WorldWideScience

Sample records for chloride sodium chloride

  1. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    Science.gov (United States)

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  3. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  4. Advanced intermediate temperature sodium copper chloride battery

    Science.gov (United States)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  5. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Zhu Lanying; Li Hui; Sun Dezhi; Di Youying; Li Linwei

    2010-01-01

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h xy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  6. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Li Hui; Sun Dezhi; Di Youying; Li Linwei [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2010-07-15

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h{sub xy}, h{sub xxy}, and h{sub xyy}) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h{sub xy} between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  7. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  8. Thallium-201 chloride dynamic analysis using thallium-201 chloride and sodium iodide-131 thyroid subtraction scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Setsuo; Hiraki, Yoshio; Togami, Izumi [Okayama Univ. (Japan). School of Medicine

    1984-10-01

    The mechanism of /sup 201/Tl chloride accumulation is unclear in thyroid gland and thyroid tumor. This report examines 108 patients that received thyroid scintigraphy examinations with both /sup 201/Tl chloride and sodium /sup 131/I. The patients were diagnosed clinically and histologically whenever possible. The ROI were obtained by subtraction imaging with both isotopes and by subtraction positive and negative areas of imaging. Dynamic curves were obtained for /sup 201/Tl chloride per square unit of each ROI. The dynamic curve in the radioiodide-accumulated area was examined. The data indicate that the clearance rate of /sup 201/Tl chloride (T/sub 15/) was correlated with the sodium /sup 131/I uptake rate at 24 h (r=0.70).

  9. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  10. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    International Nuclear Information System (INIS)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-01-01

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

  11. The medical sodium chloride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In the institute was investigated the chemical composition of rock salt of some deposits of Tajikistan and was show the presence in it admixture of ions of Ca 2 + , Mg 2 + a nd SO 2 - a nd absence of heavy metals, ammonium salts, iron, potassium and arsenic. Was elaborated the fundamental instrument-technologic scheme of sodium chloride receiving

  12. The influence of particles of a minor component on the matrix strength of sodium chloride

    NARCIS (Netherlands)

    Van Veen, B.; van der Voort Maarschalk, Kees; Bolhuis, G.K; Gons, M.; Zuurman, K.; Frijlink, H.W

    2002-01-01

    This paper deals with the matrix strength of sodium chloride particles in pure sodium chloride tablets and in tablets compressed from binary mixtures of sodium chloride with low concentrations of pregelatinised starch. Because this study concerns the strength of the sodium chloride matrix, the

  13. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique

    Directory of Open Access Journals (Sweden)

    Leo van Buren

    2016-04-01

    Full Text Available Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106. Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day. Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  14. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    Science.gov (United States)

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  15. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  17. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  18. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  19. Salt equivalence and temporal dominance of sensations of different sodium chloride substitutes in butter.

    Science.gov (United States)

    de Souza, Vanessa Rios; Freire, Tassyana Vieira Marques; Saraiva, Carla Gonçalves; de Deus Souza Carneiro, João; Pinheiro, Ana Carla Marques; Nunes, Cleiton Antônio

    2013-08-01

    Studies indicate a positive association between dietary salt intake and some diseases, which has promoted the tendency to reduce the sodium in foods. The objective of this study was to determine the equivalent amount of different sodium chloride replacements required to promote the same degree of ideal saltiness in butter and to study the sensory profile of sodium chloride and the substitutes using the analysis of Temporal Dominance of Sensations (TDS). Using the magnitude estimation method, it was determined that the potencies of potassium chloride, monosodium glutamate and potassium phosphate relative to the 1% sodium chloride in butter are 83·33, 31·59 and 33·32, respectively. Regarding the sensory profile of the tested salt substitutes, a bitter taste was perceived in the butter with potassium chloride, a sour taste was perceived in the butter with potassium phosphate and sweet and umami tastes were dominant in the butter with monosodium glutamate. Of all the salt substitutes tested calcium lactate, potassium lactate, calcium chloride and magnesium chloride were impractical to use in butter.

  20. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES.

    Science.gov (United States)

    GOLDMAN, M; DEIBEL, R H; NIVEN, C F

    1963-05-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017-1021. 1963.-An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation.

  1. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  2. Influence of sodium chloride on aflatoxin production by irradiated and non-irradiated spores of aspergillus flavus

    International Nuclear Information System (INIS)

    El-Bazza, Z.E.

    1991-01-01

    A liquid medium consisting of 2% yeast extract, 4% sucrose and 0-10% sodium chloride was inoculated with aspergillus flavus and incubated at 22.30 and 37 degree C for 8 days. Aflatoxin was determined in the medium by thin layer chromatography. Aflatoxin production was enhanced by 2 and 4% sodium chloride at 22 and 30 degree C and by 2-6% sodium chloride at 37 degree C. Aflatoxin was decreased by 8 and 10% sodium chloride at the three temperatures. Exposure of Asp. flavus spores to gamma radiation enhanced aflatoxin at 1 kGy and inhibited it at 2 kGy, with the different concentrations of sodium chloride.2 tab

  3. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  4. Binary nucleation of water and sodium chloride

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Palmer, A.

    2006-01-01

    Roč. 124, č. 4 (2006), 0445091-0445096 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006

  5. Partial replacement of sodium chloride by potassium chloride in the formulation of French bread: effect on the physical, physicochemical and sensory parameters

    Directory of Open Access Journals (Sweden)

    Thaisa Abrantes Souza GUSMÃO

    Full Text Available Abstract This study aimed to the replacement of sodium chloride (0.4 to 1.6% by potassium chloride (0.2 to 0.8% in French bread formulation and evaluate its effect on physical, physicochemical and sensory characteristics. For the preparation of bread was used a factorial design 22 with 4 factorial points and 3 central points, totaling 7 experiments. The physical and physicochemical parameters analyzed were: specific volume, moisture, color of the peel and crumb, pH, acidity and texture profile, sodium and potassium. The sensory evaluation of bread was performed using quantitative descriptive analysis, with 12 sensory terminologies. Response variables of salty taste and sensory chewiness generated statistically significant models. The results indicated optimal ranges of 0.2 to 0.5% of potassium chloride, and 1.0 to 1.6% for sodium chloride, and proved the technical feasibility of producing French bread with 50% salt reduction (174.09 mg.50 g–1, compared to a standard formulation of 1.88% (306.5 mg.50g-1 salt, corresponding to the prognosis recommended by the National Health Surveillance Agency.

  6. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  7. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  8. Effects of sodium chloride on radiation protection and modification of gamma-ray treated rice seeds

    International Nuclear Information System (INIS)

    Wang Cailian; Zhao Kongnan; Shen Mei; Xu Gang; Chen Qiufang

    1992-11-01

    The radiation protection effect of sodium chloride on dormant and germinating rice seeds treated with gamma-rays, and modification effect of sodium chloride on mutation were studied. Results show that the radiation-damage effect on seedling growth, percentage of seedling growth, percentage of seedling growth and fertility in M 1 generation is significantly enhanced with the increasing of dose. However, the seedling growth, percentage of seedling growth and fertility can be improved if the irradiated seeds are pre-treated with sodium chloride solution having concentrations of 0.05, 0.10 and 0.20 mol/L. The difference between treated group and control group is very significant. Results also show that pre-treatment and post-treatment by sodium chloride can raise the mutation frequencies of chlorophyll deficient seedlings, especially, the mutation frequency of early heading date and height is more considerably. The conclusion is that the sodium chloride, as a radiation protection agent, combined with gamma-ray treatment could reduce the effect of radiation-damage on M 1 generation and raise the mutation frequency in M 2 generation, and this result will be helpful in rice breeding

  9. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  10. Flame generation of sodium chloride aerosol for filter testing

    International Nuclear Information System (INIS)

    Edwards, J.; Kinnear, D.I.

    1975-01-01

    A generator for sodium chloride aerosol is described, which when used in conjunction with a sensitive portable sodium flame detector unit, will permit the in-place testing of large filter installations having air throughputs up to about 80,000 m 3 /h, at penetrations down to at least 0.005 percent. (U.S.)

  11. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    Science.gov (United States)

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  12. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration.

    Science.gov (United States)

    Kelly, Victoria R; Lovett, Gary M; Weathers, Kathleen C; Findlay, Stuart E G; Strayer, David L; Burns, David I; Likens, Gene E

    2008-01-15

    Sodium and chloride concentrations and export increased from 1986 to 2005 in a rural stream in southeastern New York. Concentrations increased 1.5 mg/L per year (chloride) and 0.9 mg/L per year (sodium), and export increased 33,000 kg/year (chloride) and 20,000 kg/year (sodium) during this period. We estimate that salt used for deicing accounted for 91% of the sodium chloride input to the watershed, while sewage and water softeners accounted for less than 10% of the input. Road salt use in the watershed did not increase during the study, but sodium and chloride from sewage and water softeners is likely to have increased slightly due to a small increase in population. Increased input from sewage and water softeners cannot account for the increase in concentration and export from the watershed. Model results suggest that the increase in streamwater concentration and export was likely due to a lag effect of long-term road salt use and subsurface buildup.

  13. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Several studies from the 1970s and more recently (for example, Hall (1975), Daley and others (2009) and Mullaney (2009)) have found that concentrations of chloride and sodium in groundwater in New Hampshire have increased during the past 50 years. Increases likely are related to road salt and other anthropogenic sources, such as septic systems, wastewater, and contamination from landfills and salt-storage areas. According to water-quality data reported to the New Hampshire Department of Environmental Services (NHDES), about 100 public water systems (5 percent) in 2010 had at least one groundwater sample with chloride concentrations that were equal to or exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) of 250 mg/L before the water was treated for public consumption. The SMCL for chloride is a measurement of potential cosmetic or aesthetic effects of chloride in water. High concentrations of chloride and sodium in drinking-water sources can be costly to remove.

  14. Stability of methadone hydrochloride in 0.9% sodium chloride injection in single-dose plastic containers.

    Science.gov (United States)

    Denson, D D; Crews, J C; Grummich, K W; Stirm, E J; Sue, C A

    1991-03-01

    The stability of methadone hydrochloride in 0.9% sodium chloride injection in flexible polyvinyl chloride containers was studied. Commercially available methadone hydrochloride 20 mg/mL and 25-mL single-dose bags of 0.9% sodium chloride injection were used. Six samples each were prepared at methadone hydrochloride concentrations of 1, 2, and 5 mg/mL. The solutions were stored at room temperature and were not protected from light. Immediately after preparation and after two, three, and four weeks of storage, each of the 18 samples was divided into three aliquots, each of which was analyzed in duplicate for methadone hydrochloride concentration by gas chromatography. There was less than 10% change in methadone hydrochloride concentration in any sample throughout the four-week study period. Methadone hydrochloride at concentrations of 1, 2, and 5 mg/mL prepared in commercially available flexible polyvinyl chloride containers of 0.9% sodium chloride injection and stored at room temperature without deliberate protection from light is stable for at least four weeks.

  15. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Directory of Open Access Journals (Sweden)

    Małgorzata Tańska

    2016-01-01

    Full Text Available This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5 % of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough.

  16. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Science.gov (United States)

    Tańska, Małgorzata; Rotkiewicz, Daniela; Piętak, Andrzej

    2016-01-01

    Summary This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5% of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough. PMID:27904407

  17. Effect of gamma radiation on glucose and sodium chloride solutions for injection

    International Nuclear Information System (INIS)

    Lakoza, G.N.; Grigor'eva, O.L.; Mart'yanova, B.M.; Vorob'eva, E.N.; Kuznetsova, R.M.

