluidic VUV/UV photoreaction system (MVPS) was developed for bench-scale experiments, which could emit both VUV (185 nm) and UV (254 nm) or solely UV beams with a nearly identical UV photon fluence. The photon fluence rates of UV and VUV output by the MVPS were determined to be 8.88 × 10(-4) and 4.93 × 10(-5) einstein m(-2) s(-1), respectively. The VUV/UV/chlorine process exhibited a strong enhancement concerning the degradation of methylene blue (MB, a model organic pollutant) as compared to the total performance of the VUV/UV and UV/chlorine processes, although the photon fluence of the VUV only accounted for 5.6% of that of the UV. An acidic pH favored MB degradation by the VUV/UV/chlorine process. The synergistic mechanism of the VUV/UV/chlorine process was mainly ascribed to the effective use of (•)OH for pollutant removal through formation of longer-lived secondary radicals (e.g., (•)OCl). This study demonstrates that the new VUV/UV/chlorine process, as an enhanced AOP, can be applied as a highly effective and energy-saving technology for small-scale water and wastewater treatment. PMID:27187747

  5. Enantiomer distribution of major chiral volatile organic compounds in selected types of herbal honeys.

    Science.gov (United States)

    Pažitná, Alexandra; Džúrová, Jana; Spánik, Ivan

    2014-10-01

    In this article, volatile organic compounds in 14 honey samples (rosemary, eucalyptus, orange, thyme, sage, and lavender) were identified. Volatile organic compounds were extracted using a solid phase microextraction method followed by gas chromatography connected with mass spectrometry analysis. The studied honey samples were compared based on their volatile organic compounds composition. In total, more than 180 compounds were detected in the studied samples. The detected compounds belong to various chemical classes such as terpenes, alcohols, acids, aldehydes, ketones, esters, norisoprenoids, benzene and furane derivatives, and organic compounds containing sulfur and nitrogen heteroatom. Ten chiral compounds (linalool, trans-linalool oxide, cis-linalool oxide, 4-terpineol, α-terpineol, hotrienol, and four stereoisomers of lilac aldehydes) were selected for further chiral separation. PMID:25099214

  6. Sources of Volatile Organic Compounds (VOCs) in the UAE

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  7. Measuring concentrations of volatile organic compounds in vinyl flooring.

    Science.gov (United States)

    Cox, S S; Little, J C; Hodgson, A T

    2001-08-01

    The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix. PMID:11518293

  8. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    International Nuclear Information System (INIS)

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE's mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste

  9. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  10. MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS

    Science.gov (United States)

    Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

  11. Tratamento de água subterrânea contaminada com compostos organoclorados usando ferro elementar e o reagente de Fenton Treatment of groundwater contaminated with chlorinated compounds using elemental iron and Fenton's reagent

    Directory of Open Access Journals (Sweden)

    Tatiana Langbeck de Arruda

    2007-01-01

    Full Text Available The remediation of groundwater containing organochlorine compounds was evaluated using a reductive system with zero-valent iron, and the reductive process coupled with Fenton's reagent. The concentration of the individual target compounds reached up to 400 mg L-1 in the sample. Marked reductions in the chlorinated compounds were observed in the reductive process. The degradation followed pseudo-first-order kinetics in terms of the contaminant and was dependent on the sample contact time with the solid reducing agent. An oxidative test with Fenton's reagent, followed by the reductive assay, showed that tetrachloroethylene was further reduced up to three times the initial concentration. The destruction of chloroform, however, demands an additional treatment.

  12. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    Science.gov (United States)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  13. Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications.

    Science.gov (United States)

    Di Lorenzo, T; Borgoni, R; Ambrosini, R; Cifoni, M; Galassi, D M P; Petitta, M

    2015-12-15

    A regional survey of eight volatile organic compounds (VOCs), namely BTEX (benzene, toluene, ethylbenzene and p-xylene) and four chlorinated aliphatic hydrocarbons (CAHs: chloroform, 1,2-dichloroethane, trichloroethene and tetrachloroethene), was carried out at 174 sites, in 17 alluvial aquifers of Abruzzo, a Mediterranean region of southern Italy, from 2004 to 2009. Frequency of detection, concentration range, spatial distribution pattern, and temporal trend of contaminant concentration in each aquifer were analyzed as well as the relationships between VOC concentrations and the total amount of precipitation during the 90days preceding each sampling date. A review of published ecotoxicological data, providing an indication of the biological risk associated with the observed levels of VOC contamination, was presented and discussed. BTEX concentrations were under detection limits in all the investigated aquifers, indicating absence of contamination. In contrast, CAH contamination occurred in 14 out of 17 aquifers. The two most frequently detected compounds were chloroform and tetrachloroethene. No significant temporal trend was observed for chloroform and tetrachloroethene concentrations during the six years of observation, indicating the persistence of stable contaminations, except for some slightly decreasing trends observed in three out of 17 aquifers. In four aquifers chloroform and tetrachloroethene concentrations increased with precipitations in the preceding months. Spatial patterns of contamination differed among aquifers, indicating highly complex contaminant distributions at aquifer scale not related to single-plume geometries. Patterns of contamination by chloroform and tetrachloroethene in the most urbanized aquifers were likely associated with multiple sources of VOCs not clearly detectable at the scale used in this study. In five out of 17 aquifers, chloroform and tetrachloroethene co-occurred at concentrations that are lethal to groundwater

  14. Novel chlorinated derivatives of BODIPY

    OpenAIRE

    Garcia-Moreno, I.; Costela González, Ángel; Chiara, José Luis; Duran-Sampedro, G.; Ortiz, M. J.; Rodríguez Agarrabeitia, Antonio

    2012-01-01

    [EN] The invention relates to the use of novel dyes with a BODIPY structure, characterised in that they contain at least one chlorine atom bound to the carbons of the boradiazaindacene system, to the use thereof as laser dyes and fluorescent markers, and to a method for obtaining some of these compounds.

  15. Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen.

