WorldWideScience

Sample records for chloride stress corrosion

  1. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  2. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    International Nuclear Information System (INIS)

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  3. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  4. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  5. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  6. Stress corrosion cracking of nickel alloys in bicarbonate and chloride solutions

    International Nuclear Information System (INIS)

    Ares, A. E.; Carranza, R. M.; Giordano, C. M.; Zadorozne, N. S.; Rebak, R.B.

    2013-01-01

    Alloy 22 is one of the candidates for the manufacture of high level radioactive waste containers. These containers provide services in natural environments characterized by multi-ionics solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate at temperatures above 60°C and applied potentials around +400 mVSCE are necessary in order to produce cracking, . This susceptibility may be associated to the instability of the passive film formed and to the formation of an anodic current peak in the polarization curves in these media. Until now, it is unclear the role played by each alloying element (Ni, Cr or Mo) in the SCC susceptibility of Alloy 22 in these media The aim of this work is to evaluate the SCC susceptibility of nickel-based alloys in media containing bicarbonate and chloride ions, at high temperature. Slow Strain Rate Testing (SSRT) was conducted to samples of different alloys: 22 (Ni-Cr-Mo), 600 (Ni-Cr-Fe), 800H (Ni-Fe-Cr) y 201 (99.5% Ni).This tests were conducted in 1.1 mol/L NaHCO 3 +1.5 mol/L NaCl a 90°C and different applied potentials (+200mVSCE,+300 mVSCE, +400 mVSCE). These results were complemented with those obtained in a previous work, where we studied the anodic electrochemical behavior of nickel base alloys under the same conditions. It was found that alloy 22 showed a current peak in a potential range between +200 mVSCE and +300 mVSCE when immersed in bicarbonate ions containing solutions. This peak was attributed to the presence of chromium in the alloys. The SSRT showed that only alloy 22 has a clear indication of stress corrosion cracking. The current results suggested that the presence of an anodic peak in the polarization curves was not a sufficient condition for cracking. (author)

  7. Developing Field Test Procedures for Chloride Stress Corrosion Cracking in the Arabian Gulf

    Directory of Open Access Journals (Sweden)

    Hanan Farhat

    2018-01-01

    Full Text Available Oil and gas production and petrochemical plants in the Arabian Gulf are exposed to severe environmental conditions of high temperature and humidity. This makes these plants susceptible to chloride-induced stress corrosion cracking (CSCC. The laboratory testing fails to provide the exact field environmental conditions. A cost efficient field test setup for CSCC was designed and developed for the Arabian Gulf. The setup included designing self-sustained loading devices, samples, and sample racks. The samples were exposed to a stress equivalent to 80% and 100% of their yield strength. This paper describes the developed test procedures to establish testing with high level of accuracy and repeatability. It also discusses the design aspects and the challenges that were met.

  8. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    International Nuclear Information System (INIS)

    King, F.; Greidanus, G.; Jobe, D.J.

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl - has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl - /ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu 2 O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol·dm -3 NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1 - NH 3 /NH 4 + H 2 O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  9. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  10. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Greidanus, G.; Jobe, D.J

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl{sup -} has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl{sup -}/ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu{sub 2}O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol{center_dot}dm{sup -3} NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1{sup -}NH{sub 3}/NH{sub 4{sup +}}H{sub 2}O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  11. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  12. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  13. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    Andrade, C.; Fullea, J.; Toro, L.; Martinez, I.; Rebolledo, N.

    2013-01-01

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  14. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  15. Stress Corrosion Cracking of Type 304 Stainless Steel

    National Research Council Canada - National Science Library

    Louthan, M

    1964-01-01

    Stress corrosion cracking of type 304 stainless steel exposed in dilute chloride solutions is being investigated at the Savannah River Laboratory in attempts to develop a fundamental understanding of the phenomenon...

  16. Alternate immersion stress corrosion testing of 5083 aluminum

    International Nuclear Information System (INIS)

    Briggs, J.L.; Dringman, M.R.; Hausburg, D.E.; Jackson, R.J.

    1978-01-01

    The stress corrosion susceptibility of Type 5083 aluminum--magnesium alloy in plate form and press-formed shapes was determined in the short transverse direction. C-ring type specimens were exposed to alternate immersion in a sodium chloride solution. The test equipment and procedure, with several innovative features, are described in detail. Statistical test results are listed for seven thermomechanical conditions. A certain processing scheme was shown to yield a work-strengthened part that is not sensitized with respect to stress corrosion cracking

  17. Crevice corrosion of alloy 22 in fluoride and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2005-01-01

    Alloy 22 (N06022) is highly resistant to localized corrosion. Alloy 22 may be susceptible to crevice corrosion in pure chloride (Cl - ) solutions under aggressive environmental conditions. The effect of the fluoride (F - ) on the susceptibility to crevice corrosion induced by chloride ions is still not well established. The objective of the present work was to explore the crevice corrosion resistance of this alloy to different mixtures of fluorides and chlorides. Cyclic potentiodynamic polarization (CPP) tests were conducted in deaerated aqueous solutions of pure halide ions and also in different mixtures of chloride and fluoride at 90 C degrees and pH 6. The range of chloride concentration [Cl - ] was 0.001 M ≤ [Cl - ] ≤ 1 M and the range of molar fluoride to chloride ratio [F - ]/[Cl - ] was 0.1≤ [F - ]/[Cl - ] ≤ 10. Results showed that Alloy 22 was susceptible to crevice corrosion in all the pure chloride solutions but not in the pure fluoride solutions. A molar ratio [F - ]/[Cl - ] ranging from 5 to 10 was required for the inhibition of crevice corrosion to be complete in the halide mixtures. A moderate or nil inhibitive effect was observed for molar ratios [F - ]/[Cl - ] [es

  18. Corrosion Risk of Reinforced Concrete Structure Arising from Internal and External Chloride

    Directory of Open Access Journals (Sweden)

    M. J. Kim

    2018-01-01

    Full Text Available The corrosion risk of internal chloride and external chloride from three different exposure conditions was evaluated. The initiation of corrosion was detected by monitoring the galvanic current between cathode metal and embedded steel. The chloride threshold was determined by measuring the corrosion rate of steel by the polarization technique for internal chloride and the chloride profiling test for external chloride. As the result, the initiation of corrosion was accelerated with a cyclic wet/dry condition, compared to the totally wet condition. In addition, it was found that an increase of the drying ratio in the exposure condition resulted in an increase of corrosion rate after initiation. The threshold level of external chloride ranged from 0.2 to 0.3% weight by cement and internal chloride shows higher range, equated to 1.59–3.10%. Based on these data, the chloride penetration with exposure condition was predicted to determine the service life of reinforced concrete structure.

  19. Chromium steel corrosion rates and mechanisms in aqueous nickel chloride at 300C

    International Nuclear Information System (INIS)

    Forrest, J.E.; Broomfield, J.P.; Mitra, P.K.

    1985-01-01

    Rapid corrosion of PWR steam generator carbon steel support structures and consequential denting of steam generator tubes led to investigation of alternative support designs and materials. In recent designs of steam generators the carbon steel drilled hole tube support plate has been replaced by one of quatrefoil or trefoil shape to minimize the contact area. These plates are now made of more corrosion resistant chromium steel (approx. 12%Cr) to ensure that they are less vulnerable to attack in the event of adverse boiler water chemistry. This study was initiated to examine the corrosion behavior of a range of chromium steels in the acid chloride environments characteristic of tube/support plate crevices under adverse boiler water conditions. Objectives of the study were to: 1) determine the relative susceptibility of candidate tube support plate steels to acid chloride corrosion; 2) investigate the corrosion product morphology and its relationship to the corrosion mechanism; 3) determine the effect of environment aggressiveness on 12%Cr (A405) steel corrosion rates and mechanisms; and 4) investigate the effect of restraint stress/environment on denting potential of A405. Experimental method and results are discussed

  20. Contribution to surface physicochemical factors to stress corrosion resistance in stainless steels

    International Nuclear Information System (INIS)

    Gras, Jean-Marie

    1974-01-01

    The author of this research thesis first presents and discusses the various aspects of stress corrosion cracking of Fe-Cr-Ni alloys of high purity: experimental conditions (alloy elaboration, sample preparation), corrosion results (Schaeffer diagram, crack morphology, intergranular corrosion), influence of addition elements in ferritic alloys. He reports an electrochemical study of stainless steels in magnesium chloride (experimental conditions, influence of metallurgic and environmental parameters on polarization resistance, current-voltage curves), and an analytical study of layers formed in the magnesium chloride

  1. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  2. Study of corrosion susceptibility of stainless steel-304 and stainless steel-316 under mechanical stress in diluted boiling nitric acid with chlorides

    International Nuclear Information System (INIS)

    Desjardins, D.; Puiggali, M.; El Kheloui, A.; Petit, M.C.; Clement, C.; Berge, J.P.

    1991-01-01

    A detailed study of corrosion of stressed 304 and 316 stainless steels in boiling solutions of diluted nitric acid in presence of chloride is presented. After a chemical study of the electrolyte, the different kinds of corrosion observed are represented on HNO 3 concentration - Cl - concentration diagrams. A more fundamental study based on several electrochemical techniques (forward scan and return potentiodynamic curves, potentiokinetic curves with different scan rates, sample depassivation by rapid straining under potentiostatic control) is carried out. The results allow to confirm the observations and to explain them in terms of competition between anodic dissolution, depassivation, repassivation processes with a precise analyze of the role of the solution and of the mechanical stress [fr

  3. Characterisation of the steel concrete interface submitted to chloride-induced corrosion

    International Nuclear Information System (INIS)

    L'Hostis, V.; Amblard, E.; Guillot, W.; Paris, C.; Bellot-Gurlet, L.

    2013-01-01

    This paper deals with the characterisation by means of electrochemical, gravimetric and analytical methods of chloride-induced-corrosion behaviour of steel coupons embedded in chloride-containing-cement pastes. Corrosion rates were estimated from electrochemical measurements as well as gravimetric ones. They vary from 2.6 to 5.7μm/year for 5 and 10 g/L chloride-containing cement pastes. Analytical characterisations (including optical and electron microscopy and Raman micro-spectroscopy) showed that corrosion patterns are not depending on the chloride content of the cement paste (5 and 10 g/L chloride in the interstitial solution). A localised corrosion pattern composed of pits growing inside the metallic substratum, a corrosion products layer (CPL) and a transformed medium (TM) was pointed out. CPL can be divided into two sub-layers (CPL1 and CPL2), characterised by the presence or absence of calcium coming from the cement matrix. (authors)

  4. Growth and Breakdown of Surface Films and Localized Corrosion of Aluminum in Concentrated Chloride Media

    National Research Council Canada - National Science Library

    Lee, Jiajing

    1994-01-01

    ...) and mechanical stress for aluminum and titanium alloys in aggressive corrosion environments. This report presents results of some very preliminary experiments on aluminum alloys and titanium during anodic dissolution in chloride media...

  5. Susceptibility to Stress Corrosion Cracking of 254SMO SS

    Directory of Open Access Journals (Sweden)

    De Micheli Lorenzo

    2002-01-01

    Full Text Available The susceptibility to stress corrosion cracking (SCC of solubilized and sensitized 254SMO SS was studied in sodium chloride, and sodium fluoride solutions at 80 °C and sulfuric acid solutions in presence of sodium chloride at 25 °C. The influence of salt concentration, pH values and the addition of thiosulfate was examined. The susceptibility to SCC was evaluated by Slow Strain Rate Tests (SSRT, at 1.5 x 10-6 s-1 strain rate. The behavior of 254SMO was compared to those of AISI 316L SS and Hastelloy C276. 254SMO showed an excellent resistance to SCC in all conditions, except in the more acidic solutions (pH <= 1 where, in the sensitized conditions, intergranular stress corrosion cracking occurred.

  6. Standard test method for evaluating stress-corrosion cracking of stainless alloys with different nickel content in boiling acidified sodium chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method describes a procedure for conducting stress-corrosion cracking tests in an acidified boiling sodium chloride solution. This test method is performed in 25% (by mass ) sodium chloride acidified to pH 1.5 with phosphoric acid. This test method is concerned primarily with the test solution and glassware, although a specific style of U-bend test specimen is suggested. 1.2 This test method is designed to provide better correlation with chemical process industry experience for stainless steels than the more severe boiling magnesium chloride test of Practice G36. Some stainless steels which have provided satisfactory service in many environments readily crack in Practice G36, but have not cracked during interlaboratory testing using this sodium chloride test method. 1.3 This boiling sodium chloride test method was used in an interlaboratory test program to evaluate wrought stainless steels, including duplex (ferrite-austenite) stainless and an alloy with up to about 33% nickel. It may also b...

  7. Stochastic Models for Chloride-Initiated Corrosion in Reinforced Concrete

    DEFF Research Database (Denmark)

    Engelund, Svend; Sørensen, John Dalsgaard

    Corrosion of the reinforcement in concrete structures can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is when the chloride content around the reinforcement exceeds a threshold value. In the present paper a statistical model is developed by which...... the chloride content in a 1reinforced concrete structure can be predicted. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion is estimated by FORMISORM-analysis....

  8. Stochastic Models for Chloride-Initiated Corrosion in Reinforced Concrete

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1996-01-01

    Corrosion of the reinforcement in concrete structures can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is when the chloride content around the reinforcement exceeds a threshold value. In the present paper a statistical model is developed by which...... the chloride content in a reinforced concrete structure can be predicted. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion is estimated by FORM/SORM-analysis....

  9. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  10. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  11. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  12. Stress corrosion cracking for 316 stainless steel clips in a condensate stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awar, A.; Aldajah, S.; Harhara, A. [Department of Mechanical Engineering, United Arab Emirates University, P. O. Box 17555 Al-AIn 17555 (United Arab Emirates)

    2011-09-15

    In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U-bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Pitting and stress corrosion cracking of stainless steel

    Science.gov (United States)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  14. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  15. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  16. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2016-01-01

    Highlights: • Chloride effects on SCC crack growth in RPV steels under boiling water reactor conditions. • ppb-levels of chloride may result in fast SCC in normal water chemistry environment. • Much higher chloride tolerance for SCC in hydrogen water chemistry environment. • Potential long-term (memory) effects after severe and prolonged temporary chloride transients. - Abstract: The effect of chloride on the stress corrosion crack (SCC) growth behaviour in low-alloy reactor pressure vessel steels was evaluated under simulated boiling water reactor conditions. In normal water chemistry environment, ppb-levels of chloride may result in fast SCC after rather short incubation periods of few hours. After moderate and short-term chloride transients, the SCC crack growth rates return to the same very low high-purity water values within few 100 h. Potential long-term (memory) effects on SCC crack growth cannot be excluded after severe and prolonged chloride transients. The chloride tolerance for SCC in hydrogen water chemistry environment is much higher.

  17. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  18. Stress corrosion cracking of zirconium and its alloys in halogenide solutions

    International Nuclear Information System (INIS)

    Farina, Silvia B.

    2001-01-01

    A doctoral thesis developed at the corrosion labs in CNEA a few years ago showed that zirconium and Zircaloy-4 were susceptible to stress corrosion cracking (SCC) in chloride aqueous solutions at potentials above the pitting potential. However, the nature of the phenomenon was not elucidated. On the other hand, references about the subject were scarce and contradictory. The development of new SCC models, in particular, the surface mobility SCC mechanism suggested a review of zirconium and Zircaloy-4 SCC in halogenide aqueous solutions. This mechanism predicts that zirconium should be susceptible to SCC not only in chloride solutions but also in bromide and iodide solutions due to the low melting point of the surface compounds formed by the interaction between the metal and the environment. The present work was aimed to determine the conditions under which SCC takes place and the mechanism operating during this process. For that purpose, the effect of electrochemical potential, strain rate and temperature on the SCC susceptibility of both, zirconium and Zircaloy-4 in chloride, bromide and iodide solutions was investigated. It was observed that those materials undergo stress corrosion cracking only at potentials higher than the breakdown potential. The crack velocity increased slightly with the applied potential, and the strain rate had an accelerating effect on the crack propagation rate. In both materials two steps were found during cracking. The first one was characterized as intergranular attack assisted by stress due to an anodic dissolution process. This step is followed by a transition to a transgranular mode of propagation, which was considered as the 'true' stress corrosion cracking step. The intergranular attack is the rate-determining step due to the fact that the transgranular propagation rate is higher than the intergranular propagation rate. Several stress corrosion cracking mechanisms were analyzed to explain the transgranular cracking. The predictions

  19. Critical study of test methods in stress corrosion cracking. Application to stainless steels in chloride environment

    International Nuclear Information System (INIS)

    Ajana, Lotfi

    1985-01-01

    The transposition of results obtained in laboratory to the prediction of in-service material resistance is a crucial problem in the case of stress corrosion cracking (SCC). The search for a SCC test which allows a reliable and realistic classification of stainless steels in chloride environments requires a choice of adequate electrolytes and of mechanical solicitation mode. In this research, the author first justifies the choice of an environment which could be representative of actual service conditions in the case of 5 grades of austenitic steels and 1 grade of austeno-ferric steel. Using a computerized data acquisition and processing system, the author compares the information obtained with two types of test: under constant load and under slow strain rate [fr

  20. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  1. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  2. Experimental investigation on the threshold chloride concentration for corrosion initiation in reinforced concrete structures

    International Nuclear Information System (INIS)

    Byung Hwan Oh; Seung Yup Jang

    2005-01-01

    The corrosion of steel reinforcements in concrete is of great importance in the view of safety and durability of reinforced concrete structures. This study is focused on the corrosion behavior of steel bars induced by internal chlorides in concrete. The main objective of this study is to determine the threshold chloride concentration causing depassivation and active corrosion of steel reinforcement in concrete. To examine the threshold concentration of chloride ion, the half-cell potential, the chemical composition of extracted pore solutions of concrete and the extent of corroded area of the specimens were measured. Major test variables include the added amount of chlorides in concrete, type of binder, and water-to-binder ratios. From the present comprehensive test results, the factors influencing threshold chloride concentration are investigated, and the rational ranges of threshold chloride concentration causing active corrosion of steels are proposed. The present study provides the realistic chloride limit for corrosion initiation of reinforced concrete structures, which can be used efficiently in the future technical specification. (authors)

  3. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  4. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature

    International Nuclear Information System (INIS)

    Chang Mingyu; Yu Geping

    1993-01-01

    Pitting corrosion of Inconel 600 was examined in chloride and sulfate solutions through usage of potentiodynamic polarization techniques. The effects of chloride and sulfate concentration were investigated in the range of 0.0001 to 0.1 M. Increasing chloride concentrations resulted in active shifts of the pit nucleation potential. Immunity to pitting corrosion was evident at a chloride level below 0.005 M. Increasing sulfate concentrations resulted in improved pitting resistance of Inconel 600 in chloride solutions. Detrimental effects associated with pitting were evident with low-level sulfate being added to dilute chloride media. The density of pits increased with increasing chloride concentrations or temperature between room temperature and 70 C. Systematic trends for the depth of pits were not evident. The observations of pitting corrosion in open immersion were consistent with those in polarization methods. Corrosion products contained in the pits were enriched in nickel, chromium and iron with a small amount of titanium and silicon. The enrichment of chlorine or sulfur was still, however, not found. (orig.)

  5. Localized corrosion of molybdenum-bearing nickel alloys in chloride solutions

    International Nuclear Information System (INIS)

    Postlethwaite, J.; Scoular, R.J.; Dobbin, M.H.

    1988-01-01

    Electrochemical and immersion tests have been applied to a study of the localized corrosion resistance of two molybdenum-bearing nickel alloys. Alloys C-276 and 6y25, in neutral chloride solutions in the temperature range of 25 to 200 C as part of the container materials evaluation screening tests for the Canadian Nuclear Fuel Waste Management Program. Cyclic polarization studies show that the passivation breakdown potentials move rapidly to more active values with increasing temperatures, indicating a reduced resistance to localized corrosion. The results of immersion tests show that both alloys do suffer crevice corrosion in neutral aerated sodium chloride solutions at elevated temperatures, but that in both cases there is a limiting temperature > 100C, below which, the alloys are not attacked, regardless of the chloride concentration

  6. The Effect of Crack Width on Chloride-Induced Corrosion of Steel in Concrete

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available When subjected to loading or thermal shrinkage, reinforced concrete structures usually behave in a cracking state, which raises the risk of bar corrosion from the working environment. The influence of cover cracking on chloride-induced corrosion was experimentally investigated through a 654-day laboratory test on cracked reinforced concrete specimens exposed to chloride solution. The concrete specimens have a dimension of 100 mm × 100 mm × 400 mm and a single prefabricated crack at the midspan. When the percentage concentration of chloride ion (0.6%, 1.2%, 2.1%, 3.0%, and 6.0% and crack width (uncracked, 0.2, 0.3, 0.4, and 0.5 mm are taken as variables, the experimental results showed that the corrosion rates for cracked specimens increased with increasing percentage concentration of chloride and increasing crack width. This study also showed the interrelationship between crack width and percentage concentration of chloride on the corrosion rate. In addition, an empirical model, incorporating the influence of the cover cracking and chloride concentration, was developed to predict the corrosion rate. This model allows the prediction of the maximum allowable wcr based on the given percentage concentration of chloride in the exposure condition.

  7. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  8. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  9. An electrochemical investigation of the corrosion behavior of aluminum alloys in chloride containing solutions

    International Nuclear Information System (INIS)

    Campos Filho, Jorge Eustaquio de

    2005-01-01

    Aluminum alloys have been used as cladding materials for nuclear fuel in research reactors due to its corrosion resistance. Aluminum owes its good corrosion resistance to a protective barrier oxide film formed and strongly bonded to its surface. In pool type TRIGA IPR-R1 reactor, located at Centro de Desenvolvimento da Tecnologia Nuclear in Belo Horizonte, previous immersion coupon tests revealed that aluminum alloys suffer from pitting corrosion, in spite of high quality of water control. Corrosion attack is initiated by breaking the protective oxide film on aluminum alloy surface. Chloride ions can break this oxide film and stimulate metal dissolution. In this study the aluminum alloys 1050, 5052 and 6061 were used to evaluate their corrosion behavior in chloride containing solutions. The electrochemical techniques used were potentiodynamic anodic polarization and cyclic polarization. Results showed that aluminum alloys 5052 and 6061 present similar corrosion resistance in low chloride solutions (0,1 ppm NaCl) and in reactor water but both alloys are less resistant in high chloride solution (1 ppm NaCl). Aluminum alloy 1050 presented similar behavior in the three electrolytes used, regarding to pitting corrosion, indicating that the concentration of the chloride ions was not the only variable to influence its corrosion susceptibility. (author)

  10. Corrosion potential: influence of moisture, water-cement ratio, chloride content and concrete cover

    Directory of Open Access Journals (Sweden)

    M. H. F. Medeiros

    Full Text Available ABSTRACT The method of measuring the corrosion potential is used as an electrochemical tool for helping the monitoring of the corrosion of reinforcements of concrete structures. As a criterion for evaluating results it is common to use intervals of corrosion potential and their correlation with corrosion probability, as precognizes ASTM C 876:2015. With this criterion, it is possible to establish an overview of the thermodynamic situation of corrosion in the structure or in the test specimen in laboratory. However, the method is influenced by several factors related with the concrete, the environment and with procedures adopted at the moment of executing the readings. Aiming to provide information to guide the technical and scientific environment regarding the right use of this type of non-destructive testing, the objective of this work is to evaluate some possible factors influencing the reading of corrosion potential, such as: moisture content of the concrete, water/cement ratio, thickness of the concrete cover and degree of contamination by chlorides. Results indicate that moisture and degree of contamination of the concrete by chloride ions had a tendency of making the corrosion potential more electronegative. Besides, it was verified that the influence of the cover is different for the case of contaminated concrete (1% of chlorides by mass of cement and not contaminated with chlorides: the influence of the thickness of the cover, in the case of concrete contaminated by chlorides, was inversely proportional, in other words, the greater the cover thickness is, the less electronegative the value of the corrosion potential will be. On the other hand, in cases of concretes without chlorides, the effect of the cover thickness in the readings or corrosion potential was irrelevant. All this information was proved with 95% of statistical significance.

  11. Maintenance Planning for Chloride Initiated Corrosion in Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    Corrosion of the reinforcement in concrete structures can be initiated when the chloride concentration around the reinforcement exceeds a threshold value. In order to prevent the corrosion from reaching a stage where the load-bearing capacity of a given structure suffers a substantial decrease...

  12. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  13. Stress corrosion cracking susceptibility of steam generator tubing on secondary side in restricted flow areas

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Radulescu, M.; Velciu, L.

    2003-01-01

    Nuclear steam generator tubes operate in high temperature water and on the secondary side in restricted flow areas many nonvolatile impurities accidentally introduced into circuit tend to concentrate. The concentration process leads to the formation of highly aggressive alkaline or acid solutions in crevices, and these solutions can cause stress corrosion cracking (SCC) on stressed tube materials. Even though alloy 800 has shown to be highly resistant to general corrosion in high temperature water, it has been found that the steam generator tubes may crack during service from the primary and/or secondary side. Stress corrosion cracking is still a serious problem occurring on outside tubes in operating steam generators. The purpose of this study was to evaluate the environmental factors affecting the stress corrosion cracking of steam generators tubing. The main test method was the exposure for 1000 hours into static autoclaves of plastically stressed C-rings of Incoloy 800 in caustic solutions (10% NaOH) and acidic chloride solutions because such environments may sometimes form accidentally in crevices on secondary side of tubes. Because the kinetics of corrosion of metals is indicated by anodic polarization curves, in this study, some stressed specimens were anodically polarized in caustic solutions in electrochemical cell, and other in chloride acidic solutions. The results presented as micrographs, potentiokinetic curves, and electrochemical parameters have been compared to establish the SCC behavior of Incoloy 800 in such concentrated environments. (authors)

  14. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    Science.gov (United States)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  15. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  16. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  17. Influence of local microplastic strains on stress corrosion of 08Kh18N10T steel

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Efimov, A.A.; Sherman, Ya.I.; Fedorova, T.I.