    1976-01-01

    Irradiation of 40% glucose solution with 0.5-4.0 Mrads di not affect the detoxicating properties of glucose or its ability to raise blood sugar levels. Such doses had no effect on the toxicological properties of 40% glucose solution and on 0.9% sodium chloride solution. The biological and physicochemical properties of 40% solution and 0.9% sodium chloride solutions irradiated with sterilizing doses showed no significant alterations during storage for one and three years, respectively. It is concluded that the solutions studied may be sterilized by radiation. (auth.)

  18. Association between continuous peripheral i.v. infusion of 3% sodium chloride injection and phlebitis in adults.

    Science.gov (United States)

    Meng, Lina; Nguyen, Cherwyn M; Patel, Samit; Mlynash, Michael; Caulfield, Anna Finley

    2018-03-01

    One institution's experience with use of peripheral i.v. (PIV) catheters for prolonged infusions of 3% sodium chloride injection at rates up to 100 mL/hr is described. A prospective, observational, 13-month quality assurance project was conducted at an academic medical center to evaluate frequencies of patient and catheter phlebitis among adult inpatients who received both an infusion of 3% sodium chloride injection for a period of ≥4 hours through a dedicated PIV catheter and infusions of routine-care solutions (RCSs) through separate PIV catheters during the same hospital stay. Sixty patients received PIV infusions through a total of 291 catheters during the study period. The majority of patients (78%) received infusions of 3% sodium chloride injection for intracranial hypertension, with 30% receiving such infusions in the intensive care unit. Phlebitis occurred in 28 patients (47%) during infusions of 3% sodium chloride and 26 patients (43%) during RCS infusions ( p = 0.19). Catheter phlebitis occurred in 73 catheters (25%), with no significant difference in the frequencies of catheter phlebitis with infusion of 3% sodium chloride versus RCSs (30% [32 of 106 catheters]) versus 22% [41 of 185 catheters]), p = 0.16). Patient and catheter phlebitis rates were not significantly different with infusions of 3% sodium chloride injection versus RCSs, suggesting that an osmolarity cutoff value of 900 mOsm/L for peripheral infusions of hypertonic saline solutions may not be warranted. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  19. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  20. Respective effects of sodium and chloride ion on physiological ...

    African Journals Online (AJOL)

    Respective effects of sodium and chloride ion on growth, cell morphological changes, membrane disorganization, ion homeostasis, exoenzyme activities and fermentation performance in Zymomonas mobilis232B cultures were presented. In batch cultures containing 0.15 M NaCl, Z. mobilis232B developed filaments, and ...

  1. Roentgen-phase analysis of sodium chloride of Khodja-Mumindeposit

    International Nuclear Information System (INIS)

    Nazarov, K.M.; Pulatov, M.S.; Isupov, S.D.

    1999-01-01

    With the purpose of determination of mineral composition of sodium chloride by authors was carried out the roentgen-phase analysis till its purification, after filtration and after purification from Ca 2 + , Mg 2 + a nd SO 4 2 + i ons by barium-carbonate and hydrochloride-acid methods

  2. Amendment trials for bioremediation of sodium and chloride contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D. [Western Alfalfa Milling Co. Ltd., Norquay, SK (Canada)

    2005-06-30

    Details of a soil amendment experiment was presented. Soil samples from sodium and chloride contaminated soil were taken from a site located in southeastern Alberta. Soil amendments included high protein dehydrated alfalfa pellets, 2 types of Zeolite, and used coconut coir. The aim of the study was to find an effective in-situ method of remediating the soil while establishing the highest possible plant biomass. Preliminary trial data indicated a strong trend for high plant protein pellets to increase plant productivity on sodium and chloride contaminated soil. The addition of alfalfa increased plant height and stem diameter, as well as leaf width, which increased incrementally with higher volumes of alfalfa. Equivalent rates of .5 MT to 4 MT per acre application rates were used in the trial. Coconut coir was used at a rate of 30 per cent of the volume of the growing medium and also showed increased growth. An experiment was conducted using harvested plant matter from the samples to determine the effect of the 3 amendments on sodium uptake by the plants. Results showed that the sodium uptake significantly increased with the application of soil amendments, particularly when alfalfa pellets were applied, with percentages of sodium found in the plant tissue almost twice as high as percentages found in the control sample. Sodium levels also increased in the plant tissues where coconut coir was used, although to a lesser degree than levels found in plants grown with the alfalfa amended soils. Zeolite did not perform as well on its own. However, it was noted that previous trials have shown good performance when Zeolite was mixed into sodium/chloride contaminated soils and combined with water filtration. It was concluded that the soil amendments improved plant growth, and increased the sodium uptake by plants. The consortium is pursuing industry support to plan larger field studies in the 2006 season. 2 tabs., 5 figs.

  3. SODIUM-POTASSIUM-CHLORIDE COTRANSPORT IN THE REGULATION OF VASCULAR MYOGENIC TONE

    Directory of Open Access Journals (Sweden)

    S. N. Orlov

    2014-01-01

    Full Text Available The article discusses the data on the functioning of Na+,K+,2Cl– cotransport – the carrier providing electroneutral symport of sodium, potassium and chloride, as well as molecular mechanisms of the regulation and physiological significance of this carrier. We analyzed the novel data on involvement of ubiquitous isoform of Na+,K+,2Cl–cotransporter (NKCC1 in regulation of vascular smooth muscle contraction, and role of this carrier in the regulation of cell volume and intracellular chloride concentration.

  4. Comparative effects of Potash Sodium Chloride (PSC) mixture and ...

    African Journals Online (AJOL)

    Honey (Mellifica sp) is produced by Apis mellifera africana, widely consumed without prescription or restriction, and has been shown to possess wound healing and antitusive properties. Comparative study of the effects of honey paste and Potash Sodium Chloride (PSC) mixture on the healing of incisional wound on albino ...

  5. Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    Directory of Open Access Journals (Sweden)

    C. Neal

    2000-01-01

    Full Text Available Variations in sodium and chloride in atmospheric inputs (rainfall and mist, stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments, Plynlimon, mid-Wales. The results show five salient features. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.  Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower than the sea-salt ratio when

  6. Rechargeable lithium and sodium anodes in chloroaluminate molten salts containing thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.; Osteryoung, R.A. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Carlin, R.T.

    1995-11-01

    Lithium and sodium deposition-stripping studies were performed in room temperature buffered neutral chloroaluminate melts containing low concentrations of thionyl chloride (SOCl{sub 2}). The SOCl{sub 2} solute promotes high cycling efficiencies of the alkali metals in these electrolytes. Staircase cyclic voltammetry and chronopotentiometry show cycling efficiencies of approximately 90% for both lithium and sodium. High cycling efficiencies are maintained following extended exposure of the melt to the dry box atmosphere and after time delays at open circuit. The performance of the SOCl{sub 2}-promoted systems is substantially improved over previous studies in room temperature melts containing hydrogen chloride as the promoting solute.

  7. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  8. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    Science.gov (United States)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  9. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  10. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    Science.gov (United States)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  11. Sodium and chloride levels in rainfall, mist. streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    Science.gov (United States)

    Neal, C.; Kirchner, J. W.

    Variations in sodium and chloride in atmospheric inputs (rainfall and mist), stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments), Plynlimon, mid-Wales. The results show five salient features. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils. Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower than the sea-salt ratio when salinity is high. This

  12. Progress and recent developments in sodium, metal chloride batteries

    International Nuclear Information System (INIS)

    Ratnakumar, B.V.; Attia, A.I.; Halpert, G.

    1991-01-01

    A new class of rechargeable sodium batteries emerged in the last decade mainly due to the efforts in South Africa and the United Kingdom. These systems include solid transition metal chlorides in sodium tetrachloroaluminates as cathodes. Significant developments have been made on two systems, i.e., Na/NiCl 2 and Na/FeCl 2 ; high energy densities of the order of 130 Wh/Kg have been demonstrated at the cell level both with FeCl 2 and NiCl 2 cathodes. Long cycle life of over 2000 cycles was demonstrated with NiCl 2 , especially with a sulfur additive to the electrolyte to retain the sintered structure of the NiCl 2 electrode. Various environmental and safety tests have been successfully performed on the cells. Scale up efforts resulted in cells of 40 - 100 Ah, which were evaluated in an electric vehicle application. Additionally, it appears from a recent evaluation study carried out by European Space Agency on Na/NiCl 2 for GEO and LEO applications that energy densities of the order of 120 Wh/Kg and 100 Wh/Kg respectively at the cell level are feasible and long cycle lives (beyond 2800 cycles are possible). Several fundamental and developmental studies have been carried out at other laboratories aimed at understanding the reaction mechanisms, determining the kinetics and identifying various rate governing processes, and screening various other metal chlorides. Finally, the specific energies and especially the power densities projected for Na/FeCl 2 and Na/NiCl 2 systems based on alternate designs for beta alumina solid electrolyte, i.e., multiple tubes and flat plates are very attractive for electric vehicle and space applications. In this paper, the authors propose to present a detailed account of the developments made hither to as well as the key research issues being addressed in the sodium - metal chloride battery technology

  13. Sodium Chloride Dihydrate - A Potential Cause of Slippery Accidents

    DEFF Research Database (Denmark)

    Mejlholm, Morten; Thomsen, Kaj; Rasmussen, Peter

    From a thermodynamic point of view, it can be expected that sodium chloride dihydrate (hydrohalite, NaCl2H2O) will form on winter roads under certain conditions at temperatures below 0.1¢®C. In order to elucidate whether or not the formation of hydrohalite on the pavement can explain the phenomenon...

  14. Use of Hypertonic Sodium Chloride Solution at Surgery under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2012-01-01

    Full Text Available The paper analyzes the data available in the references on different aspects of using hypertonic sodium chloride solution during surgery under extracorporeal circulation in cardiosurgical care. The hypertonic solution is shown to lower positive fluid balance in the perioperative period, to increase cardiac output with simultaneously decreased vascular resistance, to improve lung oxygenating function, and to normalize tissue blood circulation and neurological status in patients exposed to artificial perfusion. There is evidence for its effect on the immune system and capillary endothelium. It is suggested that it is necessary to study the effect of the hypertonic solution on the incidence of complications and death rates during surgery under extracorporeal circulation and it is proposed to use the solution under long-term extracorporeal circulation. Key words: hypertonic saline, sodium chloride, extracorporeal circulation.

  15. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    Science.gov (United States)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  16. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    Science.gov (United States)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  17. Sodium Is Not Required for Chloride Efflux via Chloride/Bicarbonate Exchanger from Rat Thymic Lymphocytes

    Directory of Open Access Journals (Sweden)

    Donatas Stakišaitis

    2014-01-01

    Full Text Available Sodium-dependent Cl−/HCO3- exchanger acts as a chloride (Cl− efflux in lymphocytes. Its functional characterization had been described when Cl− efflux was measured upon substituting extracellular sodium (Na+ by N-methyl-D-glucamine (NMDG. For Na+ and Cl− substitution, we have used D-mannitol or NMDG. Thymocytes of male Wistar rats aged 7–9 weeks were used and intracellular Cl− was measured by spectrofluorimetry using MQAE dye in bicarbonate buffers. Chloride efflux was measured in a Cl−-free buffer (Cl− substituted with isethionate acid and in Na+ and Cl−-free buffer with D-mannitol or with NMDG. The data have shown that Cl− efflux is mediated in the absence of Na+ in a solution containing D-mannitol and is inhibited by H2DIDS. Mathematical modelling has shown that Cl− efflux mathematical model parameters (relative membrane permeability, relative rate of exchanger transition, and exchanger efficacy were the same in control and in the medium in which Na+ had been substituted by D-mannitol. The net Cl− efflux was completely blocked in the NMDG buffer. The same blockage of Cl− efflux was caused by H2DIDS. The study results allow concluding that Na+ is not required for Cl− efflux via Cl−/HCO3- exchanger. NMDG in buffers cannot be used for substituting Na+ because NMDG inhibits the exchanger.