    Science.gov (United States)

    Park, Hyunwoong; Vecitis, Chad D; Hoffmann, Michael R

    2008-08-21

    A Bi-doped TiO2 anode, which is prepared from a mixed metal oxide coating deposited on Ti metal, is shown to be efficient for conventional water splitting. In this hybrid photovoltaic-electrochemical system, a photovoltaic (PV) cell is used to convert solar light to electricity, which is then used to oxidize a series of phenolic compounds at the semiconductor anode to carbon dioxide with the simultaneous production of molecular hydrogen from water/proton reduction at the stainless steel cathode. Degradation of phenol in the presence of a background NaCl electrolyte produces chlorinated phenols as reaction intermediates, which are subsequently oxidized completely to carbon dioxide and low-molecular weight carboxylic acids. The anodic current efficiency for the complete oxidation of phenolic compounds ranges from 3% to 17%, while the cathodic current efficiency and the energy efficiency for hydrogen gas generation range from 68% to 95% and 30% to 70%, respectively. PMID:18656909

  16. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    Science.gov (United States)

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  17. Comparison of direct injection nebulizer and desolvating microconcentric nebulizer for analysis of chlorine-, bromine- and iodine-containing compounds by reversed phase HPLC with ICP-MS detection

    DEFF Research Database (Denmark)

    Jensen, B.P.; Gammelgaard, Bente; Hansen, S.H.;

    2003-01-01

    With the purpose of finding ways to combine micro-bore reversed phase HPLC with ICP-MS detection for analysis of drug substances containing chlorine, bromine and iodine, the suitability of a direct injection nebulizer and an Aridus desolvating microconcentric nebulizer was compared. Using the...

  18. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    OpenAIRE

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M. E.; Bitter, J.H.; Weckhuysen, B. M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent formation of less desirable side-products. For example, mixtures of chlorinated C1 and C2 hydrocarbons are still formed as by-products in industrial processes such as the production of vinyl chlor...

  19. Study on the Characteristic Organic Compounds in Red Tide by Factor Analysis Method

    Institute of Scientific and Technical Information of China (English)

    赵明桥; 李攻科; 张展霞

    2004-01-01

    Factor analysis is used to study the organic compounds that have high degree of correlation with biomass in algal blooming. Based on this correlation, they are named characteristic organic compounds. The compounds found are sequalene (SQU), cedrol (CED), 2, 5-cyclohexadiene-1, 4-dione, 2, 6-bis(1, 1-dimthylethyl )(PBQ), phenol, 2, 6-bis (1, 1-dimethylethy-4-methyl) (BHT), 3-t-butyl-4-hydroxyanisole ( BHA ), 1, 2-benzenedicarboxylie acid, bis-( 2-methyl propyl ) ester (DIBP), dibutyl phthalate (DNBP), respectively. Monitoring the variations of concentration of these characteristic organic compounds in seawater may provide scientific basis for studying and forecasting red tides.

  20. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    Science.gov (United States)

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  1. 78 FR 24990 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-04-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound...), several volatile organic compound (VOC) rules that were submitted by the Ohio Environmental Protection..., 2012 (77 FR 31265), and received no comments. II. What action is EPA taking today and what is...

  2. 40 CFR Appendix Viii to Part 266 - Organic Compounds for Which Residues Must Be Analyzed

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Organic Compounds for Which Residues Must Be Analyzed VIII Appendix VIII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION...—Organic Compounds for Which Residues Must Be Analyzed Volatiles Semivolatiles Benzene...

  3. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-07-13

    ... Organic Compound Reinforced Plastic Composites Production Operations Rule AGENCY: Environmental Protection...) a new rule for the control of volatile organic compound (VOC) emissions from reinforced plastic... composites production operations. In EPA's January 27, 2011 proposal (76 FR 4835), we present a...

  4. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  5. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-05-05

    ... Organic Compound Automobile Refinishing Rules for Indiana AGENCY: Environmental Protection Agency (EPA... approved volatile organic compound (VOC) automobile refinishing rules to all persons in Indiana who sell or... references to control technology requirements. In EPA's January 14, 2010, proposal (75 FR 2090), we present...

  6. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-04-06

    ... Organic Compound Emission Control Measures for Lithographic and Letterpress Printing in Cleveland AGENCY... volatile organic compound (VOC) rule. These rule revisions specify compliance dates for subject facilities... solution. In EPA's December 30, 2010, proposal (75 FR 82363), we present a detailed legal and...

  7. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2010-12-30

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP... review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4,...

  8. 75 FR 8246 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-02-24

    ... Organic Compound Emission Control Measures for Lake and Porter Counties in Indiana AGENCY: Environmental... Plan (SIP) several volatile organic compound (VOC) control rules. The purpose of these rules is to... (73 FR 15416), EPA made a finding that Indiana failed to submit those VOC RACT rules which were due...

  9. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  10. End-group-directed self-assembly of organic compounds useful for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.

    2016-05-31

    The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.

  11. Study on the local atomic structure of germanium in organic germanium compounds by EXAFS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic germanium compounds have been extensively applied in medicine as tonics,In this paper,the local structures of two organic germanium compounds,carboxyethylgermanium sesquioxide and polymeric germanium glutamate,were determined by EXAFS.The structure parameters including coordination numbers and bond lengths were reported,and possible structure patterns were discussed.

  12. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  13. 77 FR 31265 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2012-05-25

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... (Ohio EPA) submitted several volatile organic compound (VOC) rules for approval into its State... review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4,...

  14. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Wilai Chiemchaisri

    2001-06-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell’s internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidationOs efeitos dos compostos orgânicos voláteis (VOCs na oxidação do metano em camadas superficiais do solo. Os experimentos foram conduzidos usando somente VOCs ou mistura do mesmo, como, diclorometano (DCM, tricloroetileno (TCE, tetracloroetileno (PCE, e benzeno. Os resultados de todas as combinações mostraram uma diminuição na taxa da oxidação do metano com aumento nas concentrações de VOC. Além disso, os efeitos da inibição de TCE e de DCM foram mais elevados do que do benzeno e PCE. A redução da oxidação do metano pelo benzeno e PCE poderia ser atribuída ao efeito da toxicidade, visto que TCE e DCM exibiram o efeito de competição-inibição. Quando o solo foi misturado com o DCM, nenhuma oxidação do metano foi encontrada. Os danos à membrana interna celular foi observada em uma cultura metanotrófica exposta aos gases de VOC que é o local de ligação de uma enzima chave necessário para a oxidação do metano.

  15. Organic Compounds in Produced Waters From Coalbed Methane Wells in the Powder River Basin, WY

    Science.gov (United States)

    Orem, W.; Lerch, H.; Rice, C.; Tatu, C.