    1987-01-01

    Study on specific features of microhomogeneous strain in the process of plastic strain development and their role in stress corrosion of 08Kh18N10T steel sheet specimens subject to preliminary strain by 1, 3, 6, 16 and 23% and subsequent tests of stress corrosion in magnesium chloride solution at 150 deg C 140 MPa has been carried out. Analysis of test results has shown that microplastic strain is distributed over a specimen nonuniformly and is accompanied with the slip bands formation which are sources of corrosion crack origination and development. 08Kh18N10T steel manifests the highest trend to stress corrosion under 1% microplastic strain

  18. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    El-Taib Heakal, F., E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Tantawy, N.S. [Chemistry Department, Girl' s College for Arts, Science and Education, Ain Shams University, Cairo (Egypt); Shehta, O.S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt)

    2011-10-17

    Highlights: {yields} Systematic increase of chloride concentration has a critical influence on TRIP steel corrosion. {yields} TRIP microalloyed with Nb and Cr showed lower corrosion rate and smaller threshold Cl{sup -} value. {yields} Increasing Al content by 220 times in the TRIP deteriorates its corrosion behavior. {yields} Impedance results and surface examinations confirmed the obtained results. - Abstract: The effect of a systematic increase of chloride ion concentration on the electrochemical corrosion behavior of two types of Al-bearing TRIP steels (T{sub 1} and T{sub 2}) was studied in aqueous NaCl solutions. Several electrochemical techniques were used comprising open circuit potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Chloride concentration has a critical influence on the corrosion rate of the two tested steel samples. For both steels the corrosion rate first increased with increasing chloride content up to a certain critical concentration (CC), and then decreased in solution with chloride level higher than the threshold value. TRIP steel T{sub 1} microalloyed with Nb and Cr as compared to steel T{sub 2} not containing these two elements, exhibited lower corrosion rate and smaller CC value, indicating better corrosion resistance to chloride attack, albeit the Al content in T{sub 2} is 220 times higher than that in T{sub 1}. This is because Nb alloyed with TRIP steel likely enhances the formation on the surface of a stable rust layer enriched with other passivating elements Al, Cu, Cr and Ni, which has higher corrosion resistance and hence improve greatly the passive performance of the TRIP sample. The ac impedance data are in good agreement with the OCP and dc polarization measurements. Surface examinations via scanning electron microscope confirmed well the obtained results.

  19. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels

    International Nuclear Information System (INIS)

    El-Taib Heakal, F.; Tantawy, N.S.; Shehta, O.S.

    2011-01-01

    Highlights: → Systematic increase of chloride concentration has a critical influence on TRIP steel corrosion. → TRIP microalloyed with Nb and Cr showed lower corrosion rate and smaller threshold Cl - value. → Increasing Al content by 220 times in the TRIP deteriorates its corrosion behavior. → Impedance results and surface examinations confirmed the obtained results. - Abstract: The effect of a systematic increase of chloride ion concentration on the electrochemical corrosion behavior of two types of Al-bearing TRIP steels (T 1 and T 2 ) was studied in aqueous NaCl solutions. Several electrochemical techniques were used comprising open circuit potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Chloride concentration has a critical influence on the corrosion rate of the two tested steel samples. For both steels the corrosion rate first increased with increasing chloride content up to a certain critical concentration (CC), and then decreased in solution with chloride level higher than the threshold value. TRIP steel T 1 microalloyed with Nb and Cr as compared to steel T 2 not containing these two elements, exhibited lower corrosion rate and smaller CC value, indicating better corrosion resistance to chloride attack, albeit the Al content in T 2 is 220 times higher than that in T 1 . This is because Nb alloyed with TRIP steel likely enhances the formation on the surface of a stable rust layer enriched with other passivating elements Al, Cu, Cr and Ni, which has higher corrosion resistance and hence improve greatly the passive performance of the TRIP sample. The ac impedance data are in good agreement with the OCP and dc polarization measurements. Surface examinations via scanning electron microscope confirmed well the obtained results.

  20. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Science.gov (United States)

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  1. Stress corrosion evaluation on stainless steel 304 pipes in Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1996-01-01

    Inside the frame of the project IAEA/MEX-41044 'Stress corrosion as a starting event of accidents in nuclear plants', and of the institutional project IA-252 under the same name, it was required from the Laguna Verde Nuclear Plant, material equivalent to the one employed in the piping of the primary recycling system. Laguna Verde Nuclear Plant granted two tracks of tubes, that could be used to substitute the ones that are in operation, as is the tube SA-358TP304 CL-QC with transversal welding, designated as ER-316-LQA. According to the report entitles 'Revision of the operational experience related to corrosion in the nuclear plants' it was found that the stress corrosion is the principal mechanism of corrosion present in the nuclear plants. Previous records indicate that sensitized stainless steels are resistant to stress corrosion in testings of constant loading in sea water (3.5% of chlorides approximately) to 80 Centigrade and to 80% of the limit of conveyance and that a solution of 22% of NaCl to 90 Centigrade, produces cracking due to stress corrosion in highly sensitized steels, in tests of speed of slow extension (SSRT), to a speed of 1x10 -6 s -1 . Daniels reports that there is a direct relation between the speed limit of detection of the SSRT test and the concentration of chlorides, for stainless steels tested to 100 Centigrade. The minimum detection speed of susceptibility to stress corrosion for solution to 20% of NaCl, is of 1x10 -7 s -1 . Taking into account these considerations, the employment of a solution with 22% of NaCl to 90 Centigrade to a speed of 1x10 -6 s -1 seems a good choice for the evaluation of stainless steel. (Author)

  2. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  3. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment.

    Science.gov (United States)

    Ann, Ki Yong; Cho, Chang-Geun

    2014-01-28

    The present study concerns a development of calcium aluminate cement (CAC) concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC), ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concrete. However, the compressive strength was lower, ranging about 20 MPa, while OPC indicated about 30-35 MPa at an equivalent age. When it comes to chloride transport, there was only marginal variation in the diffusivity of chloride ions. The corrosion resistance of CAC mixture was significantly enhanced: its chloride threshold level for corrosion initiation exceeded 3.0% by weight of binder, whilst OPC and CAC concrete indicated about 0.5%-1.0%.

  4. Experimental investigations on macro cell corrosion in chloride-contaminated concrete

    NARCIS (Netherlands)

    Gulikers, J.J.W.

    1996-01-01

    Chloride-induced reinforcement corrosion in concrete is characterised by the action of so-called macrocells. The associated localised form of corrosion results from the strong electrochemical interaction between the relatively small pitting sites acting as anodes and the large passive steel areas

  5. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    International Nuclear Information System (INIS)

    Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.

    2008-01-01

    Effects of pH solution and chloride (Cl - ) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E pit and corrosion E cor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  6. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  7. Estimation of Concrete Corrosion Due to Attack of Chloride Salt

    Directory of Open Access Journals (Sweden)

    V. V. Babitski

    2005-01-01

    Full Text Available The paper provides results of experimental concrete research under conditions of concentrated chloride salt solutions. General principles of forecasting concrete corrosion resistance under salt physical corrosion are given in the paper. Analytical dependences for quantitative estimation of corroded concrete have been obtained.

  8. Unexpected corrosion of stainless steel in low chloride waters – microbial aspects

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Carpén, Leena; Møller, Per

    2009-01-01

    conditions or periods of low water consumption have occurred prior to the failure. Typically the corrosion attacks appear within 2-3 years in weld nuggets, heat affected zones or in crevices like e.g. press fitting pipe connections. The failure mode is pitting and crevice corrosion leading to leaks and rust......Abstract Stainless steels EN 1.4301 and 1.4401/1.4404 are normally considered corrosion resistant in low chloride natural waters like drinking water. However, a number of corrosion failures have been observed in e.g. fire extinguisher systems and drinking water installations, where stagnant...... stains on the outside of the installation. Corrosion may occur in water qualities with rather low chloride contents and fairly low conductivity, which would usually not be considered especially corrosive towards stainless steel. One key parameter is the ennoblement documented on stainless steel...

  9. Pitting corrosion resistance of high alloy OCTG in ferric chloride solution

    International Nuclear Information System (INIS)

    Masamura, K.; Yamamoto, S.; Matsushima, I.

    1986-01-01

    The effects of alloying elements and precipitated phases on the corrosion rate of high alloy OCTG in the ferric chloride solution have been evaluated. The corrosion rate of Fe-Cr-Ni-Mo alloys without precipitated phases, e.g. carbides and sigma phase, can be estimated from the composition using the following equation: log(C.R.)=-0.144xPRE-7690/(273+T)+28.6 where C.R. is the corrosion rate in g/m/sup 2//hr; PRE is Cr+3Mo+16N in percent and T is the test temperature in 0 C. The activation energies of the ferric chloride test are almost the same regardless of PRE or Ni content when no detrimental phase precipitates. When carbides or the sigma phase precipitate, the corrosion rate is higher and the activation energy is lowered. This suggests that secondary phases give preferential sites for initiation of pitting corrosion

  10. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  11. Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

    International Nuclear Information System (INIS)

    Song, Ha Won; Ann, Ki Yong; Kim, Tae Sang

    2009-01-01

    The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (I.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/m 3 at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC

  12. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  13. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  14. Investigation of the main chemical properties of water-magnesium chloride solutions. Application to the understanding of stress corrosion phenomena in 17.12 Mo stainless steel

    International Nuclear Information System (INIS)

    Hasni, Abdellatif

    1988-01-01

    This research thesis reports the investigation of the main chemical properties of concentrated aqueous solutions of MgCl 2 and of their influence of stress corrosion of 17Cr-12Ni-2Mo stainless steel. It shows that the most important chemical properties are the equilibrium pH and the acidity range of MgCl 2 aqueous solutions, and that they strongly depend on solution temperature and concentration. The medium pH is governed by the increased acidity of water in presence of Mg ++ ions, while the acidity range is determined by a hydrolysis reaction of these ions which results in a precipitation of magnesium hydroxyl-chlorides. The investigation of stress corrosion behaviour of the steel in MgCl 2 solutions with varying temperature and concentration shows that this behaviour comes down to a prevailing pH effect which results from the variation of these both parameters, with a not negligible but less important effect of temperature. A study of cracking surfaces indicates that it is possible to pass from a transgranular to an intergranular mode by a variation of either media aggressiveness (pH, temperature, voltage) or strain rate. These results are explained by a concept of kinetic factor which limits stress corrosion [fr

  15. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  16. Corrosion Resistance of Some Stainless Steels in Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Kasprzyk D.

    2017-06-01

    Full Text Available The present work compares corrosion behaviour of four types of S30403, S31603, S32615 austenitic and S32404 austenitic-ferritic stainless steels in chloride solutions (1%, 3% NaCl and in Ringer solution, at 37°C temperature. Corrosion resistance was determined by potentiodynamic polarization measurements and a thirty day immersion test conducted in Ringer solution. The immersion test was performed in term of biomedical application. These alloy were spontaneously passivated in all electrolytes, wherein S30403, S31603 and S32404 undergo pitting corrosion. Only S32615 containing 5.5% Si shows resistance to pitting corrosion.

  17. Depassivation and repassivation of austenitic stainless steels. Consequences on stress corrosion cracking

    International Nuclear Information System (INIS)

    Helie, M.; Desjardins, D.; Puiggali, M.; Petit, M.C.

    1983-06-01

    The influence of strain rate and solution temperature on depassivation and repassivation processes, and the consequences on stress corrosion cracking phenomenon are presented. The tests are performed in concentrated magnesium chloride solutions at various boiling temperatures (160 0 C, 153 0 C, 140 0 C, 130 0 C, 125 0 C, 110 0 C, 102 0 C) to which potassium dichromate is added in some cases. The depassivation and repassivation of the tested wires are analysed in term of current-time curves at fixed potential. The wire is placed into a ''corrosion cell'' with the boiling chloride solution on a tensile testing machine. Tests at 153 0 C on 304L and 309L stainless steels show that competition between passivation and depassivation depends on applied strain rate: at low strain rates rupture is mainly due to mechanical stress, at high strain rates the wire shows track of corrosion and the rupture is ductile. Between the two, stress corrosion cracking presents a maximum and in this case the rupture is mainly brittle. Influence of temperature shows the existence of a transitional temperature 130 0 C for a 304L. The cracking velocity is 100 times higher above 130 0 C than below and the cracking mode is transgranular and mainly intergranular below 130 0 C. Addition of potassium dichromate modifies both electrochemical and mechanical properties; it is more difficult to obtain a frank depassivation and the repassivation rate is higher

  18. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  19. Corrosion of metals exposed to 25% magnesium chloride solution and tensile stress: Field and laboratory studies

    Directory of Open Access Journals (Sweden)

    Xianming Shi

    2017-12-01

    Full Text Available The use of chemicals for snow and ice control operations is a common practice for improving the safety and mobility of roadways in cold climate, but brings significant concerns over their risks including the corrosive effects on transportation infrastructure and motor vehicles. The vast majority of existing studies and methods to test the deicer corrosivity have been restricted to laboratory environments and unstressed metals, which may not reliably simulate actual service conditions. As such, we report a case study in which stainless steel SS 304 (unstressed and externally tensile stressed, aluminum (Al 1100 and low carbon steel (C1010 coupons were exposed to 25% MgCl2 under field conditions for six weeks. A new corrosion test-bed was developed in Montana to accelerate the field exposure to this deicer. To further investigate the observed effect of tensile stress on the corrosion of stainless steel, SS 304 (unstressed and externally stressed coupons were exposed to 25% MgCl2 solution under the laboratory conditions. The C 1010 exhibited the highest percentage of rust area and suffered the most weight loss as a result of field exposure and MgCl2 sprays. In terms of ultimate tensile strength, the Al 1100 coupons saw the greatest reduction and the unstressed and externally stressed SS 304 coupons saw the least. The ability of MgCl2 to penetrate deep into the matrix of aluminum alloy poses great risk to such structural material. Tensile stressed SS 304 suffered more corrosion than unstressed SS 304 in both the field and laboratory conditions. Results from this case study may shed new light on the deicer corrosion issue and help develop improved field testing methods to evaluate the deicer corrosivity to metals in service.

  20. Hot corrosion behaviour of austenitic steel-303 in molten chloride and carbonate salts

    International Nuclear Information System (INIS)

    Mohd Misbahul Amin; Shamsul Baharin Jamaludin; Che Mohd Ruzaidi Ghazali; Khairel Rafezi Ahmad

    2007-01-01

    The investigations are presented for the hot corrosion behaviors of Austenitic Steel-303, under influence of the molten chloride and carbonate salts viz KCl and K 2 CO 3 , oxidised at 1123 K for the period of 60 hour at atmospheric condition. The oxidation kinetic are effect of molten chloride and carbonate salts deposition on the oxidation rate were determined. The susceptibility to suffer a deleterious attack on the alloy by internal corrosion increases with increasing the time. In general, the corrosion resistance austenitic steel-303 in molten carbonate salts is much higher than chloride melt, being an active oxidizing agent providing oxygen during fluxing reaction. However, due to profuse evolution of CO/ CO 2 heavy mass losses are observed during corrosion and scales are porous. The test included mass change monitoring and surface layers were examined by means of scanning electron microscopy (SEM) studies. (author)

  1. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  2. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  3. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  4. Corrosion potentials of hafnium in molten alkaline-earth metal chlorides

    International Nuclear Information System (INIS)

    Kovalik, O.Yu.; Tkhaj, V.D.

    2000-01-01

    Corrosion potentials of hafnium in molten calcium, strontium and barium chlorides are measured and their temperature dependences are determined. It is stated that the corrosion potential of hafnium becomes more electropositive with an increase of the environment temperature. If the temperature is the same the potential shifts to the interval of more electronegative values in the row of CaCl 2 , SrCl 2 , BaCl 2 which corresponds to a lesser corrosion rate in environments positioned from left to right. the comparison of hafnium corrosion potentials with previously measured values for titanium and zirconium shows that a metal activity decrease results in a more electronegative corrosion potential [ru

  5. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  6. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  7. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution

    Science.gov (United States)

    Dabalà, Manuele; Calliari, Irene; Variola, Alessandra

    2004-04-01

    Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.

  8. Repassivation potentials determination of crevice corrosion of alloy in Chloride solutions

    International Nuclear Information System (INIS)

    Rincon Ortiz, Mauricio

    2009-01-01

    Alloy 22 (UNS N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to general and localized corrosion, but it may suffer crevice corrosion in aggressive environmental conditions, such as high chloride concentration, high applied potential and high temperature. Alloy 22 is one of the candidates to be considered for the outer corrosion-resistant shell of high-level nuclear waste containers. It is assumed that localized corrosion will only occur when the corrosion potential (E CORR ) is equal or higher than the crevice corrosion repassivation potential (E R,CREV ). This parameter is obtained by different electrochemical techniques using artificially creviced specimens. These techniques include cyclic potentiodynamic polarization (CPP) curves, Tsujikawa-Hisamatsu electrochemical (THE) method or other non-standardized methods. Recently, as a variation of THE method, the PD-GS-PD technique was introduced. The aim of the present work was to determine reliable critical potentials for crevice corrosion of Alloy 22 in pure chloride solutions at 90 C degrees. Conservative methodologies (which include extended potentiostatic steps) were applied for determining protection potentials below which crevice corrosion cannot initiate and propagate. Results from PD-GS-PD technique were compared with those from these methodologies in order to assess their reliability. Results from the CPP and the THE methods were also considered for comparison. The repassivation potentials from the PD-GS-PD technique were conservative and reproducible, and they did not depend on the amount of previous crevice corrosion propagation in the studied conditions. (author)

  9. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution

    International Nuclear Information System (INIS)

    Sanchez, Javier; Fullea, Jose; Andrade, Carmen; Gaitero, Juan J.; Porro, Antonio

    2008-01-01

    The high strength steels employed as reinforcement in pre-stressed concrete structures are drawn wire steels of eutectoid composition with a pearlitic microstructure. This work is focused on the study, by atomic force microscopy, of the early stages of the corrosion of such steels as a consequence of their exposition to a sodium chloride solution. The obtained images show the pearlitic microstructure of the steel, with a preferential attack of the ferrite phase and the cementite acting as a cathode. The corrosion rate was determined by calculating the amount of material lost from a roughness analysis. The obtained results are in good agreement with the predictions of Galvelel's theory, according to which the corrosion rate slows down as the pit depth increases

  10. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  11. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  12. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  13. Aqueous stress-corrosion cracking of high-toughness D6AC steel

    Science.gov (United States)

    Gilbreath, W. P.; Adamson, M. J.

    1976-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history, and test technique, under sustained load in filtered natural seawater, 3.3 per cent sodium chloride solution, and distilled water, was investigated. Reported investigations of D6AC were considered in terms of the present study with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, and threshold. Both threshold and growth kinetics were found to be relatively insensitive to these test parameters. The apparent incubation period was dependent on technique, both detection sensitivity and precracking stress intensity level.

  14. Corrosion of nickel in potassium and sodium chloride melts containing vanadium trichloride

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Ponomarev, Yu.S.; Bezvoritnij, V.A.; Bajbakov, D.P.

    1976-01-01

    Corrosion of nickel has been studied by the method of the rotating disc in melts of potassium and sodium chlorides containing vanadium trichloride in the concentration 0-20.0 wt.% in the temperature range 1103-1328 K. Corrosion proceeds in the diffusion region, the corrosion rate being controlled by diffusion of either V 3+ or V 2+ depending on the concentration of VCl 3 in the melts. The apparent activation energy of nickel corrosion is 43,110-74660 joule/mol

  15. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  16. Corrosion of titanium alloys in concentrated chloride solutions at temperature up to 160 deg C

    International Nuclear Information System (INIS)

    Ruskol, Yu.S.; Viter, L.I.; Balakin, A.I.; Fokin, M.N.

    1982-01-01

    Resistance of VT1-0 titanium and 4200, 4207 titanium alloys to pitting and total corrosion in chlorides of cadmium, potassium, nickel, ammonium, barium, calcium, lithium, magnesium in respect to pH value and temperature (120,140,160 deg C) is determined. The results obtained are presented as nomograms of stability. Possible reasons for corrosion behaviour of titanium in each of the chlorides are discussed

  17. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  18. Chloride corrosion in biomass-fired boilers – Fe-O-Cl system thermodynamic analysis

    Directory of Open Access Journals (Sweden)

    Kaczmarczyk Robert

    2016-01-01

    The paper presents a thermodynamic analysis of chloride-induced corrosion in the Fe-O-Cl system. The ranges of the metallic, oxide and chloride phase stability are determined within the temperature range T = 750-1000 K. Based on the parametric equations the equilibrium concentration of gaseous phase determined by Deacon reaction are presented. The effect of H2O concentration in the gaseous phase on high-temperature corrosion process and gaseous NaCl influence on NaFeO2 formation in the passive oxide scale layer (FeO/Fe3O4/Fe2O3 are discussed as well. The results are correlated with available in the literature laboratory experimental data and industrial corrosion process observations. Presented thermodynamic analysis is compared with assumptions of “active oxidation” model. The results may be used for experimental research prediction and a corrosion prevention in the industry.

  19. Corrosion of Alloys 600 ampersand 900 in acidified sulfate and chloride solutions

    International Nuclear Information System (INIS)

    Cullen, W.H.; Partridge, M.J.; Paine, J.P.N.

    1993-01-01

    A program is being performed currently: (1) to better quantify the susceptibility of Alloy 600 and 690 steam generator (SG) tubing materials to intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) in acid solutions of the types that could concentrate in steam generator crevices, and (2) to establish the effectiveness of various remedial measures achieved through chemical additions to the secondary side coolant. The main test method is the exposure of stressed C-rings and expanded capsules of SG tubing to acid chloride and sulfate environments of various pH levels, temperatures, and applied potentials. Following these exposures, crack lengths are measured on metallographic cross-sections of the C-rings, and wastage rates calculated from weight loss, surface area and time. Test solutions are based on varying concentrations of sulfate and chloride species, with other contaminants added to some tests. The temperature dependence of the pH of the acidified solutions is calculated using the EPRI-developed MULTEQ computer program. High-temperature pH levels range from values of 2.5 to 7.6 at 315 degrees C, which is the nominal test temperature. Various accelerating and inhibiting factors (pH, temperature, solution composition and concentration, and applied electrochemical potential) are being evaluated

  20. Stress corrosion cracking of Inconel 600 in aqueous solutions at elevated temperature. Pt. II. Effects of chloride and sulphate ions on the electrochemical behaviour of Inconel 600

    International Nuclear Information System (INIS)

    Ashour, E.A.; Schneider, F.; Mummert, K.

    1997-01-01

    For pt.I see ibid., p.151-6, 1997. The influencing effects of temperature, potential and electrolyte composition on the electrochemical behaviour of Inconel 600 in aqueous solutions are presented. Considering these effects the connection between the data have been obtained from chemo-mechanical fracture investigation on CT-samples in Part I of this paper and pitting corrosion are discussed. The results have shown that chloride ions depassivate the surfaces of cracks locally and hinder the formation of a new protective oxide layer on the fracture surfaces. Furthermore, chloride promotes the dissolution of metal and initiates the cracking, respectively. The resulting crevice corrosion promotes an increase of hydrogen absorption by the metal. The increase of the hydrogen content of the metal influences the mechanical fracture behaviour. Contrary, sulphate ions inhibit the initiation of corrosion mainly due to a hinderance of chloride ions adsorption on active sites of the fracture surfaces. The initiation of localized corrosion in the crevice region may be stimulated by chromate ions formed by oxidation of chromium from the oxide layer or the base metal in oxygen containing solutions. (orig.)

  1. Effect of thermal aging on corrosion resistance of C-22 alloy in chloride solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2007-01-01

    Alloy 22 (N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to localized corrosion. The anodic behavior of mill annealed (MA) and thermally aged (10 hours at 760 C degrees) Alloy 22 was studied in chloride solutions with different pH values at 90 C degrees. Thermal aging leads to a microstructure of full grain boundary precipitation of topologically closed packed (TCP) phases. Electrochemical tests included monitoring of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy. Assessment of general and localized (crevice) corrosion was performed. Re passivation potentials were obtained from cyclic potentiodynamic polarization tests. Results indicate that MA and TCP material show similar general corrosion rates and crevice corrosion resistance in the tested environments. MA and TCP specimens suffered general corrosion in an active state when tested in low pH chloride solutions. The grain structure of the alloy was revealed for MA material, while TCP material suffered a preferential attack at grain boundaries. (author)

  2. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  3. Localized corrosion of alloys C-276 and 625 in aerated sodium chloride solutions at 25 to 200 degrees C

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1991-12-01

    Two molybdenum-bearing nickel alloys, Alloy C-276 and Alloy 625, were previously identified for consideration as candidate container materials for the Canadian Nuclear Fuel Waste Management Program. Because of the paucity of data for the localized corrosion behaviour of these passive alloys under conditions that may be experienced in a disposal vault, this project was undertaken to study the crevice and pitting corrosion of Alloys C-276 and 625 in chloride solutions at elevated temperatures. Electrochemical and immersion tests have been conducted in neutral sodium chloride solutions (0.1 wt% to saturated) at 25 to 200 degrees C, in an attempt to identify the conditions under which localized corrosion occurs and to relate the actual corrosion behaviour to that expected on the basis of electrochemical studies. Cyclic polarization studies showed that the passivation breakdown potentials move rapidly to more active values with increasing temperatures. Above 100 degrees C the resistance to localized corrosion is greatly reduced. The results of the immersion tests are presented in the form of T versus (C1-) diagrams. These susceptibility diagrams suggest that there is a limiting crevice-corrosion temperature for each alloy in aerated, neutral sodium chloride solutions. Below this temperature corrosion does not occur, regardless of the chloride concentration. The values of the limiting crevice-corrosion temperatures were in the range 100 to 125 degrees C for Alloy C-276 and 100 to 115 degrees C for Alloy 625. Such values suggest that saturation of the chloride solutions by surface boiling could occur without the initiation of localized corrosion. These electrochemical results indicate that a large safety margin for susceptibility to localized corrosion might be found below 100 degrees C

  4. Effect of iron ions on corrosion of lithium in a thionyl chloride electrolytes

    International Nuclear Information System (INIS)

    Shirokov, A.V.; Churikov, A.V.

    1999-01-01

    The effect of the iron electrolyte addition on the growth rate of the passivating layer on lithium in the LiAlCl 4 1 M solution in thionyl chloride is experimentally studied. It is established, that kinetic curved in the first 10 hours of the Li-electrode contact with electrolyte are described by the equation, assuming mixed diffusion kinetic control over the corrosion process. It is shown that introduction of Fe 3+ into electrolyte causes increase in both ionic and electron conductivity constituents. Increase in the electron carrier concentration is the cause of lithium corrosion in the iron-containing thionyl chloride solutions [ru

  5. Estimation of Corrosion-Free Life for Concrete Containing Ground Granulated Blast-Furnace Slag under a Chloride-Bearing Environment

    Directory of Open Access Journals (Sweden)

    Sung In Hong

    2017-01-01

    Full Text Available The rate of chloride transport by diffusion in concrete containing ground granulated blast-furnace slag (GGBS was mathematically estimated to predict the corrosion-free service life of concrete structures exposed to seawater environment. As a factor to corrosiveness of steel embedment, replacement ratio of GGBS was selected, accounting for 25 and 50% to total binder. As a result, it was found that an increase in the GGBS content resulted in an increase in the chloride binding capacity, which would give rise to a lower chloride diffusion rate, thereby reducing the risk of chloride-induced corrosion. When it comes to the sensitivity of parameters to service life, the effective diffusivity showed a marginal influence on serviceability, irrespective of GGBS contents while surface chloride content and critical threshold concentration revealed more crucial factors to long term chloride diffusion. As the GGBS replacement increased, the variation in service life has become less influential with changing parameters. Substantially, GGBS concrete at high replacement ratio enhanced the service life due to a combination of dense pore structure and enhanced chloride binding capacity.

  6. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Vaccaro, F.P.; Hehemann, R.F.; Troiano, A.R.