  18. Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries

    International Nuclear Information System (INIS)

    David Trickett

    1998-01-01

    This report addresses environmental, health, and safety (EH ampersand S) issues associated with sodium/ metal chloride batteries, in general, although most references to specific cell or battery types refer to units developed or being developed under the Zebra trademark. The report focuses on issues pertinent to sodium/metal chloride batteries and their constituent components; however, the fact that some ''issues'' arise from interaction between electric vehicle (EV) and battery design com- pels occasional discussion amid the context of EV vehicle design and operation. This approach has been chosen to provide a reasonably comprehensive account of the topic from a cell technology perspective and an applications perspective

  19. Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Trickett, D.

    1998-12-15

    This report addresses environmental, health, and safety (EH&S) issues associated with sodium/ metal chloride batteries, in general, although most references to specific cell or battery types refer to units developed or being developed under the Zebra trademark. The report focuses on issues pertinent to sodium/metal chloride batteries and their constituent components; however, the fact that some ''issues'' arise from interaction between electric vehicle (EV) and battery design compels occasional discussion amid the context of EV vehicle design and operation. This approach has been chosen to provide a reasonably comprehensive account of the topic from a cell technology perspective and an applications perspective.

  20. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells

    DEFF Research Database (Denmark)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna

    2017-01-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis...

  1. Degradation of wall paints due to sodium sulphate and sodium chloride crystallization

    Directory of Open Access Journals (Sweden)

    Díaz Gonçalves, T.

    2003-03-01

    Full Text Available A test method for evaluating wall paints behaviour to soluble salts crystallization was developed at LNEC. in the present paper, a recent set of tests is described and discussed. The major objectives were: analysing and comparing the behaviour of a common emulsion {"plastic" paint and a silicate-based paint; observing and comparing the effect of sodium sulphate, sodium chloride and distilled water on the paints and on a non-painted stone; evaluating this test method adequacy and effectiveness. The silicate-based paint showed a resistance to soluble salts crystallization greater than the one of the plastic paint. However, the degradation pattern of the silicate-based paint (blistering of a filmic layer was similar to the one of organic paints and distinct from the one of pure mineral paints. The amount of damage that a saline solution can cause to wall paints cannot be inferred from the amount of damage it can cause to stone. Sodium chloride seems to be able to cause more severe degradation to wall paints than sodium sulphate. To the unpainted stone, sodium sulphate seems to be more damaging than sodium chloride. The test method seems adequate to observe and compare the behaviour of wall paints under soluble salts action. However, lower (around 0.5% concentrations for both sodium sulphate and sodium chloride should be tested in the future.

    RESUMEN En el LNEC se desarrolló una metodología de ensayo para evaluar la respuesta de pinturas aplicadas sobre paredes, frente a la cristalización de sales solubles. En este trabajo, se describen y discuten un conjunto de ensayos recientes. Los principales objetivos fueron: el análisis y la comparación del comportamiento de una pintura de emulsión común {''pintura plástica" y la de una pintura de silicato; la observación y la comparación de los efectos del sulfato de sodio, del cloruro de sodio y del agua destilada sobre las pinturas y sobre piedra no pintada; la evaluación de la adecuaci

  2. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  3. Reaction of calcium chloride with alkali metal chlorides in melts

    International Nuclear Information System (INIS)

    Savin, V.D.; Mikhajlova, N.P.

    1984-01-01

    Thermochemical characteristics of CaCl 2 reaction with sodium, potassium, rubidium and cesium chlorides in melts at 890 deg C are determined. The values of formation enthalpies of infinitely diluted by CaCl 2 solutions (ΔH) in the chloride row increase from -22 in NaCl to -47 kJ/mol of CaCl 2 in CsCl. With increasing the concentration of calcium chloride in the solution the ΔH values decrease. The regularities of separation from the solution of the CaCl 2 -CsCl system at 890 deg C of the CaCl 2 x CsCl in solid are studied. Formation enthalpies under the given conditions constitutes -70+-3 kJ/mol

  4. Impact of sodium chloride on breakfast cereal products

    OpenAIRE

    Moreau, Lydie

    2009-01-01

    To reduce the amount of sodium chloride in breakfast cereals without changing their properties, it is necessary to understand the role of this salt. Hence, a model system was developed. This model, composed of native waxy maize starch, glucose and a mixture of amino-acids generated similar colour and residual volatiles after heating compared to commercial breakfast cereals. Systematically designed experiments used this model to study the influence of NaCl concentration (0 % to 5.44 %) on colo...

  5. Meta-Analysis of Individual Patient Data of Sodium Bicarbonate and Sodium Chloride for All-Cause Mortality After Coronary Angiography

    DEFF Research Database (Denmark)

    Brown, Robert James (Jim); Pearlman, D. M.; Marshall, E. J.

    2016-01-01

    We sought to examine the relation between sodium bicarbonate prophylaxis for contrast associated nephropathy (CAN) and mortality. We conducted an individual patient data meta-analysis from multiple randomized controlled trials. We obtained individual patient data sets for 7 of 10 eligible trials (2......,292 of 2,764 participants). For the remaining 3 trials, time-to-event data were imputed based on follow-up periods described in their original reports. We included all trials that compared periprocedural intravenous sodium bicarbonate to periprocedural intravenous sodium chloride in patients undergoing...... bicarbonate was associated with lower mortality hazard than sodium chloride at 1 year (hazard ratio 0.61, 95% confidence interval [CI] 0.41 to 0.89, p = 0.011). Although periprocedural sodium bicarbonate was associated with a reduction in the incidence of CAN (relative risk 0.75, 95% CI 0.62 to 0.91, p = 0...

  6. Standard test method for evaluating stress-corrosion cracking of stainless alloys with different nickel content in boiling acidified sodium chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method describes a procedure for conducting stress-corrosion cracking tests in an acidified boiling sodium chloride solution. This test method is performed in 25% (by mass ) sodium chloride acidified to pH 1.5 with phosphoric acid. This test method is concerned primarily with the test solution and glassware, although a specific style of U-bend test specimen is suggested. 1.2 This test method is designed to provide better correlation with chemical process industry experience for stainless steels than the more severe boiling magnesium chloride test of Practice G36. Some stainless steels which have provided satisfactory service in many environments readily crack in Practice G36, but have not cracked during interlaboratory testing using this sodium chloride test method. 1.3 This boiling sodium chloride test method was used in an interlaboratory test program to evaluate wrought stainless steels, including duplex (ferrite-austenite) stainless and an alloy with up to about 33% nickel. It may also b...

  7. Compatibility of butorphanol and droperidol in 0.9% sodium chloride injection.

    Science.gov (United States)

    Chen, Fu-Chao; Fang, Bao-Xia; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2013-03-15

    The compatibility and stability of butorphanol tartrate and droperidol in polyvinyl chloride (PVC) bags and glass bottles stored at 4°C and 25°C for up to 15 days were studied. Admixtures were assessed initially and for 15 days after preparation in PVC bags and glass bottles using 0.9% sodium chloride injection as a diluent and stored at 4°C and 25°C. The initial drug concentrations were 0.08 mg/mL for butorphanol tartrate and 0.05 mg/mL for droperidol. Samples were withdrawn from each container immediately after preparation and at predetermined intervals (2, 4, 8, 24, 48, 72, 120, 168, 240, and 360 hours after preparation). The solutions were visually inspected for precipitation, cloudiness, and discoloration at each sampling interval. Drug concentrations were determined using a validated high-pressure liquid chromatography method. After 15 days of storage, all formulations tested retained >98% of the initial concentrations of both drugs. The drug mixtures were clear in appearance, and no color change or precipitation was observed. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and droperidol 0.05 mg/mL in 0.9% sodium chloride injection were stable for at least 360 hours when stored in PVC bags or glass bottles at 4°C and 25°C and protected from light.

  8. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  9. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J J; McOrist, G D; Farrar, Y J; Bowles, C J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  10. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Bowles, C.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  11. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Gerrit Hilgen

    Full Text Available Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10, a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pH(i and chloride concentration ([Cl(-](i in neurons. Here we show that NCBE is strongly expressed in the retina. As GABA(A receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pH(i regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.

  12. Sodium Bicarbonate Versus Sodium Chloride for Preventing Contrast-Associated Acute Kidney Injury in Critically Ill Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Valette, Xavier; Desmeulles, Isabelle; Savary, Benoit; Masson, Romain; Seguin, Amélie; Sauneuf, Bertrand; Brunet, Jennifer; Verrier, Pierre; Pottier, Véronique; Orabona, Marie; Samba, Désiré; Viquesnel, Gérald; Lermuzeaux, Mathilde; Hazera, Pascal; Dutheil, Jean-Jacques; Hanouz, Jean-Luc; Parienti, Jean-Jacques; du Cheyron, Damien

    2017-04-01

    To test whether hydration with bicarbonate rather than isotonic sodium chloride reduces the risk of contrast-associated acute kidney injury in critically ill patients. Prospective, double-blind, multicenter, randomized controlled study. Three French ICUs. Critically ill patients with stable renal function (n = 307) who received intravascular contrast media. Hydration with 0.9% sodium chloride or 1.4% sodium bicarbonate administered with the same infusion protocol: 3 mL/kg during 1 hour before and 1 mL/kg/hr during 6 hours after contrast medium exposure. The primary endpoint was the development of contrast-associated acute kidney injury, as defined by the Acute Kidney Injury Network criteria, 72 hours after contrast exposure. Patients randomized to the bicarbonate group (n = 151) showed a higher urinary pH at the end of the infusion than patients randomized to the saline group (n = 156) (6.7 ± 2.1 vs 6.2 ± 1.8, respectively; p 0.99) were also similar between the saline and bicarbonate groups, respectively. Except for urinary pH, none of the outcomes differed between the two groups. Among ICU patients with stable renal function, the benefit of using sodium bicarbonate rather than isotonic sodium chloride for preventing contrast-associated acute kidney injury is marginal, if any.

  13. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B

    2012-01-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antib......The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho......-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and m...

  14. The influence of sodium salts (iodide, chloride and sulfate) on the formation efficiency of sulfamerazine nanocrystals.

    Science.gov (United States)

    Lou, Hao; Liu, Min; Qu, Wen; Johnson, James; Brunson, Ed; Almoazen, Hassan

    2014-08-01

    The purpose of this study is to evaluate the influence of sodium iodide, sodium chloride and sodium sulfate on the formation efficiency of sulfamerazine nanocrystals by wet ball milling. Sulfamerazine was milled using zirconium oxide beads in a solution containing polyvinylpyrrolidone (PVP) and a sodium salt (iodide, chloride or sulfate). Particle size distributions were evaluated by light diffraction before and after milling. High-performance liquid chromatography was utilized to determine the amount of PVP adsorbed onto sulfamerazine surface. Lyophilized nanocrystals were further characterized by differential scanning calorimetry and dissolution testing. Sulfate ion had more profound effect on reducing particle size via milling than iodide or chloride. We linked our findings to Hofmeister ion series, which indicates that sulfate ions tends to break the water structure, increases the surface tension and lowers the solubility of hydrocarbons in water. We hypothesized that the addition of sulfate ions dehydrated the PVP molecules and enhanced its adsorption onto the sulfamerazine particle surfaces. Consequently, the adsorbed PVP helped to stabilize of the nanosuspension. The nanocrystals that were obtained from the lyophilized milled suspensions exhibited a notable increase in dissolution rate. The addition of sodium sulfate enhanced the formation efficiency of sulfamerazine nanocrystals.