    2003-12-01

    Coalbed methane (CBM) is a significant energy resource, accounting for about 7.5% of natural gas production in the USA. The Powder River Basin (PRB), WY is currently one of the most active CBM drilling sites in the USA. One aspect of concern in the exploitation of CBM resources is the large volumes of water recovered from wells along with the natural gas (so-called produced waters). CBM produced waters may contain coal-derived dissolved substances (inorganic and organic) of environmental concern, and a potential disposal problem for CBM producers. Studies of CBM produced water have mostly focused on inorganics. Dissolved organic compounds in CBM produced water may also present an environmental issue, but little information is available. As part of a larger study of the health and environmental effects of organic compounds derived from coal, we analyzed a number of produced water samples from CBM wells in the PRB, WY for dissolved organic substances. Our goals were results on coal-derived organic compounds in the environment to evaluate potential health and environmental impacts. In 2001, we sampled produced water from 13 CBM wells covering a broad area of the PRB in order to identify and quantify the organic compounds present. In 2002, produced water from 4 of the 2001 CBM wells and 8 new CBM wells were sampled for dissolved organic components. Produced water was collected directly from each well and filtered on site. Organic compounds were isolated from produced water samples by liquid/liquid extraction with methylene chloride and identified and quantified by gas chromatography/mass spectrometry (GC/MS). Organic compounds identified by GC/MS in extracts of the produced water samples, included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons, phthalates, aliphatic hydrocarbons, and fatty acids. However, most compounds had structures unidentified by GC/MS databases. Many of the identified organic compounds

  16. Anaerobic inhibition of trace organic compound removal during rapid infiltration of wastewater.

    OpenAIRE

    Hutchins, S R; Tomson, M B; Wilson, J. T.; Ward, C H

    1984-01-01

    When soil columns were operated aerobically on a flooding-drying schedule in a previous study, good removals were observed for several organic compounds at concentrations ranging from 1 to 1,000 micrograms per liter in primary wastewater. In this study, fractional breakthroughs of most compounds increased substantially once operating parameters were modified and the soil became anaerobic. These results imply that microbial removal of trace organic compounds can be inhibited if anaerobic condi...

  17. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    OpenAIRE

    Ludmilla Lumholdt; Sophie Fourmentin; Nielsen, Thorbjørn T; Larsen, Kim L.

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixt...

  18. Offline oxygen isotope analysis of organic compounds with high N:O.

    Science.gov (United States)

    Hunsinger, Glendon B; Hagopian, William M; Jahren, A Hope

    2010-11-15

    Although the advantages of online δ(18)O analysis of organic compounds make its broad application desirable, researchers have encountered NO(+) isobaric interference with CO(+) at m/z 30 (e.g. (14)N(16)O(+), (12)C(18)O(+)) when analyzing nitrogenous substrates. If the δ(18)O value of inter-laboratory standards for substrates with high N:O value could be confirmed offline, these materials could be analyzed periodically and used to evaluate δ(18)O data produced online for nitrogenous unknowns. To this end, we present an offline method based on modifications of the methods of Schimmelmann and Deniro (Anal. Chem. 1985; 57: 2644) and Sauer and Sternberg (Anal. Chem. 1994; 66: 2409), whereby all the N(2) from the gas products of a chlorinated pyrolysis was eliminated, resulting in purified CO(2) for analysis via a dual-inlet isotope ratio mass spectrometry system. We evaluated our method by comparing observed δ(18)O values with previously published or inter-laboratory calibrated δ(18)O values for five nitrogen-free working reference materials; finding isotopic agreement to within ±0.2‰ for SIGMA® cellulose, IAEA-CH3 cellulose (C(6)H(10)O(5)) and IAEA-CH6 sucrose (C(12)H(22)O(11)), and within ±1.8‰ for IAEA-601 and IAEA-602 benzoic acids (C(7)H(6)O(2)). We also compared the δ(18)O values of IAEA-CH3 cellulose and IAEA-CH6 sucrose that was nitrogen-'doped' with adenine (C(5)H(5)N(5)), imidazole (C(3)H(4)N(2)) and 2-aminopyrimidine (C(4)H(5)N(3)) with the undoped δ(18)O values for the same substrates; yielding isotopic agreement to within ±0.7‰. Finally, we provide an independent analysis of the δ(18)O value of IAEA-600 caffeine (C(8)H(10)N(4)O(2)), previously characterized using online systems exclusively, and discuss the reasons for an average 1.4‰ enrichment in δ(18)O observed offline relative to the consensus online δ(18)O value. PMID:20941766

  19. Application of in situ chemical oxidation technique with potassium permanganate for the remediation of a shallow aquifer contaminated with chlorinated solvents

    OpenAIRE

    Alaine Santos da Cunha; Reginaldo Antonio Bertolo

    2012-01-01

    In situ chemical oxidation is a method that is frequently being used for the remediation of contaminated areas, since it presents an adequate efficiency in the reduction of the contaminant mass, particularly chlorinated ethenes, in a relatively short period of time. This manuscript presents the results of the application of this method, using the injection of potassium permanganate as the remediation agent, in an impacted area with chlorinated organic compounds, especially 1,1-dichloroethene....

  20. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    Science.gov (United States)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  1. Organochlorine Turnover in Forest Ecosystems: The Missing Link in the Terrestrial Chlorine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    A Leri; S Myneni

    2011-12-31

    Research in the last 20 years has shown that chlorine undergoes transformations between inorganic and organic forms as part of a complex biogeochemical cycle in terrestrial systems. Natural organochlorine production appears to be associated with the decomposition of plant material on the soil surface, though the chlorine cycle budget implies that a proportion of natural organochlorine enters soil through plant litter and atmospheric deposition as well. Organochlorine compounds may form through biotic and abiotic pathways, but the rates and magnitude of production in the field remain undefined. We have performed a time-dependent trace of chlorine concentration through forest ecosystems, revealing distinct fractions of naturally produced organochlorine in plant biomass. Aliphatic organochlorine constitutes an intrinsic component of healthy leaves that persists through senescence and humification of the plant material, making a substantial contribution to the pool of soil organochlorine. Plant leaves also contain soluble aromatic organochlorine compounds that leach from leaf litter during early decay stages. As decay progresses, high concentrations of insoluble aromatic organochlorine accrue in the humus, through de novo production as well as adsorption. The rates of aromatic organochlorine production and degradation vary seasonally and conversely. This study presents the first unambiguous evidence that there exist multiple pools of chlorinated organic matter in the soil environment and that leaf litter deposition makes a significant and refractory contribution to the soil organochlorine pool, providing key insights into the biogeochemical chlorine cycle.