    1979-08-01

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  7. Mechanical behaviour of austenitic stainless steels in inert environment and in hot chloride environment: influence of molybdenum addition

    International Nuclear Information System (INIS)

    Daret, Jacques

    1978-01-01

    This research thesis reports the study of the influence of molybdenum addition. It is based on an experimental method which brings to the fore correlations between mechanical and electrochemical parameters of the phenomenon of stress corrosion cracking of austenitic stainless steels. After having recalled some characteristics of dry corrosion and electrochemical corrosion, presented austenitic stainless steels (mechanical properties such as elastic modulus, yield strength, tensile strength, ultimate elongation, creep behaviour, inter-crystalline and pitting corrosion, stress corrosion cracking behaviour), the author addresses the stress corrosion cracking behaviour of these steels in chloride environment (general characteristics, parameters, proposes theories to explain stress corrosion cracking), reports the study of the influence of molybdenum in these steels, notably on corrosion resistance and on stress corrosion cracking. Experimental method and results are described and discussed: tensile tests and creep tests in inert environment, stress corrosion cracking test in chloride environment with analysis based either on corrosion potential evolution or on sample elongation evolution. Results are notably discussed in terms of crack situation within metal lattice, crack growth rate, and scanning electronic microscopy observations [fr

  8. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  9. Sensitivity Analysis of Corrosion Rate Prediction Models Utilized for Reinforced Concrete Affected by Chloride

    Science.gov (United States)

    Siamphukdee, Kanjana; Collins, Frank; Zou, Roger

    2013-06-01

    Chloride-induced reinforcement corrosion is one of the major causes of premature deterioration in reinforced concrete (RC) structures. Given the high maintenance and replacement costs, accurate modeling of RC deterioration is indispensable for ensuring the optimal allocation of limited economic resources. Since corrosion rate is one of the major factors influencing the rate of deterioration, many predictive models exist. However, because the existing models use very different sets of input parameters, the choice of model for RC deterioration is made difficult. Although the factors affecting corrosion rate are frequently reported in the literature, there is no published quantitative study on the sensitivity of predicted corrosion rate to the various input parameters. This paper presents the results of the sensitivity analysis of the input parameters for nine selected corrosion rate prediction models. Three different methods of analysis are used to determine and compare the sensitivity of corrosion rate to various input parameters: (i) univariate regression analysis, (ii) multivariate regression analysis, and (iii) sensitivity index. The results from the analysis have quantitatively verified that the corrosion rate of steel reinforcement bars in RC structures is highly sensitive to corrosion duration time, concrete resistivity, and concrete chloride content. These important findings establish that future empirical models for predicting corrosion rate of RC should carefully consider and incorporate these input parameters.

  10. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    Science.gov (United States)

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  12. Study of the Susceptibility of Oxygen-Free Phosphorous Doped Copper to Corrosion in Simulated Groundwater in the Presence of Chloride and Sulfide

    International Nuclear Information System (INIS)

    Escobar, Ivan; Lamas, Claudia; Werme, Lars; Oversby, Virginia

    2007-01-01

    Oxygen free high conductivity copper, doped with phosphorus (Cu OFP) has been chosen as the material for the fabrication of high level nuclear waste containers in Sweden. This material will be the corrosion barrier for spent fuel in the environment of a deep geological repository in granitic rock. The service life of this container is expected to exceed 1,000,000 years. During this time, which includes several glaciations, water of different compositions, including high concentration of chloride ions, will contact the copper surface. This work reports a study of the susceptibility of Cu OFP to corrosion when chloride ions are present, in deionized water (DW) and in synthetic groundwater (SGW). The techniques used were electrochemical methods such as corrosion potential evolution and Tafel curves. The system was studied with Electrochemical Impedance Spectroscopy (EIS). We also used as characterization techniques Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The main conclusions are that copper is more susceptible to corrosion at high chloride ion concentration. When the chloride concentration is low, it is possible to form copper chloride crystals, but at the highest concentration, copper chloride complexes are formed, leaving the copper surface without deposits. When the chloride concentration is low ( -5 M), copper corrosion in the presence of chloride is controlled by diffusional processes, while at higher concentrations corrosion is controlled by charge transfer processes. (authors)

  13. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  14. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  15. Electrochemical corrosion characteristics of aluminium alloy 6061 T6 in demineralized water containing 0.1 % chloride ion

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2012-01-01

    Direct current electrochemical method is one of the techniques has been used to study the corrosion behaviour of metal/alloy in its environment. This paper attempts to investigate the corrosion behaviour of Al 6061 T6 immersed in Reactor TRIGA Mark II pool water containing about 0.1% NaCl content. The result shown that the corrosion rate value of the aluminium 6061 T6 increased with the presence of 0.1 % Ion Chloride content in the demineralized water reactor pool as compared to normal demineralized water. This is due to aggressiveness of chloride ion attack to metal surface. Beside corrosion rate analysis, the further tests such as corrosion behaviour diagram, cyclic polarization have been carried and the results have been reported. (author)

  16. A Probabilistic Model for Chloride-Ingress and Initation of Corrosion in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    Corrosion of the reinforcement is a major problem for a large number of reinforced concrete structures because it can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is that the chloride content around the reinforcement exceeds a critical threshold va...

  17. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2009-01-01

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  18. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  19. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  20. Numerical model of RC beam response to corrosion

    Science.gov (United States)

    German, Magdalena; Pamin, Jerzy

    2018-01-01

    The chloride-induced corrosion of reinforcement used to be represented by Tuutti's model with initiation and propagation phases. During the initiation phase chlorides penetrate the concrete cover and accumulate around reinforcement bars. The chloride concentration in concrete increases until it reaches a chloride threshold value, causing deterioration of the passive layer of reinforcement. Then the propagation phase begins. During the propagation phase steel has no natural anti-corrosion protection, a corrosion current flows and this induces the production of rust. A growing volume of corrosion products generates stresses in concrete, which leads to cracking, splitting, delamination and loss of strength. The mechanical response of RC elements to reinforcement corrosion has mostly been examined on the basis of a 2D cross-section analysis. However, with this approach it is not possible to represent both corrosion and static loading. In the paper a 3D finite element model of an RC beam with the two actions applied is presented. Rust is represented as an interface between steel and concrete, considering the volumetric expansion of rust.

  1. Effect of Nitrite Ions on Steel Corrosion Induced by Chloride or Sulfate Ions

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2013-01-01

    Full Text Available The influence of nitrite concentration on the corrosion of steel immersed in three simulated pH environments containing chloride ions or sulfate ions has been investigated by comparing and analyzing the change of half-cell potential, the change of threshold level of Cl- or SO42-, the change of threshold level of NO2-/Cl- or NO2-/SO42- mole ratio, and the changes of anodic/cathodic polarization curves and Stern-Geary constant B. The corrosivity of chloride ions against sulfate ions also has been discussed in pH 12.6, pH 10.3, and pH 8.1 environments containing 0, 0.053, and 0.2 mol/L NO2, respectively.

  2. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 μm. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to

  3. Corrosion of steel in cracked concrete : Chloride microanalysis and service life predictions

    NARCIS (Netherlands)

    Pacheco Farias, J.

    2015-01-01

    Reinforcement corrosion is frequently considered as the predominant degradation mechanism affecting reinforced concrete structures. Reinforced concrete structures are commonly subject to harsh environmental and loading conditions in which aggressive species can penetrate. Chlorides, present in

  4. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  5. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  6. Countermeasures to stress corrosion cracking by stress improvement

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1983-01-01

    One of the main factors of the grain boundary stress corrosion cracking occurred in the austenitic stainless steel pipes for reactor cooling system was the tensile residual stress due to welding, and a number of methods have been proposed to reduce the residual stress or to change it to compressive stress. In this paper, on the method of improving residual stress by high frequency heating, which has been applied most frequently, the principle, important parameters and the range of application are explained. Also the other methods of stress improvement are outlined, and the merit and demerit of respective methods are discussed. Austenitic stainless steel and high nickel alloys have good corrosion resistance, high toughness and good weldability, accordingly they have been used for reactor cooling system, but stress corrosion cracking was discovered in both BWRs and PWRs. It occurs when the sensitization of materials, tensile stress and the dissolved oxygen in high temperature water exceed certain levels simultaneously. The importance of the residual stress due to welding, induction heating stress improvement, and other methods such as heat sink welding, last pass heat sink welding, back lay welding and TIG torch heating stress improvement are described. (Kako, I.)

  7. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  8. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  9. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  10. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  11. Protection of copper surface with phytic acid against corrosion in chloride solution.

    Science.gov (United States)

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  12. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  13. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  14. A thermodynamic analysis of chloride corrosion in biomass-fired boilers for Fe-O-Cl-S system

    OpenAIRE

    Kaczmarczyk Robert; Mlonka-Mędrala Agata; Gurgul Sebastian

    2017-01-01

    The paper presents a thermodynamic analysis of chlorideinduced corrosion in the Fe-O-Cl-S system. The influence of steam concentration in the gas phase on chloride-induced corrosion process was presented. Based on the parametric equations the equilibrium concentration of the gas phase was determined. The effect of alkali metals chlorides in gas phase (Na,K)Cl on formation of (Na,K)FeO2 in the passive oxide scale layer (FeO/Fe3O4/Fe2O3) was analysed. Condensation of (Na,K)Cl vapors, formation ...

  15. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold

  16. The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2009-01-01

    This paper deals with two corroded reinforcement concrete beams, which have been stored under sustained load in a chloride environment for 14 and 23 years respectively. The evolution of corrosion pattern of reinforcement and its influence on serviceability are studied. In chloride-induced corrosion process, corrosion cracking affects significantly the corrosion pattern. During the corrosion cracking initiation period, only local pitting corrosion occurs. At early stage of cracking propagation, localized pitting corrosion is still predominant as cracks widths are very small and cracks are not interconnected, but a general corrosion slowly develops as the cracks widen. At late cracking stage, interconnected cracking with wide width develops along large parts of the beam leading to a general corrosion pattern. Macrocells and microcells concepts are used for the interpretation of the results. Mechanical experiments and corrosion simulation tests are performed to clarify the influence of this corrosion pattern evolution on the serviceability of the beams (deflection increase). Experimental results show that, when the corrosion is localized (early cracking stage), the steel-concrete bond loss is the main factor affecting the beams serviceability. The local cross-section loss resulting from pitting attack does not significantly influence the deflection of the beam. When corrosion is generalized (late cracking stage), as the steel-concrete bond is already lost, the generalized steel cross-section reduction becomes the main factor affecting the beams serviceability. But, at this stage, the deflection increase is slower due to the low general corrosion rate.

  17. Topical problems of corrosion research for nuclear power purposes

    International Nuclear Information System (INIS)

    Eremias, B.

    1978-01-01

    Currently, research is focused on stress corrosion, intergranular corrosion, corrosion in water and steam, hydrogen-induced corrosion and corrosion in liquid sodium. The effort to limit stress corrosion resulted in the application of high nickel content austenitic steels. In these steels, the susceptibility to stress corrosion is mainly affected by previous heat treatment and the presence of chloride ions. Attention is also paid to medium and high-alloy chromium steels and susceptibility is studied to intergranular corrosion and stress corrosion. Of low-alloy steels the 21/4Cr-1Mo type steels stabilized with Nb or nonstabilized are studied with respect to decarburization kinetics and changes in mechanical properties in the presence of hydrogen. Of nonferrous metals zirconium alloys are studied used as cladding materials for fuel elements, mainly Zircaloy 2 and 4, with regard to their resistance to high-temperature oxidation, high-pressure steam action, etc. (J.F.)

  18. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  19. Benzotriazole as an inhibitor of brass corrosion in chloride solution

    International Nuclear Information System (INIS)

    Kosec, Tadeja; Milosev, Ingrid; Pihlar, Boris

    2007-01-01

    The current research explores the formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys in chloride solution containing benzotriazole (BTAH), by use of electrochemical techniques, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Electrochemical reactions and surface products formed at the open circuit potential and as a function of the potential range are discussed. The addition of benzotriazole to aerated, near neutral 0.5 M NaCl solution affects the dissolution of copper, zinc, Cu-10Zn and Cu-40Zn alloys. The research also compares the inhibition efficiency and Gibbs adsorption energies of the investigated process. Benzotriazole, generally known as an inhibitor of copper corrosion is also shown to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layer formed on alloys in BTAH-inhibited solution comprised both oxide and polymer components, namely Cu 2 O and ZnO oxides, and Cu(I)-BTA and Zn(II)-BTA polymers. The formation of this mixed copper-zinc oxide polymer surface film provides an effective barrier against corrosion of both metal components in chloride solution

  20. Effect of chloride concentration and pH on pitting corrosion of waste package container materials

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Gordon, S.R.

    1996-12-01

    Electrochemical cyclic potentiodynamic polarization experiments were performed on several candidate waste package container materials to evaluate their susceptibility to pitting corrosion at 90 degrees C in aqueous environments relevant to the potential underground high-level nuclear waste repository. Results indicate that of all the materials tested, Alloy C-22 and Ti Grade-12 exhibited the maximum corrosion resistance, showing no pitting or observable corrosion in any environment tested. Efforts were also made to study the effect of chloride ion concentration and pH on the measured corrosion potential (Ecorr), critical pitting and protection potential values

  1. Pitting Corrosion Behavior of 304 SS and 316 SS Alloys in Aqueous Chloride and Bromide Solutions

    Directory of Open Access Journals (Sweden)

    Ibtehal Kareem Shakir

    2018-01-01

    Full Text Available The importance of the present work falls on the pitting corrosion behavior investigation of 304 SS and 316 SS alloys in 3.5 wt% of aqueous solution bearing with chloride and bromide anion at different solutions temperature range starting from (20-50oC due to the pitting corrosion tremendous effect on the economic, safety and materials loss due to leakage. The impact of solution temperatures on the pitting corrosion resistance at 3.5wt% (NaCl and NaBr solutions for the 304 SS and 316 SS has been investigated utilizing the cyclic polarization techniques at the potential range -400 to1000 mV vs. SCE at 40 mV/sec scan rate followed by the surface characterization employing Scanning Electron Microscope. The results show that a significant decline in the pitting corrosion potential Ep values of both stainless steel alloys in chloride and bromide solution during temperature increase attributed to the pitting corrosion potential decreased arises from the modification of the passive film properties. The surface examination using optical microscope and scanning electron microscope prove the occurring of higher pitting density over 304 SS in chloride solution than that observed in bromide solution with a non-circular lacy cover pitfall out at the center and falls inside the pits hall in comparison to the isolated circular lacy cover pit formed on 316 SS in 3.5wt% NaBr solution at 50 oC.

  2. Stress corrosion cracking prevention using solar electricity

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaaili, M.A; Mirani, M.

    2004-01-01

    Metallic structures exposed to soil and water naturally experience corrosion due to electrolytic action. These structures are also subjected to sustained tensile stresses. The combined effects of corrosion and stress results stress corrosion cracking (SCC). Removal of either of these i.e. stress or corrosion prevents SCC. The cathodic protection (CP) prevents corrosion, and hence prevents stress corrosion. Solar Photo voltaic (PV) generated electricity can be best external power source for CP systems especially in remote areas. This paper presents CP system using solar PV generated electricity as an external power source for prevention of SCC of metallic structures. The paper also compares CP systems using solar electricity with those of CP systems using conventional electricity. The paper concludes that a solar electricity power system provides a reliable solution for powering CP stations especially in remote areas, enables the placing of CP units in any location, and thus ensures optimal current distribution for the exact protection requirements. The paper also concludes that solar electricity CP systems are well suited for SCC protection of metallic structures especially in remote areas of an energy deficit country like Pakistan. (author)

  3. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  4. Corrosion susceptibility study of candidate pin materials for ALTC (active lithium/thionyl chloride) batteries. [Active lithium/thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, F.S.; Cieslak, W.R.

    1987-09-01

    (ALTC = active lithium/thionyl chloride.) We have investigated the corrosion susceptibilities of eight alternate battery pin materials in 1.5M LiAlCl/sub 4//SOCl/sub 2/ electrolyte using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  5. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-04-01

    Full Text Available The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2, titanium alloy (TA2, and 316L stainless steel (316L SS. The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  6. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    Science.gov (United States)

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  7. Surface Modification of Zinc with an Oxime for Corrosion Protection in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Ganesha Achary

    2013-01-01

    Full Text Available The surface treatment of zinc was done with different concentrations of an oxime (2E-2-(hydroxylamino-1,2-diphenylethanol molecule by the immersion method. The electrochemical corrosion studies of surface-treated zinc specimens were performed in aqueous sodium chloride solution (1 M, pH 5.0 at different temperatures in order to study the corrosion mechanism. The recorded electrochemical data indicated a basic modification of the cathodic corrosion behavior of the treated zinc resulting in a decrease of the electron transfer rate. The zinc samples treated by immersion in the inhibiting organic solution presented good corrosion resistance. Using scanning electron microscopy (SEM, it was found that a protective film was formed on the surface of zinc.

  8. Inhibition of intergranular stress corrosion cracking of sensitized type 304 stainless steel. Annual report

    International Nuclear Information System (INIS)

    Brown, B.F.

    1977-01-01

    The effectiveness of various inhibitors in mitigating stress corrosion cracking of stainless steel in hot aqueous environment was evaluated. The inhibitors studied were of three types: poly-oxy-anions, organic competitive absorbers, and simple cations; the corrosive medium was 4M NaCl acidified with H 2 SO 4 to ph of about 2.3. The following conclusions were reached: pH does not affect cracking kinetics in a sensitive way; cracking time is highly dependent on chloride concentrations; poly-oxy-anions do not perform well; organics offer some possibilities as inhibitors; cationic additives can have effects varying from trivial to total suppression of cracking--behavior is both cation and concentration dependent. 2 figures, 5 tables

  9. Experimental investigations on chloride effects on EAC of LAS under BWR conditions

    International Nuclear Information System (INIS)

    Herbst, M.; Roth, A.; Widera, M.

    2015-01-01

    project, are not harmful regarding component integrity, but long term increased chloride concentrations should be prohibited since they cause increased general corrosion of LAS. Taking the risk of SCC (Stress Corrosion Cracking)crack initiation and crack growth into consideration, the conjoint occurrence of increased chloride concentrations and mechanical straining at stress levels above the yield strength should be avoided

  10. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  11. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  12. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  13. Corrosion behaviour of nickel during anodic polarization in chloride solution

    International Nuclear Information System (INIS)

    Memon, S.A.; Isani, A.A.; Memon, A.N.

    1998-01-01

    This research presents the effect of oxygen and nitrogen on the corrosion behaviour of nickel in the chloride solution, at the steady state polarized and unpolarized potentials. The additives were selected from those, which are used for bright nickel plating. It was observed that the agitation of electrolyte in a particular pH-(Cl)' range increase the potentials in comparison of the potentials to the un-agitated electrolytes. (author)

  14. Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for making alternate immersion stress corrosion tests in 3.5 % sodium chloride (NaCl) (). It is primarily for tests of aluminum alloys (Test Method G 47) and ferrous alloys, but may be used for other metals exhibiting susceptibility to chloride ions. It sets forth the environmental conditions of the test and the means for controlling them. Note 1 Alternate immersion stress corrosion exposures are sometimes made in substitute ocean water (without heavy metals) prepared in accordance with Specification D 1141. The general requirements of this present practice are also applicable to such exposures except that the reagents used, the solution concentration, and the solution pH should be as specified in Specification D 1141. 1.2 This practice can be used for both stressed and unstressed corrosion specimens. Historically, it has been used for stress-corrosion cracking testing, but is often used for other forms of corrosion, such as uniform, pitting, intergranular, and galvanic. ...

  15. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  16. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    Science.gov (United States)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  17. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  18. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  19. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  20. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    International Nuclear Information System (INIS)

    Xu Weifeng; Liu Jinhe; Zhu Hongqiang

    2010-01-01

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  1. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  2. Stress corrosion in a borosilicate glass nuclear wasteform

    International Nuclear Information System (INIS)

    Ringwood, A.E.; Willis, P.

    1984-01-01

    The authors discuss a typical borosilicate glass wasteform which, when exposed to water vapour and water for limited periods, exhibits evidence of stress corrosion cracking arising from the interaction of polar OH groups with stressed glass surfaces. Glass wasteforms may experience similar stress corrosion cracking when buried in a geological repository and exposed to groundwaters over an extended period. This would increase the effective surface areas available for leaching by groundwater and could decrease the lifetime of the wasteform. Conventional leach-testing methods are insensitive to the longer-term effects of stress corrosion cracking. It is suggested that specific fracture-mechanics tests designed to evaluate susceptibility to stress corrosion cracking should be used when evaluating the wasteforms for high-level nuclear wastes. (author)

  3. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    Science.gov (United States)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  4. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  5. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  6. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2010-01-01

    The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01 M, 0.1 M, 0.5 M and 1 M. The surface of the PEO coated specimens after 50 h of immersion/EIS testing was examined by optical microscopy and scanning electron microscopy. The results showed that the corrosion deterioration of PEO coated magnesium alloy in NaCl solutions was significantly influenced by chloride ion concentration. The silicate-based coating was found to offer a superior corrosion resistance to the magnesium substrate than the phosphate-based coatings in lower chloride ion concentration NaCl solutions (0.01 M and 0.1 M NaCl). On the other hand both these PEO coatings were found to be highly susceptible to localized damage, and could not provide an effective corrosion protection to Mg alloy substrate in solutions containing higher chloride concentrations (0.5 M and 1 M). The extent of localized damage was observed to be more with increase in chloride concentration in both the cases.

  7. Lifetime forecasting of a WWER NPP steam generator tube bundle from stress corrosion conditions

    International Nuclear Information System (INIS)

    Sereda, E.V.; Gorbatykh, V.P.

    1984-01-01

    An approach is outlined to the description of corrosion cracking of austenitic stainless steels in hot chloride solutions to predict the failure of WWER NPP steam generator heat exchange tubes. The dependence of the corrosion cracking development rate on the chloride concentration and characteristic electrochemical potentials is suggsted. The approach permits also to determine the quantity of damaged tubes versus the operation parameters

  8. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide

    International Nuclear Information System (INIS)

    Jevremović, Ivana; Singer, Marc; Nešić, Srđan; Mišković-Stanković, Vesna

    2013-01-01

    Highlights: •Corrosion inhibitor talloil diethylenetriamine imidazoline effectively protects mild steel from CO 2 corrosion. •Quartz crystal microbalance measurements were used to the investigate kinetics of corrosion inhibitor adsorption. •Adsorption of talloil diethylenetriamine imidazoline can be described by Langmuir adsorption isotherm. -- Abstract: The inhibition effect of talloil diethylenetriamine imidazoline (TOFA/DETA imidazoline) on corrosion of mild steel in chloride solutions saturated with CO 2 was investigated by weight loss measurements (WL) and atomic force microscopy (AFM). Adsorption mechanism and kinetics of self-assembled (TOFA/DETA imidazoline) monolayers formation on gold were studied using the quartz crystal microbalance measurements (QCM). WL and AFM results demonstrated that TOFA/DETA imidazoline can effectively protect mild steel surface from corrosion. QCM measurements shown that the adsorption of TOFA/DETA imidazoline onto gold follows Langmuir adsorption isotherm and further investigation of the adsorption process will be carried out on a corroding metal surface

  9. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  10. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  11. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  12. Effects of Organic Corrosion Inhibitor and Chloride Ion Concentration on Steel Depassivation and Repassivation in Solution

    Institute of Scientific and Technical Information of China (English)

    WANG Zixiao; YU Lei; LIU Zhiyong; SONG Ning

    2015-01-01

    Effect of an organic corrosion inhibitor (OCI) named PCI-2014 added in chloride solution on the critical chlo-ride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chlo-ride solution were investigated. The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution. Within a certain chloride ion concentration range, the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution. Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer. Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.

  13. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  14. Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid

    International Nuclear Information System (INIS)

    Li Xueming; Tang Libin; Li Lin; Mu Guannan; Liu Guangheng

    2006-01-01

    The corrosion inhibition of cold rolled steel in 0.5 M sulphuric acid in the presence of o-phenanthroline and sodium chloride (NaCl) has been investigated by using weight loss and electrochemical techniques. The experimental data suggest that the inhibition efficiency increases with increasing NaCl concentration in the presence of 0.0002 M o-phenanthroline, but decreases with increasing temperature. A synergistic effect is observed when o-phenanthroline and chloride ions are used together to prevent cold rolled steel corrosion in 0.5 M sulphuric acid. The polarization curves showed that the complex of o-phenanthroline and NaCl acts as a mixed type inhibitor. The experimental results suggested that the presence of chloride ions in the solution stabilized the adsorption of o-phenanthroline molecules on the metal surface and improved the inhibition efficiency of o-phenanthroline. The adsorption of the complex accords with the Langmuir adsorption isotherm. Some thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy have been calculated by employing thermodynamic equations. Kinetic parameters such as apparent activation energy and pre-exponential factor have been calculated and discussed

  15. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  16. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Whorlow, K.M.; Hutto, F.B. Jr.

    1997-07-01

    The drip procedure from the Standard Test Method for Evaluating the Influence of Thermal Insulation on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel (ASTM C 692-95a) was used to research the effect of halogens and inhibitors on the External Stress Corrosion Cracking (ESCC) of Type 304 stainless steel as it applies to Nuclear Regulatory Commission Regulatory Guide 1.36, Nonmetallic Thermal Insulation for Austenitic Stainless Steel. The solutions used in this research were prepared using pure chemical reagents to simulate the halogens and inhibitors found in insulation extraction solutions. The results indicated that sodium silicate compounds that were higher in sodium were more effective for preventing chloride-induced ESCC in Type 304 austenitic stainless steel. Potassium silicate (all-silicate inhibitor) was not as effective as sodium silicate. Limited testing with sodium hydroxide (all-sodium inhibitor) indicated that it may be effective as an inhibitor. Fluoride, bromide, and iodide caused minimal ESCC which could be effectively inhibited by sodium silicate. The addition of fluoride to the chloride/sodium silicate systems at the threshold of ESCC appeared to have no synergistic effect on ESCC. The mass ratio of sodium + silicate (mg/kg) to chloride (mg/kg) at the lower end of the NRC RG 1.36 Acceptability Curve was not sufficient to prevent ESCC using the methods of this research

  17. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  18. A high molybdenum stainless steel and its resistance to chloride environments in the welded condition

    International Nuclear Information System (INIS)

    Coppolecchia, V.D.; Jasner, M.; Rockel, M.B.