  15. Influence of sodium chloride on wine yeast fermentation performance

    Directory of Open Access Journals (Sweden)

    Stilianos Logothetis

    2010-06-01

    Full Text Available Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride on growth, viability and fermentation performance in a winemaking strain of the yeast, Saccharomyces cerevisiae. Experimental fermentations were conducted in both laboratory-scale and industrial-scale experiments. Preculturing yeasts in elevated levels of sodium chloride, or salt “preconditioning” led to improved fermentation performance. This was manifest by preconditioned yeasts having an improved capability to ferment high-sugar containing media with increased cell viability and with elevated levels of produced ethanol. Salt-preconditioning most likely influenced the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol. These compounds may act to improve cells’ ability to withstand osmostress and ethanol toxicity during fermentations of grape must. Industrial-scale trials using salt-preconditioned yeasts verified the benefit of this novel physiological cell engineering approach to practical winemaking fermentations.Keywords: salt, preconditioning, fermentation performance, Saccharomyces cerevisiae, wine

  16. Extended stability of intravenous 0.9% sodium chloride solution after prolonged heating or cooling.

    Science.gov (United States)

    Puertos, Enrique

    2014-03-01

    The primary objective of this study was to evaluate the stability and sterility of an intravenous 0.9% sodium chloride solution that had been cooled or heated for an extended period of time. Fifteen sterile 1 L bags of 0.9% sodium chloride solution were randomly selected for this experiment. Five bags were refrigerated at an average temperature of 5.2°C, 5 bags were heated at an average temperature of 39.2°C, and 5 bags were stored at an average room temperature of 21.8°C to serve as controls. All samples were protected from light and stored for a period of 199 days prior to being assayed and analyzed for microbial and fungal growth. There was no clinically significant difference in the mean sodium values between the refrigerated samples, the heated samples, and the control group. There were no signs of microbial or fungal growth for the duration of the study. A sterile intravenous solution of 0.9% sodium chloride that was heated or cooled remained stable and showed no signs of microbial or fungal growth for a period of 199 days. This finding will allow hospitals and emergency medical technicians to significantly extend the expiration date assigned to these fluids and therefore obviate the need to change out these fluids every 28 days as recommended by the manufacturer.

  17. The study of interaction of lanthanum-, cerium- and neodymium chlorides with sodium borohydride in pyridine- and tetrahydrofuran medium

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Rotenberg, T.G.; Dymova, T.N.

    1976-01-01

    Bis-tetrahydrofurans of lanthanum and neodymium borohydrides and bis-pyridinates of lanthanum, cerium and neodymium borohydrides were obtained by interacting sodium borohydride with lanthanum-, cerium and neodymium chlorides in pyridine and tetrahydrofuran media. All operations involving reagent combination, sampling and phase separation are performed in inert atmosphere using argonvacuum equipment. The reaction in pyridine was virtually instantaneous and accompanied by flocculanet precipitation. The interaction of lanthanum chloride and neodymium chloride with sodium borohydride in tetrahydrofuran (THF) was a slow (23-30 hr) heterophase process. The interaction rate was affected by size reduction of the intial substances, temperature, reagent proportion and mixing rate. The reaction time was twice reduced with boiling tetrahydrofuran

  18. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Science.gov (United States)

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  19. Hazard identification for human and ecological effects of sodium chloride road salt.

    Science.gov (United States)

    2007-07-01

    The New Hampshire Department of Environmental Services (DES) requested an evaluation of : the human and ecological risks associated with the application of sodium chloride (NaCl) road : salt to roadways. NaCl is the major de-icing agent used in NH to...

  20. Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac tromethamine and benzalkonium chloride on corneal sensitivity in normal dogs

    Directory of Open Access Journals (Sweden)

    Raquel de Araújo Cantarella

    2017-08-01

    Full Text Available To evaluate corneal sensitivity by using the Cochet-Bonnet® esthesiometer in normal canine eyes at different time points following instillation of three different topical non-steroidal anti-inflammatory drugs (flurbiprofen sodium 0.03%, diclofenac sodium 0.1% and ketorolac tromethamine 0.5% and benzalkonium chloride 0.01%. Six healthy mixed breed dogs from the same litter were used in two different stages. First, one drop of flurbiprofen sodium 0.03% and diclofenac sodium 0.1% in each eye; second, one drop of ketorolac tromethamine 0.5% and benzalkonium chloride 0.01% in each eye. Baseline esthesiometry was obtained before eye drop application and every 15 minutes thereafter until a total of 105 minutes of evaluation time. A one-week interval was allowed between the two treatment phases. Statistical analysis was used to compare means according to time of evaluation and drug used. Diclofenac sodium 0.1% decreased corneal sensitivity at 75 and 90 minutes (P > 0.015 with possible interference on neuronal nociceptive activity and analgesic effect while ketorolac tromethamine 0.5% did not show any variation for esthesiometry means along the evaluation. Flurbiprofen sodium 0.03% resulted in increased esthesiometry values 30 minutes after instillation (P > 0.013, increasing corneal sensitivity and possibly producing a greater irritant corneal effect over its analgesic properties. Benzalkonium chloride 0.01% significantly increased corneal sensitivity at 15 minutes of evaluation (P > 0.001, most likely resulting from its irritating effect. Esthesiometry did not allow a definite conclusion over the analgesic effect of the NSAIDs tested; however it was effective in detecting fluctuations in corneal sensitivity.

  1. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  2. Effect of Sodium Chloride Concentrations and Its Foliar Application Time on Quantitative and Qualitative Characteristics of Pomegranate Fruit (Punica granatum L. CV. “Malas Saveh”

    Directory of Open Access Journals (Sweden)

    V. Rouhi

    2016-02-01

    Full Text Available Introduction: Pomegranate (Punica granatum L. belong to Punicaceae family is native to Iran and grown extensively in arid and semi-arid regions worldwide. Pomegranate is also important in human medicine and its components have a wide range of clinical applications. Cracking causes a major fruit loss, which is a serious commercial loss to farmers. Fruit cracking, seems to be a problem that lessens the marketability to a great extent. Fruit cracking is one of the physiological disorders wherever pomegranate trees are grown. It may be due to moisture imbalances as this fruit is very sensitive to variation in soil moisture prolonged drought causes hardening of skin and if this is followed by heavy irrigation the pulp grows then skin grows and cracks. Many factors i.e., climate, soil and irrigation, varieties, pruning, insects and nutrition statues influence the growth and production of fruit trees. Deficiencies of various nutrients are related to soil types, plants and even to various cultivars. Most nutrients are readily fixed in soil having different PH. Plant roots are unable to absorb these nutrients adequately from the dry topsoil. Foliar fertilization is particularly useful under conditions where the absorption of nutrients through the soil and this difficult situation to be present in the nutrients such as calcium. Since the calcium element is needed, so spraying them at the right time is correct way to save the plant requirements. Therefore, a research conducted on effect of sodium chloride concentrations and its foliar application time on quantitative and qualitative characteristics of pomegranate fruit (Punica granatum L. CV. “Malas Saveh”. Materials and Methods: An experiment conducted at Jarghoyeh, Esfahan, Iran in 2012. The factors were Sodium chloride (0, 5 and 10 g/L and times of spray (15, 45 and 75 days before harvest. The study was factorial experiment in the base of randomized complete blocks design with three replications

  3. Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.

    Science.gov (United States)

    Grummer, J; Bobowski, N; Karalus, M; Vickers, Z; Schoenfuss, T

    2013-03-01

    We investigated use of potassium chloride (KCl) to maintain both the salty flavor and to replace the preservative effects of salt when reducing the sodium content in natural cheese. Because salt replacers can affect flavor because of inherent off-flavors, such as bitter and metallic, we examined the use of flavor enhancers for their ability to modulate some of these undesirable sensory effects. Stirred-curd Cheddar-style cheese was manufactured using 2 cheese-making procedures (different curd knife sizes and target salting titratable acidities), in duplicate. Curd was salted with sodium chloride (NaCl) or 60% reduced sodium blends of NaCl and KCl (2 different sources). Curd was also salted at a 60% reduced sodium rate with NaCl and KCl with added flavor enhancers. A hydrolyzed vegetable protein/yeast extract blend, a natural "potassium-blocking type" flavor, disodium inosinate, or disodium guanylate were each blended with the reduced sodium salt blend and added to curd at the salting step. The resulting blocks of cheese were aged for 5 mo and evaluated monthly for chemical, microbial, and sensory differences. At 5 mo of aging, we measured liking for the cheeses using a consumer panel. Overall, cheeses were well liked by the consumer panel, and the scores of reduced sodium cheese with 2 different KCl sources were not different from those of the full-sodium control. The addition of flavor enhancers to Cheddar curd had mixed results, with one improving the consumer flavor liking only slightly over KCl, and one (disodium inosinate) significantly reducing consumer flavor liking scores, presumably due to the amount of umami flavor it contributed. Potassium chloride replacement salts sourced from different manufacturers affected the chemical and flavor properties of cheese, and changes to pH and temperature targets may be necessary to yield cheese with the moisture and pH targets desired. The cheese-making procedure used also influenced flavors observed, which resulted in

  4. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel' man, E.S.; Kuznetsova, I.G. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    The efficiency of corrosion protection of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in chloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylanthranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys.

  5. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  6. Stability of i.v. admixture containing metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate in 0.9% sodium chloride injection.

    Science.gov (United States)

    Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin

    2014-12-01

    The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  8. Stability of polymyxin B sulfate diluted in 0.9% sodium chloride injection and stored at 4 or 25 degrees C.

    Science.gov (United States)

    He, Jie; Figueroa, Deborah A; Lim, Tze-Peng; Chow, Diana S; Tam, Vincent H

    2010-07-15

    The stability of polymyxin B sulfate in infusion bags containing 0.9% sodium chloride injection stored at 4 and 25 degrees C was studied. Seven manufacturing batches of polymyxin B from different sources were tested. The products were reconstituted in sterile water for injection, diluted in infusion bags containing 0.9% sodium chloride injection, and stored at room temperature (25 degrees C) or under refrigeration (4 degrees C). Samples were withdrawn at the same time on days 0, 1, 2, 3, 5, and 7. A modified microbiological assay was used to determine the concentrations, as indicated by zones of inhibition, of polymyxin B. Bordetella bronchiseptica served as the reference organism. Stability was defined as retention of >90% of the initial concentration. The decomposition kinetics of polymyxin B in 0.9% sodium chloride injection were evaluated by plotting the polymyxin B concentration remaining versus time. On average, the samples retained over 90% of their initial concentration for up to two days at both storage temperatures. All samples retained over 90% of their initial concentration at 24 hours. The decomposition kinetics of polymyxin B in infusion bags containing 0.9% sodium chloride injection exhibited pseudo-first-order kinetics, with rate constants of 0.024-0.075 day(-1) at 25 degrees C and 0.022-0.043 day(-1) at 4 degrees C (p > 0.05). Polymyxin B was stable for at least one day when stored at 4 or 25 degrees C in infusion bags containing 0.9% sodium chloride injection. Stability did not differ significantly between the two storage temperatures.

  9. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study.

    Science.gov (United States)

    de Oliveira, Fabrício Singaretti

    2014-07-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.

  10. Benefit and risk assessment of increasing potassium intake by replacement of sodium chloride with potassium chloride in industrial food products in Norway.