  2. Organochlorine turnover in forest ecosystems: The missing link in the terrestrial chlorine cycle

    Science.gov (United States)

    Leri, Alessandra C.; Myneni, Satish C. B.

    2010-12-01

    Research in the last 20 years has shown that chlorine undergoes transformations between inorganic and organic forms as part of a complex biogeochemical cycle in terrestrial systems. Natural organochlorine production appears to be associated with the decomposition of plant material on the soil surface, though the chlorine cycle budget implies that a proportion of natural organochlorine enters soil through plant litter and atmospheric deposition as well. Organochlorine compounds may form through biotic and abiotic pathways, but the rates and magnitude of production in the field remain undefined. We have performed a time-dependent trace of chlorine concentration through forest ecosystems, revealing distinct fractions of naturally produced organochlorine in plant biomass. Aliphatic organochlorine constitutes an intrinsic component of healthy leaves that persists through senescence and humification of the plant material, making a substantial contribution to the pool of soil organochlorine. Plant leaves also contain soluble aromatic organochlorine compounds that leach from leaf litter during early decay stages. As decay progresses, high concentrations of insoluble aromatic organochlorine accrue in the humus, through de novo production as well as adsorption. The rates of aromatic organochlorine production and degradation vary seasonally and conversely. This study presents the first unambiguous evidence that there exist multiple pools of chlorinated organic matter in the soil environment and that leaf litter deposition makes a significant and refractory contribution to the soil organochlorine pool, providing key insights into the biogeochemical chlorine cycle.

  3. Organic compounds based on selenium as a lipoperoxidation reduction agents

    International Nuclear Information System (INIS)

    Great effort has been made in order to protect healthy cells such as that surrounding a tumor site, when radiotherapy procedures take place. This work is focused on testing diphenyl diselenide (C6H5Se2C6H5) and ebselen (C13H9NOSe), two antioxidant selenium containing compounds in phospholipids extracted from chicken yolk eggs, in vitro, as a radiomodifiers. When ionizing radiation interacts with cells' membrane, important chemical reactions occur and a chain of damaging and self-propagating events takes place. It is important to design new protocols involving new substances that could be potentially able to reduce cell damage by irradiation with photons. These compounds should have a low photoelectric attenuation coefficient for that energy range of interest. Otherwise, they might be in the free radicals production process. Human body is full of water and a compound with water-like behavior is desirable. Therefore, these compounds witch have water-behavior related to the photoelectric interaction. Although the compounds show photoelectric absorption peaks for low energy, out of the energy region of interest (gamma rays from Co-60), the results have been showing that these selenium-based compounds could be an efficient chemical radiomodifier for helping radiation-based procedures. The experimental data set were measured with Thiobarbituric Acid Reactive Substance (TBARS) method and has shown decrease in lipoperoxidation (around 50% for both) as radiation dose grows up, related to a control group and for dose range up to 4 Gy. The range of dose was chosen in order to apply the results to a set of equations related to the excess risk cancer model from BEIR V. (author)

  4. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  5. Analysis Of Names Of Organic Chemical Compounds By Using Parser Combinators And The Generative Lexicon Theory

    OpenAIRE

    Márcio de Souza Dias; Rita Maria Silva Julia; Eduardo Costa Pereira

    2011-01-01

    This work proposes OCLAS (Organic Chemistry Language Ambiguity Solver), an automatic system to analyze syntactically and semantically Organic Chemistry compound names and to generate the pictures of their chemical structures. If both parses detect that the input name corresponds to a theoretically possible organic chemical compound, the system generates its molecular structure picture, whether or not the name respects the current official nomenclature. This capacity of treating ev...

  6. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    OpenAIRE

    Sergey Dobretsov; Yahya Tamimi; Al-Kindi, Mohamed A.; Ikram Burney

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December ...

  7. Treatment of Organic Compounds in Reclaimed Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    皮运正; 胡俊; 云桂春

    2004-01-01

    To study water quality problems associated with groundwater recharge,a tertiary treatment process,consisting of coagulation,sand filtration,and granular activated carbon (GAC) adsorption,was used in combination with a simulated soil aquifer treatment.The process significantly improved secondary effluent quality.GAC adsorption reduced organic substances expressed by UV-254,dissolved organic carbon as well as partially adsorbable organic halogens.The results of the Ames test show that the secondary effluent contains a high concentration of mutagens.GAC filtration removed adsorbable organic bromine slightly whereas GAC adsorption removed mutagens effectively.The simulated soil aquifer treatment was able to further reduce UV-254,dissolved organic carbon,and adsorbable organic halogens through biodegradation.Adsorbable organic bromine levels were also reduced by the soil aquifer treatment process.The given reclamation technology used for groundwater recharge is of benefit to the removal of dissolved organic carbon,UV-254,adsorbable organic halogens,and mutagenicity.

  8. The Reaction Specificity of Nanoparticles in Solution: Application to the Reaction of Nanoparticulate Iron and Iron-Bimetallic Compounds with Chlorinated Hydrocarbons and Oxyanions

    International Nuclear Information System (INIS)

    The prospect for better remediation technologies using nanoparticles of iron, iron oxides, and iron with catalytic metals (i.e., bimetallics) has potentially transformative implications for environmental management of DOE sites across the country. Of particular interest is the potential to avoid undesirable products from the degradation of chlorinated solvents by taking advantage of the potential selectivity of nanoparticles to produce environmentally benign products from CCl4. Chlorinated solvents are the most frequently reported subsurface contaminants across the whole DOE complex, and carbon tetrachloride (CCl4) is the chlorinated solvent that is of greatest concern at Hanford (U. S. Department Energy 2001). In evaluating technologies that might be used at the site, a critical concern will be that CCl4 reduction usually occurs predominantly by hydrogenolysis to chloroform (CHCl3) and methylene chloride (CH2Cl2), both of which are nearly as problematic as CCl4 (National Research Council, 1978). Competing reaction pathways produce the more desirable products carbon monoxide (CO) and/or formate (HCOO-), and possibly CO2, but the proportion of reaction that occurs by these pathways is highly variable. Iron-based metallic and oxide nanoparticles have been shown to have enhanced reactivity towards a variety of chemical species, including chlorinated hydrocarbons and reducible oxyanions. Possibly of greater importance is the ability of nanoparticles to select for specific reaction products, potentially facilitating the formation of more environmentally acceptable products. The purpose of this study is to develop a fundamental understanding of the mechanism responsible for the overall particle reactivity and reaction selectivity of reactive metal and oxide nanoparticles. To achieve this objective the project involves the synthesis (using solution and vacuum synthesis methods) and characterization of well-defined nanoparticles, measurements of particle reactivity in

  9. The effect of chlorine dioxide on the formation of trihalomethanes; Dioxido de cloro y su efecto en la formacion de trihalometanos

    Energy Technology Data Exchange (ETDEWEB)

    Ciurana de Gay, C.