    1988-01-01

    Highly alloyed stainless steels, such as 1925 hMo UNS N08925 with 6 percent molybdenum, are finding widespread use in high chloride cooling water and process environments. This alloy has good general corrosion resistance to a variety of chloride environments but it's main attraction is excellent resistance to all forms of localized corrosion. In aggressive chloride environments weldments are generally the area of concern with regard to localized corrosion. Temperature-time-sensitization diagrams are presented that demonstrate the resistance of 1925 hMo weldments to intergranular attack. Immersion tests in 10% ferric chloride substantiate that autogenous tube welds, also have excellent pitting resistance. Various filler metals are compared both electrochemically and in immersion tests. These comparisons reveal that an overalloyed filler metal is required to achieve pitting and crevice corrosion resistance equal or better than that of the base metal. Alloy 625 (UNS NO6625) has been selected. Constant extension rate tests in boiling 62% calcium chloride reveal that 1925 hMo weldments are immune to stress corrosion cracking in this environment which virtually guarantees absence of SCC in seawater regardless of temperature as well as in most commercial chemical environments

  19. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    Science.gov (United States)

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  20. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  1. Influence of Surface Pretreatment on the Corrosion Resistance of Cold-Sprayed Nickel Coatings in Acidic Chloride Solution

    Science.gov (United States)

    Scendo, Mieczyslaw; Zorawski, Wojciech; Staszewska-Samson, Katarzyna; Makrenek, Medard; Goral, Anna

    2018-03-01

    Corrosion resistance of the cold-sprayed nickel coatings deposited on the Ni surface (substrate) without and with abrasive grit-blasting treatment of the substrate was investigated. The corundum powder with different grain sizes was used. The corrosive environment contained an acidic chloride solution. The mechanism of the corrosion of nickel was suggested and discussed. Corrosion electrochemical parameters were determined by electrochemical methods. The corrosion effect of a nickel coating depends on the grain size used to prepare the substrate. The nickel coating after the medium grit-blasting treatment of the substrate was found to be the most corrosion resistant. However, the smallest resistance on the corrosion effect should be attributed to the nickel coating on the substrate after the coarse grit-blasting treatment.

  2. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)

  3. Corrosion behaviour of a stream generator tube material in simulated steam generator feedwater containing chlorides and sulphates

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P.; Yliniemi, K. [VTT Manufacturing Technology, Espoo (Finland); Buddas, T.; Halin, M.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant (Finland)

    2002-07-01

    The goal of the present work has been to assess the effect of relatively high concentrations of anionic impurities (Cl{sup -}, SO{sub 4}{sup 2-}) on the corrosion behaviour of Ti-stabilised stainless steel SG tubes in simulated steam generator feed-water. The main observations of this work can be summarised as follows: Sulphate ions seem to be more aggressive than chloride ions towards the primary passive film on 08X18H10T stainless steel. The results may indicate that it is more important to have a low concentration of sulphate ions than of chloride ions in secondary side water when the effects of chemical conditions on tube degradation are considered. The presence of chloride ions seems to weaken the detrimental effect of sulphate ions on the stability of oxide films growing on 08X18H10T stainless steel. No localised corrosion features of 08X18H10T stainless steel were detected in the voltammetric and impedance measurements in solutions containing up to 5000 ppb sulphates, chlorides or both of the anions. (authors)

  4. Corrosion behaviour of a stream generator tube material in simulated steam generator feedwater containing chlorides and sulphates

    International Nuclear Information System (INIS)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P.; Yliniemi, K.; Buddas, T.; Halin, M.; Tompuri, K.

    2002-01-01

    The goal of the present work has been to assess the effect of relatively high concentrations of anionic impurities (Cl - , SO 4 2- ) on the corrosion behaviour of Ti-stabilised stainless steel SG tubes in simulated steam generator feed-water. The main observations of this work can be summarised as follows: Sulphate ions seem to be more aggressive than chloride ions towards the primary passive film on 08X18H10T stainless steel. The results may indicate that it is more important to have a low concentration of sulphate ions than of chloride ions in secondary side water when the effects of chemical conditions on tube degradation are considered. The presence of chloride ions seems to weaken the detrimental effect of sulphate ions on the stability of oxide films growing on 08X18H10T stainless steel. No localised corrosion features of 08X18H10T stainless steel were detected in the voltammetric and impedance measurements in solutions containing up to 5000 ppb sulphates, chlorides or both of the anions. (authors)

  5. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  6. Magnesium microelectrode corrosion product transport modelling in relation to chloride induced pitting

    International Nuclear Information System (INIS)

    Burrows, R.; Cook, A.; Stevens, N.P.C.

    2012-09-01

    The high magnesium alloy Magnox is used as a fuel clad for the UK gas cooled, graphite moderated reactors of the same name. The fuel is metallic uranium (typically natural enrichment), so a low neutron absorption cross-section clad is required. Following discharge from reactor, spent fuel is stored in water, which acts as an effective heat transfer medium and biological shield. The chemistry of these ponds is carefully controlled to ensure that the Magnox clad remains in a passive state. This is primarily through the maintenance of a high pH and very low anion concentration. Of particular concern is the presence of chloride ions as even very low levels may allow localised corrosion to initiate. Although extensive work has been undertaken historically considering the behaviour of Magnox clad and the acceptable storage envelopes, the challenges of ageing plant and aspirations for accelerated decommissioning give value to further understanding of the corrosion mechanisms of this material. Recently, electrochemical techniques have been employed to characterise performance in a variety of chemistries and microelectrodes have been produced which have shown characteristics of salt film corrosion at moderate chloride concentrations under polarisation. A characteristic of the electrochemical response observed during the mass transport limited (potential independent) salt film regime has been periodic transients which correspond to emission of microscopic hydrogen bubbles from the microelectrode cavity. A simple finite element multi-physics model has been employed to assist in understanding the dominant processes of corrosion product transport away from a magnesium electrode surface which is dissolving under a salt film and this shows that characteristic transients observed in electrochemical tests may be simulated with reasonable agreement by consideration of convection from laminar flow around hydrogen micro-bubbles in the pit cavity combined with aqueous diffusion in the

  7. Effect of thermomechanical treatment of the stress corrosion cracking of metastable beta III titanium

    International Nuclear Information System (INIS)

    Seats, J.H.; Condit, D.O.

    1974-01-01

    Results of studies on the relations of microstructural changes with stress corrosion of Ti--11.5 Mo--6 Zr--4.5 Sn (Beta III) alloys are presented. It was found that this alloy is virtually immune to stress corrosion cracking if no imperfections in the surface are present. Specimens that had not been cold worked showed surface deterioration, but it was not serious enough to cause any marked reduction in yield strengths. The alloy is, however, susceptible to SCC if the surface contains an imperfection such as a fatigue crack where high stresses can concentrate during testing. These high stress levels at the crack tip may cause mechanical destruction of the passivating oxide and allow a higher concentration of chloride ions near the fresh metal surfaces. However, even with precracked specimens, crack propagation is slow as evidenced by no failures within the 720 hour test period. The extreme notch sensitivity of Beta III prevented initiation of fatigue cracks in the sections of the alloy with 20 and 50 percent cold work. More research must be done to test Beta III in this condition. However, on the basis of the research conducted thus far, SCC susceptibility of Beta III titanium alloy appears to be independent of thermomechanical pretreatment. (U.S.)

  8. High-temperature corrosion of lanthanum in equimole mixture of sodium and potassium chlorides

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Obozhina, R.N.; Dragoshanskaya, T.I.; Startsev, B.P.

    1984-01-01

    Results of investigation into the process of lanthanum corrosion in the molted equimole NaCl-KCl mixture after the change of test time, temperature and lanthanum trichloride were summarized. It was shown that polarization of lanthanum anode in equimole NaCl-KCl melt is controlled by La 3+ diffusion from near-electrode layer to electrolyte depth, which results in decrease of corrosion rate in time. The established electrochemical properties of metallic lanthanum in equimole NaCl-KCl mixture must be considered when improving the technology of electrochemical production of lanthanum or its alloys of molten chlorides of lanthanum and alkaline metals

  9. Effect of hydrogen chloride on the corrosion of an FeCrAlY alloy in simulated coal gasifier atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Coley, K.S.; Rhoades-Brown, J.E.; Blick, K.

    1989-03-01

    An iron chromium aluminium yttrium steel was exposed to a simulated coal gasifier atmosphere containing 1000 ppm and 2200 ppm hydrogen chloride at 450/sup 0/C. Increasing hydrogen chloride content was found to accelerate reaction rates, and significantly alter the microstructure and composition of the corrosion product. Tentative explanations for these results, involving vapour phase transport of metal chlorides are proposed.

  10. Stress corrosion cracking of 316 SS and Incoloy-800 in high temperature aqueous containing sulfate and chloride

    International Nuclear Information System (INIS)

    Zhang Weiguo; Lin Fangliang; Gao Fengqin; Zhou Hongyi; Cao Xiaoning

    1992-03-01

    The stress corrosion cracking (SCC) susceptibility of 316 stainless steel (SS) which was welded for primary pipe and Incoloy-800 (shot peening) for steam generator (SG) tube have been investigated by a slow strain rate test (SSRT) at a strain rate of 4.2 x 10 -6 /s. Tests were conducted at 315 C degree for 316 SS and 270 C degree for In-800 in the oxygenated simulated resin intrusion environment (acidic sulfate). Tests of the effect of combination of SO 4 2- and Cl - on SCC of Incoloy-800 were also carried out. The results indicate that Incoloy-800 is unsusceptible to SCC either in the environment with SO 4 2- (from a few ppm to 1000 ppm, pH 3 ∼ 4) or in the environment of combination of SO 4 2- (1000 ppm) and Cl - (from 2 to 1000 ppm). The 316 NG SS is susceptible to transgranular stress corrosion cracking (TGSCC) in the resin intrusion environment with SO 4 2- in high temperature water

  11. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  12. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  13. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  14. Corrosion of reinforcing bars embedded in alkali-activated slag concrete subjected to chloride attack

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2012-02-01

    Full Text Available Steel bar embedded in an alkali-activated slag (AAS concrete was tested under complete immersion, in 3.5% NaCl solution by weight of the slag. Ordinary Portland cement (OPC was also tested for comparative purposes and exposed to the same solution. Monitoring of open-circuit potential, polarization resistance measurement and electrochemical impedance spectroscopy (EIS were used to evaluate the corrosion behavior of steel bar. The corrosion resistances of AAS and OPC concretes were performed at 0, 3, 6, 9 and 12 months. Electrochemical measurements shows that AAS concrete presents passive corrosion behavior the first 3 months, after this period of time, it presents corrosion resistance decreased due to the chlorides presence at the steel/AAS interface. For 0 months immersion (28 days of curing the AAS and OPC concretes presented a 10% of corrosion probability. After 3 months of immersion the tested AAS and OPC concretes showed similar behavior, the active potentials in the range from "0.2 to "0.6 V vs. Cu/CuSO4, indicate a 90% probability of corrosion.

  15. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

    Science.gov (United States)

    Shi, Jin-jie; Ming, Jing; Liu, Xin

    2017-10-01

    In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.

  16. Influence of sulfates on chloride diffusion and chloride-induced reinforcement corrosion in limestone cement materials at low temperature

    Czech Academy of Sciences Publication Activity Database

    Sotiriadis, Konstantinos; Rakanta, E.; Mitzithra, M. E.; Batis, G.; Tsivilis, S.

    2017-01-01

    Roč. 29, č. 8 (2017), č. článku 04017060. ISSN 0899-1561 R&D Projects: GA MŠk(CZ) LO1219 Keywords : limestone cement * chloride diffusion * reinforcement corrosion * sulfate attack * low temperature Subject RIV: JN - Civil Engineering OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.644, year: 2016 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001895

  17. Microstructural characterization and electrochemical corrosion behavior of Incoloy 800 in sulphate and chloride solutions

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa; Aguiar, Antonio Eugenio de; Chaim, Marcos Souza

    2011-01-01

    Corrosion has been the major cause of tube failures in steam generators (SG) tubes in nuclear power plants. Problems have resulted from impurities in the secondary water systems which are originated from leaks of cooling water. It is important to understand the compatibility of steam generator tube materials with the environment. This study presents the microstructural characterization and electrochemical behavior of the Incoloy 800 in sodium chloride and sodium sulphate aqueous solutions at 80 degree C. Potentiodynamic anodic polarization, cyclic polarization and open circuit potential (OCP) measurements were the electrochemical techniques applied in this work. The pitting resistance of Incoloy 800 in chloride plus sulphate mixtures were also examined. Experiments performed in solutions with different concentrations of Cl- and SO 4 2- ions in solution (200 ppb, 500 ppb, 1ppm, 5 ppm, 50 ppm and 100 ppm) showed that this concentrations range had no substantial effect on the anodic behavior of the alloy. After polarization no localized corrosion was found on the samples. (author)

  18. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Linwen [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Université de Sherbrooke, Quebec (Canada); François, Raoul, E-mail: raoul.francois@insa-toulouse.fr [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Dang, Vu Hiep [Hanoi Architectural University, Faculty of Civil Engineering, Hanoi (Viet Nam); L' Hostis, Valérie [CEA Saclay, CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, Gif-sur-Yvette (France); Gagné, Richard [Université de Sherbrooke, Quebec (Canada)

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.

  19. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosion is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.

  20. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  1. The stress corrosion cracking of type 316 stainless steel in oxygenated and chlorinated high temperature water

    International Nuclear Information System (INIS)

    Congleton, J.; Shih, H.C.; Shoji, T.; Parkins, R.N.

    1985-01-01

    Slow strain rate stress corrosion tests have been performed on Type 316 stainless steel in 265 C water containing from 0 to 45 ppm oxygen and from < 0.1 to 1000 ppm chloride. The main difference between the present data and previously published results, the latter mainly for Type 304 stainless steel, is that as well as cracking occurring in water containing high oxygen and chloride, it is shown that a cracking regime exists at very low oxygen contents for a wide range of chloride contents. The type of cracking varies with the oxygen and chloride content of the water and the most severe cracking was of comparable extent in both the gauge length and the necked region of the specimen. The least severe cracking only caused cracks to occur in the necked region of the specimen and there was a range of oxygen and chloride contents in which no cracking occurred. The rest potential for annealed Type 316 stainless steel has been mapped for a wide range of oxygen and chloride content waters and it is shown that at 265 C the 'no-cracking' regime of the oxygen-chloride diagram corresponds to potentials in the range -200 to +150 mV(SHE). (author)

  2. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  3. The use of a Phosphate-Based Migrating Corrosion Inhibitor to Repair Reinforced Concrete Elements Contaminated by Chlorides

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The use of sodium monofluorophosphate (MFP) was experimented as migrator inhibiting treatment against corrosion of reinforced concrete elements induced by chlorides. The results show that sodium monofluorophosphate, applied by surface impregnation, is able to slow down reinforcement corrosion only for reinforcing steel bars with concrete cover not thicker than 1 cm. This limitation is most probably due to the difficulty, with the type of application adopted, in making MFP to reach concentrations high enough to inhibit the corrosive process at greater depths from the impregnation surface.

  4. Corrosion Study of Stainless Steels in Peracetic Acid Bleach Media With and Without Chloride and Chelant

    Directory of Open Access Journals (Sweden)

    Rohtash

    2014-12-01

    Full Text Available The paper industries are adopting non-chlorine containing chemicals e.g. peroxide, ozone, peracids etc. as alternate of chlorine based bleach chemicals e.g. chlorine and chlorine dioxide etc. with the aim of eco-friend atmospheres. Changeover to the new chemicals in the bleaching process is likely to affect the metallurgy of the existing bleach plants due to change in the corrosivity of the media. Accordingly, corrosion investigations were performed in a peracid namely peracetic acid to test the suitability of austenitic stainless steels 654SMO, 265SMO, 2205, 317L and 316L. The performance of above stainless steels was evaluated through long term immersion tests and Electrochemical polarization measurements in peracetic acid (PAA bleach media at pH value 4 maintaining concentration 0.2 % as active oxygen along with three chloride levels 0, 500 and 1000 ppm in pulp-free laboratory. To study the effect of corrosion inhibitors with extending limit of chloride in liquors, measurements were also made with two types of chelants- EDTA & MgSO4. The results showed that corrosivity of PAA reduced by addition of chelant while increased with concentration of Cl¯. The results also exhibited that EDTA is better inhibitor than MgSO4.

  5. An overview of materials degradation by stress corrosion in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P. M. [Framatome ANP, Tour Areva, 92084 Paris La Defense Cedex (France)

    2004-07-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  6. An overview of materials degradation by stress corrosion in PWRs

    International Nuclear Information System (INIS)

    Scott, P. M.

    2004-01-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  7. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  8. Task 20 - Prevention of Chloride Corrosion in High-Temperature Waste Treatment Systems (Corrosives Removals from Vitrification Slurries)

    International Nuclear Information System (INIS)

    Timpe, R.C.; Aulich, T.R.

    1998-01-01

    GTS Duratek is working with BNFL Incorporated on a US Department of Energy (DOE) contract to develop a facility to treat and immobilize radioactive waste at the Hanford site in southeast Washington. Development of the 10-ton/day Hanford facility will be based on findings from work at Duratek's 3.3-ton/day pilot plant in Columbia, Maryland, which is in the final stage of construction and scheduled for shakedown testing in early 1999. In prior work with the Catholic University of America Vitreous State Laboratory, Duratek has found that slurrying is the most efficient way to introduce low-level radioactive, hazardous, and mixed wastes into vitrification melters. However, many of the Hanford tank wastes to be vitrified contain species (primarily chloride and sulfate) that are corrosive to the vitrifier or the downstream air pollution control equipment, especially under the elevated temperature conditions existent in these components. Removal of these corrosives presents a significant challenge because most tank wastes contain high (up to 10-molar) concentrations of sodium hydroxide (NaOH) along with significant levels of nitrate, nitrite, and other anions, which render standard ion-exchange, membrane filtration, and other separation technologies relatively ineffective. In Task 20, the Energy and Environmental Research Center (EERC) will work with Duratek to develop and optimize a vitrification pretreatment process for consistent, quantitative removal of chloride and sulfate prior to vitrifier injection

  9. Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Ahn, Jae Chen; Kim, Dong Hyun; Hong, Seung Chan; Lee, Kyung Sub

    2006-01-01

    The influence of Cl - (919 ppm) and a mixture of Cl - (919 ppm) and Br - (51 ppm) on the corrosion behavior of 15%Cr ferritic stainless steel was investigated. Potentiodynamic and immersion tests were performed to examine the corrosion behavior. The size and the shape of pits were observed by optical microscope and scanning electron microscope. The oxide films formed on stainless steel were investigated by X-ray photoelectron spectroscopy (XPS). During the immersion test at 93 deg. C for 600 h, Fe and Cr were mostly corroded to iron and chromium oxides. The results of depth profiling indicate higher corrosion rate of solution containing chloride than the mixture solution. It was clear that the addition of Br - to the solution containing Cl - inhibited the localized corrosion of 15%Cr ferritic stainless steel

  10. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  11. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  12. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  13. Pitting corrosion and crevice corrosion of an advanced chromium-based stainless steel

    International Nuclear Information System (INIS)

    Kohler, M.

    1999-01-01

    Alloy 33 is a (wt. %) 33 Cr-32Fe-31Ni-1.6Mo-0.6CU-0.4N austenitic stainless steel combining high yield strength of min. 380 N/mm 2 (55 KSI) with high resistance to local corrosion and superior resistance to stress corrosion cracking. Ranking the material according to its PRE (pitting resistance equivalent) value, the new alloy fits in between the advanced 6% Mo superaustenitics and the nickel-base Alloy 625 but due to the balanced chemical composition the alloy shows a lot less sensitivity to segregation in the base material as well as in welded structures. It is recommended to weld the material with matching filler. The critical pitting temperature of such joints in the 10% FeCl 3 · 6H 2 O solution is reduced by only 10 C in comparison to the base material. Corrosion tests in artificial seawater (20 g/l Cl - ) with additions of chloride up to 37 g/l as well as in a NaCl-CaCl 2 , solution with 62 g/l Cl - --revealed that the critical pitting temperature does not differentiate from the 6% Mo austenitic steel Alloy 926. With respect to crevice corrosion the depassivation pH value has been determined in 1 M NaCl solution according to Crolet and again there was no difference between Alloy 33 and Alloy 926. SCC tests performed on Alloy 33 in the solution annealed condition as well as after heavy cold work up to R PO,2 ∼ 1,100--1,200 N/mm 2 (160--174 KSI) indicate the high resistance to stress corrosion cracking in hot sodium chloride solutions

  14. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  15. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  16. Crevice-corrosion kinetics on titanium and a Ti-Ni-Mo alloy in chloride solutions at elevated temperature

    International Nuclear Information System (INIS)

    McKay, P.

    1987-01-01

    The results of an electrochemical investigation of the crevice-corrosion kinetics on titanium and a dilute Ti-Ni-Mo alloy (0.8% Ni, 0.3% Mo), in concentrated chloride solutions at 150 0 C, are presented. The current-time transients, obtained on creviced electrodes under both potentiostatic and galvanic (coupling to a large area of uncreviced titanium) conditions, are interpreted in terms of crevice acidification leading to the formation of an active-passive cell, maintained by iR gradient in the electrolyte. The passivating effect of the Ni and Mo additions on the crevice corrosion of titanium are described, together with the results of an electrochemical study, carried out in bulk acid chloride solutions, that were used to substantiate a proposed mechanism of crevice passivation. (author)

  17. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  18. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface

    International Nuclear Information System (INIS)

    Enos, David; Bryan, Charles R.

    2015-01-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  19. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David; Bryan, Charles R.

    2015-10-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  20. Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution

    International Nuclear Information System (INIS)

    Heakal, F. El-Taib; Shehata, O.S.; Tantawy, N.S.

    2012-01-01

    Highlights: ► Corrosion rate of AM60 in Cl − solution decreases with increasing [Ce 3+ ] up to 1 mM. ► Beyond that level the corrosion rate increases and then stabilizes. ► The spontaneously formed film characterises by increasing resistance with time. ► The converted film after 10 d immersion exhibits self-healing in plain Cl − solution. ► Ce(III) should be present in the corrodent to form a more compact surface coating. - Abstract: Cerium(III) was utilised to enhance the corrosion resistance of AM60 in NaCl solution. Ce 3+ can suppress corrosion deterioration up to 1.0 mM. Beyond that level corrosion rate increases till a steady value. Surface film resistance increases with time evolution until 24 h, then decreases and stabilizes. The converted film after 240 h immersion exhibits self-healing and thickening when re-exposed to plain chloride solution. SEM and EDX confirmed that when Ce is present as additive in solution, more compact coating is formed better than its presence as a post coating on the alloy surface before being immersed in the corrosive environment.

  1. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  2. On the corrosion of reinforcing steels in concrete in the presence of chlorides

    Directory of Open Access Journals (Sweden)

    R. Genin, Jean Marie

    1986-12-01

    Full Text Available The purpose of this study is to give a scientific justification to some empirical results, in steel corrosion field, from concrete containing chlorides. First, it appears that corrosion products on the steels, have different structures and natures in function of the chloride content would be inferior or superior to a characteristic value. Second, the penetration of the chlorides in the concrete can be described by a simple Fick's diffusion law in the most frecuent cases. When cement has a high proportion of tricalcium aluminates and the concrete a small porosity, Fick's law cannot be applied.

    Este estudio pretende dar a ciertos resultados empíricos, una justificación científica en el campo de la corrosión de los aceros, en un hormigón que contenga cloruros. En primer lugar, se pone de manifiesto que los productos de corrosión sobre los aceros tienen estructuras y naturalezas diferentes, en función de que el contenido de cloruro sea inferior o superior a un valor característico. En segundo lugar, se puede describir la penetración de los cloruros en el hormigón por una sencilla ley de difusión de Fick, en los casos más frecuentes. Cuando el cemento contiene una elevada proporción de aluminato tricálcico, y el hormigón poca porosidad, no se aplica la ley de Fick.

  3. Effect of heat treatment on pitting corrosion of austenitic Cr-Ni-Mo steels in sodium chloride solution

    International Nuclear Information System (INIS)

    Stefec, R.; Franz, F.; Holecek, A.

    1979-01-01

    The pitting corrosion resistance of Cr17Ni12Mo2,5 type steel under potentiostatic polarization in a sodium chloride solution is adversely affected by previous annealing. The data obtained were systematically dependent on annealing temperature, time and surface roughness. The corrosion current, the number of pits or the mean area of pit opening and the corrosion rate within the pits were increased by previous annealing at 550 to 750 0 C for 1-100 hrs. The highest corrosion rate estimated corresponded to heat treatments provoking severe sensitization to intergranular corrosion. The paercentage area of corrosion pit openings and the estimated pit penetration rates were several times higher for as-machined than for polished surfaces. It can be assumed that pitting corrosion is little affected by the carbon content and that molybdenum depletion of grain-boundary zones is responsible for the reduced pitting resistance of annealed steels. (orig./HP) [de

  4. Corrosion susceptibility study of candidate pin materials for ALTC (Active Lithium/Thionyl Chloride) batteries

    Science.gov (United States)

    Bovard, Francine S.; Cieslak, Wendy R.

    1987-09-01

    The corrosion susceptibilities of eight alternate battery pin material candidates for ALTC (Active Lithium/Thionyl Chloride) batteries in 1.5M LiAlCl4/SOCl2 electrolyte have been investigated using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  5. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  6. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution.

    Science.gov (United States)

    Jiang, Jin-Yang; Liu, Yao; Chu, Hong-Yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-08-04

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state.

  7. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  8. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  9. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel' man, E.S.; Kuznetsova, I.G. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    The efficiency of corrosion protection of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in chloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylanthranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys.

  10. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  11. Fundamental approaches to predicting stress corrosion: 'Quantitative micro-nano' (QMN) approach to predicting stress corrosion cracking in water cooled nuclear plants

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2010-01-01

    This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.

  12. Residual Stresses In 3013 Containers

    International Nuclear Information System (INIS)

    Mickalonis, J.; Dunn, K.

    2009-01-01

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  13. Standard test method for determining effects of chemical admixtures on corrosion of embedded steel reinforcement in concrete exposed to chloride environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures in a chloride environment. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    International Nuclear Information System (INIS)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    2016-01-01

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-, DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.

  15. The Role of Thiosulfate Ions in the Initiation of Crevice Corrosion of 316 Stainless Steel in Chloride Solution

    International Nuclear Information System (INIS)

    Gad, M.M.A.; El-Sayed, A.A.

    2008-01-01

    Electrochemical techniques have been applied to study the crevice corrosion behavior of 316 L stainless steel in both 0.5 and 2 M NaCl solution with and without thiosulfate additions. In this investigation, the crevice corrosion of the tested material was studied in both bulk solution environment (0.5 M NaCl) as well as in chloride solutions simulating those formed inside crevices of stainless steels. A metal to nonmetal assembly, in which disc type specimens were faced to a PTFE crevice former, is used for bulk solution tests. Crevice- free specimens of cylindrical shape were used for the determination of the composition of solutions formed inside crevices (known as CCS). Potentiodynamic runs in extremely low ph solution (2 M NaCl solution with and without 0.01 M Na 2 SO 3 addition) were conducted to determine the ph at which the passive film breaks down (d ph). The d ph value was found to be a function of both chloride and thiosulfate ions. Cyclic potentiodynamic technique was used in evaluating the electrochemical corrosion performance of the tested alloy in bulk 0.5 M NaCl solution with and without 0.01 M Na 2 SO 3 addition. Results indicated that the presence of thiosulfate, combined with chloride ions led to a notable decrease in the corrosion resistance of the tested material. The deleterious effect of thiosulfates was discussed in terms of passivity breakdown and formation of reduced sulfur species within active crevices leading to the formation of H 2 S, which enhances the anodic dissolution of iron

  16. Effect of chloride contamination in MON-1 propellant on crack growth properties of metals

    Science.gov (United States)

    Moran, C. M.; Toth, L. R.