    Science.gov (United States)

    Steffensen, Inger-Lise; Frølich, Wenche; Dahl, Knut Helkås; Iversen, Per Ole; Lyche, Jan Ludvig; Lillegaard, Inger Therese Laugsand; Alexander, Jan

    2018-01-01

    High sodium chloride (NaCl) intake is associated with health risks. NaCl may be replaced by potassium chloride (KCl) to decrease sodium intake. However, increased potassium may also have negative health effects. We conducted a benefit and risk assessment of increasing potassium by ratios of 30:70, 50:50, 70:30 (weight % K + : weight % Na + ) in children, adolescents and adults in Norway, using intake data from national food consumption surveys and available literature on potassium health effects. An intake of at least 3.5 g/day of potassium decreases risk of stroke and hypertension, and this level was used in the benefit assessment of the healthy population. Three g/day of potassium added to mean food intake is assumed safe, and these levels were used in the risk assessment. Not all persons reached the protective level of potassium, and increasing numbers exceeded the safe levels, in these scenarios. In addition, elderly above 85 years and infants below one year of age, as well as several patient groups and medication users, are particularly vulnerable to hyperkalemia. In conclusion, the number of Norwegians facing increased risk is far greater than the number likely to benefit from this replacement of sodium with potassium in industrially produced food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates.

    Science.gov (United States)

    Holzammer, Christine; Finckenstein, Agnes; Will, Stefan; Braeuer, Andreas S

    2016-03-10

    We present an experimental Raman study on how the addition of sodium chloride to CO2-hydrate-forming systems inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction and the molar entropy of reaction for the reaction of weakly hydrogen-bonded water molecules to strongly hydrogen bonded water molecules are determined for different salinities from the Raman spectrum of the water-stretching vibration. Simultaneously, the influence of the salinity on the solubility of CO2 in the liquid water-rich phase right before the start of hydrate formation is analyzed. The results demonstrate that various mechanisms contribute to the inhibition of gas hydrate formation. For the highest salt concentration of 20 wt % investigated, the temperature of gas hydrate formation is lowered by 12 K. For this concentration the molar enthalpy and entropy of reaction become smaller by 50 and 20%, respectively. Concurrently, the solubility of carbon dioxide is reduced by 70%. These results are compared with data in literature for systems of sodium chloride in water (without carbon dioxide).

  12. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  13. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  14. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Synthesis of 14C-dehydrocorydaline chloride

    International Nuclear Information System (INIS)

    Zhang Rui; Wang Ding

    1988-01-01

    A method for synthesis of 14 C-dehydrocorydaline chloride is described. In the presence of sodium hydroxide, acetonylpalmatine is reacted with 14 C-methyl iodide in sealed glass ampoule to give 14 C-13-methylpalmatine iodide which is then converted to chloride. The radiochemical purity of 14 C-dehydrocorydaline determined by TLC is over 98% and the labelling efficiency is 54%

  16. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  17. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  18. Bioaccumulation of sodium alkyl sulfate zinc chloride and their mixture in young goby proterorhinus marmoratus pall

    Energy Technology Data Exchange (ETDEWEB)

    Topcuoglu, S.; Birol, E. (Cekmece Nuclear Research and Training Center, Istanbul (Turkey))

    1982-12-01

    The bioaccumulation of labelled surfactant, 35S-labelled sodium lauryl sulfate and 65Zn-labelled zinc chloride, was investigated both as a mixture and alone by themselves in young goby. The concentration factor of 7.15 was calculated for the surfactant in the whole-body fish and there was no effect of zinc chloride on this bioaccumulation process. Biological half-life of the surfactant was around 35 hours. The effects of surfactants on the zinc accumulation were also followed under the same conditions. The results indicated that the sodium lauryl sulfate had no effect on the accumulation of zinc, however, the other surfactant, linear alkylbenzene sulfonate, caused a significant increase in the zinc accumulation in comparison with the control group, during the uptake period.

  19. Bioaccumulation of sodium alkyl sulfate zinc chloride and their mixture in young goby proterorhinus marmoratus pall

    International Nuclear Information System (INIS)

    Topcuoglu, S.; Birol, E.

    1982-01-01

    The bioaccumulation of labelled surfactant, 35S-labelled sodium lauryl sulfate and 65Zn-labelled zinc chloride, was investigated both as a mixture and alone by themselves in young goby. The concentration factor of 7.15 was calculated for the surfactant in the whole-body fish and there was no effect of zinc chloride on this bioaccumulation process. Biological half-life of the surfactant was around 35 hours. The effects of surfactants on the zinc accumulation were also followed under the same conditions. The results indicated that the sodium lauryl sulfate had no effect on the accumulation of zinc, however, the other surfactant, linear alkylbenzene sulfonate, caused a significant increase in the zinc accumulation in comparison with the control group, during the uptake period. (author)

  20. Influence of partial replacement of sodium chloride by potassium chloride in Minas fresh cheese of sheep’s milk

    Directory of Open Access Journals (Sweden)

    Dalana Cecília Hanauer

    2017-08-01

    Full Text Available The sheep’s milk has high contents of fat, protein and minerals in relation to the cow’s milk and is suitable for the production of cheeses, as the Minas fresh. The production of this cheese includes the salting, by offering important functions for this product. The salting is performed by adding sodium chloride (NaCl, however in excess this salt may be harmful to consumer health. Then, it was evaluated the development of tree formulations of Minas fresh cheese sheep’s milk (100% NaCl – QA; 75% NaCl and 25% potassium chloride (KCl – QB; 50% NaCl and 50% KCl – QC and they were evaluated by physical-chemical, microbiological and sensorial analyzes. A partial replacement of NaCl by KCl did not influence the moisture, protein and ash contents, pH and water activity of the cheeses. Furthermore, a 50% substitution of NaCl by KCl enabled to obtain a cheese with reduced sodium content in relation to the standard with 100% NaCl. The sensorial analysis showed that the substitution of 50% (QC and 25% (QB of NaCl by KCl did not show significant for the overall acceptance index, however, the use of KCl was perceived by the evaluators, since the formulations QB and QC differed significantly from the standard (QA. However, in the multiple comparison test there was no significant difference between the samples. Thus, the results indicated that a partial replacement of NaCl by KCl can be performed at Minas fresh cheese from sheep’smilk.

  1. Potentiometric Determination of Free Chloride in Cement Paste – an ...

    African Journals Online (AJOL)

    ... cement paste.16 The accuracy and reliability of this analytical technique has been checked against a certified reference material, Merck sodium chloride solution. Confidence levels (CL0.95), of 0.03 and relative standard deviations of 0.2 % for chloride were determined for ordinary Portland cement (OPC) chloride binding ...

  2. Comparison of heparinized saline and 0.9% sodium chloride for maintaining peripheral intravenous catheter patency in dogs.

    Science.gov (United States)

    Ueda, Yu; Odunayo, Adesola; Mann, F A

    2013-01-01

    To determine whether heparinized saline would be more effective in maintaining the patency of peripheral IV catheters in dogs compared to 0.9% sodium chloride. Prospective blinded randomized study. University Veterinary Teaching Hospital. Thirty healthy purpose bred dogs, intended for use in the junior surgery laboratory, were utilized. The dogs were randomized into 1 of 3 groups, 2 treatment groups and a control group. An 18-Ga cephalic catheter was placed in the cephalic vein of each dog. Each dog in the treatment group had their catheter flushed with either 10 IU/mL heparinized saline or 0.9% sodium chloride every 6 hours for 42 hours. The dogs in the control group did not have their catheters flushed until the end of the study period. Immediately prior to flushing catheters, each catheter was evaluated for patency by aspiration of blood and the catheter site was evaluated for phlebitis. All dogs in the heparinized saline and 0.9% sodium chloride group had catheters that flushed easily at each evaluation point. More dogs in the saline group had catheters from which blood could not be aspirated, but there was no significant difference between these groups. All dogs in the control group had catheters that flushed easily at the end of the assigned 6 hour interval except in 1 dog. Phlebitis was not detected in any dog. Flushes of 0.9% sodium chloride were found to be as effective as 10 IU/mL heparinized saline flushes in maintaining patency of 18-Ga peripheral venous catheters in dogs for up to 42 hours. For peripheral catheters placed with the intention of performing serial blood draws, heparinized flushes may be warranted. © Veterinary Emergency and Critical Care Society 2013.

  3. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    Science.gov (United States)

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. A novel and efficient method for the immobilization of thermolysin using sodium chloride salting-in and consecutive microwave irradiation.

    Science.gov (United States)

    Chen, Feifei; Zhang, Fangkai; Du, Fangchuan; Wang, Anming; Gao, Weifang; Wang, Qiuyan; Yin, Xiaopu; Xie, Tian

    2012-07-01

    Sodium chloride salting-in and microwave irradiation were combined to drive thermolysin molecules into mesoporous support to obtain efficiently immobilized enzyme. When the concentration of sodium chloride was 3 M and microwave power was 40 W, 93.2% of the enzyme was coupled to the support by 3 min, and the maximum specific activity of the immobilized enzyme was 17,925.1 U mg(-1). This was a 4.5-fold increase in activity versus enzyme immobilized using conventional techniques, and a 1.6-fold increase versus free enzyme. Additionally, the thermal stability of the immobilized thermolysin was significantly improved. When incubated at 70°C, there was no reduction in activity by 3.5h, whereas free thermolysin lost most of its activity by 3h. Immobilization also protected the thermolysin against organic solvent denaturation. The microwave-assisted immobilization technique, combined with sodium chloride salting-in, could be applied to other sparsely soluble enzymes immobilization because of its simplicity and high efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    Science.gov (United States)

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  6. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  7. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    Science.gov (United States)

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction.

  8. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    Science.gov (United States)

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  9. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  10. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  11. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  12. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  13. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    Science.gov (United States)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  14. Sodium Chloride Supplementation Is Not Routinely Performed in the Majority of German and Austrian Infants with Classic Salt-Wasting Congenital Adrenal Hyperplasia and Has No Effect on Linear Growth and Hydrocortisone or Fludrocortisone Dose.

    Science.gov (United States)

    Bonfig, Walter; Roehl, Friedhelm; Riedl, Stefan; Brämswig, Jürgen; Richter-Unruh, Annette; Fricke-Otto, Susanne; Hübner, Angela; Bettendorf, Markus; Schönau, Eckhard; Dörr, Helmut; Holl, Reinhard W; Mohnike, Klaus

    2018-01-01

    Sodium chloride supplementation in salt-wasting congenital adrenal hyperplasia (CAH) is generally recommended in infants, but its implementation in routine care is very heterogeneous. To evaluate oral sodium chloride supplementation, growth, and hydrocortisone and fludrocortisone dose in infants with salt-wasting CAH due to 21-hydroxylase in 311 infants from the AQUAPE CAH database. Of 358 patients with classic CAH born between 1999 and 2015, 311 patients had salt-wasting CAH (133 females, 178 males). Of these, 86 patients (27.7%) received oral sodium chloride supplementation in a mean dose of 0.9 ± 1.4 mmol/kg/day (excluding nutritional sodium content) during the first year of life. 225 patients (72.3%) were not treated with sodium chloride. The percentage of sodium chloride-supplemented patients rose from 15.2% in children born 1999-2004 to 37.5% in children born 2011-2015. Sodium chloride-supplemented and -unsupplemented infants did not significantly differ in hydrocortisone and fludrocortisone dose, target height-corrected height-SDS, and BMI-SDS during the first 2 years of life. In the AQUAPE CAH database, approximately one-third of infants with salt-wasting CAH receive sodium chloride supplementation. Sodium chloride supplementation is performed more frequently in recent years. However, salt supplementation had no influence on growth, daily fludrocortisone and hydrocortisone dose, and frequency of adrenal crisis. © 2017 S. Karger AG, Basel.

  15. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    Science.gov (United States)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  16. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels

    International Nuclear Information System (INIS)

    Hill, J.; Harris, A.W.; Manning, M.; Chambers, A.; Swanton, S.W.