    2000-07-01

    The chlorine dioxide presents a high reactivity with certain organic and inorganic compounds. In the process of making water fit to drink, one of the most valued characteristics of the chlorine dioxide is the oxidation of the precursors of trihalomethanes, that allows their decrease in the drinking water. The generation of the chlorine dioxide is the oxidation of the precursors of trihalomethanes, that allows their decrease in the drinking water. The generation of the chlorine dioxide must be made at the dosage point. Both, the generation and its control can be made in an easy way. Since a few years ago, in the ETAP, in Montfulla, some researches are being carried out in order to decrease the concentration of trihalomethanes. In this work it is exposed the generation the dosage control and the reduction of trihalomethanes obtained through the dosage of the chlorine dioxide at different doses. (Author) 8 refs.

  10. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    Science.gov (United States)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  11. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sampa, M.H.O.; Duarte, C.L.; Rela, P.R.; Somessari, E.S.R.; Silveira, C.G.; Azevedo, A.L

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not efficient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  12. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    International Nuclear Information System (INIS)

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not efficient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher

  13. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    Science.gov (United States)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  14. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 8500C

  15. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  16. A Thermal Desorption Chemical Ionization Mass Spectrometer for the In Situ Measurement of Aerosol Organic Compounds

    Science.gov (United States)

    Thornberry, T.; Murphy, D. M.; Lovejoy, E. R.

    2005-12-01

    Organic material has been observed to comprise a significant fraction of organic aerosol mass in many regions of the troposphere. The organic compounds that comprise the organic fraction of atmospheric aerosol have the potential to affect the radiative and microphysical properties of the aerosol, with concomitant impacts on the role of the aerosol in climate forcing through direct and indirect effects. Knowledge of the organic compounds in atmospheric aerosols and their spatial distribution is needed to determine their effect on aerosol properties as well as to elucidate the role of aerosols in the chemistry of the atmosphere. The speciated measurement of aerosol organic compounds poses a significant experimental challenge due to the complexity and large number of organic species, and the low concentration at which individual species are present. A prototype instrument has been designed and built to make in situ speciated measurements of aerosol organic compounds. The instrument is composed of an aerosol collection/thermal desorption inlet coupled to a custom chemical ionization ion trap mass spectrometer. Aerosols are collected over a variable time by impaction on a target stage. The stage is then rapidly heated to volatilize the organic compounds into a small flow of helium carrier gas and conveyed to an ion-molecule reaction drift tube where proton transfer from H3O+ is used to softly ionize organic species. The ionized analyte molecules are then trapped and mass analyzed using a quadrupole ion trap. Results from preliminary experiments using laboratory-generated aerosol will be discussed

  17. EMISSION RATES OF VOLATILE ORGANIC COMPOUNDS FROM PAPER

    OpenAIRE

    Ramalho, Olivier; Dupont, Anne-Laurence; Egasse, Céline; Lattuati-Derieux, Agnes

    2009-01-01

    International audience Emissions of VOCs from model papers aged in closed tubes for various periods of time were quantified using an emission cell (FLEC) placed directly on the paper surface. This sampling technique is entirely non-invasive for the artefact. At the outlet of the cell, the VOCs were accumulated during24 h on two types of sorbent packings, 2,4-dinitrophenylhydrazine (DNPH) derivatised silica and Tenax TA. Carbonyl compounds collected on DNPH/silica cartridges were analysed b...

  18. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  19. Characterization of organic compounds from biosolids of Buenos Aires city

    OpenAIRE

    S.I Torri; ALBERTI, C.

    2012-01-01

    The use of biosolids as a source of organic matter improves the physical and chemical properties of agricultural soils, resulting in an increase in crop yields. In previous studies, between 29-45% of sludge-borne carbon was recalcitrant a year after land application of biosolids from Buenos Aires City. Although high concentrations of some persistent organic pollutants have been worldwide reported to be present in this waste, this study has not been addressed in Argentina until now. Therefore,...

  20. Chains, clusters, inclusion compounds, paramagnetic labels, and organic rings

    CERN Document Server

    Zanello, P

    1994-01-01

    The role of stereochemistry to elucidate reaction patterns and physico-chemical properties in topical subjects ranging from inorganic to organic chemistry are treated in the fifth and final volume of this series. Detailed accounts are given to study: chaining in polyphosphates, electron-transfers in carbonyl clusters, inclusion of organometallic molecules in cyclodextrins, stereochemistry of paramagnetic metal complexes by labeling with nitroxyl radicals, stereocontrol in organic syntheses assisted by inorganic complexes.

  1. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications. PMID:24275825

  2. Sorption of chlorophenols and other halogenated organic compounds on soils in oil contaminated systems

    International Nuclear Information System (INIS)

    In order to evaluate the sorption behaviour of chlorinated pollutants from landfill leachates often contaminated with oil, sorption experiments were performed with reference systems. Chlorophenols, chlorobenzenes and hexachlorocyclohexane-isomers (BHC-isomers) were used as reference componds in concentrations of 200 μg/l to 2 mg/l. Three standard soils were used, the oil consisted of a synthetic mixture of hexadecane/pristane (1:1) at concentrations ranging from 20 mg/l to 5%. At oil concentrations of 40 to 200 mg/l the sorption did not change compared to the system without oil. With increasing oil concentrations (up to 5%), adsorption of the compounds was significantly decreased, reaching nearly 100% desorption at low percent levels of oil. (orig.)