    1981-01-01

    The effect of a high level of chloride content (800 ppm) in MON-1 propellant on the crack growth properties of seven materials was investigated. Sustained load tests were conducted at 49 C (120 F) temperature with thin gauge tensile specimens having a semi-elliptical surface flaw. Alloys included aluminum 1100, 3003, 5086 and 6061; corrosion resistant steel types A286 and 347; and titanium 6Al-4V. The configurations tested with precracked flaws exposed to MON-1 were: parent or base metal, center weld, and heat affected zone. It was concluded that this chloride level in MON-1 does not affect the stress corrosion, crack growth properties of these alloys after 1000 hour exposure duration under high stresses.

  17. Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Heakal, F. El-Taib, E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Shehata, O.S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt); Tantawy, N.S. [Girl' s College of Arts, Science and Education, Ain Shams University, Asma Fahmi Street, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Corrosion rate of AM60 in Cl{sup -} solution decreases with increasing [Ce{sup 3+}] up to 1 mM. Black-Right-Pointing-Pointer Beyond that level the corrosion rate increases and then stabilizes. Black-Right-Pointing-Pointer The spontaneously formed film characterises by increasing resistance with time. Black-Right-Pointing-Pointer The converted film after 10 d immersion exhibits self-healing in plain Cl{sup -} solution. Black-Right-Pointing-Pointer Ce(III) should be present in the corrodent to form a more compact surface coating. - Abstract: Cerium(III) was utilised to enhance the corrosion resistance of AM60 in NaCl solution. Ce{sup 3+} can suppress corrosion deterioration up to 1.0 mM. Beyond that level corrosion rate increases till a steady value. Surface film resistance increases with time evolution until 24 h, then decreases and stabilizes. The converted film after 240 h immersion exhibits self-healing and thickening when re-exposed to plain chloride solution. SEM and EDX confirmed that when Ce is present as additive in solution, more compact coating is formed better than its presence as a post coating on the alloy surface before being immersed in the corrosive environment.

  18. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  19. Corrosion of alloy 22 in phosphate and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2007-01-01

    Alloy C-22 is a Ni-based alloy (22% Cr, 13% Mo, 3% W y 3% Fe in weight per cent) that exhibits an excellent uniform and localized corrosion resistance due to its protective passive film. It was designed to resist the most aggressive environments for industrial applications. Alloy 22 is one of the candidates to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes. The effect of phosphate ion in chloride containing solutions at 90 C degrees was studied under aggressive conditions were this material might be susceptible to crevice corrosion. The electrolyte solution, which consisted of 1M NaCl and different phosphate concentrations (between 10 -3 M and 1M), was deoxygenated by bubbling with nitrogen. Electrochemical tests, electron microscope observations (SEM) and energy dispersive spectrometer analysis (EDS) were conducted. Crevice corrosion was not detected and the comparison of the potentiodynamic polarization tests showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests that were performed in this work. The differences in composition of the anodic film formed on the samples suggest that phosphate is responsible for the increase of the passivity range by incorporation to the passive film. (author)

  20. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  1. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  2. Corrosion behaviour of WC-Co based hardmetal in neutral chloride and acid sulphate media

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, B.; Serra, M.; Fanigliulo, A.; Bogani, F. [Lecce Univ. (Italy). Dipt. di Ingegneria dell' Innovazione; Gaudenzi, G.P. de [Harditalia s.r.l. (OMCD Group), Genova (Italy)

    2002-05-01

    A comparative study of the corrosion behaviour of WC-Co based hardmetals with Ni and Cr{sub 3}C{sub 2} additions is carried out. The aggressive environments are neutral and acidic aerated aqueous solutions of NaCl and H{sub 2}SO{sub 4}. This study is based on electrochemical (linear sweep voltammery), compositional (surface EDX analyses, AAS analyses of attack solutions), structural (XRD) and morphological (SEM) investigations. Electrochemical figures of merit were computed from linear sweep voltammograms in order to rank the corrosion behaviour close to free-immersion conditions in the studied environments and with presence of oxidising agents. EDX and XRD analyses allow to accurately characterise the penetration depth of the attack as well as the preferential dissolution of the constituents. Binders containing Ni show a significantly improved corrosion resistance in the studied systems. The amount of Ni in the binder is the single most important factor affecting corrosion performance. Cr{sub 3}C{sub 2} additions to hardmetals with lower-Ni binders cannot balance the effect of Ni, but give an improved resistance in neutral chloride-containing solutions. (orig.)

  3. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive

    Directory of Open Access Journals (Sweden)

    Peta Katarzyna

    2017-01-01

    Full Text Available In the work, the most important factors which influence on the exploitative durability of heat exchangers are classified. Particular attention was paid to the compounds of sodium chloride used in the winter season for road maintenance. In order to determine their impact on automotive heat exchanger corrosion resistance, a test of heaters in a salt chamber which imitates the conditions of their work was realized. It also allows to verify the durability of these products. To evaluate the corrosion changes, observation with the use of light microscopy and scanning microscopy SEM were made supplemented with microanalysis of chemical composition by EDS spectroscopy method. Critical areas in the heat exchangers which are mostly exposed to damage including the formation of local corrosion pits were located and analyzed.

  4. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  5. Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Flint, Madeleine; Michel, Alexander; Billington, Sarah L.

    2014-01-01

    a numerical heat and mass transport model that includes full coupling of heat, moisture and ion transport. Heat, moisture, and chloride concentration distributions were passed to a simplified reinforcement corrosion initiation and propagation model. The numerical study indicates that processing and temporal...... resolution of the exposure data has a considerable impact on long-term hygrothermal distribution, chloride ingress, and reinforcement section loss results. Use of time-averaged exposure data in the heat and mass transport model reduces the rate of chloride ingress in concrete and affects prediction...

  6. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  7. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  8. The effect of chloride on general corrosion and crack initiation of low-alloy steels in oxygenated high-temperature water

    International Nuclear Information System (INIS)

    Herbst, Matthias; Roth, Armin; Widera, Martin; Kuester, Karin; Huettner, Frank; Nowak, Erika

    2012-01-01

    The effect of chloride on the general corrosion and its potential impact on EAC crack initiation of low-alloy steel (German reactor pressure vessel steel 22 NiMoCr 3 7) in oxygenated high-temperature water were investigated. The general corrosion behavior was analyzed by exposure tests with either permanently increased chloride concentration levels or temporary chloride transients. The potential effect on EAC crack initiation was analyzed with pre-strained C-ring specimens and in SSRT (CERT) tests with slowly rising strain. Both kinds of tests were performed under simulated BWR conditions and with different chloride levels. The chloride concentrations of 5 to 50 ppb were chosen according to the action levels of the German water chemistry guideline for the reactor coolant of BWRs (VGB R401J, 2006). In all exposure tests, none of the pre-strained C-ring specimens showed crack initiation during up to 1000 hours of exposure time with up to 50 ppb chloride. Investigations of the oxide layer thickness after immersion testing revealed a decrease with increasing chloride concentration. As shown by post-test chemical analysis of the oxide layer composition by TOF-SIMS, this effect is most likely primarily due to adsorption of chloride on the oxide layer surface, since only very limited penetration of chloride into the oxide was detected. In contrast to the tests with C-ring specimens, where no crack initiation occurred, slightly accelerated crack initiation at lower elongation levels was observed at increasing chloride concentrations in SSRT tests under simulated BWR conditions using actively loaded specimens. In addition, SSRT specimens that were cyclically loaded at the oxide fracture elongation level were used to generate a continuous, exposure of bare metal to the environment by repeated fracture of the oxide. This loading pattern did not cause crack initiation at all chloride concentrations applied (up to 50 ppb). From these results, it may be concluded that at least

  9. The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer

    International Nuclear Information System (INIS)

    Milosev, Ingrid; Mikic, Tadeja Kosec; Gaberscek, Miran

    2006-01-01

    The electrochemical behaviour of Cu-xZn alloys, as well as their constituent metals, in a borate buffer containing chloride ions in the molar range from 0.01 to 1 M are studied. Characteristics of these materials under anodic polarization are compared and the composition and morphology of the corrosion products formed in the course of polarization experiment are analysed by SEM and EDS. X-ray photoelectron spectroscopy and electrochemical impedance measurements are used for characterization of the surface layers formed on Cu, Zn and Cu-40Zn alloy during 2-h immersion at E oc in a borate buffer containing two different concentrations of chloride ions. New aspects of the behaviour of brass under E oc condition are revealed. The improved corrosion resistance of brass in chloride media, if compared to zinc metal, is attributed to a Cu-rich layer formed by the selective dissolution of zinc. Based on the results, a structural model describing the improved corrosion resistance of Cu-40Zn alloy with respect to Zn metal is proposed

  10. High temperature corrosion of nickel alloys by molten calcium chloride in an oxidising environment

    International Nuclear Information System (INIS)

    Barnett, Roger; Gittos, Mike

    2012-09-01

    A series of nickel alloys was submerged in molten calcium chloride (a molten salt proposed for and used in the nuclear industry for a variety of applications), at 850 deg. C for 72 hours under an oxidising environment. The samples were analysed in detail, in order to determine their corrosion behaviour and suitability for use under these conditions. 310 stainless steel was used as a reference material. Extensive corrosion occurred and the observed attack on the metal substrates was general and massive with corrosion rates ranging from 1.17 mm/year, for Haynes 214, to 13.3 mm/year, for 310 stainless steel. All materials showed selective leaching of chromium from the samples but the oxide layer formed was not protective, spalling away easily. The severity of the attack was not immediately visible from the corrosion rate alone: samples showed a friable scale on the surface and deep penetration of the attack beneath, up to 0.63 mm for 310 stainless steel. In some cases, the attack was clearly intergranular with chromium being depleted along the grain boundaries, whereas in others, the attack was more general. No simple correlation between alloying elements and corrosion rate was apparent, with additions of aluminium and silicon appearing to have little or no protective effect. Alloys 600 and Haynes HR-160 showed promise, with relatively low corrosion rates and penetration depths. (authors)

  11. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Zhou, Qulan; Li, Na; Liu, Zhuhan; Liu, Taisheng

    2016-01-01

    Highlights: • Hot corrosion tests of TP347HFG under different stresses were conducted. • The corrosion resistance was strengthened by the exertion of tensile stresses. • External stresses promoted faster formation of the protective Cr_2O_3 layer. • Specimens under critical stress 40 MPa condition present the best resistance. - Abstract: Hot corrosion experiments of alloy TP347HFG under different stresses were conducted. Corroded specimens were examined by means of corrosion products, morphology and compositional changes in corrosion scales. The corrosion behavior was strongly associated with the formation of oxides layers. The corrosion resistance was strengthened by the external stress. It seemed that the exertion of stresses caused many micro cracks and defects, which acted as faster and easier diffusion paths for Cr atoms to diffuse to the surface, and thus, promote faster formation of the protective Cr_2O_3 oxide layer. Critical stress 40 MPa was found, specimens under which present the best resistance.

  12. Metallurgy of stress corrosion cracking

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1973-01-01

    The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)

  13. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  14. Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075

    International Nuclear Information System (INIS)

    Yue, T.M.; Yan, L.J.; Chan, C.P.

    2006-01-01

    Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N 2 -treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N 2 -treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N 2 -treated specimen showing the highest resistance

  15. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    Science.gov (United States)

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Computerized simulation study of the influence of the different parameters inducing crevice corrosion propagation of passivable alloys in chloride medium

    International Nuclear Information System (INIS)

    Girardin, G.; Proust, A.; Combrade, P.; Vuillemin, B.; Oltra, R.

    2006-01-01

    The most frequent case of crevice corrosion concerns passivable alloys, and particularly stainless steels in oxidizing chloride media. In order to be sure that its propagation is not possible, the corrosion potential has to be inferior to a critical value called 're-passivation potential'. An easy and flexible computerized simulation of the propagation of an active crevice in chloride medium has been developed to give a parametric study of the local medium and of the re-passivation conditions. This modeling allows to establish the stability domains of the solid and gaseous phases inside the crevice and to assess the influence of the potential of the free surfaces, of the amount of chloride in the exterior medium and the geometry on the local chemistry. It appears that the deepest crevices are not necessarily the strongest. The introduction, in crevice tip, of an easy re-passivation criteria shows the existence of a re-passivation potential depending of the crevice geometry. (O.M.)

  17. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  18. Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea V.

    2006-01-01

    In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es

  19. Methodology for corrosion evaluation in HAZ of 11%-Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Carmem C. F.; Rodrigues, Samul F. [Dept. of Mechanic and MaterialsFederal Institute of Education, Science and Technology of Maranhao, Sao Luis (Brazil); De Morais, Vinicius M.; Vilarinho, Louriel O. [Dept. of Mechanic Engineering, Federal University of Uberlandia, Uberlandia (Brazil)

    2016-08-15

    A novel methodology is proposed for corrosion-wear measurement in the Heat affected zone (HAZ) of 11%-Cr ferritic stainless steel. Weld beads with different stress-concentration were manufactured by using MIG/MAG process. After, the welded sample is extracted from the plate, the beads were bended and external stress was applied. Finally, they were inserted in ferric-chloride solution. Corrosive wear were assessed by means of optical microscopy in the HAZ by using polymeric resin mask and comparing profiles before and after inserting the sample into the solution. The results demonstrate the feasibility of the proposed methodology for assessing corrosive wear in the HAZ.

  20. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2002-01-01

    Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three waterto- cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity,

  1. The influence of cracks on chloride-induced corrosion of reinforced concrete structures - development of the experimental set-up

    NARCIS (Netherlands)

    Blagojevic, A.; Koleva, D.A.; Walraven, J.C.

    2014-01-01

    Chloride-induced corrosion of steel reinforcement is one of the major threats to durability of reinforced concrete structures in aggressive environmental conditions. When the steel reinforcement starts to corrode, structures gradually lose integrity and service life is shortened. Cracks are

  2. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    Science.gov (United States)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  3. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  4. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  5. Effect of water purity on intergranular stress corrosion cracking of stainless steel and nickel alloys in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. [Structural Integrity Associates (United States); Garcia, S. [Electric Power Research Institute (United States)

    2011-07-01

    Boiling water reactors (BWRs) operate with very high purity water. While even the utilization of a very low conductivity water (e.g., 0.06 {mu}S/cm) coolant cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under oxygenated conditions, the presence of certain impurities in the coolant can dramatically increase the probability of this most insidious form of corrosion. The goal of this paper is to present the effect of effect of only a few ionic impurities plus zinc on the IGSCC propensities of BWR stainless steel piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. More specifically, of the numerous impurities identified in the BWR coolant (e.g., lithium, sodium, potassium, silica, borate, chromate, phosphate, sulphate, chloride, nitrate, cuprous, cupric, ferrous, etc.) only strong acid anions sulfate and chloride that are stable in the highly reducing crack tip environment rather than the bulk water conductivity will be discussed in detail. Nitrate will be briefly discussed as representing a species that is not thermodynamically stable in the crack while the effects of zinc is discussed as a deliberate additive to the BWR environment. (authors)

  6. Stress corrosion cracking susceptibility of the earthquake resistant NOM B457 Mexican steel

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1994-01-01

    The Mexican construction code was modified after the Mexico city 1985 earthquake, substituted the medium carbon reinforced steel NOM B6 by the new micro alloyed steel NOM B457 in 42 Kg/mm 2 grade. The present study reports the evaluation of the NOM B457 steel behavior in mortar with and without 2% wt. in chlorides and in Ca(OH) 2 saturated solutions. The results are compared with the NOM B6 steel behavior in the same conditions. The Stress Corrosion Cracking (SCC) is not present in all the conditions used in this study and there are not susceptibility potential range to SCC when the material is evaluated by electrochemical Tests, Constant Extension Rate Tests (CERT) and Constant Load Test at 80 % of yield stress. A susceptibility potential range to Hydrogen Induced Cracking (HIC) is detected, below -900 mV. vs Standard Calomel Electrode (SCE) by CERT at constant potential

  7. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  8. Temperature factors effect on occurrence of stress corrosion cracking of main gas pipeline

    Science.gov (United States)

    Nazarova, M. N.; Akhmetov, R. R.; Krainov, S. A.

    2017-10-01

    The purpose of the article is to analyze and compare the data in order to contribute to the formation of an objective opinion on the issue of the growth of stress corrosion defects of the main gas pipeline. According to available data, a histogram of the dependence of defects due to stress corrosion on the distance from the compressor station was constructed, and graphs of the dependence of the accident density due to stress corrosion in the winter and summer were also plotted. Data on activation energy were collected and analyzed in which occurrence of stress corrosion is most likely constructed, a plot of activation energy versus temperature is plotted, and the process of occurrence of stress corrosion by the example of two different grades of steels under the action of different temperatures was analyzed.

  9. Relationship between stress corrosion cracking and low frequency fatigue-corrosion of alloy 600 in PWR primary water

    International Nuclear Information System (INIS)

    Bosch, C.

    1998-01-01

    Stress corrosion cracking of PWR vessel head adapters is a main problem for nuclear industry. With the aim to better understand the influence of the mechanical parameters on the cracking phenomena (by stress corrosion (SCC) or fatigue corrosion (FC)) of alloy 600 exposed to primary PWR coolant, a parametrical study has been carried out. Crack propagation tests on CT test specimens have been implemented under static loads (stress corrosion tests) or low frequency cyclic loads (fatigue corrosion tests). Results (frequency influence, type of cycles, ratio charge on velocities and propagation modes of cracks) have allowed to characterize the transition domain between the crack phenomena of SCC and FC. With the obtained results, it has been possible too to differentiate the effects due to environmental factors and the effects due to mechanical factors. At last, a quantitative fractographic study and the observations of the microstructure at the tip of crack have led to a better understanding of the transitions of the crack propagation mode between the SCC and the FC. (O.M.)

  10. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  11. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  12. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  13. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  14. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  15. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  16. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  17. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  18. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  19. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Science.gov (United States)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  20. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Directory of Open Access Journals (Sweden)

    Weiliang Jin

    2013-09-01

    Full Text Available The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  1. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  2. Summary of INCO corrosion tests in power plant flue gas scrubbing processes

    International Nuclear Information System (INIS)

    Hoxie, E.C.; Tuffnell, G.W.

    1976-01-01

    Corrosion tests in a number of flue-gas desulfurization units have shown that carbon steel, low alloy steels, and Type 304L stainless steel are inadequate in the wet portions of the scrubbers. Type 316L stainless steel is sometimes subject to localized corrosive attack in scrubber environments with certain combinations of pH and chloride content. A corollary is that corrosion of Type 316L stainless steel might be controlled by control of scrubbing media pH and chloride content. Although an attempt was made to correlate the pitting and crevice corrosion obtained on the Type 316 stainless steel test samples with chloride and pH measurements, relatively wide scatter in the data indicated only a modest correlation. This is attributed to variations in local conditions, especially beneath deposits, that differ from the liquor samples obtained for analysis, to processing upsets, to temperature differences, and to some extent to inaccuracies in measurement of pH and chloride levels. The data do show, however, that molybdenum as an alloying element in stainless steels and high nickel alloys was very beneficial in conferring resistance to localized attack in scrubber environments. High nickel alloys containing appreciable amounts of molybdenum such as Hastelloy alloy C-276 and Inconel alloy 625 can be used for critical components. Chloride stress corrosion cracking (SCC) of austenitic stainless steels has generally not been a problem in FGD scrubbers, apparently because operating temperatures are comparatively low. An exception is reheater tubing where some failures have occurred because of elevated temperatures in conjunction with condensate that forms during shut-down periods or carryover of chloride laden mist from the scrubber. This problem can be overcome by proper alloy selection or maintaining dry conditions

  3. Electromagnetic modeling of stress corrosion cracks in Inconel welds

    International Nuclear Information System (INIS)

    Huang, Haoyu; Miya, Kenzo; Yusa, Noritaka; Hashizume, Hidetoshi; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    This study evaluates suitable numerical modeling of stress corrosion cracks appearing in Inconel welds from the viewpoint of electromagnetic nondestructive evaluations. The stress corrosion cracks analyzed in this study are five artificial ones introduced into welded flat plate, and three natural ones found in a pressurized nuclear power plant. Numerical simulations model a crack as a planar region having a uniform conductivity inside and a constant width, and evaluate the width and conductivity that reproduce the maximum eddy current signals obtained by experiments. The results obtained validate the existence of the minimum value of the equivalent resistance, which is defined by the width divided by conductivity. In contrast, the values of the width and conductivity themselves vary across a wide range. The results also lead to a discussion about (1) the effect of probe utilized on the numerical model, (2) the difference between artificial and natural stress corrosion cracks, and (3) the difference between stress corrosion cracks in base metals and those in Inconel welds in their models. Electromagnetic characteristics of four different Inconel weld alloys are additionally evaluated using a resistance tester and a vibrating sample magnetometer to support the validity of the numerical modeling and the generality of results obtained. (author)

  4. Investigation of Stress Concentration and Casing Strength Degradation Caused by Corrosion Pits

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-01-01

    Full Text Available Downhole casing and tubing are subjected to corrosion in many cases because of the exposure to corrosive environment. A more serious problem is that pitting corrosion occurs in the casing inner surface. Meanwhile, downhole strings are subjected to various forms of mechanical loads, for example, internal pressure load, external collapse load, or both. These loads acting on the corrosion pits will cause stress concentration and degrade the casing strength. Thus, it is essential to evaluate the stress concentration degree reasonably. The SCF (stress concentration factor is usually used to characterize the degree of stress concentration induced by corrosion pits. This paper presented a comparison on the SCFs regarding the analytical method for a single pit and experimental method for double pits. The results show that the SCF of a single pit depends mainly on the depth of the corrosion pit; however, the SCF of the double pits strongly depends on the pits distance. A correction factor of 1.3 was recommended in the double pits SCF prediction model.

  5. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  6. Controlled chloride cracking of austenitic stainless steel tube samples

    OpenAIRE

    Raseroka, M.S.; Pistorius, P.C.

    2009-01-01

    An experimental rig has been constructed to produce chloride stress corrosion cracks in Type 304L stainless steel tube samples. The samples are to be used to test possible in situ repair methods in future work. The factor which influences the time to failure most strongly is the sample temperature; the distribution of cracks within the sample is affected by local temperature variations and by the position of the water line. Low-frequency oscillations in stress, caused by the on-off temperatur...

  7. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  8. Pitting corrosion susceptibility study of zirconium alloys in the presence of the chloride ions

    International Nuclear Information System (INIS)

    Radulescu, M.; Pirvan, I.; Velciu, L.

    1997-01-01

    Pitting corrosion mechanism is specific to metal/aggressive environment systems. The influence of both components of the process was thoroughly investigated. After reviewing the principal steps of the pitting corrosion and of the electrochemical reactions associated, there were presented the physico-chemical methods used for the determination of the corrosion pitting parameters completed with the metallographic techniques of investigation of the attacked surfaces. Reported are the results of determinations of the pit initiation (E np ) and pit passivation (E pp ) potentials in the systems Zy-4 (Zr)/ Cl - provided from the following solutions: HCl, FeCl 3 , NaCl and LiCl. In the case of the last two solutions, the measurements were carried out also in the range of alkaline pH values. It was also determined the dependence of E np and E pp potential on the Cl - ions concentration in NaCl and HCl solutions, and also the reaction order 'n' in presence of several chloride concentration. Finally, on the basis of the experimental data, we established the kinetic characteristics specific to different steps of pitting. (authors)

  9. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  10. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  11. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in U.S

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1989-01-01

    Three ion-based to nickel-based austenitic alloys and three copper-based alloys are being considered in the United States as candidate materials for the fabrication of high-level radioactive waste containers. The austenitic alloys are Types 304L and 316L stainless steels as well as the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper) CDA 613 (Cu7Al), and CDA 715 (Cu-30Ni). Waste in the forms of spent fuel assemblies from reactors and borosilicate glass will be sent to a proposed repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and in gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys

  12. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  13. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  14. The effect of borate and phosphate inhibitors on corrosion rate material SS321 and incoloy 800 in chloride containing solution by using potentiodynamic method

    International Nuclear Information System (INIS)

    Febriyanto; Sriyono; Satmoko, Ari

    1998-01-01

    Determination of corrosion rate of steam generator materials (SS 321 and incoloy 800) in chloride containing solution using potentiodynamic method from CMS 100. NaCl 1%, 3% and 5% solution using is used as tested solution. A tested material is grounded by grinding paper on grade 400 600, 800 and 1000, then polished by METADI 1/4 microns paste to get homogeneity. Furthermore, the tested materials is mounted by epoxide resin, so only the surface which contacts to tested solution is open. From the result obtained that borate and phosphate inhibitor can reduce corrosion rate and aggressiveness of chloride ion

  15. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    Science.gov (United States)

    2015-09-01

    corrosion, but if exposed to elevated temperature for prolonged periods of time the alloy becomes sensitized. Since the β phase is more anodic than the...degree of localized corrosion for sensitized AA5083 under an applied tensile stress. AA5083 is an aluminum -magnesium alloy that experiences severe...direction. 14. SUBJECT TERMS Aluminum alloy , AA5083, IGSCC, intergranular stress corrosion cracking, localized corrosion, sensitized aluminum 15

  16. The manufacturing of Stress Corrosion Crack (SCC) on Inconel 600 tube

    International Nuclear Information System (INIS)

    Bae, Seunggi; Bak, Jaewoong; Kim, Seongcheol; Lee, Sangyul; Lee, Boyoung

    2014-01-01

    The Stress Corrosion Crack (SCC), taken a center stage in recently accidents about nuclear power plants, is one of the environmentally induced cracking occurred when a metallic structure under tensile stress is exposed to corrosive environment. In this study, the SCC was manufactured in the simulated corrosive environmental conditions on Inconel 600 tube that widely applied in the nuclear power plants. The tensile stress which is one of the main factors to induce SCC was given by GTAW welding in the inner surface of the specimen. The corrosive environment was simulated by using the sodium hydroxide (NaOH) and sodium sulfide (Na 2 S). In this study, SCC was manufactured in the simulated corrosive environmental conditions with Inconel 600 tube that widely applied in the nuclear power plants. 1) The SCC was manufactured on Inconel 600 tube in simulated operational environments of nuclear power plants. In the experiment, the welding heat input which is enough to induce the cracking generated the SCC near the welding bead. So, in order to prevent the SCC, the residual stress on structure should be relaxed. 2) The branch-type cracking was detected

  17. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  18. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment : Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  19. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment. Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  20. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  1. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  2. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  3. Corrosion of steel tendons in concrete pressure vessels: review of recent literature and experimental investigations

    International Nuclear Information System (INIS)

    Griess, J.C.