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 deg. C compared to those prepared at 25 deg. C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium

  17. The effect on serum enzymes of intramuscular injections of digoxin, bumetanide, pentazocine and isotonic sodium chloride

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Damsgaard, T

    1976-01-01

    Intramuscular injections of digoxin, bumetanide, pentazocine or isotonic sodium chloride have been given to 39 patients. We followed the serum concentrations of creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH) and LDH isoenzymes for 4 days. Ten patients receiving...

  18. Physicochemical characteristics and sensory acceptability of ready-to-eat sliced frozen roast beef with partial reduction of sodium chloride

    Directory of Open Access Journals (Sweden)

    Camila Vespúcio BIS

    2016-01-01

    Full Text Available Abstract Sodium chloride in meat products provides microbiological stability and desirable technological and sensory effects. Therefore, the reduction of this ingredient is a challenge for the meat industry. The objective of this study was to evaluate the physicochemical and sensory characteristics of ready-to-eat sliced frozen roast beef with partial replacement of sodium chloride by a commercial additive mostly composed of potassium chloride. The analyses performed were chemical composition, cooking yield and post defrosting loss, microbiological evaluation and sensory analysis. There was higher moisture content (p < 0.05 in the control treatment (without the presence of the replacement additive and all treatments were not different (p ≥ 0.05 in the cooking yield and in post-defrosting loss. The results of microbiological analysis are according to Brazilian Legislation. The sensory evaluation showed no difference between the control treatment and the T1 treatment (with the reduction of 35% of NaCl, while the T2 treatment (with reduction of 70% of NaCl had the lowest average values in all attributes. The study showed that the reduction of 35% NaCl for commercial additive, mostly composed of potassium chloride, in roast beef is feasible since no changes were observed in sensory and technological characteristics evaluated.

  19. Reduction of potassium permanganate solution by γ-irradiated sodium chloride [Paper No. RD-21

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Ravishankar, D.

    1982-01-01

    The dissolution of γ-irradiated sodium chloride in potassium permanganate solution results in the reduction of MnO 4 - ions. This has been inferred from spectrophotometric studies. This has been explained on the basis of interaction of colour centres with MnO 4 - ions. The extent to which MnO 4 - ions are reduced are found to vary with

  20. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny

    2009-01-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl−) and sodium (Na...

  1. Antifungal activity of essential oils when associated with sodium chloride or fatty acids

    Directory of Open Access Journals (Sweden)

    Tantatoui-Elaraki, Abdelthafour

    1994-12-01

    Full Text Available The inhibition of mycelium growth in a Zygorhynchus sp. and an Aspergillus niger isolates was studied. The inhibition rates (IR caused by 4 essential oils (EO, 5 fatty acids and sodium chloride at various concentrations were determined in Sabouraud Dextrose Agar.
    A synergy of action was observed between sodium chloride at 7.5% and the EO of thyme (0.04%, camomile (0.4% and mugwort (0.2 and 0.1% on A. niger and between sodium chloride (5% and the EO of camomile (0.1% and mugwort (0.1 and 0.01% and sodium chloride (7.5% and eucalyptus EO (0.4 and 0.2% on Zygorhynchus sp.
    Camomile EO (0.13% associated with propionic acid (0.075%, lauric acid (0.05% or oleic acid (0.15% led to synergetic effect on Zygorhynchus sp. as well as thyme EO (0.04 and 0.05%, respectively with propionic acid (0.1% and linolenic acid (0.075% on A. niger. Other combinations exerted no higher effects than each of the substances used alone.
    Practical applications of the results observed were discussed

    Se ha estudiado la inhibición del crecimiento miceliar en un aislamiento de Zygorhynchus sp. y otro de Aspergillus niger. Se determinaron las tasas (o índices de inhibición (IR en Agar Sabouraud Dextrosa provocados por varias concentraciones de 4 aceites esenciales (EG, 5 ácidos grasos y cloruro sódico.
    Se observó un efecto sinérgico entre cloruro sódico al 7.5% y los aceites esenciales de tomillo (0.04%, manzanilla (0.4% y artemisa (0.2 y 0.1% sobre A. niger, y entre cloruro sódico (5% y los aceites esenciales de manzanilla (0.1% y de artemisa (0.1 y 0.01%, así como cloruro sódico (7.5% y aceite esencial de eucalipto (0.4 y 0.2%, sobre Zygorhynchus sp.
    El aceite esencial de manzanilla (0.13% en asociación con ácido propiónico (0.075%, ácido láurico (0.05% o ácido oleico (0.15% provocó un efecto sinérgico sobre Zygorhynchus sp., de la misma forma

  2. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    International Nuclear Information System (INIS)

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  3. Investigating Seed Germination Indices and Absorption Rate of Sodium, Chloride, Calcium, and Potassium in Different Parts of Seedlings of Sweet Corn KSC 403 (Zea Mays L var. Saccharata Under Salinity Stress and Seed Priming

    Directory of Open Access Journals (Sweden)

    M. Nasrolah alhossini,

    2014-02-01

    Full Text Available To investigate the effects of different levels of seed priming on germination indices and nutrient absorption at early growth stages of sweet corn (Golden Kernel Hybrid a factorial experiment based on completely randomized design was conducted with three replications in 2011. The experiment consists of 6 levels of primings (seeds without priming, priming with tap water, priming with distilled water, priming with sodium chloride, potassium chloride, and hydrous calcium chloride and five levels of salinity (zero, 4, 8, 12 and 16 ds/m sodium chloride. The characteristics studied were germination percentage, germination rate, root and shoot length, fresh weight and dry weight of seedling, root to shoot ratio and determination of sodium, chloride, calcium, and potassium concentration in different parts of seedlings (stems, roots and seed. The results indicated that increasing salinity stress levels decreased all parameters measured. Priming seeds with hydrated calcium chloride responded to significantly to salinity stress better than other treatments. Results also showed that increasing concentration of sodium chloride salt, increased absorption rate of sodium but concentration of calcium and potassium were reduced. Because application of hydrous calcium chloride stimulates cell in using calcium under salinity conditions it leads to improved seedling growth parameters. To achieve a more accurate results slicing interaction effect of seed priming×salinity levels was performed. Hydrous calcium chloride treatments improved all traits under study except sodium and potassium concentration. This represents a better performance of seeds germination under salinity stress when seeds primed with hydrous calcium chloride.

  4. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  5. Corrosion of nickel in potassium and sodium chloride melts containing vanadium trichloride

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Ponomarev, Yu.S.; Bezvoritnij, V.A.; Bajbakov, D.P.

    1976-01-01

    Corrosion of nickel has been studied by the method of the rotating disc in melts of potassium and sodium chlorides containing vanadium trichloride in the concentration 0-20.0 wt.% in the temperature range 1103-1328 K. Corrosion proceeds in the diffusion region, the corrosion rate being controlled by diffusion of either V 3+ or V 2+ depending on the concentration of VCl 3 in the melts. The apparent activation energy of nickel corrosion is 43,110-74660 joule/mol

  6. Behavioural and gill histopathological effects of acute exposure to sodium chloride in moneda (Metynnis orinocensis)

    DEFF Research Database (Denmark)

    Velasco-Santamaría, Yohana M.; Cruz-Casallas, Pablo E.

    2008-01-01

    To evaluate the toxicity of sodium chloride (NaCl), juveniles and adult Metynnis orinocensis were exposed for 96 h to 0, 5, 10, 15, 20 or 40 g L-1 of salt. Food intake, behaviour, opercular frequency (OF), mortality, body weight and gill microscopic alterations were evaluated. Behavioural changes...

  7. Extractive process for preparing high purity magnesium chloride hexahydrate

    Directory of Open Access Journals (Sweden)

    Fezei Radouanne

    2012-01-01

    Full Text Available This paper refers a method for the preparation of magnesium chloride hexahydrate (bischofite from Sebkha el Melah of Zarzis Tunisian natural brine. It is a five-stage process essentially based on crystallization by isothermal evaporation and chemical precipitation. The two first steps were dedicated to the crystallization of sodium chloride and potassiummagnesium double salts, respectively. Then, the resulting liquor was desulfated using calcium chloride solution. After that another isothermal evaporation stage was implemented in order to eliminate potassium ions in the form of carnallite, KCl.MgCl2.6H2O. At the end of this step, the recovered solution primarily composed of magnesium and chloride ions was treated by dioxan in order to precipitate magnesium chloride as MgCl2.6H2O.C4H8O2. This compound dried at constant temperature of 100°C gave good quality magnesium chloride hexahydrate. Besides this salt, the various by-products obtained from the different treatment stages are also useful.

  8. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  9. Acute toxicity of sodium chloride, pentachlorophenol, Guthion, and hexavalent chromium to fathead minnows (Pimephales promelas) and goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, I.R.; Smith, L.L. Jr.; Siesennop, G.D.

    1976-02-01

    The 96-h LC50's for sodium chloride were 7650 and 7341 mg/liter, for pentachlorophenol 0.21 and 0.22 mg/liter, for Guthion 1.9 and 2.4 mg/liter, and for hexavalent chromium 48 and 120 mg/liter, for fathead minnows (Pimephales promelas) and goldfish (Carassius auratus), respectively. Threshold LC50's were reached in 6 days for sodium chloride (7650 and 7322 mg/liter for fathead minnows and goldfish, respectively), and pentachlorophenol (0.21 and 0.21 mg/liter), but were not attained in 11 days (termination of testing) with Guthion (0.76 and 0.80 mg/liter) and hexavalent chromium (18 and 33 mg/liter). With pentachlorophenol and Guthion goldfish were initially more resistant, but by termination there was no significant difference in LC50's between the two species. With hexavalent chromium the goldfish were more resistant throughout the 11-day test, and with sodium chloride goldfish were initially more resistant but at attainment of a threshold LC50 were less resistant. Use of toxicity curves for assessment of acute mortality permits interpretation not possible in 96-h tests where LC50's are computed at 24-h intervals.

  10. Sodium chloride and potassium sorbate: a synergistic combination against Enterococcus faecalis biofilms: an in vitro study

    NARCIS (Netherlands)

    van der Waal, S.V.; Jiang, L.M.; de Soet, J.J.; van der Sluis, L.W.M.; Wesselink, P.R.; Crielaard, W.

    2012-01-01

    Incomplete disinfection of the root canal system is a major cause of post-treatment disease. This study aimed to investigate the disinfecting property of organic acid salts and sodium chloride (NaCl), in a double-hurdle strategy, on Enterococcus faecalis biofilms. First of all, the high-throughput

  11. Sodium chloride and potassium sorbate : a synergistic combination against Enterococcus faecalis biofilms: an in vitro study

    NARCIS (Netherlands)

    van der Waal, Suzette V.; Jiang, Lei-Meng; de Soet, Johannes J.; van der Sluis, Lucas W. M.; Wesselink, Paul R.; Crielaard, Wim

    2012-01-01

    Incomplete disinfection of the root canal system is a major cause of post-treatment disease. This study aimed to investigate the disinfecting property of organic acid salts and sodium chloride (NaCl), in a double-hurdle strategy, on Enterococcus faecalis biofilms. First of all, the high-throughput

  12. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 8 (2016), s. 1454-1460 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics * neutron scattering * agueous sodium chloride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  13. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Patricia L., E-mail: patty.gillis@ec.gc.ca [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R-4A6 (Canada)

    2011-06-15

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L{sup -1} (reconstituted water, 100 mg CaCO{sub 3} L{sup -1}). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO{sub 3} L{sup -1}) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L{sup -1}) than in reconstituted water (EC50 285 mg L{sup -1}). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L{sup -1}). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: > Compared to other aquatic organisms glochidia are very sensitive to chloride. > Glochidia were less sensitive to salt in natural water than in reconstituted water. > Glochidia were less sensitive to salt in hard water than in soft water. > Road salt runoff may pose a threat to the reproduction of freshwater mussels. > Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  14. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    International Nuclear Information System (INIS)

    Gillis, Patricia L.