  3. Atmospheric chemistry of organic sulfur and nitrogen compounds

    International Nuclear Information System (INIS)

    The work carried out during the first year of a four year Danish-Irish contract with the European Economic Community is described. The reactions of OH radicals with dialkyl sulfides and nitroalkanes have been studied applying both an absolute technique of pulse radiolysis with kinetic spectroscopy and a relative rate method using conventional smog chamber facilities. The reactions of OH with dimethyl sulfide and nitromethane have been investigated in special detail. Rate constants for reaction of Cl atoms with the same compounds have been determing using the relative rate method. (author)

  4. Stripping of volatile organic compounds; Stripping a la vapeur de composes organiques volatils (COV)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A. [APV Anhydro, Copenhagen (Denmark); Plante, J.L. [APV Anhydro, 27 - Evreux (France)

    1997-12-31

    The pollution of aqueous effluents by volatile organic compounds (VOC) is a real problem for the chemical industry. Steam stripping of such compounds can, when the procedure is well designed, result in extremely low residual levels. This article describes the stripping technique, taking as an example an APV Anhydro installation which carries out the stripping of the methyl-chloride contained in an effluent containing other volatile compounds. This installation was built in 1990 for the Upjohn company in Kalamazoo, Michigan. (authors)

  5. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents

    OpenAIRE

    Vazquez-Duhalt, Rafael; Westlake, Donald W. S.; Fedorak, Phillip M.

    1994-01-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hy...

  6. Differential effects of organic compounds on cucumber damping-off and biocontrol activity of antagonistic bacteria

    DEFF Research Database (Denmark)

    Li, Bin; Ravnskov, Sabine; Guanlin, X.;

    2011-01-01

    The influence of the organic compounds tryptic soy broth, cellulose, glucose and chitosan on cucumber damping-off caused by Pythium aphanidermatum and biocontrol efficacy of the biocontrol agents (BCAs) Paenibacillus macerans and P. polymyxa were examined in a seedling emergence bioassay. Results...... showed that the organic compounds differentially affected both pathogen and BCAs. Tryptic soy broth, glucose and chitosan increased Pythium damping-off of cucumber, compared to the control treatment without organic compounds, whereas cellulose had no effect. Both Paenibacillus species had biocontrol...... effects against Pythium damping-off compared with the corresponding treatments with P. aphanidermatum alone, but the biocontrol efficacy depended on the type of organic compounds added. Both BCAs counteracted damping-off in treatments with TSB and chitosan. However, P. polymyxa counteracted damping-off in...

  7. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    Science.gov (United States)

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  8. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  9. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    Directory of Open Access Journals (Sweden)

    David Dowling

    2009-08-01

    Full Text Available A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial or diffuse (e.g., agricultural contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants and rhizospheric bacteria (bacteria that live on and near the roots of plants, have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  10. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  11. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  12. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    Science.gov (United States)

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  13. Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987

    Science.gov (United States)

    Buszka, P.M.; Barber, L.B., II; Schroeder, M.P.; Becker, L.D.

    1994-01-01

    Water and streambed-sediment samples were collected on March 9 and 10,1987 from one site upstream and three sites downstream of the discharge from a municipal wastewater-treatment plant on Rowlett Creek near Dallas, Texas. To extract and separate organic compounds, purgeand-trap, closed-loop stripping, and pH-adjusted solvent extraction methods were used for water samples; and a Soxhlet-solvent extraction method was used for streambed sediment. These methods were combined with gas chromatography/mass spectrometry to identify organic compounds in Rowlett Creek. Results from this study confirm the persistence of many organic compounds in water as far as 13.5 kilometers downstream of the wastewater discharge. These include: (1) the volatile organic compounds chloroform, 1,2-dichlorobenzene, 1,4-dichlorobenzene, tetrachloroethene, and trichloroethene; (2) several linear alkylbenzene compounds, octyl phenol, and a tetramethylbutyl phenol isomer that are related to detergent use; (3) 9-phenyl-9H-carbazole, a compound related to coal tars and coal combustion residues; and (4) caffeine. The only compound present in water in concentrations greater than U.S. Environmental Protection Agency maximum contaminant levels for drinking water was tetrachloroethene (6.0 micrograms per liter) in a sample collected 13.5 kilometers downstream from the waste water discharge. Compounds identified from the streambed-sediment samples include a xylene isomer at 7.7 kilometers downstream and chrysene, fluoranthene, pyrene, and a xylene isomer at 13.5 kilometers downstream from the wastewater discharge.

  14. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Science.gov (United States)

    2012-03-09

    ...The EPA is proposing to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule, which is a rule that establishes national reactivity-based emission standards for the aerosol coatings category (aerosol spray paints) under the Clean Air Act. This proposed action adds three compounds: dimethyl carbonate, benzotrifluoride, and hexamethyldisiloxane and their......

  15. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ...EPA is proposing to approve a revision to the Alabama State Implementation Plan (SIP) submitted by the Alabama Department of Environmental Management (ADEM) on March 3, 2010. The proposed revision would modify the definition of ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene......

  16. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ...EPA is taking direct final action to approve a revision to the Alabama State Implementation Plan (SIP) submitted by the Alabama Department of Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code (AAC) section 335-3- 1-.02(gggg). Specifically, the revision adds two compounds......

  17. Application of Genetic Programming in Predicting Infinite Dilution Activity Coefficients of Organic Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Yi Lin CAO; Huan Ying LI

    2003-01-01

    In this paper, we calculated 37 structural descriptors of 174 organic compounds. The154 molecules were used to derive quantitative structure-infinite dilution activity coefficientrelationship by genetic programming, the other 20 compounds were used to test the model. Theresult showed that molecular partition property and three-dimensional structural descriptors havesignificant influence on the infinite dilution activity coefficients.

  18. Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia

    NARCIS (Netherlands)

    Kessermeier, J.; Kuhn, U.; Wolf, A.; Andreae, P.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Ganzeveld, L.N.; Guenther, J.; Greenberg, J.P.; Castro Vasconcellos, De P.; Tavares, T.; Artaxo, P.

    2000-01-01

    According to recent assessments, tropical woodlands contribute about half of all global natural non-methane volatile organic compound (VOC) emissions. Large uncertainties exist especially about fluxes of compounds other than isoprene and monoterpenes. During the Large-Scale Biosphere/Atmosphere Expe

  19. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater

    DEFF Research Database (Denmark)

    Baun, Anders; Eriksson, Eva; Ledin, Anna;

    2006-01-01

    that sort out problematic and hazardous compounds based on inherent physico-chemical and biological properties. The outcomes of the RICH procedure are separate lists for both water phase and solid phase associated compounds. These lists comprise: a justified list of compounds which can be disregarded...... chemicals (XOCs) of relevance for stormwater. Of these 233 compounds, 121 compounds were found to be priority pollutants with regard to solids phases (i.e. suspended solids, soil, or sediments) when stormwater is discharged to surface water and 56 compounds were found to be priority pollutants with regard...... exemplified with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority...