    1978-01-01

    The fundamentals of localized corrosion are briefly discussed, and the literature concerning corrosion of carbon steel in aqueous environments, in particular the stress-corrosion cracking of carbon steels, is reviewed. The behavior of high strength steels in specific environments, including concrete and organic substances, is also summarized. The available information indicates that the corrosion of steels in correctly formulated concrete is minimal. Even appreciable concentrations of chloride, sulfate, sulfide, and nitrate salts can be tolerated in the concrete or grout without detrimental effects. Adherence to established standards in the preparation and application of grouts in tendon-bearing conduits should guarantee very long tendon lifetimes. Little is reported about the behavior of tendons in proprietary organic greases or waxes, but very good corrosion resistance is expected if the organic material remains intact. Stress-corrosion cracking tests performed with AISI 1080 steel tendon wires, using the constant-strain-rate method, produced results expected from data in the literature. Cracking was observed only in neutral or acid solutions containing hydrogen sulfide, in ammonium nitrate solutions, and possibly in a dilute solution of sodium bisulfite. General corrosion tests in water and in dilute solutions of sodium nitrate, chloride, or sulfate showed that oxygen was an important factor; corrosion was substantially greater when oxygen had free access to the solution than when access to oxygen was restricted. In the tests with oxygen the heaviest attack on the steel tendons was at the waterline of the solution

  4. Stress corrosion cracking lifetime prediction of spring screw

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.

    2004-01-01

    A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw

  5. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  6. Some radiation damage-stress corrosion synergisms in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, R.H.

    1985-02-01

    Since radiolytic effects on stress corrosion cracking does not appear to be a major concern, an assessment of the effect of radiation induced microstructure and microchemistry changes on stress corrosion has been undertaken. The results of two of these evaluations: (1) radiation enhanced creep effects on crack growth rates; and (2) radiation enhanced grain boundary P segregation and IGSCC are reported in this paper

  7. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    Science.gov (United States)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  8. Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Giordano, C.M.; Rodríguez, M.A.; Carranza, R.M.; Rebak, R.B.

    2012-01-01

    Highlights: ► The crevice corrosion resistance of the tested alloys increased with PREN, which is mainly affected by their Mo content. ► Crevice corrosion kinetics was controlled by ohmic drop only in the more dilute chloride solutions. ► Charge transfer control was observed in concentrated chloride solutions. ► A critical ohmic drop was not necessary for crevice corrosion to occur. ► Ohmic drop was a consequence of the crevice corrosion process in certain conditions. - Abstract: The crevice corrosion kinetics of alloys C-22, C-22HS and HYBRID-BC1 was studied in several chloride solutions at 90 °C. The crevice corrosion resistance of the alloys increased with PREN (Pitting Resistance Equivalent Number), which is mainly affected by the Mo content in the alloys. The crevice corrosion kinetics of the three alloys was analyzed at potentials slightly higher than the repassivation potential. Crevice propagation was controlled by ohmic drop in the more dilute chloride solutions, and by charge transfer in the more concentrated chloride solutions. Ohmic drop was not a necessary condition for crevice corrosion to occur.

  9. Stress corrosion cracking of uranium--niobium alloys

    International Nuclear Information System (INIS)

    Magnani, N.J.

    1978-03-01

    The stress corrosion cracking behavior of U-2 1 / 4 , 4 1 / 2 , 6 and 8 wt % Nb alloys was evaluated in laboratory air and in aqueous Cl - solutions. Thresholds for crack propagation were obtained in these environments. The data showed that Cl - solutions are more deleterious than air environments. Tests were also conducted in pure gases to identify the species in the air responsible for cracking. These data showed the primary stress corrodent is water vapor for the most reactive alloy, U-2 1 / 4 % Nb, while O 2 is primarily responsible for cracking in the more corrosion resistant alloys, U-6 and 8% Nb. The 4 1 / 2 % alloy was found to be susceptible in both H 2 O and O 2 environments

  10. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  11. Stress corrosion cracking of austenitic stainless steels in NaCl-AlCl/sub 3/ at 175C

    International Nuclear Information System (INIS)

    Smyrl, W.H.

    1987-01-01

    Austenitic stainless steels are susceptible to stress corrosion cracking in chloride media. A test that is often used to determine the susceptibility of a new alloy involves boiling aqueous MgCl/sub 2/ solutions. The compositions of the solution is not controlled in the tests, and changes as water is evaporated. The pH may change as well. Such poorly defined conditions make any mechanistic interpretation very tenuous, and the results may be tabulated as purely empirical data. the choice of the molten salt in the present investigation was made for two reasons. First, the studies could be carried in the molten salt media with the exclusion of H/sub 2/O. Second, the crack propagation could be investigated under well controlled electrochemical conditions. Therefore, the results may help to identify the controlling processes that occur during stress corrosion cracking, and the comparison to results in boiling MgCl/sub 2/ may help to reveal the controlling processes in that medium as well. Crack propagation has been studied for several nitronic stainless steels in the molten salt medium under controlled electrochemical potential conditions. The alloys were studied under fully austenitic conditions. The material was studied in the annealed and work hardened condition, and both were susceptible to cracking in the molten salt. The velocity of cracking was studied as a function of applied stress at several electrochemical potentials

  12. Corrosion characteristics of thermal sprayed coating of stainless alloys in chloride solution; Taishoku gokin yosha himaku no enkabutsu yoekichu ni okeru fushoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Ishikawa, K. [Tokyo Metallikon Co. Ltd., Tokyo (Japan); Kitamura, Y. [Kitamura Technical Consultant Office, Kanagawa (Japan)

    1994-12-15

    With an objective to develop a thermal sprayed coating of environment interruption type that can be sprayed at sites, electrochemical discussions, SEM observation, and EPMA surface analysis were performed on corrosion characteristics in chloride solution of coatings of SUS 304, 316 and Hastelloy C thermally sprayed onto test pieces made of structural steel SS400, as well as the effect of improvement in corrosion resistance by means of a coating reforming treatment. The following conclusions were obtained: the degradation in corrosion resistance of the coatings is attributable to increase in anodic solubility due to appearance of innumerable crevices as a result of deposited particles forming porous structure and due to drop of Cr content in the matrix caused by generation of oxides on the surface of the crevices, by which the corrosion progresses in the form of crevice corrosion; and denseness of the passive coating is lost on the surface of the deposited particles, accelerating the cathodic reaction. A suitable means that could be used practically in chloride solution would be a method to use a material with less crevice susceptibility such as Hastelloy C as a base material, and seal the crevice structure with epoxy resin, etc. 7 refs., 10 figs., 3 tabs.

  13. Effect of surface grinding on chloride induced SCC of 304L

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nian, E-mail: nzh@du.se [Department of Material Science, Dalarna University, SE-79188 Falun (Sweden); KTH, SE-10044 Stockholm (Sweden); Pettersson, Rachel [KTH, SE-10044 Stockholm (Sweden); Jernkontoret, SE-11187 Stockholm (Sweden); Lin Peng, Ru [Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Schönning, Mikael [Corrosion Department, Avesta Research Centre – Outokumpu Stainless AB, SE-774 22 Avesta (Sweden)

    2016-03-21

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  14. Effect of surface grinding on chloride induced SCC of 304L

    International Nuclear Information System (INIS)

    Zhou, Nian; Pettersson, Rachel; Lin Peng, Ru; Schönning, Mikael

    2016-01-01

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  15. The use of nitrogen to improve the corrosion resistance of FeCrNiMo alloys for the chemical process industries

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R.; Deverell, H.E.

    1987-06-01

    The addition of 0.1 to 0.25 wt% nitrogen to austenitic alloys has been shown to enhance resistance to localized corrosion in oxidizing chloride and reducing acid solutions. Further tests of FeCrNiMo alloys assess the effects of nitrogen additions on: mechanical properties, chloride and caustic stress corrosion cracking resistance, passivation characteristics, and general corrosion rates in various acid, alkali, and salt solutions pertinent to the chemical process industries. The precipitation of chromium-rich secondary phases was retarded by solid solution additions of 0.1 to 0.25 wt% nitrogen. The corrosion resistance of FeCrNiMoN alloys in the welded condition was improved by using shield-gas mixtures of argon and 2.5 to 5.0 wt% nitrogen.

  16. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    OpenAIRE

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete u...

  17. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  18. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  19. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production.

    Science.gov (United States)

    Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra

    2016-03-01

    In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Study on the fabrication of the Stress Corrosion Crack by vapor pressure in the Alloy 600 Pipe

    International Nuclear Information System (INIS)

    Kim, Jae Seong; An, Ju Seon; Hwang, Woong Ki; Lee, Bo Young

    2010-01-01

    The stress corrosion crack is one of the life-limiting mechanisms in nuclear power plant conditions. During the operation of a power plant stress corrosion cracks can initiate and grow in dissimilar metal weld pipe joints of primary loop components. In particular, stress corrosion cracking usually occurs when the following three factors exist at the same time; susceptible material, corrosive environment, and tensile stress (including residual stress). Thus, residual stress becomes very critical for stress-corrosion cracking when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. Since the research conducted by Coriou et al., it is well known that Ni-based alloy is susceptible to stress corrosion cracking(SCC) in deaerated pure water at high temperature and the SCC is difficult to be reproduced in laboratory. The aim of this study was to fulfill the need by developing an artificial SCC manufacturing method, which would produce realistic SCC in the Alloy 600 pipe

  1. Standard practice for preparation and use of Bent-Beam stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens. 1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens. Note 1—It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1). 1.3 Test procedures are given for stress-corrosion testing by ex...

  2. Influence of cold worked layer on susceptibility to stress corrosion of duplex stainless steel

    International Nuclear Information System (INIS)

    Labanowski, J.; Ossowska, A.; Cwiek, J.

    2001-01-01

    Stress corrosion cracking resistance of cold worked layers on duplex stainless steel was investigated. The surface layers were performed through burnishing treatment. Corrosion tests were performed with the use of Slow Strain Rate Test technique in boiling 35% MgCl 2 solution. It has been shown that burnishing treatment increases corrosion resistance of steel. The factor that improves stress corrosion cracking resistance is crack incubation time. (author)

  3. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  4. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  5. Laboratory investigation of electro-chemical chloride extraction from concrete with penetrated chloride

    NARCIS (Netherlands)

    Polder, R.B.; Hondel, A.W.M. van den

    2002-01-01

    Chloride extraction of concrete is a short-term electrochemical treatment against corrosion of reinforcing steel. The aim is to remove chloride ions from the concrete cover in order to reinstate passive behaviour. Physically sound concrete is left in place. To make this method more predictable and

  6. Reliability-Based Planning of Chloride Measurements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1996-01-01

    In reinforced concrete structures corrosion is initiated when the chloride concentration around the reinforcement exceeds a threshold value. If corrosion starts then expensive repairs can be necessary. The estimation of the probability that corrosion has been initiated in a given structure is bas...

  7. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  8. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  9. Evaluation of Electrochemical Treatment of Chloride Contaminated Mortar Containing GGBS

    Directory of Open Access Journals (Sweden)

    Ki Hong Lee

    2017-01-01

    Full Text Available The present study concerns the influence of cementitious binder on electrochemical treatment of steel embedded in salt contaminated mortar. As binder, ordinary Portland cement (OPC and ground granulated blast furnace slag (GGBS were used and the current density of 250–750 mA/m2 was applied for 4 weeks to complete electrochemical chloride extraction. To evaluate the effect of electrochemical treatment the chloride profile and corrosion behaviour covering chloride concentration, galvanic current density, linear polarization resistance, open circuit potential, and mass loss were measured. An increase in the applied direct current density resulted in a decrease in the chloride concentration at the vicinity of steel, accompanying the mitigated corrosion damage. The performance of electrochemical treatment was more remarkable in mortar containing GGBS presumably due to binding mechanism. However, corrosion damage was more detrimental in GGBS rather than OPC at a given potential, while GGBS had superior corrosion resistance to a corrosive environment and treatment conditions. Therefore, the electrochemical treatment should be conducted prudently to evaluate the corrosion state of embedded steel depending on binder type.

  10. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  11. Corrosion initiation and service life of concrete structures

    International Nuclear Information System (INIS)

    Byung Hwan Oh; Bong Seok Jang

    2005-01-01

    The Corrosion of steel reinforcements in concrete is of great concern in the view of safety and durability of reinforced concrete structures. The reinforced concrete structures exposed to sea environments suffer from corrosion of steel bars due to chloride ingress. The chloride penetration into concrete is influenced by many parameters such as type of cement, mixture proportions and existence of rebars. The conventional diffusion analyses have neglected the existence of steel bar in concrete. The purpose of the present paper is, therefore, to explore the effects of reinforcement on the chloride diffusion in concrete structures by incorporating realistic diffusion models. To this end, the nonlinear binding isotherm which includes the effects of cement types and mixture proportion has been introduced in the chloride diffusion analysis. The effects of reinforcements on the chloride penetration have been analyzed through finite element analysis. The present study indicates that the chlorides are accumulated in front of a reinforcing bar and the accumulation of chlorides is much more pronounced for the case of larger-size bars. The higher accumulation of chlorides at bar location causes faster corrosion of reinforcing bars. The corrosion initiation time reduces by about 30-40 percent when the existence of rebar is considered in the chloride diffusion analysis. (authors)

  12. Review of current research and understanding of irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nelson, J.L.; Andresen, P.L.

    1992-01-01

    Concerns for irradiation-assisted stress corrosion cracking (IASCC) of reactor internals are increasing, especially for components that are not readily replaceable. Both laboratory and field data show that intergranular stress corrosion cracking of stainless steels and nickel-base alloys can result from long term exposure to the high energy neutron and gamma radiation that exists in the core of light water reactors (LWR's). Radiation affects cracking susceptibility via changes in material micro-chemistry (radiation induced segregation, or RIS), water chemistry (radiolysis) and material properties/stress (e.g., radiation induced creep and hardening). Based on many common dependencies, e.g., to solution purity, corrosion potential, crevicing and stress, IASCC falls within the continuum of environmental cracking phenomenon in high temperature water

  13. A combinatorial matrix of rare earth chloride mixtures as corrosion inhibitors of AA2024-T3: Optimisation using potentiodynamic polarisation and EIS

    International Nuclear Information System (INIS)

    Muster, T.H.; Sullivan, H.; Lau, D.; Alexander, D.L.J.; Sherman, N.; Garcia, S.J.; Harvey, T.G.; Markley, T.A.; Hughes, A.E.; Corrigan, P.A.; Glenn, A.M.; White, P.A.; Hardin, S.G.; Mardel, J.; Mol, J.M.C.

    2012-01-01

    A combinatorial matrix of four rare earth chlorides has been evaluated for the corrosion inhibition of aluminium alloy AA2024-T3 in aqueous solution. Two electrochemical techniques, potentiodynamic polarisation (PP) and electrochemical impedance spectroscopy (EIS), were used to evaluate AA2024-T3 corrosion in 0.1 M NaCl with the addition of 10 −3 M of rare earth chloride mixtures at time periods up to 18 h. PP experiments showed rare earth inhibition of up to 98% within the first hour and thereafter corrosion rates were steadily decreased. The open-circuit potential (OCP) of AA2024-T3 decreased as a function of time for all solutions indicating predominantly cathodic inhibition. However, differing trends in the OCP were observed during PP and EIS experiments and are discussed in terms of likely time-dependent mechanisms. A comparative study of optimisation models indicated the best mixture at 10 −3 M total inhibitor concentration was predicted to be 72% cerium (Ce) and 28% (praseodymium (Pr)/lanthanum (La)) ions. As the amount of Ce is decreased from this level the corrosion inhibition is predicted to decrease also, regardless of what other rare earths (La, Pr and Nd) are added alone or in combination. Individually, La, Pr and Nd show varying levels of corrosion inhibition activity, all of which are inferior to that of Ce. If Ce is absent entirely, then a mixture of approximately 50% Pr and 50% Nd is predicted to be preferred. This is one of the first applications of combinatorial design for the optimisation of corrosion inhibitor mixtures.

  14. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Perillo, P.M.; Duffo, G.S.

    1989-01-01

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author) [es

  15. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  16. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    Science.gov (United States)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  17. Stress corrosion of very high purity stainless steels in alkaline media

    International Nuclear Information System (INIS)

    Hechmat-Dehcordi, Ebrahim

    1981-01-01

    This research thesis reports the study of stress corrosion resistance of stainless steels in caustic environments. It notably concerns the electronuclear industrial sector, the production of soda by electrolysis, and the preparation of hydrogen as energy vector. After a presentation of the experimental conditions, the author highlights the influence of purity on stress corrosion cracking of 20Cr-25Ni-type austenitic alloys. The specific action of a high number of addition metallic and non-metallic elements has been studied. Stress corrosion tests have been also performed in autoclave on austeno-ferritic (21 to 25 pc Cr - 6 to 10 pc Ni) as well as ferritic (26 pc Cr) grades. The author reports the study of electrochemical properties of stainless steel in soda by means of potentiostatic techniques with an application of Pourbaix thermodynamic equilibrium diagrams, and the study of the chemical composition of passivation thin layers by Auger spectroscopy. He more particularly studies the influence of electrode potential and of some addition elements on the chemical characteristics of oxides developed at the surface of austenite. Then, the author tries to establish correlations between strain hardening microstructure of the various steels and their sensitivity to stress corrosion [fr

  18. Effect of chloride and sulphate ions on the electrochemical corrosion behavior of alloy 800NG in PWR secondary water environment at 250 deg C

    International Nuclear Information System (INIS)

    Mansur, Fabio A.; Schvartzman, Monica Maria de A.M.; Quinan, Marco A.D.; Soares, Antonio E.G.; Nogueira, Pedro Henrique B.O.

    2013-01-01

    Alloy 800NG (nuclear grade) is used in nuclear steam generators (SG) as the tubing material for pressurized water reactors (PWRs) because of its high corrosion resistance. The corrosion resistance is due to the protective character of the oxide film formed on the tube surface by contact with the high temperature pressurized water. Nevertheless, corrosion has been the major cause of tube failures in nuclear SGs. The existing experience of different nuclear power plants shows that the water chemistry has an important role in maintaining the integrity of the protective oxide films. Many of such problems have been attributed to secondary side water chemistry conditions and excursions, many of which have been resulted from condenser cooling water ingress. Alloy 800 is known to undergo passivity breakdown and pitting in the presence of chloride ions under oxidative water conditions. In this work the effect of chloride and sulphate ions at various concentrations on the corrosion behavior of Alloy 800 tube at 250 deg C was investigated using the potentiodynamic anodic polarization technique. An active-passive transition occurred at 250 deg C in all studied conditions and the oxide film grown on surface showed greater porosity and lower resistance to localised corrosion in all studied conditions. (author)

  19. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  20. Corrosion characteristics of unprotected post-tensioning strands under stress.

    Science.gov (United States)

    2014-05-01

    An investigation was conducted to determine the effect of stress condition : and environmental exposure on corrosion of post-tensioned strands during ungrouted periods. : Exposures for periods of up to 4 weeks of stressed, as-received strand placed i...

  1. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  2. Corrosion cracking of 03N18K1M3TYu and 02N12Kh5M3 maraging steels in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.N.; Chumalo, G.V.; Vereshchagin, A.N.; Melekhov, R.K.

    1987-07-01

    The authors investigate the electrochemical behavior in 0.5% NaCl solution and 42% MgCl/sub 2/ solution and the tendency toward corrosion cracking was determined in boiling 0.5% chloride solution of the cobalt-containing maraging steels in the title. Weld specimens and specimens of the base metal of 03N18K1M3TYu steel were tested in 3% NaCl solution for resistance to corrosion cracking. Additional investigations were made of specimens of that steel with previously created fatigue cracks of the base metal and the weld specimens in 3% NaCl solutions, since that steel is a promising material for structures operating in sea water and low concentration chloride solutions.

  3. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Groenwall, B; Ljungberg, L; Huebner, W; Stuart, W

    1966-08-15

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 {mu}g/cm{sup 2}). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in

  4. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    International Nuclear Information System (INIS)

    Groenwall, B.; Ljungberg, L.; Huebner, W.; Stuart, W.

    1966-08-01

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 μg/cm 2 ). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in caustic

  5. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  6. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  7. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  8. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  9. Correlation between oxidation and stress corrosion cracking of U-4.5 wt.% Nb

    International Nuclear Information System (INIS)

    Magnani, N.J.; Holloway, P.H.

    1976-01-01

    To investigate the mechanisms causing stress corrosion cracking on uranium alloys, the kinetics of crack propagation and oxide film growth for U-4.5 percent Nb were investigated at temperatures between 0 0 C and 200 0 C in oxygen, water vapor and oxygen-water vapor mixtures. Three regions of crack velocity rate versus stress intensity were observed in laboratory air. At low stress intensities (but above an effective K/sub ISCC/ of 22 MN/m/sup 3 / 2 /) crack velocity varied approximately as K 70 . In an intermediate stress intensity region (region II) the crack velocity was dependent upon K 4 . In the high stress intensity region, mechanical overloading was observed and crack velocities varied approximately as K 12 . Both cracking (region II) and oxidation rates were characterized by an activation energy of 7 kcal/mole. For stress corrosion cracking it was shown that oxygen was the primary stress corrodent, but a synergistic effect upon crack propagation rates was observed for oxygen-water vapor mixtures. Crack velocities were dependent upon the pressure of oxygen (P/sub O 2 //sup 1 / 3 /) and water vapor, while the oxidation rate was essentially independent of the pressure of these species. Stress sorption and oxide film formation stress corrosion cracking mechanisms were considered and reconciled with the stress corrosion and oxidation data

  10. Chemical corrosion by chlorides on ancient-like bronzes and treatment by hydrogen glow discharge plasma

    Science.gov (United States)

    Papadopoulou, O.; Novakovic, J.; Vassiliou, P.; Filippaki, E.; Bassiakos, Y.

    2013-12-01

    Three representative ancient-like bronzes are employed for the chemical synthesis of Cu2(OH)3Cl rich patinas in order to study the influence of the alloying elements in the evolution of the chloride attack and to further conduct stabilization treatment via Hydrogen Glow Discharge Plasma (HGDP) at low temperature and pressure. The corrosion behavior of specimens having Sn and Pb as main alloying elements is governed by a decuprification mechanism and by the formation of Sn-Pb-O enriched barrier layers. In the case of the Zn containing alloy, dezincification is more pronounced at the corrosion initial stages, and copper species predominate the corrosion products evolution. A three-hour HGDP treatment leads to Cu+ production and metallic Cu, Sn, Zn, and Pb redeposition, as a result of metal cation reduction. This process is accompanied by partial removal of Cl species, O diminution, and change in coloration. The further increase of the Cl/O atomic ratio measured on the post-treated surfaces leads to the formation of nantokite and thus to the conclusion that the stabilization of objects with extensive Cl attack is not feasible by HGDP without preliminary chemical treatment.

  11. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  12. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  13. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  14. Role of heat tint on pitting corrosion of 304 austenitic stainless steel in chloride environment

    Energy Technology Data Exchange (ETDEWEB)

    Elshawesh, F.; Elhoud, A. [Petroleum Research Center, P. O. Box 6431, Tripoli (Libyan Arab Jamahiriya)

    2004-07-01

    The effect of simulated heat tint produced by air oxidation at a wide range of temperatures 200, 400, 600, 800 and 1050 deg. C on pitting potential of 304 austenitic stainless steel was studied in environment of different chloride concentration. It was found that the heat tint effect depends on the heating temperature. The most effective heat tint was that produced at the high temperature up to 1050 deg. C and hence less pitting potential and low corrosion resistance. In order to improve the surface pitting corrosion resistance, acid pickling of hydrochloric acid was applied at different time and temperatures of 15 and 60 min, room temperature and 60 deg. C, respectively. Improvement in pitting potential was achieved as the pickling time and temperature increase. This is can be attributed to the removal of depleted chromium oxide film produced during the heat tint. (authors)

  15. Stress corrosion cracking experience in steam generators at Bruce NGS

    International Nuclear Information System (INIS)

    King, P.J.; Gonzalez, F.; Brown, J.

    1993-01-01

    In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead

  16. Corrosion behaviour of high chromium ferritic stainless steels

    International Nuclear Information System (INIS)

    Kiesheyer, H.; Lennartz, G.; Brandis, H.

    1976-01-01

    Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for intercrystalline corrosion susceptibility in the Strauss-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6,000 hours exposure to boiling 50% seawater brine even under salt deposits. (orig.) [de

  17. Electrochemical studies of the corrosion behavior of a low-carbon steel in aqueous chloride solutions simulating accident conditions of radioactive waste disposal

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-01-01

    The fine-grained structural steel DIN W.Nr. 1.0566 was exposed to various sulfate and chloride-containing aqueous solutions, the latter ones simulating the potential accidental environment of water intrusion into a salt mine. By electrochemical measurements in salt brines, the following results were achieved: (1) The corrosion rate is highly dependent on salt brine composition, pH and temperature. (2) Active metal dissolution led to formation of shallow pits as surface corrosion phenomenon. Thus, the application of electrochemical techniques - under non-polarized as well as under potentiodynamic conditions - proved to be suitable for fast qualitative testing of the influence of various environmental parameters on steel corrosion. (orig.)

  18. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  19. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting in dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.

  20. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  1. Review of provisions on corrosion fatigue and stress corrosion in WWER and Western LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Filatov, V.; Tashkinov, A.; Evropin, S.V.; Matocha, K.; Guinovart, J.

    2003-01-01

    Results are presented from a collaborative project performed on behalf of the European Commission, Working Group Codes and Standards. The work covered the contents of current codes and standards, plant experience and R and D results. Current fatigue design rules use S-N curves based on tests in air. Although WWER and LWR design curves are often similar they are derived, presented and used in different ways and it is neither convenient nor appropriate to harmonise them. Similarly the fatigue crack growth laws used in the various design and in-service inspection rules differ significantly with respect to both growth rates in air and the effects of water reactor environments. Harmonised approaches to the effects of WWER and LWR environments are possible based on results from R and D programmes carried out over the last decade. For carbon and low alloy steels a consistent approach to both crack initiation and growth can be formulated based on the superposition of environmentally assisted cracking effects on the fatigue crack development. The approach indicates that effects of the water environment are minimal given appropriate control of the oxygen content of the water and/or the sulphur content of the steel. For austenitic stainless steels a different mechanisms may apply and a harmonised approach is possible at present only for S-N curves. Although substantial progress has been made with respect to corrosion fatigue, more data and a clearer understanding are required in order to write code provisions particularly in the area of high cycle fatigue. Reactor operation experience shows stress corrosion cracking of austenitic steels is the most common cause of failure. These failures are associated with high residual stresses combined with high levels of dissolved oxygen or the presence of contaminants. For primary circuit internals there is a potential threat to integrity from irradiated assisted stress corrosion cracking. Design and in-service inspection rules do not at

  2. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  3. The effect of texture, heat treatment and elongation rate on stress corrosion cracking in irradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.; Stany, W.; Hellstrand, E.

    1979-03-01

    Irradiated zircaloy samples with different textures and heat treatments have been tested concerning stress corrosion. Irradiated samples of Zr-1Nb, pure Zr and beta quenched zircaloy have also been investigated. Stress-relieve annealled zircaloy is even after irradiation more sensitive to stress corrosion than recrystallized zircaloy. Zr-1Nb and beta quenched zircaloy are much more sinsitive to stress corrosion than the samples with different textures. As a rule irradiated zircaloy is sensitive to stress corrosion at stresses far below the yield point. The breaking stress decreases with the elongation rate. The extension of cracks is much faster in irradiated zircaloy than in unirradiated zircaloy. There is no simple failure criterium for irradiated zircaloy. However for a certain stress and a certain elongation rate the probability for a failure before this stress is reached with a constant elongation rate can be given. (E.R.)