    2011-01-01

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L -1 (reconstituted water, 100 mg CaCO 3 L -1 ). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO 3 L -1 ) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L -1 ) than in reconstituted water (EC50 285 mg L -1 ). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L -1 ). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: → Compared to other aquatic organisms glochidia are very sensitive to chloride. → Glochidia were less sensitive to salt in natural water than in reconstituted water. → Glochidia were less sensitive to salt in hard water than in soft water. → Road salt runoff may pose a threat to the reproduction of freshwater mussels. → Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  15. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  16. Localized corrosion of alloys C-276 and 625 in aerated sodium chloride solutions at 25 to 200 degrees C

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1991-12-01

    Two molybdenum-bearing nickel alloys, Alloy C-276 and Alloy 625, were previously identified for consideration as candidate container materials for the Canadian Nuclear Fuel Waste Management Program. Because of the paucity of data for the localized corrosion behaviour of these passive alloys under conditions that may be experienced in a disposal vault, this project was undertaken to study the crevice and pitting corrosion of Alloys C-276 and 625 in chloride solutions at elevated temperatures. Electrochemical and immersion tests have been conducted in neutral sodium chloride solutions (0.1 wt% to saturated) at 25 to 200 degrees C, in an attempt to identify the conditions under which localized corrosion occurs and to relate the actual corrosion behaviour to that expected on the basis of electrochemical studies. Cyclic polarization studies showed that the passivation breakdown potentials move rapidly to more active values with increasing temperatures. Above 100 degrees C the resistance to localized corrosion is greatly reduced. The results of the immersion tests are presented in the form of T versus (C1-) diagrams. These susceptibility diagrams suggest that there is a limiting crevice-corrosion temperature for each alloy in aerated, neutral sodium chloride solutions. Below this temperature corrosion does not occur, regardless of the chloride concentration. The values of the limiting crevice-corrosion temperatures were in the range 100 to 125 degrees C for Alloy C-276 and 100 to 115 degrees C for Alloy 625. Such values suggest that saturation of the chloride solutions by surface boiling could occur without the initiation of localized corrosion. These electrochemical results indicate that a large safety margin for susceptibility to localized corrosion might be found below 100 degrees C

  17. Cerium(terbium, erbium)chloride-choline chloride aqueous systems

    International Nuclear Information System (INIS)

    Gajfutdinova, R.K.; Zhuravlev, E.F.; Bikbaeva, G.G.; Domrachev, V.N.; Vanskova, G.I.

    1985-01-01

    To clarify the effect of rare earth nature on mutual solubility of rare earth salts and amines the solubility of solid phases in the systems, consisting of choline chloride, water and cerium, terbium, erbium chlorides, has been studied. It is established, that solubility isotherms of all the systems, testify to the formation of new solid phases of the composition: Ce(Tb, Er)xCl 3 x2C 5 H 14 ONClx3H 2 O. Individuality of new solid phases is proved by DTA method, the composition is confirmed by chemical analysis and data of PMR spectra, for choline chloride and its complexes with rare earth chlorides of the given composition PMR and IR spectra are studied

  18. The role of chloride in deoxycorticosterone hypertension: selective sodium loading by diet or drinking fluid

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Zicha, Josef; Jelínek, Jiří

    2004-01-01

    Roč. 53, č. 2 (2004), s. 149-154 ISSN 0862-8408 R&D Projects: GA ČR GA305/03/0769; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : sodium * chloride * DOCA-salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.140, year: 2004

  19. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  20. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  1. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride.

    Science.gov (United States)

    Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bogdanović, Danica Bajuk; Dondur, Vera; Milić, Jela

    2011-03-01

    In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously. 2010 Elsevier B.V. All rights reserved.

  2. Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Rodríguez, Diana M.; Ribeiro, Ana C.F.; Esteso, Miguel A.

    2017-01-01

    Highlights: • Apparent volumes, apparent compressibilities, viscosities of DL-2-aminobutyric acid. • Effect of temperature on the values for these properties. • Hydrophobic and hydrophilic interactions and the effect of sodium chloride. - Abstract: Density, sound velocity and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. The experimental results were used to determine the apparent molar volume and the apparent molar compressibility as a function of composition at these temperatures. The limiting values of both the partial molar volume and the partial molar adiabatic compressibility at infinite dilution of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions were determined at each temperature. The experimental viscosity values were adjusted by a least-squares method to a second order equation as proposed by Tsangaris-Martin to obtain the viscosity B coefficient which depends on the size, shape and charge of the solute molecule. The influence of the temperature on the behaviour of the selected properties is discussed in terms of both the solute hydration and the balance between hydrophobic and hydrophilic interactions between the acids and water, and the effect of the sodium chloride concentration.

  3. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion

    NARCIS (Netherlands)

    Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Olde Engberink, Rik H. G.; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C.; Titze, Jens

    2016-01-01

    The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on

  4. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  5. Electrochemical Migration on Electronic Chip Resistors in Chloride Environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Electrochemical migration behavior of end terminals on ceramic chip resistors (CCRs) was studied using a novel experimental setup in varying sodium chloride concentrations from 0 to 1000 ppm. The chip resistor used for the investigation was 10-kΩ CCR size 0805 with end terminals made of 97Sn3Pb...... rate of the Sn and stability of Sn ions in the solution layer play a significant role in the formation of dendrites, which is controlled by chloride concentration and potential bias. Morphology, composition, and resistance of the dendrites were dependent on chloride concentration and potential....

  6. Effect of gamma irradiation in sterilization of dry dextran as plasma substitute and sodium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Piatkiewicz, A; Kusewicz, D [Politechnika Lodzka (Poland)

    1975-01-01

    The exposure of dry dextran, sodium chloride and polyethylene packing to 0,3-2 Mrad of gamma irradiation decreased their contamination by 60 to 96%. The sterilization effect of irradiation increased with gamma-ray dose. Spores of Bacillus subtilis and Aspergillus niger were shown to be the most resistant to gamma-ray treatment. In some samples the resistant Micrococcus was also detected.

  7. Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products.

    Science.gov (United States)

    Kameník, Josef; Saláková, Alena; Vyskočilová, Věra; Pechová, Alena; Haruštiaková, Danka

    2017-09-01

    The aim of this study was to determine the salt content in selected cooked meat products by the methods of determining the sodium content and the content of chlorides. The resulting data was compared with other chemical, instrumental and sensory parameters of the analysed samples. A total of 133 samples of 5 meat products were tested. The sodium content ranged from 558.0 to 1308.0mgNa/100g. Salt level determined by the two methods strongly correlated and did not differ in any meat product. Intensity of salty taste of the product was independent on its salt content. The salt (sodium) content may be reduced without a negative impact on sensory or instrumental properties of meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  9. Chloride flux from blood to CSF: inhibition by furosemide and bumetanide

    International Nuclear Information System (INIS)

    Johnson, D.C.; Singer, S.; Hoop, B.; Kazemi, H.

    1987-01-01

    Movement of chloride from blood to cerebrospinal fluid (CSF) is one of the factors that may be involved in regulation of CSF [Cl-], which is important to CSF acid-base balance. We made quantitative measurements of the unidirectional flux of radiolabeled chloride between blood and CSF in anesthetized dogs, using 38 Cl, a short-lived isotope (half-life 37.3 min). This allowed multiple studies to be performed in a given animal. A three-compartment model for the blood, CSF, brain extracellular fluid, and ventriculocisternal perfusion system was used to determine the flux rate. With normocapnia, the flux was 0.01.1 min-1. The influx could be reproducibly measured for three separate determinations in the same animal over a period of 6 h, being 98 +/- 6% of the control first run on the second run and 113 +/- 6% on the third. Furosemide and bumetanide, inhibitors of sodium-coupled chloride movement, lowered the flux to 43 +/- 3% and 55 +/- 6% of control, respectively. The combination of hypercapnia and furosemide lowered the influx to 63 +/- 9% of control. These results indicate that a major mechanism of chloride entry into CSF is sodium-coupled chloride transport

  10. Determination of lutetium (III) hydrolysis constants in the middle of ion force 1M sodium chloride at 303 K

    International Nuclear Information System (INIS)

    Jimenez R, M.; Solache R, M.J.; Ramirez G, J.J.; Rojas H, A.

    1997-01-01

    With the purpose to complete information about the lutetium (III) hydrolysis constants here is used the potentiometric method to determine those in the middle of ion force 1M sodium chloride at 303 K. (Author)

  11. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  12. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  13. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...... of depth and time, when both the surface chloride concentration and the diffusion coefficient are allowed to vary in time. The model is presented in a companion paper....

  14. Determination of chloride content in crystalline silicotitanate

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Crystalline Silicotitanate (CST) is one of three options under evaluation to replace the In-Tank Precipitation process. This Salt Disposition Alternatives team identified three options for pretreatment of High Level Waste supernate: non-elutable ion exchange, precipitation with sodium tetraphenylborate or direct disposal in grout. The ion exchange option would use crystalline silicotitanate (CST). Researchers at Texas A and M and Sandia National Laboratory developed CST. The engineered form of CST was procured from UOP LLC under the trade name IONSIVreg s ign IE-911. Review of vendor literature and discussions with UOP personnel led to speculation concerning the fate of chloride ion during the manufacture process of IE-911. Walker proposed tests to examine the chloride content of CST and removal methods. This report describes the results of tests to determine the chloride levels in as received CST and washed CST

  15. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  16. Chloride Test

    Science.gov (United States)

    ... metabolic acidosis ) or when a person hyperventilates (causing respiratory alkalosis ). A decreased level of blood chloride (called hypochloremia) ... disease , emphysema or other chronic lung diseases (causing respiratory ... metabolic alkalosis). An increased level of urine chloride can indicate ...

  17. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  18. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  19. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population.

    Science.gov (United States)

    Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G

    2018-04-01

    Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.

  20. Potato plants (Solanum tuberosum L.) are chloride-sensitive: Is this dogma valid?

    Science.gov (United States)

    Hütsch, Birgit W; Keipp, Katrin; Glaser, Ann-Kathrin; Schubert, Sven

    2018-06-01

    Chloride sensitivity of the potato (Solanum tuberosum L.) cultivars Marabel and Désirée was investigated in two pot experiments (soil/sand mixture and hydroponics). It was tested whether there are differential effects of KCl and K 2 SO 4 application on tuber yield and tuber quality, and whether both potato cultivars differ in their chloride sensitivity. Tuber yield, dry matter percentage of the tubers, starch concentration and starch yield were not significantly affected by potassium source (K 2 SO 4 or KCl). After exposure to salt stress in hydroponics (100 mmol L -1 NaCl, 50 mmol L -1 Na 2 SO 4 , 50 mmol L -1 CaCl 2 ) for 5 days, 3-week-old potato plants had significantly reduced shoot dry mass after NaCl and Na 2 SO 4 application. However, CaCl 2 treatment did not significantly affect shoot growth, although the chloride concentration reached 65 to 74 mg Cl - mg -1 dry matter, similar to the NaCl treatment. In contrast, growth reductions were closely related to sodium concentrations, thus plants suffered sodium toxicity and not chloride toxicity. Both potato cultivars are chloride-resistant and can be fertilised with KCl instead of K 2 SO 4 without the risk of depression in tuber yield or tuber quality. The statement that potatoes are chloride-sensitive and that chloride has negative effects on yield performance needs reconsideration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  2. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion.