  20. Lifetimes of organic photovoltaics: photooxidative degradation of a model compound

    DEFF Research Database (Denmark)

    Norrman, K.; Alstrup, J.; Jørgensen, M.;

    2006-01-01

    A poly phenylene vinylene (PPV-type) oligomer used in organic photovoltaics was designed to facilitate the interpretation of mass spectral data. A film of the oligomer was subjected to various degrees of illumination (1000 W m(-2), AM1.5) in air resulting in photooxidation of the material. The...

  1. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents.

    OpenAIRE

    Mout eDeVrieze; Piyush ePandey; Bucheli, Thomas D.; Adithi Ravikumar Varadarajan; Christian H Ahrens; Laure eWeisskopf; Aurélien eBailly

    2015-01-01

    The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOC...

  2. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    OpenAIRE

    Nelson Caicedo; Edgar Gutiérrez; Rodrigo Torres

    2011-01-01

    This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO) from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR). These peroxidases were obtained from different sources (microbial and vegetable) and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyr...

  3. Organic carbon compounds detected by the SAM instrument suite on Curiosity: results of the first year of exploration at Gale Crater (Invited)

    Science.gov (United States)

    Summons, R. E.; Miller, K.; Glavin, D. P.; Eigenbrode, J. L.; Freissinet, C.; Martin, M. G.; Team, M.

    2013-12-01

    from organic carbon compounds on Mars. Two of these were also identified by the GC-MS instruments on the 1976 Viking missions. Oxychlorine compounds, possibly hydrated Ca or Mg perchlorate, in Mars surface sediments appear to be the source of the chlorine as supported by laboratory experiments with perchlorate-doped olivine sand as a Mars-analog sediment. However the source of the carbon remains enigmatic. Laboratory experiments also show that C1 organics including methanol, formaldehyde and formic acid can yield chlorinated organic compounds when pyrolysed with perchlorate-doped olivine sand. Thus, along with methane, these are potential martian sources of the organic compounds identified by SAM. Ongoing laboratory analog studies and further SAM analyses of martian soils will allow us to discriminate between the possible sources of the chlorohydrocarbons identified so far. 1. Leshin, L. A., et al. (2013), Science, in press. 2. Glavin D.P. et al. (2013) JGR Planets, submitted.

  4. FATE OF VOLATILE CHLORINATED ORGANIC COMPOUNDS IN A LABORATORY CHAMBER WITH ALFALFA PLANTS. (R825549C034)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. FATE OF YOLATILE CHLORINATED ORGANIC COMPOUNDS IN A LABORATORY CHAMBER WITH ALFALFA PLANTS. (R825549C062)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Nyholm, Niels

    1992-01-01

    The toxic effects of potassium dichromate (K2Cr2O7), 3,4-dichloroaniline (DCA) and 2,4-dichlorophenol (DCP) on the photosynthesis of natural marine phytoplankton and five species of marine microalgae were investigated. Effect concentrations corresponding to a 50 % depression of photosynthesis (6h...

  7. Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge with reticulated vitreous carbon electrodes

    International Nuclear Information System (INIS)

    Trichloroethylene (TCE) and vinyl chloride removal by pulsed corona discharge was investigated with attention to energy efficiency and byproduct identification. Approximately, 50 to 95 percent removal of TCE and vinyl chloride was observed depending on the energy density applied to the gas. Water vapor had no significant effect on TCE removal. Evidence was found for post-corona reactions leading to removal of vinyl chloride downstream of the plasma discharge. Energy efficiencies of 100-900 g/kw-hr in the case of 1000 ppm feed of TCE and efficiencies of 2-24 g/kw-hr for a 100 ppm feed of vinyl chloride were found. In TCE experiments, the formation of dichloroacetyl chloride was observed, while chloro-ethane formation was found for vinyl chloride. In both cases, Cl- was measured downstream of the pulsed corona reactor in a water trap using an ion-selective electrode, although measured amounts varied widely due to condensation in the gas lines between the reactor and the water trap. The addition of a platinum-rhodium coated electrode was found only to reduce the downstream removal of vinyl chloride at low energy density. (author)

  8. Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Nyholm, Niels

    1992-01-01

    The toxic effects of potassium dichromate (K2Cr2O7), 3,4-dichloroaniline (DCA) and 2,4-dichlorophenol (DCP) on the photosynthesis of natural marine phytoplankton and five species of marine microalgae were investigated. Effect concentrations corresponding to a 50 % depression of photosynthesis (6h...... EC50) were found within relatively narrow ranges of 3.3–7.2 mg/l and 1.5–12 mg/l for DCA and DCP respectively, whereas the sensitivities towards K2Cr2O7 varied much more. The effects of DCA and DCP on the growth rate of some species were also investigated. EC50 values for DCP and DCA were found...

  9. Studies on the biological effects of deuteriated organic compounds

    International Nuclear Information System (INIS)

    The antifungal activity of some perdeuterated fatty acids with a normal chain of 11 to 18 carbon atoms was investigated on common dermatophytes Epidermophyton floccosum, Microsporum canis, Trichophyton mentagrophytes and T. rubrum under in vitro conditions. A perdeuterated compound is one in which most of the hydrogen atoms in the molecule are replaced by deuterium. These studies were performed by the dilution technique with respiratory measurements. Perdeuteration of of some fatty acids increases their inhibitory effect on the dermatophyte growth. Perdeuterated n-hendecanoic acid proved to be the most active of the substances tested. Possible mechanisms behind the enhanced antifungal activity due to the perdeuteration of fatty acids are discussed. The present study investigates the antifungal properties of some perdeuterated fatty acids on dermatophytes in vitro

  10. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Na [Berkeley Analytical Associates, Richmond, CA (United States); Hodgson, Alfred [Berkeley Analytical Associates, Richmond, CA (United States); Offermann, Francis [Indoor Environmental Engineering, San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  11. Rapid changes of induced volatile organic compounds in Pinus massoniana

    Institute of Scientific and Technical Information of China (English)

    REN Qin; JIN Youju; HU Yongiian; CHEN Huajun; LI Zhenyu

    2007-01-01

    Using the thermal-desorption cold trap gas chromatography/mass spectrometer(TCT-GC-MS)technique,the composition and relative contents of volatile compounds were analyzed in undamaged(control),insect-damaged(ID)and artificially-damaged(AD)leaves ofPinus massoniana in field at different times and levels of damage.Results showed that although volatile substances were highly released earlier in AD leaves plants,they were significantly less abundant in AD than in ID leaves treatments.Also,the damage level considerably influenced the changes of induced volatile products from leaves.Compared with the control,the emission rate of camphene,β-pinene,phellandrene,caryophyllene and(E)farnesene was high after 1 h in 25%-40% ID-affected leaves,whereas that of tricyclene,myrcene,camphene,β-Pinene,phellandrene and caryophyllene reached its maximum after 24 h in 60%-75% D-affected leaves.In the same manner,some volatile compounds in the AD leaves treatment displayed their peaks just after 1 h,but others after 24 h.The AD and ID leaves at the damage level of 25%-40% did not exhibit an obvious regularity with time;however,in 60%- 75% AD leaves,peaks of volatile substances were attained after 1 or 2 h.Our results also showed that the relative content ofβ-pinene increased and was higher in damaged than control plants,β-pinene plays an important role in inducing the insect resistance of P.massoniana trees.