  4. Theoretical aspects of stress corrosion cracking of Alloy 22

    Science.gov (United States)

    Lee, Sang-Kwon; Macdonald, Digby D.

    2018-05-01

    Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.

  5. Enhanced corrosion resistance of A3xx.x/SiCp composites in chloride media by La surface treatments

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.; Carboneras, M.

    2006-01-01

    The influence of silicon carbide particles (SiCp) proportion and matrix composition of aluminium metal matrix composites (A3xx.x/SiCp) modified by lanthanum-based conversion or electrolysis coating was evaluated in 3.5 wt% NaCl aerated solution. The intermetallic compounds were preferentially covered by lanthanum-based conversion coatings obtained by immersion in 50 deg. C solution of La(III) salt, and the intermetallic compounds, SiCp and aluminium matrix were covered by lanthanum electrolysis treatment. The corrosion process was studied on the basis of gravimetric tests and electrochemical impedance spectroscopy (EIS) during immersion in 3.5 wt% NaCl aerated solution. The composition of both La coating and corrosion products was analyzed before and after accelerated testing, by scanning electron microscopy (SEM), atomic force microscopy (AFM), low-angle X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to determine the influence of surface microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement. Both lanthanum treated surfaces presented better behaviour to chloride solution corrosion than original composite surfaces without treatment; however, electrolysis afforded a higher degree of protection than the conversion treatment because the coating was more extensive

  6. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  7. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    Directory of Open Access Journals (Sweden)

    Olufunmilayo O. Joseph

    2016-06-01

    Full Text Available In this study, micro-alloyed steel (MAS material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE environment and its degradation mechanism in the presence of sodium chloride (NaCl was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness.

  9. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER); Susceptibilidad a la corrosion bajo esfuerzo de barras de acero inoxidable AISI 321 y 12X18H10T en ambientes utilizados en reactores VVER

    Energy Technology Data Exchange (ETDEWEB)

    Matadamas C, N

    1996-12-31

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H{sub 3}BO{sub 3} Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author).

  10. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  11. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  12. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  13. Understanding and coming through PVC-tape-induced stress corrosion cracking in PWR piping system

    International Nuclear Information System (INIS)

    Shibayama, Motoaki; Shigemoto, Naoya; Noguchi, Shinji; Hirano, Shin-ichi; Takagi, Toshimitsu

    2003-01-01

    In October 2000, the 24 years old Ikata-1 PWR-type nuclear power plant suffered cracking in pipes of special two lines, where poly vinyl chloride (PVC) tape had been placed and had become baked over time. The existence of residual stress over 100 MPa in the pipes, a bit of chlorine and a feather like-pattern on the crack faces suggested the event was one of stress corrosion cracking. Residual chlorine on the pipes of special two lines was estimated to be 1100 mg/m 2 . A four points bending stress test was performed on the steel plates with the baked on PVC tape in humid air at 80degC. Taking the actual temperature, stress and chlorine on the pipes of the special two lines into consideration, cracking times were estimated to be 12 years and 15 years respectively, which were close to the actual cracking time of 24 years. The authors calculated damage to pipes with fluids of various temperature and duration, and graphed damage contour with a fluid temperature ordinate and a flow duration abscissa. The fluid conditions of major pipes at the Ikata-1 nuclear power plant, which had not received the full inspection, were positioned on so low area on the damage contour that the plant was estimated to be safe for the coming forty years. (author)

  14. Effect of Dissolved Oxygen and Immersion Time on the Corrosion Behaviour of Mild Steel in Bicarbonate/Chloride Solution

    Directory of Open Access Journals (Sweden)

    Gaius Debi Eyu

    2016-09-01

    Full Text Available The electrochemical behavior of mild steel in bicarbonate solution at different dissolved oxygen (DO concentrations and immersion times has been studied under dynamic conditions using electrochemical techniques. The results show that both DO and immersion times influence the morphology of the corrosion products. In comparative tests, the corrosion rate was systematically found to be lower in solutions with lower DO, lower HCO3− concentrations and longer immersion time. The SEM analyses reveal that the iron dissolution rate was more severe in solutions containing higher DO. The decrease in corrosion rate can be attributed to the formation of a passive layer containing mainly α -FeO (OH and ( γ -Fe2O3/Fe3O4 as confirmed by the X-ray diffractometry (XRD and X-ray photoelectron spectroscopy (XPS. Passivation of mild steel is evident in electrochemical test at ≈ −600 mVSCE at pH ≥ 8 in dearated ( ≤ 0.8 ppm DO chloride bicarbonate solution under dynamic conditions.

  15. Studies on the influence of metallurgical variables on the stress corrosion behavior of AISI 304 stainless steel in sodium chloride solution using the fracture mechanics approach

    International Nuclear Information System (INIS)

    Khatak, H.S.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-01-01

    Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl + 0.15M Na 2 SO 4 + 3 mL/L HCl (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensitization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor, K I , and J integral, J I , have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 x 10 -11 m/s was chosen for the determination of threshold parameters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking

  16. Statistical study by digitalized image analysis of pitting corrosion of an AISI 304 type stainless steel in chloride environment

    International Nuclear Information System (INIS)

    Lacome, Isabelle

    1994-01-01

    This research thesis addresses the pitting corrosion of an AISI 304-type stainless steel in chloride environment, a phenomenon which is generally considered as comprising two main steps: pit initiation with local degradation of the passive film, and pit growth. By using a technique of analysis of digitalized images, the process is observed in situ and both steps are monitored. A statistical study of the initiation of all the noticed pits is performed. After a bibliographical survey on the pitting corrosion process, its mechanisms and the influence of different parameters, the author presents the studied material and the experimental methods, reports the investigation of the pitting corrosion process in potentiostatic mode over a wide range of potentials in order to study all the types of pits, discusses the influence of potential on pit initiation and growth, reports the study of the influence of hydrodynamic conditions and of ageing in solution on the different parameters, reports the analysis of passive films by photoelectron spectroscopy, and the study of the influence of an inhibitor (molybdate ions) on both steps of pitting corrosion [fr

  17. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  18. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  19. Stress corrosion cracking of austenitic stainless steel in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Uragami, Ken

    1977-01-01

    Austenitic stainless steels used in for equipment in chemical plants have failed owing to stress corrosion cracking (SCC). These failures brought about great problems in some cases. The failures were caused by chloride, sulfide and alkali solution environment, in particular, by chloride solution environment. It was known that SCC was caused not only by high content chloride solution such as 42% MgCl 2 solution but also by high temperature water containing Cl - ions as NaCl. In order to estimate quantitatively the effects of some factors on SCC in high temperature water environment, the effects of Cl - ion contents, oxygen partial pressure (increasing in proportion to dissolved oxygen), pH and temperature were investigated. Moreover SCC sensitivity owing to the difference of materials and heat treatments was also investigated. The experimental results obtained are summarized as follows: (1) Regarding the effect of contaminant Cl - ions in proportion as Cl - ion contents increased, the material life extremely decreased owing to SCC. The tendency of decreasing was affected by the level of oxygen partial pressure. (2) Three regions of SCC sensitivity existed and they depended upon oxygen partial pressure. These were a region that did not show SCC sensitivity, a region of the highest SCC sensitivity and a region of somewhat lower SCC sensitivity. (3) In the case of SUS304 steel and 500 ppm Cl - ion contents SCC did not occur at 150 0 C, but it occurred and caused failures at 200 0 C and 250 0 C. (auth.)

  20. PLANTS AS A SOURCE OF GREEN CORROSION INHIBITORS ...

    African Journals Online (AJOL)

    Mgina

    Acacia senegal) exhibit good inhibition characteristics to corrosion on mild steel under fresh water medium and the ... as corrosion inhibitors for metals in various corrosive media ..... alloy corrosion in chloride solution", J. Appl. Electrochem.

  1. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  2. Stress corrosion cracking of equipment materials in domestic pressurized water reactors and the relevant safety management

    International Nuclear Information System (INIS)

    Sun Haitao

    2015-01-01

    International and domestic research and project state about stress corrosion cracking of nuclear equipments and materials (including austenitic stainless steel and nickel based alloys) in pressurized water reactor are discussed, and suggestions on how to prevent, mitigate ana deal with the stress corrosion cracking issues in domestic reactors are given in this paper based on real case analysis and study ondomestic nuclear equipment and material stress corrosion cracking failure. (author)

  3. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  4. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  5. Corrosion behaviour of non-ferrous metals in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Birn, Jerzy; Skalski, Igor [Ship Design and Research Centre, Al. Rzeczypospolitej 8, 80-369 Gdansk (Poland)

    2004-07-01

    The most typical kinds of corrosion of brasses are selective corrosion (dezincification) and stress corrosion. Prevention against these kinds of corrosion lies in application of arsenic alloy addition and appropriate heat treatment removing internal stresses as well as in maintaining the arsenic and phosphorus contents on a proper level. The most typical corrosion of cupronickels is the local corrosion. Selective corrosion occurs less often and corrosion cracking caused by stress corrosion in sea water does not usually occur. Crevice corrosion is found especially in places of an heterogeneous oxidation of the surface under inorganic deposits or under bio-film. Common corrosive phenomena for brasses and cupronickels are the effects caused by sea water flow and most often the impingement attack. Alloy additions improve resistance to the action of intensive sea water flow but situation in this field requires further improvement, especially if the cheaper kinds of alloys are concerned. Contaminants of sea water such as ammonia and hydrogen sulphide are also the cause of common corrosion processes for all copper alloys. Corrosion of copper alloys may be caused also by sulphate reducing bacteria (SRB). Galvanic corrosion caused by a contact with titanium alloys e.g. in plate heat exchangers may cause corrosion of both kinds copper alloys. Bronzes belong to copper alloys of the highest corrosion resistance. Failures that sometimes occur are caused most often by the cavitation erosion, by an incorrect chemical composition of alloys or at last by their inadequate structure. The main problems of aluminium alloys service in sea water are following phenomena: local corrosion (pitting and crevice corrosion), galvanic corrosion, exfoliation and corrosion in the presence of OH- ions. The cause of local corrosion are caused by presence of passive film on the alloy's surface and presence of chlorides in sea water which are able to damage the passive film. Galvanic corrosion is

  6. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  7. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  8. Stress reaction in crayfish: chlorides help to withstand stress in high nitrite concentration conditions – preliminary study

    Directory of Open Access Journals (Sweden)

    Kozák P.

    2011-06-01

    Full Text Available A non-invasive method of recording cardiac activity (heart rate – HR and stress reaction (stress index – SI was used to understand the immediate and ongoing stress reaction of crayfish to the chemical stimuli. This method detects changes in the shape and amplitude parameters of the response to the stress factors, which characterized the crayfish functional state. Experimental animals (Astacus leptodactylus were divided to the two groups with (400 mg·L-1 Cl− and without added chlorides and then exposed to a stepwise increased level of nitrite to the final (sublethal-lethal concentration of 60 mg·L-1 N-NO\\hbox{$_{2}^{-}$}−2 within 24 hours. The course of crayfish reaction was evident and provided information about their reaction to the sublethal-lethal concentration over time. As expected, a less prominent stress reaction was detected in the group with chlorides. The non-invasive method successfully evaluated the sensing of chemical stimuli in water through HR and SI changes.

  9. Stress corrosion cracking susceptibilities of various stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, Saburo; Ohnaka, Noriyuki; Kikuchi, Eiji; Minato, Akira; Tanno, Kazuo.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) behaviors of several austenitic stainless steels in high temperature water were evaluated using three types of SCC tests, i.e., single U-bend test in chloride containing water, uniaxial constant load and constant extension rate tests (CERT) in pure water. The steels used were SUS 304, 304L, 316, 316L, 321 and 347 and several heats of them to examine heat to heat variations. The three test methods gave the same relative ranking of the steels. The CERT is the most sensitive method to detect the relative IGSCC susceptibilities. The CERT result for relative ranking from poor to good is: SUS 304 - 0.07% C, 304 - 0.06% C, 304L - 0.028% C, 316 - 0.07% C. The IGSCC susceptibilities of SUS 304L - 0.020% C, 316L - 0.023% C, 321 and 347 were not detected. These test results suggest that the use of the low carbon, molybdenum bearing, or stabilized austenitic stainless steel is beneficial for eliminating the IGSCC problem in boiling water reactor environment. (author)

  10. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    International Nuclear Information System (INIS)

    Martin, F.A.; Cousty, J.; Masson, J-L.; Bataillon, C.

    2004-01-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO 2 , we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm 2 . Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  11. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.A. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Cousty, J.; Masson, J-L. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Bataillon, C. [CEA de Saclay, DEN/DPC/LECA, 91191 Gif-sur-Yvette cedex (France)

    2004-07-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO{sub 2}, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 {mu}m{sup 2}. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  12. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  13. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  14. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  15. Stress Corrosion Cracking of Aluminum Alloys

    Science.gov (United States)

    2012-09-10

    Hossain and B. J, O’Toole: Stress Corrosion Cracking of Martensitic Stainless Steel for Transmutation Application, Presented at 2003 International...SCC of marternsitic stainless steel by Roy,[12] and learn the annealing effect on SCC of carbon steel by Haruna.[13] The application of slow...observations. In his study on SCC of AISI 304 stainless steel , Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and

  16. Stress corrosion of nickel alloys: influence of metallurgical, chemical and physicochemical parameters

    International Nuclear Information System (INIS)

    Gras, J.M.; Pinard-Legry, G.

    1997-01-01

    Stress corrosion of nickel alloys (alloys 600, X-750, 182, 82..)is the main problem of corrosion in PWR type reactors. This article gives the main knowledge about this question, considering particularly the influence of the mechanical, microstructural and physicochemical factors on cracks under stress of the alloy 600 in water at high temperature. The acquired knowledge allows nowadays to better anticipate and control the phenomenon. On the industrial point of view, they have allowed to improve the resistance of in service or future materials. While a lot of advances have been carried out in the understanding of the influence of parameters, several uncertainties still remain concerning the corrosion mechanism and the part of some factors. (O.M.)

  17. Features of residual stresses in duplex stainless steel butt welds

    Science.gov (United States)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  18. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Stoulil, J.; Kaňok, J.; Kouřil, M.; Parschová, H.; Novák, P.

    2013-01-01

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  19. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    Energy Technology Data Exchange (ETDEWEB)

    Stoulil, J., E-mail: jan.stoulil@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Kaňok, J.; Kouřil, M. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Parschová, H. [Department of Power Engineering, Institute of Chemical Technology, Prague (Czech Republic); Novák, P. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2013-11-15

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible.

  20. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  1. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  2. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Science.gov (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  3. Acoustic emission reviling and danger level evaluation of stress corrosion cracking in stainless steel pipes

    International Nuclear Information System (INIS)

    Muravin, Gregory; Muravin, Boris; Lezvinsky, Luidmila

    2000-01-01

    Breakdowns and catastrophic damage occurring during the operation of nuclear power stations pipelines cause substantial economic and social loss annually throughout the world. Stress corrosion, vibration, fatigue, erosion, water shock, dynamic load, construction defects/errors are the main causes of pipes failures. For these reasons and in view of the age of nuclear power station pipes, there is an increased interest in finding means to prevent potential pipe failures. Nevertheless, statistical data of pipe failures continues to show significant numbers of accidents mainly due to stress corrosion cracking (about 65-80% of total number). To this end, a complex of investigations was carried out for the reliable AE diagnosis of pipes undergone stress corrosion cracking. These include: finding AE indications (fingerprints) of flaws developing in the metal in original condition as well as in metal subjected to stress corrosion; preparing AE criteria for evaluating the danger level of defects. (author)

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  5. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    Science.gov (United States)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-05-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  6. Impacts of Global Warming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Gao

    2017-03-01

    Full Text Available Global warming will increase the rate of chloride ingress and the rate of steel corrosion of concrete structures. Furthermore, in coastal (atmospheric marine zones, sea level rise will reduce the distance of concrete structures from the coast and increase the surface chloride content. This study proposes a probabilistic model for analyzing the effects of global warming and sea level rise on the service life of coastal concrete structures. First, in the corrosion initiation stage, an improved chloride diffusion model is proposed to determine chloride concentration. The Monte Carlo method is employed to calculate the service life in the corrosion initiation stage; Second, in the corrosion propagation stage, a numerical model is proposed to calculate the rate of corrosion, probability of corrosion cracking, and service life. Third, overall service life is determined as the sum of service life in the corrosion initiation and corrosion propagation stages. After considering the impacts of global warming and sea level rise, the analysis results show that for concrete structures having a service life of 50 years, the service life decreases by about 5%.

  7. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  8. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    Science.gov (United States)

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  9. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  10. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  11. Corrosion of copper in alkaline chloride environments

    International Nuclear Information System (INIS)

    King, F.

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of ∼ pH 9. Passivation will result from the formation of a duplex Cu 2 O/Cu(OH) 2 film. The corrosion potential will be determined by the equilibrium potential for the Cu 2 O/Cu(OH) 2 couple under oxic conditions, or by the Cu/Cu 2 O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool ( 2 available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O 2 will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl 2 - and of the reduction of O 2 . The development of anoxic conditions and an increase in pore-water sulphide concentration will

  12. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  13. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  14. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  15. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  16. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    Science.gov (United States)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  17. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for

  18. Development of stress corrosion techniques for structural integrity evaluation and life extension of PWR facilities

    International Nuclear Information System (INIS)

    Moreira, Pedro A.L.D.L. Pinheiro; Vilela, Jeferson J.; Lorenzo, Roberto F. Di; Lopes, Jadir A.M.

    2000-01-01

    The stress corrosion is a mechanism of degradation present in the nuclear plants. To extend the life of the plants components, this corrosion type it should be known. An evaluation for the implantation of methodologies of stress corrosion study in CDTN/CNEN, shows that the technique of slow deformation can be used in the evaluation of integrity structural nuclear power stations. This technique consists of straining a sample slowly, usually, in strain rate between 10 -4 and 10- 8 s -1 and in conditions that simulate the reactivity of the metal in environment (pressure, temperature, chemical composition of the water and etc) similar to the found at the nuclear power power stations. This simulation allows evaluating susceptibility the stress corrosion of components mechanical and structure that operate in central nuclear. (author)

  19. The influence of nitrogen, phosphorus, sulphur and nickel on the stress corrosion cracking of austenitic Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Cihal, V.

    1985-01-01

    From the results of the stress corrosion cracking tests it is evident that austenitic alloys with a phosphorus content 0.01% causes a strong increase in stress corrosion cracking susceptibility of alloys with a nickel content in the range 33 to 38%. With a nickel content of approx. 35%, an increase of nitrogen concentration to approx. 0.15% also produces a significant effect on stress corrosion cracking susceptibility. A sulphur content up to 0.033% does not produce a significant effect on stress corrosion cracking. (author)

  20. Compatibility study of 316L stainless steel bellows for XMC3690 reserve lithium/thionyl-chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.; Delnick, F.M.; Crafts, C.C.

    1986-02-01

    Maintenance of the integrity of a battery's active electrochemical components throughout shelf life is essential to achieving acceptable performance characteristics. The electrolyte in the XMC3690 reserve lithium/thionyl-chloride (RLTC) battery is stored in a 316L stainless steel welded-bellows assembly. Corrosion of the bellows that might compromise battery performance must be avoided. Postmortem examination of welded bellows following electrolyte storage for 2 years, including up to 1 year at 70/sup 0/C, revealed no significant corrosion or any sign of stress-corrosion cracking. Transition metal ion concentrations in the electrolyte were very low and did not change with aging conditions. Based on these observations, we do not expect corrosion of the bellows assembly to limit shelf life of the XMC3690 RLTC battery.

  1. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  2. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  3. Prediction of the remaining lifetime of stainless steels under conditions of stress corrosion cracking

    International Nuclear Information System (INIS)

    Tandler, M.; Vehovar, L.; Dolecek, V.; Rotnik, U.

    2003-01-01

    The prediction of the lifetime of metal structures and equipment under conditions of stress corrosion is very complicated because of the complexity of this process of degradation. Recently a new method, based on the so-called corrosion elongation curves, has been found, which can be used to predict the time to failure under these conditions. By upgrading of these curves (and thus obtaining Upgraded Corrosion Elongation Curves - UCEC's) it has been possible to obtain a precise definition of the time needed for the initiation of the corrosion crack, and for its stable growth. It is upon this basis that diagrams for the prediction of remaining lifetime (DPRL's) have been developed. DPRL's can also be used to predict the values of various critical parameters which have to be achieved if a stress corrosion crack is to occur. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  4. Stress corrosion cracking of 350 maraging steel in 3.5 Wt. % NaCl solution

    International Nuclear Information System (INIS)

    Hussain, I.; Hussain, T.; Tauqir, A.; Hashmi, F.H.; Khan, A.Q.

    1993-01-01

    Stress corrosion behavior of 350 maraging steel in 3.5 wt.% NaCl solution was investigated. The results suggest that the steel is susceptible to stress corrosion cracking as the time to failure was always considerably shorter, as compared to those in air at the same stress level. The fracture mode was nearly intergranular and occasionally transgranular. There was no definite trend for the different modes of failure. The strain rate effect was also considered and the results show that the stress corrosion cracks were absent at strain rate high than 1.97 x 10/sup -4/S/sup -1/ and lower than 1.29 x 10/sup -7/S/sup -1/. The critical strain rate range was found to be between 6.4 x 10/sup -7/ to 3.24 x10/sup -5/S /sup -1/. (author)

  5. Corrosion of copper in alkaline chloride environments

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Ltd., Calgary (Canada)

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of {approx} pH 9. Passivation will result from the formation of a duplex Cu{sub 2}O/Cu(OH){sub 2} film. The corrosion potential will be determined by the equilibrium potential for the Cu{sub 2}O/Cu(OH){sub 2} couple under oxic conditions, or by the Cu/Cu{sub 2}O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool (<40 deg C), whilst there is still O{sub 2} available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O{sub 2} will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl{sub 2} - and of the reduction of O{sub 2}. The development

  6. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  7. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  8. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH) 2 solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  9. Corrosion of reinforcement induced by environment containing ...

    Indian Academy of Sciences (India)

    Unknown

    carbonation and chlorides causing corrosion of steel reinforcement. ... interesting and important when the evaluation of the service life of the ... preferably in the areas of industrial and transport activities. ... For controlling the embedded corrosion sensors, elec- .... danger of corrosion of reinforcement seems to be more.

  10. Properties and performance of spin-on-glass coatings for the corrosion protection of stainless steels in chloride media

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette H.; Din, Rameez U.

    2018-01-01

    Spin-on-glass deposition was investigated as viable alternative to increase the durability and performance of 316L steel in chloride environment. The buildup of a detrimental interface oxide was prevented by non-oxidative thermal curing of the coatings, which leads to a transformation...... silica. Electrochemical analysis by cyclic polarization indicated that the coatings behave as imperfect barrier coatings, which may enhance the passive properties of the substrates; however, there is still some statistical scatter in the quality of the coatings. While there is a tendency for an increase...... of the upper limit of the breakdown potential, there is also a decrease of the lower limit. It was found that such lower quality coatings showed, in association with substrate defects, unevenly distributed coating flaws, which may act as initiation points of pitting corrosion and decrease the corrosion...

  11. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Koenig, M.

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  12. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Koenig, M. [Studsvik Nuclear AB, Nykoeping (Sweden)

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  13. Initial report on stress-corrosion-cracking experiments using Zircaloy-4 spent fuel cladding C-rings

    International Nuclear Information System (INIS)

    Smith, H.D.

    1988-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is sponsoring C-ring stress corrosion cracking scoping experiments as a first step in evaluating the potential for stress corrosion cracking of spent fuel cladding in a potential tuff repository environment. The objective is to scope the approximate behavior so that more precise pressurized tube testing can be performed over an appropriate range of stress, without expanding the long-term effort needlessly. The experiment consists of stressing, by compression with a dead weight load, C-rings fabricated from spent fuel cladding exposed to an environment of Well J-13 water held at 90/degree/C. The results indicate that stress corrosion cracking occurs at the high stress levels employed in the experiments. The cladding C-rings, tested at 90% of the stress at which elastic behavior is obtained in these specimens, broke in 25 to 64 d when tested in water. This was about one third of the time required for control tests to break in air. This is apparently the first observation of stress corrosion under the test conditions of relatively low temperature, benign environment but very high stress. The 150 ksi test stress could be applied as a result of the particular specimen geometry. By comparison, the uniaxial tensile yield stress is about 100 to 120 ksi and the ultimate stress is about 150 ksi. When a general model that fits the high stress results is extrapolated to lower stress levels, it indicates that the C-rings in experiments now running at /approximately/80% of the yield strength should take 200 to 225 d to break. 21 refs., 24 figs., 5 tabs

  14. Electrochemical investigations for understanding and controlling corrosion in nuclear reactor materials

    International Nuclear Information System (INIS)

    Gnanamoorthy, J.B.

    1998-01-01

    Electrochemical techniques such as potentiodynamic polarization have been used at the Indira Gandhi Centre for Atomic Research at Kalpakkam for understanding and controlling the corrosion of nuclear reactor materials such as austenitic stainless steels and chrome-moly steels. Results on the measurements of critical potentials for pitting and crevice corrosion of stainless steels and their weldments and of laser surface modified stainless steels in aqueous chloride solutions are discussed. Investigations carried out to correlate the degree of sensitization in types 304 and 316 stainless steels, measured by the electrochemical potentiokinetic reactivation technique, with the susceptibility to intergranular corrosion and intergranular stress corrosion cracking have been discussed. The stress corrosion cracking behaviour of weldments of type 316 stainless steel was studied in a boiling solution of a mixture of 5 M NaCl and 0.15 M Na 2 SO 4 acidified to give a pH of 1.3 by monitoring of the open circuit potential with time as well as by anodic polarization. Interesting information could also been obtained on the microbiologically influenced corrosion of type 304 stainless steels in a fresh water system by carrying out cyclic potentiodynamic polarization measurements as well as by monitoring the open circuit potential measurements with exposure time. Since secondary phases present (or developed during thermal ageing) in stainless steels have a significant influence on their corrosion behaviour, the estimation of these secondary phases by electrochemical methods has also been discussed. (author)

  15. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  16. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  17. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  18. Study on fracture and stress corrosion cracking behavior of casing sour service materials

    International Nuclear Information System (INIS)

    Sequera, C.; Gordon, H.

    2003-01-01

    Present work describes sulphide stress corrosion cracking and fracture toughness tests performed to high strength sour service materials of T-95, C-100 and C-110 oil well tubular grades. P-110 was considered as a reference case, since it is one of the high strength materials included in specification 5CT of American Petroleum Institute, API. Sulphide stress corrosion cracking, impact and fracture toughness values obtained in the tests show that there is a correspondence among them. A decreasing classification order was established, namely C-100, T-95, C-110 and P-110. Special grades steels studied demonstrated a better behavior in the evaluated properties than the reference case material grade: P-110. Results obtained indicate that a higher sulphide stress corrosion cracking resistance is related to a higher toughness. The fracture toughness results evidence the hydrogen influence on reducing the toughness values. (author)

  19. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  20. Stress corrosion cracking of iron-nickel-chromium alloys in primary circuit environment of PWR-type reactors

    International Nuclear Information System (INIS)

    Boursier, Jean-Marie

    1993-01-01

    Stress corrosion cracking of Alloy 600 steam generator tubing is a great concern for pressurized water reactors. The mechanism that controls intergranular stress corrosion cracking of Alloy 600 in primary water (lithiated-borated water) has yet to be clearly identified. A study of stress corrosion cracking behaviour, which can identify the main parameters that control the cracking phenomenon, was so necessary to understand the stress corrosion cracking process. Constant extension rate tests, and constant load tests have evidenced that Alloy 600 stress corrosion cracking involves firstly an initiation period, then a slow propagation stage with crack less than 50 to 80 micrometers, and finally a rapid propagation stage leading to failure. The influence of mechanical parameters have shown the next points: - superficial strain hardening and cold work have a strong effect of stress corrosion cracking resistance (decrease of initiation time and increase of crack growth rate), - strain rate was the most suitable parameter for describing the different stage of propagation. The creep behaviour of alloy 600 has shown an increase of creep rate in primary water compared to air, which implies a local interaction plasticity/corrosion. An assessment of the durations of the initiation and the propagation stages was attempted for the whole uniaxial tensile tests, using the macroscopic strain rate: - the initiation time is less than 100 hours and seems to be an electrochemical process, - the durations of the propagation stage are strongly dependent on the strain rate. The behaviour in high primary water temperature of Alloys 690 and 800, which replace Alloy 600, was studied to appraise their margin, and validate their choice. Then the last chapter has to objective to evaluate the crack tip strain rate, in order to better describe the evolution of the different stages of cracking. (author) [fr

  1. Applications of electricity and corrosion. Precautions for use of metals and stainless and refractory alloys

    International Nuclear Information System (INIS)

    Gras, J.M.

    1993-09-01

    The development of applications of electricity poses highly diversified problems with materials where the resistance to corrosion prevails. Corrosion occurs under various conditions, which sometimes look harmless, and it covers diverse phenomenons linked to the nature of materials and to the physical and chemical context. However, in spite of the diversity of the processes used (electrical boilers, mechanical steam compression, heat pumps, Joule effect,) the knowledge required to approach the corrosion problems corresponds to a limited number of generic situations with regard not only to the phenomenons proper (general corrosion of copper, pitting and stress corrosion cracking of stainless steels, refractory alloys oxidation,) but also to chemical conditions which favour the corrosion (natural waters, acidic condensates, hot gases). This report is a short guide to anti-corrosion. With the aid of questions asked during the past few years, it aims to provide engineers in charge of the development of applications of electricity with a few recommendations upon the precautions for use of metallic materials. We analyze in turn the problems met with wet air and drying mists, chloride-containing neutral waters, alkaline waters and caustic media, acidic waters and concentrated acids, and, last, hot gases. We lay stress upon the behaviour of materials deemed to withstand corrosion under aqueous conditions (stainless steels and alloys, copper,titanium) and corrosion at high temperatures (refractory alloys). (author). 11 figs., 43 refs., 11 tabs

  2. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  3. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...

  4. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  5. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  6. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  7. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  8. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  9. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Science.gov (United States)

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  10. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  11. The initial stage of pitting corrosion on coated steels investigated by photon rupture in chloride containing solutions

    International Nuclear Information System (INIS)

    Sakairi, M.; Uchida, Y.; Itabashi, K.; Takahashi, H.

    2005-01-01

    A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m -3 H 3 BO 3 -0.05 kmol m -3 Na 2 B 4 O 7 (pH = 7.4) with 0.01 kmol m -3 of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples

  12. The initial stage of pitting corrosion on coated steels investigated by photon rupture in chloride containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sakairi, M. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: msakairi@elechem1-mc.eng.hokudai.ac.jp; Uchida, Y. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Itabashi, K. [NTT DoCoMo Hokkaido Inc., Kita 1, Nishi 14, Chuou-ku, Sapporo 060-0001 (Japan); Takahashi, H. [Research Group of Interface Control Engineering Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-10-01

    A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m{sup -3} H{sub 3}BO{sub 3}-0.05 kmol m{sup -3} Na{sub 2}B{sub 4}O{sub 7} (pH = 7.4) with 0.01 kmol m{sup -3} of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples.

  13. Effect of temperature and heat fluxes on the corrosion's damage nature for mild and stainless steels in neutral chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation); Malygin, A.V. [JSC Voronezhsynthezkauchuk, Leninsky Av. 2, 394014 Voronezh (Russian Federation); Vigdorovitch, V.V. [Derzhavin State University, International St. 33, 392622 Tambov (Russian Federation)

    2004-07-01

    The detail research of the corrosion-electrochemical behavior of two types steels - mild steel (0.1%C) and stainless steel 12FeCr18Ni10Ti in series chloride solutions under elevated temperature and heat flux on interface has been carried out in the present work using the special plant and the complex electrochemical and microscopic methods. The comparative data has shown that the temperature increase is stimulating as the active alloy's corrosion (mild steel), so the passive alloy's corrosion (12FeCr18Ni10Ti).However at the last case the temperature effect is being higher because the thermal de-passivation of the stainless steel which undergoes pit corrosion under t > 50 deg C. The heat-transfer role in the studied systems is ambiguous. The corrosion rate of heat-transferring electrode from mild steel exceeds the thermo-equilibrium with solution electrode's corrosion rate because of intensification of the oxygen reduction cathodic process. The opposite effect has been established for steel 12FeCr18Ni10Ti where the oxygen flux's strengthening from cold solution to the heated surface transfers the alloy to the most stable passive state and increases its resistance to general and local corrosion. The experimental results demonstrates that the thermal condition's influence on the nature and corrosion intensity of the investigated steels is being commensurable by effect's degree with their composition and showing strictly individually. (authors)

  14. Stress corrosion cracking studies of reactor pressure vessel steels. Final report

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.

    1996-10-01

    The objective of this project was to perform a critical review of the information available in open literature on stress corrosion cracking of reactor pressure vessel materials in simulated light-water-reactor (LWR) conditions, develop a test procedure for conducting stress corrosion crack growth experiments in simulated LWR environments, and conduct a test program in an effort to duplicate some of the data available from the literature. The authors concluded that stress corrosion crack growth has been observed in pressure vessel steels under laboratory test conditions. The composition of the water in most cases where growth was observed is outside of the composition specified for operating conditions. Crack growth was observed in the experiments performed in this program, and it was intermittent. The cracking would start and stop for no apparent reason. In most instances, it would not restart without the change of some external variable. In a few instances, it restarted on its own. Crack growth rates as high as 3.6 x 10 -9 m/sec were observed in pressure vessel steels in high-purity water with 8 ppm oxygen. These high crack growth rates were observed for extremely short bursts in crack extension. They could not be sustained for crack growth extensions greater than a few tenths of a millimeter. From the results of this project it appears highly unlikely that stress corrosion cracking will be observed in operating nuclear plants where the coolant composition is maintained within water chemistry guidelines. However, more work is needed to better define the contaminations that cause crack growth. The crack growth rates are so high and the threshold values for crack nucleation are so low that the conditions causing them need to be well defined and avoided

  15. Chloride transport in mortar at low moisture concentration

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.

    2014-01-01

    Chloride penetration into cementitious structures with a steel reinforcement results in corrosion of the steel. Concrete columns of bridges, which are in frequent contact with sea water, are an example of these structures. Understanding the chloride transport in cementitious materials can lead to

  16. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  17. Electrochemical and Corrosion Properties of Aluminum Brass in Seawater Desalination Environments

    Directory of Open Access Journals (Sweden)

    Hong JU

    2017-11-01

    Full Text Available The corrosion behavior and mechanism of aluminum brass (HAl77-2 in seawater desalination plant were investigated using electrochemical measurement, Scanning Electronic Microscope (SEM and Energy Dispersive X-ray spectroscopy (EDX analysis. The electrochemical results revealed that the corrosion of HAl77-2 in the desalination artificial seawater depended on chloride ion concentrations, displaying a maximum with a chloride ion concentration of 2.3 wt.%. Corrosion rate of HAl77-2 initial increased and subsequently decreased with the increasing of chloride ion concentration. Moreover, corrosion of HAl77-2 becomes more severe when temperature rises. The above results obtained by electrochemical impedance spectroscopy and potentiodynamic polarization tests were in a good agreement. The results of SEM and EDX methods showed selective localized corrosion appeared remarkably on the surface of HAl77-2.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17170

  18. Corrosion of reinforcement induced by environment containing ...

    Indian Academy of Sciences (India)

    ... the action of chloride solutions may intensify the process of corrosion of steel reinforcement in comparison to the converse sequence of the action of mentioned media. At the same time the natrium chloride solution has been shown as a more aggressive medium opposite to the calcium and magnesium chloride solutions.

  19. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  20. Changes in acceleration rate of chloride ions depending on climatic conditions. Influence of rain

    International Nuclear Information System (INIS)

    Corvo, F.; Arroyave, C.; Autie, M.; Minotas, J.; Balmaseda, J.; Delgado, J.; Haces, C.

    2003-01-01

    Mild steel,copper and aluminum samples were exposed outdoors in two atmospheric test stations located in Havana, Cuba and Medellin, colombia. Two parallel group of samples were formed, one for each station. They were submitted to accelerated outdoor test by intermittent spraying of a salt solution (SCAB test) according to ISO 11474.98, receiving also the influence of the open atmosphere. The acceleration of corrosion rate of the three metals caused by the presence of chloride ions in both stations was determined. As expected, steel shows the higher corrosion rate and acceleration by chlorides, particularly at Cuban corrosion station. A remarkable difference in the acceleration rate of chloride ions for mild steel and copper between Cuban and Colombian acceleration rate of chloride ions of steel and copper. Steel corrosion products were analysed by Moessbauer Spectroscopy. Water absorption was also studied. The presence of magnetite, goethite and other Iron compounds was determined. (Author) 10 refs

  1. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  2. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun; Park, Heung Bae

    2010-01-01

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  3. Corrosion evaluation of multi-pass welded nickel–aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process

    International Nuclear Information System (INIS)

    Sabbaghzadeh, Behnam; Parvizi, Reza; Davoodi, Ali; Moayed, Mohammad Hadi

    2014-01-01

    Highlights: • Corrosion of GTA welded nickel–aluminum bronze (C95800) was studied. • Drastic microstructural changes occurred during the welding operations. • The β′ and α phases acts as anode and cathode, correspondingly, in weld region. • A few nanoamperes couple current was measured in ZRA test as galvanic corrosion. • Corrosion resistance of weld parts could not be weakened in marine environments. - Abstract: In this research, the corrosion behavior of a gas tungsten arc welded nickel–aluminum bronze (NAB) alloy is investigated by DC and AC electrochemical techniques in 3.5% sodium chloride solution. Regarding the electrochemical impedance spectroscopy and potentiodynamic results, uniform corrosion resistance of instantly immersed weld and base samples are almost analogous and increased (more in weld region) during the immersion times. Moreover, zero resistant ammeter results demonstrated that the few nanoampere galvanic currents are attributed to microstructural and morphological differences between these two regions. Therefore, the welding procedure could not deteriorate the general corrosion resistance of the restored damaged NAB parts operating in marine environments

  4. Corrosion of metal materials embedded in concrete

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.

    2010-01-01

    Carbon steel is the material most frequently used to strengthen reinforced concrete structures; however, stainless steel and galvanized steel reinforcements are also used in construction concretes; and they are not often used in Latin America. Meanwhile, there are other metals that are embedded in the concrete forming part of the openings (aluminum) or in tubing systems (copper and lead). The use of concrete as a cementing material is also useful for immobilizing wastes, such as for example those generated by the nuclear industry. There is a great deal of research and development on the corrosion of steel reinforcements, but the same is not true for the behavior of other metals embedded in concrete and that also undergo corrosive processes. This work aims to study the corrosion of different metals: copper, lead, aluminum, zinc, stainless steel and carbon steel; embedded in concrete with and without the presence of aggressive species for the metal materials. Test pieces were made of mortar containing rods of different materials for testing, and with chlorides added in concentrations of 0; 0.3 % and 1% (mass of chloride per mass of cement). The test pieces were exposed to different conditions; laboratory environment with a relative humidity (RH) of 45%, a controlled atmosphere with 98% RH and submerged in a solution of 3.5% NaCl. The susceptibility to corrosion of the different metals was evaluated using techniques to monitor the corrosion potential, the resistivity of the mortar and the polarization resistance (PR). The rods were weighed before being placed inside the test pieces to later determine the loss of weight generated by the corrosion process. Polarization curves for the metals were also traced in a simulated pore solution (SPS) and in SPS with added chloride. The results obtained to date show that, of all the metals analyzed, aluminum is the most susceptible to corrosion, and that the test specimens with 0% and 1% of chloride exposed to the laboratory

  5. Phenomena of the ionic transport in the stress corrosion of metals

    International Nuclear Information System (INIS)

    Gravano, S.M.

    1986-07-01

    For the study of electrochemical conditions of propagation, a model which calculates the concentrations and potential profiles inside cracks or localized corrosion cavities, was developed. Considering transport by difussion and migration it was applied to pure metals (Zn, Fe) in solutions where pitting occurs (NaCl or Na2SO4, with borate buffer), and also extended to systems where stress corrosion cracking is present, such as Cu and yellow brass in NaNO2. Physical bases of the 'constant intermediate elongation rate technique' to predict stress corrosion cracking susceptibility was analized, studying by mathematical models: 1) dissolution current, that should be the result of superposition of repassivation transients on the fresh metal, exposed to corrosive medium by strain, with the same rate of that of a static specimen; 2) ohmic drop, that in some systems could be quite important and it must be considered in the overpotential evaluation; and 3) metallic ion concentration that, instead of what happens in a crack, never attains saturation in the analized cases. For repassivation transient according to the crak propagation models proposed by Scully and Ford it was found that, at the tip of the crack, it is unlikely that the same repassivation transients occur as in the constant intermediate elongation rate experiments. (M.E.L.)

  6. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  7. Free and bound chloride contents in cementitious materials

    NARCIS (Netherlands)

    Marinescu, M.V.A.; Brouwers, H.J.H.; Fischer, G.; Geiker, M.; Hededal, O.; Ottoson, L.; Stang, H.

    2010-01-01

    Chloride attack is the main cause of structural damage in reinforced concrete buildings exposed to marine environments. When a certain threshold concentration of chlorides is reached at the concrete-reinforcement interface, the corrosion of the steel rebars is initiated. A part of the intruding

  8. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    International Nuclear Information System (INIS)

    Gordon, G.

    2004-01-01

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  9. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  10. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs

  11. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    Laboratory experiments performed at Brookhaven National Laboratory have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of approximately 3.5mm per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant-lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. (author)

  12. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  13. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  14. ''C-ring'' stress corrosion cracking scoping experiment for Zircaloy spent fuel cladding

    International Nuclear Information System (INIS)

    Smith, H.D.

    1986-03-01

    This document describes the purpose and execution of the stress corrosion cracking scoping experiment using ''C-ring'' cladding specimens. The design and operation of the ''C-ring'' stressing apparatus is described and discussed. The experimental procedures and post-experiment sample evaluation are described

  15. Corrosion behavior of magnesium-graphene composites in sodium chloride solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Rashad

    2017-09-01

    Full Text Available Coating of graphene and graphene/polymer composites on metals improves the corrosion resistance of metal substrates. On other hand, graphene embedded inside metal (especially Mg matrices increases or decreases corrosion, is a crucial factor and must be explored. In present study, electrochemical behaviors of magnesium alloys (AZ31 and AZ61 and their composites reinforced with graphene nanoplatelets (GNPs were carried out in 3.5% NaCl solution by polarization method. The surface morphology of composites before and after corrosion tests were analyzed using scanning electron microscopy. Experimental results revealed that presence of graphene nanoplatelets in different matrices decrease corrosion resistance of composites. This may be attributed to presence of graphene nanoplatelets which activates the corrosion of magnesium/alloys due to the occurrence of galvanic corrosion and this effect increases with increasing graphene nanoplatelets content. Further, an appropriate model describing the corrosion mechanism was proposed.

  16. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available Rotavirus (RV infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4 enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS in Caco-2 cells. The ratio between reduced (GSH and oxidized (GSSG glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC, a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  17. Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Liu, Wanlei

    2018-03-01

    The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.

  18. Statistical model of stress corrosion cracking based on extended

    Indian Academy of Sciences (India)

    The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...

  19. Solvent effects on stress corrosion cracking of zirconium and Zircaloy-4 in iodine

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    2000-01-01

    Localized corrosion (pitting, intergranular attack and stress corrosion cracking) of Zircaloy-4 and its principal component, zirconium, was investigated in solutions of iodine in different alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol). Intergranular attack was found in all of the solutions tested, and the attack velocity increases when the size of the alcohol molecule decreases. In some cases it was found that intergranular attack is accompanied by pitting. Slow strain-rate experiments showed that the propagation rate of stress corrosion cracks also depends on the size of the solvent molecule. From these results it may be inferred that the cause of the variation in the velocity is the steric hindrance of the alcohol molecules. The surface mobility SCC mechanism may account for these results. (author)

  20. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  1. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  2. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions

    International Nuclear Information System (INIS)

    Refaey, S.A.M.; Taha, F.; El-Malak, A.M. Abd

    2005-01-01

    The effect of carbonate anion on the pitting corrosion and inhibition behavior of stainless steel samples (304L SS and 316L SS) has been studied using potentiodynamic and scanning electron microscope (SEM) techniques. The effect of concentration of CO 3 2- ions, pH, potential scanning rate and the composition of stainless steel are discussed. Additions of Cl - and Br - ions into the carbonate solution increase the anodic dissolution of stainless steel and decrease its pitting corrosion resistance. The effect of CO 3 2- anion on the inhibition of chloride and bromide pitting corrosion of the two stainless steel types has been studied also. Pitting corrosion decrease with the increasing of sodium carbonate concentration, i.e. increases the resistance of stainless steels towards the chloride and bromide pitting corrosion. This inhibition effect argued to formation of [Fe,Cr]CO 3 film caused by preferential adsorption of the CO 3 2- ion, leading to instantaneous repair of weak sites for pit nucleation

  3. Effect of surface stress states on the corrosion behavior of alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Mo; Shim, Hee Sang; Seo, Myung Ji; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The test environment simulated the primary water chemistry in PWRs. Dissolved oxygen (DO), dissolved hydrogen (DH), pH and conductivity were monitored at room temperature using sensors manufactured by Orbisphere and Mettler Toledo. The temperature and pressure were maintained at 330 .deg. C and 150 bars during the corrosion test. The condition of the test solution was lithium (LiOH) 2 ppm and boron (H3BO4) 1,200 ppm, DH 35 cc/kg (STP) and less than 5 ppb DO. The flow rate of the loop system was 3.8 L/hour. Corrosion tests were conducted for 500 hours. The corrosion release rate was evaluated by a gravimetric analysis method using a two-step alkaline permanganate-ammonium citrate (AP/AC) descaling process. Compressive residual stress is induced by shot peening treatment but its value reveals some different trend between the shot peening intensity on the surface of Alloy 690 TT. A higher shot peening intensity causes a reduction in the corrosion rate and it is considered that the compressive residual stress beneath the surface layer suppresses the metal ion transfer in an alloy matrix.

  4. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    Science.gov (United States)

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase

  5. Stress corrosion cracking of alloy 182 weld in a PWR water environment

    International Nuclear Information System (INIS)

    Lima, Luciana Iglesias Lourenco; Schvartzman, Monica Maria de Abreu Mendonca; Quinan, Marco Antonio Dutra; Soares, Antonio Edicleto Gomes; Piva, Stephano P.T.

    2011-01-01

    The weld used to connect two different metals is known as dissimilar metal welds (DMW). In the nuclear power plant, this weld is used to join stainless steel nipples to low alloy carbon steel components on the nuclear pressurized water reactor (PWR). In most cases, nickel alloys are used to joint these materials. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. The stress corrosion cracking (SCC) is a phenomenon that occurs in nuclear power plants metallic components where susceptibility materials are subjected to the simultaneously effect of mechanical stress and an aggressive media with different compositions. SCC is one of degradation process that gradually introduces damage of components, change their characteristics with the operation time. The nickel alloy 600, and their weld metals (nickel alloys 82 and 182), originally selected due to its high corrosion resistance, it exhibit after long operation period (20 years), susceptibility to the SCC. This study presents a comparative work between the SCC in the Alloy 182 filler metal weld in two different temperatures (303 deg C and 325 deg C) in primary water. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that SCC is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C. (author)

  6. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  7. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  8. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    International Nuclear Information System (INIS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-01-01

    Highlights: • Inhibition effect of LaCl 3 and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L −1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl 3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La 3 Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  9. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  10. Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry

    International Nuclear Information System (INIS)

    Myers, T.J.; Kytoemaa, H.K.; Smith, T.R.

    2007-01-01

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future

  11. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  12. Propagation of stress-corrosion cracks in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Norring, K.; Haag, Y.; Wikstroem, C.

    1982-01-01

    Propagation of iodine-induced stress-corrosion cracks in Zircaloy was studied using pre-cracked and internally pressurized cladding tubes. These were recrystallized at different temperatures, to obtain grain sizes between 4 μm and 10 μm. No statistically significant difference in propagation rate due to the difference in grain size was observed. If the obtained data, with Ksub(I) values ranging from 4 to 11 MNmsup(-3/2), were log-log plotted (da/dt = CKsub(I)sup(N)), as usual, they fell within the scatter-band of data reported earlier. But from this plot it could also be seen that the Ksub(I) interval can be divided into two separate parts having different da/dt-Ksub(I) relations. The transition takes place at a Ksub(I) value of about 8 MNmsup(-3/2). The region with lower Ksub(I) values shows a substantially lower n value than the upper region (2.4 and 9.8 respectively), and earlier reported values (n = 7 to 10). This transition is in good agreement with a transition from an intergranular to a transgranular propagation mode of the stress-corrosion crack. (orig.)

  13. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    Science.gov (United States)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  14. Improvement of detection of stress corrosion cracks with ultrasonic phased array probes

    International Nuclear Information System (INIS)

    Wustenberg, H.; Mohrle, W.; Wegner, W.; Schenk, G.; Erhard, A.

    1986-01-01

    Probes with linear arrays can be used for the detection of stress corrosion cracks especially if the variability of the sound field is used to change the skewing angle of angle beam probes. The phased array concept can be used to produce a variable skewing angle or a variable angle of incidence depending on the orientation of the linear array on the wedge. This helps to adapt the direction of the ultrasonic beam to probable crack orientations. It has been demonstrated with artificial reflectors as well as with corrosion cracks, that the detection of misoriented cracks can be improved by this approach. The experiences gained during the investigations are encouraging the application of phased array probes for stress corrosion phenomena close to the heat effected zone of welds. Probes with variable skewing angles may find some interesting applications on welds in tubular structures e.g., at off shore constructions and on some difficult geometries within the primary circuit of nuclear power plants

  15. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  16. Pitting by corrosion in aluminium and Al-6201 alloy

    International Nuclear Information System (INIS)

    Vera, R.; Schrebler, R.; Layana, G.; Orellana, F.; Olguin, A.

    1998-01-01

    The susceptibility of pure aluminum 6201 alloy to pitting was investigated in sodium chloride solutions through determination of the corrosion, repassivation and pitting potentials. Potentiodynamic polarization including scratching techniques were employed being also determined the type and relative amount of corrosion damage to the metals. The morphology of the attach was determined using scanning electrons microscopy (SEM). The results showed a similar performance for aluminum 6201 alloy and aluminum. It was also observed that an increase in chloride concentration resulted in a decrease in the corrosion, pitting and repassivation potentials of both materials. (Author) 19 refs

  17. Iodine stress-corrosion cracking in irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Mattas, R.F.; Yaggee, F.L.; Neimark, L.A.

    1979-01-01

    Irradiated Zircaloy cladding specimens, which had experienced fluences from 0.1 to 6 x 10 21 n/cm 2 (E>0.1 MeV), were gas-pressure tested in an iodine environment to investigate their stress-corrosion cracking (SCC) susceptibility. The test temperatures and hoop stresses ranged from 320 to 360 0 C and 150 to 500 MPa, respectively. The results indicate that irradiation, in general, increases the susceptibility of Zircaloy to iodine SCC. For specimens that experienced fluences >2 x 10 21 n/cm 2 (E>0.1 MeV), the 24-h failure stress was 177+-18 MPa, regardless of the preirradiation metallurgical condition. An analytical model for iodine SCC has been developed which agrees reasonably well with the test results

  18. Additives as corrosion inhibitors in reinforced concrete

    International Nuclear Information System (INIS)

    Venegas, Ricardo; Vera, Rosa; Carvajal, Ana Maria; Villarroel, Maria; Vera, Enrique; Ortiz, Cesar

    2008-01-01

    This work studies the behavior of two additives as inhibitors of corrosion in reinforced concrete. The presence of Microsilica, a physical inhibitor, in the mixture decreases pore size in structures and improves compression. Calcium Nitrite, a chemical inhibitor, is an oxidizing agent and allows a more homogenous film to form over the steel that becomes more resistant to attacks from aggressive ions like anion chloride and others. Three pairs of concrete test pieces were used without additives and with additives with a/c ration of 0.55. The samples were exposed to an accelerated attack of chlorides, submerging them in a 4.27 M solution of NaCl for 24 hours and then drying them at room temperature for another 24 hours, completing a cycle every 48 hours. The tests were carried out at 1 cycle and 5 cycles of partial moistening and drying. The steel corrosion was evaluated with corrosion potential measurements. Conductivity, pH, chlorides and sulfate profiles were defined depending on the depth of the concrete. The composition of the corrosion products was determined using X-ray diffraction and the morphology of the film by scanning electron microscopy. The results show that for 1 test cycle, the corrosion potential of the steel in the sample with calcium nitrite was -54mV, which was a higher value than that measured in the sample with microsilica (-217.3mV) and without an additive (-159.1mV), corroborating its inhibitory power. The content of the free chlorides in the sample with micros ice allows greater capillary suction by adding high amounts of chloride to the structure (2.6% on the outside up to 2.20% near the steel); while the test pieces with calcium nitrite and without an additive had concentrations lower than 2% in all the evaluated points. After five cycles of exposing the samples to the saline solution the behavior is inverted. The measures of conductivity agreed with the previous results. Meanwhile, the pH of the solutions obtained from the powder from the

  19. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  20. The crevice corrosion behaviour of stainless steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Hu Qian; Zhang Guoan; Qiu Yubin; Guo Xingpeng

    2011-01-01

    Highlights: → There are three stages in crevice corrosion of 13Cr stainless steel in NaCl solution. → The decrease of crevice thickness shortens the incubation period of crevice corrosion. → The incubation period of crevice corrosion prolongs as the increase of the area ratio. → Corrosion develops preferentially at crevice bottom and hydrogen reduction occurs inside the crevice. → Crevice corrosion of 13Cr stainless steel in NaCl solution follows the passive dissolution mechanism. - Abstract: The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.