  12. Fluorinated organic compounds in an eastern Arctic marine food web.

    Science.gov (United States)

    Tomy, Gregg T; Budakowski, Wes; Halldorson, Thor; Helm, Paul A; Stern, Gary A; Friesen, Ken; Pepper, Karen; Tittlemier, Sheryl A; Fisk, Aaron T

    2004-12-15

    An eastern Arctic marine food web was analyzed for perfluorooctanesulfonate (PFOS, C8F17SO3-), perfluorooctanoate (PFOA, C7F15COO-), perfluorooctane sulfonamide (PFOSA, C8F17SO2NH2), and N-ethylperfluorooctane sulfonamide (N-EtPFOSA, C8F17SO2NHCH2CH3) to examine the extent of bioaccumulation. PFOS was detected in all species analyzed, and mean concentrations ranged from 0.28 +/- 0.09 ng/g (arithmetic mean +/- 1 standard error, wet wt, whole body) in clams (Mya truncata) to 20.2 +/- 3.9 ng/g (wet wt, liver) in glaucous gulls (Larus hyperboreus). PFOA was detected in approximately 40% of the samples analyzed at concentrations generally smaller than those found for PFOS; the greatest concentrations were observed in zooplankton (2.6 +/- 0.3 ng/g, wet wt). N-EtPFOSA was detected in all species except redfish with mean concentrations ranging from 0.39 +/- 0.07 ng/g (wet wt) in mixed zooplankton to 92.8 +/- 41.9 ng/g (wet wt) in Arctic cod (Boreogadus saida). This is the first report of N-EtPFOSA in Arctic biota. PFOSA was only detected in livers of beluga (Delphinapterus leucas) (20.9 +/- 7.9 ng/g, wet wt) and narwhal (Monodon monoceros) (6.2 +/- 2.3 ng/g, wet wt), suggesting that N-EtPFOSA and other PFOSA-type precursors are likely present but are being biotransformed to PFOSA. A positive linear relationship was found between PFOS concentrations (wet wt) and trophic level (TL), based on delta15N values, (r2 = 0.51, p 1, suggesting potential for these compounds to biomagnify. The presence of perfluorinated compounds in seabirds and mammals provides evidence that trophic transfer is an important exposure route of these chemicals to Arctic biota. PMID:15669302

  13. 78 FR 9823 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of a Group of Four...

    Science.gov (United States)

    2013-02-12

    ...This action revises the definition of volatile organic compounds (VOCs) under the Clean Air Act (CAA). This revision adds four chemical compounds to the list of compounds excluded from the definition of VOC on the basis that each of these compounds makes a negligible contribution to tropospheric ozone formation. These compounds consist of four hydrofluoropolyethers (HFPEs) which are identified......

  14. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  15. Adsorption of volatile organic compounds by polytetra-fluor ethylene

    International Nuclear Information System (INIS)

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N2 adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author)

  16. Method for Spiking Soil Samples with Organic Compounds

    OpenAIRE

    Brinch, Ulla C.; Ekelund, Flemming; Jacobsen, Carsten S.

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either the whole soil sample or 25% of the soil volume, which was subsequently mixed with 75% untreated soil. For dichloromethane, we included a third protocol, which involved application to 80% of the so...

  17. Microtrapping of volatile organic compounds with carbon nanotubes

    OpenAIRE

    Chaudhery Mustansar Hussain; Chutarat Saridara; Somenath Mitra

    2010-01-01

    Micro-sorbent traps referred to as microtraps serve as integrated concentration-injection devices for continuousmonitoring in gas phase streams. The application of carbon nanotubes as unique sorbents for the fabrication of microtrapsfor the nano-scale adsorption/desorption of volatile organic molecules is presented in this paper. The microtrap applicationrequires high adsorption capacity as well as easy desorbability; the latter being critical for injection mode of these integrateddevices. Th...

  18. Sorption of Organic Compounds in Low Density Polyethylene Membrane

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Machková, J.; Šípek, M.; Bartovská, P.; Sysel, P.; Izák, Pavel

    Praha: Process Engineering Publisher, 2004, s. 678. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha (CZ), 22.08.2004-26.08.2004] R&D Projects: GA ČR GA104/03/0388 Institutional research plan: CEZ:AV0Z4072921 Keywords : organic vapors * polymer membrane * sorption isothermes Subject RIV: CA - Inorganic Chemistry

  19. Design, Synthesis and Characterization of N-Containing Organic Compounds

    OpenAIRE

    Long, Sha

    2013-01-01

    The needed of new intermediates/products for screening in the fields of drug discovery and material science is the driving force behind the development of new methodologies and technologies. Organic scaffolds are privileged targets for this scouting. Among them a priority place must be attributed to those including nitrogen functionalities in their scaffolds. It comes out that new methodologies, allowing the introduction of the nitrogen atom for the synthesis of an established target or for t...

  20. Carbon Particles and Organic Compounds in Hard Coal Waste

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Ivana; Havelcová, Martina; Klika, Z.; Trejtnarová, Hana; Fojtíková, M.; Martinec, Petr; Šulc, Alexandr

    Freiberg: TU Bergakademie Freiberg, 2010, s. 418-419. ISBN 978-3-86012-397-3. [Second International Conference on Coal Fire Research ICCFR2. Berlin (DE), 19.05.2010-21.05.2010] R&D Projects: GA AV ČR IAA300460804 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30860518 Keywords : coal waste s * organic matter * PAHs Subject RIV: DM - Solid Waste and Recycling