    Science.gov (United States)

    Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Engberink, Rik Hg Olde; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2016-07-01

    The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. We were able to test the value of 24-h urine collections in a unique, ultra-long-term balance study conducted during a simulated trip to Mars. Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland-Altman analyses on the value of urine collections to estimate intake. A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals. © 2016 American Society for Nutrition.

  3. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  4. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Priyadarsini Kumar

    Full Text Available Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2 and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts and a villous pathway (giving rise to multinucleated syncytiotrophoblast. Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion. Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNF

  5. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (−) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  6. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Kim

    2014-01-01

    Full Text Available This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS, on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (− charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45 is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete.

  7. Reaction of Hydrogen Chloride Gas with Sodium Carbonate and Its Deep Removal in a Fixed-Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal; Chen, Po-Ch.

    2014-01-01

    Roč. 53, č. 49 (2014), s. 19145-19158 ISSN 0888-5885 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 102WBS0300011 Institutional support: RVO:67985858 Keywords : hot fuel gas purification * hydrogen chloride gas * active sodium carbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.587, year: 2014

  8. Sodium Chloride Crystal-Induced SERS Platform for Controlled Highly Sensitive Detection of Illicit Drugs.

    Science.gov (United States)

    Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao

    2018-04-03

    A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  10. Model investigations for trace analysis of iodine, uranium, and technetium in saturated sodium chloride leaching solutions of stored radioactive waste

    International Nuclear Information System (INIS)

    Jegle, U.

    1989-02-01

    This paper describes the development of a time and cost saving chromatographic technique, which allows the matrix to be separated and the most important species to be analyzed in a leaching solution of vitrified radioactive waste. Uranium, iodine, and technetium were chosen for the model technique to be elaborated. In a first step, iodide and pertechnetate were separated from the matrix by the strongly basic AG 1X 8 anion exchange resin and then separated from each other by selective elution. The uranyl ions eluted with the sodium chloride matrix were separated from the excess of sodium chloride in a second step, again by adsorption to the strongly basic resin. The ion-selective electrode was found to be a suitable tool for iodide analysis. Pertechnetate was analysed by means of liquid scintillation. Uranium was determined by ICP-AES. (orig./RB) [de

  11. Chloride flux in phagocytes.

    Science.gov (United States)

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  13. Stability study of methotrexate in 0.9% sodium chloride injection and 5% dextrose injection with limit tests for impurities

    DEFF Research Database (Denmark)

    Nissen, Klaus; Bogedal Jorgensen, Lene; Lindegaard Berg, Dorthe

    2017-01-01

    Purpose. Results of an evaluation of the stability of methotrexate in 0.9% sodium chloride injection and 5% dextrose injection are presented. Methods. Methotrexate concentrated solution (100 mg/mL) was diluted to nominal concentrations of 0.2 and 20 mg/mL in infusion bags containing 0.9% sodium...... chloride injection or 5% dextrose injection. The filled bags were stored for 28 days at 25 °C and 60% relative humidity and protected from light. Samples were withdrawn for analysis on the day of preparation and after 3, 7, 14, 21, and 28 days. The test program included visual inspections, measurements...... in amounts of known and unknown degradation products were detected. In 5% dextrose injection, methotrexate at the higher concentration was stable for 28 days, with minor formation of degradation products; in the 0.2-mg/mL solution, however, methotrexate was stable for only 3 days. At later time points...

  14. The Influence of Salt Water on Chloride Penetration in Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Halim Like Novia

    2017-01-01

    Full Text Available This paper presents the influence of chloride ion penetration in geopolymer concrete. Fly ash as based material for geopolymer concrete was used in this mixture. Fly ash was mixed with sodium hydroxide (NaOH 8 M and sodium silicate (Na2SiO3 as the alkali solution. The sizes of cylindrical specimens were prepared with a diameter of 100 mm and 200 mm high. Some specimens were immersed in salt water at a concentration of 3.5%, and other control specimens were cured in tap water for 30, 60, 90, and 120 days. The mechanical properties were determined with compressive test which was conducted at 28, 30, 60, 90 and 120 days. Some durability tests were performed for porosity, chloride penetration, and pH measurement. It was found that geopolymer concrete has higher compressive strength than concrete made with Ordinary Portland cement (OPC. However, chloride penetration in geopolymer concrete is higher than OPC. The pH measurement showed that geopolymer concrete has less pH than OPC concrete. The porosity of concrete has been found to influence chloride penetration and pH of concrete.

  15. Ultra-long–term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion12

    Science.gov (United States)

    Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Engberink, Rik HG Olde; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2016-01-01

    Background: The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. Objective: We were able to test the value of 24-h urine collections in a unique, ultra-long–term balance study conducted during a simulated trip to Mars. Design: Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. Results: Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland–Altman analyses on the value of urine collections to estimate intake. Conclusions: A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals. PMID:27225435

  16. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  17. Chloride test - blood

    Science.gov (United States)

    Serum chloride test ... A greater-than-normal level of chloride is called hyperchloremia. It may be due to: Carbonic anhydrase inhibitors (used to treat glaucoma) Diarrhea Metabolic acidosis Respiratory alkalosis (compensated) Renal ...

  18. Chloride in diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002417.htm Chloride in diet To use the sharing features on this page, please enable JavaScript. Chloride is found in many chemicals and other substances ...

  19. Mercuric chloride poisoning

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002474.htm Mercuric chloride poisoning To use the sharing features on this page, please enable JavaScript. Mercuric chloride is a very poisonous form of mercury. It ...

  20. EFFECTS OF SODIUM CHLORIDE ON GROWTH AND MINERAL NUTRITION OF PURPLETOP VERVAIN

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2016-04-01

    Full Text Available There is a rising demand for salt-tolerant species for landscaping. Purpletop vervain is an excellent landscape plant for gardens and parks, with fragrant lavender to rose-purple flowers. However, little is known concerning the effect of sodium chloride on morphological characteristics, flowering and mineral uptake of purpletop vervain. In this study, carried out in 2013–2014, the plants of purpletop vervain were grown in pots in an unheated plastic tunnel. The plants were watered with 200 mM NaCl solution four times, every seven days. Salinity-exposed plants were characterized by slightly reduced plant height, weight of the aboveground part and visual score. Salt stress caused also an increase in leaf content sodium, chlorine and manganese. Salinity had no effect on earliness of flowering and content in leaves of phosphorus, potassium, magnesium, copper, zinc and iron. Purpletop vervain seems to be plant species able to tolerate salt stress under controlled conditions.

  1. Chloride removal from vitrification offgas

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  2. Chloride removal from vitrification offgas

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1995-01-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations

  3. Relations of enzymes inAspergillus repens grown under sodium chloride stress.

    Science.gov (United States)

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.

  4. Effect of combinations of gamma irradiation, hot water, Sodium chloride, and Acetic acid treatments on potato-dry rot

    International Nuclear Information System (INIS)

    El-Zayat, M.M.; Farahat, A.A.; Saad, N.H.; Shaarawy, N.S.M.

    1992-01-01

    Gamma irradiation increased the severity of dry rot in potato tubers when they were inoculated with any of 4 species of Fusarium, previously isolated either from irradiated or unirradiated tubers. Treating either irradiated or unirradiated tubers with warm water or sodium chloride solutions following inoculation with F. roseum also increased the severity of dry rot to some extent

  5. Stability of Diphenhydramine Hydrochloride, Lorazepam, and Dexamethasone Sodium Phosphate in 0.9% Sodium Chloride Stored in Polypropylene Syringes.

    Science.gov (United States)

    Anderson, Collin R; Halford, Zachery; MacKay, Mark

    2015-01-01

    Chemotherapy induced nausea and vomiting is problematic for many patients undergoing chemotherapy. Multiple-drug treatments have been developed to mitigate chemotherapy induced nausea and vomiting. A patient-controlled infusion of diphenhydramine hydrochloride, lorazepam, and dexamethasone sodium phosphate has been studied in patients who are refractory to first-line therapy. Unfortunately, the physical and chemical compatibility of this three-drug combination is not available in the published literature. Chemical compatibility was evaluated using high-performance liquid chromatography with ultraviolet detection. Visual observation was employed to detect change in color, clarity, or gas evolution. Turbidity and pH measurements were performed in conjunction with visual observation at hours 0, 24, and 48. Results showed that diphenhydramine hydrochloride 4 mg/mL, lorazepam 0.16 mg/mL, and dexamethasone sodium phosphate 0.27 mg/mL in 0.9% sodium chloride stored in polypropylene syringes were compatible, and components retained greater than 95% of their original concentration over 48 hours when stored at room temperature.

  6. Inactivation of Biological Agents Using Neutral Oxone-Chloride Solutions

    National Research Council Canada - National Science Library

    Delcomyn, Carrie A; Bushway, Karen E; Henley, Michael V

    2006-01-01

    ... to contaminated equipment or terrain. A neutral, bicarbonate-buffered aqueous solution of Oxone and sodium chloride that rapidly generates hypochlorite and hypochlorous acid in situ was evaluated as a new alternative to bleach...

  7. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  8. Chloride Transport in Heterogeneous Formation

    Science.gov (United States)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  9. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  10. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-05-01

    Full Text Available Chloride is commonly used as an environmental tracer for studying water flow and solute transport in the environment. It is especially useful for estimating groundwater recharge based on the commonly used chloride mass balance (CMB method. Strong spatial variability in chloride deposition in coastal areas is one difficulty encountered in appropriately applying the method. A high-resolution bulk chloride deposition map in the coastal region is thus needed. The aim of this study is to construct a chloride deposition map in the Mount Lofty Ranges (MLR, a coastal hilly area of approximately 9000 km2 spatial extent in South Australia. We examined geographic (related to coastal distance, orographic, and atmospheric factors that may influence chloride deposition, using partial correlation and regression analyses. The results indicate that coastal distance, elevation, as well as terrain aspect and slope, appear to be significant factors controlling chloride deposition in the study area. Coastal distance accounts for 70% of spatial variability in bulk chloride deposition, with elevation, terrain aspect and slope an additional 15%. The results are incorporated into a de-trended residual kriging model (ASOADeK to produce a 1 km×1 km resolution bulk chloride deposition and concentration maps. The average uncertainty of the deposition map is about 20–30% in the western MLR, and 40–50% in the eastern MLR. The maps will form a useful basis for examining catchment chloride balance for the CMB application in the study area.

  11. 33 Effects of Sodium Chloride Solutions on Compressive Strength ...

    African Journals Online (AJOL)

    Arc. Usman A. Jalam

    strength increase at 3 and 7 days over control cubes; at 28 days concrete cubes containing 5%. RHA cured in NaCl solutions recorded higher strength loss compared to control cubes. Keywords: ... chloride in mixing water reported it to cause.

  12. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  13. Analysis of PWR auxiliary coolant: determination of chloride in borax/nitrite solution by known addition - known dilution potentiometry

    International Nuclear Information System (INIS)

    Midgley, D.; Gatford, C.

    1989-11-01

    Chloride concentrations of 75-250 μg 1 -1 have been determined in simulated PWR auxiliary coolant containing 1000 mg l -1 each of sodium tetraborate and sodium nitrite. The effects of the two main components of the coolant solution on a variety of chloride-selective electrodes have been studied. Sodium tetraborate posed no problem except through its effect on the pH, which is easily adjusted. Such high concentrations of nitrite, however, caused significant deviations in e.m.f. for all the electrodes and marked tarnishing of the electroactive membrane after only one or two measurements. Sulphamic acid was selected as the best means of removing nitrite and silver chloride electrodes were preferred over mercury(I) chloride electrodes because of their greater robustness in the conditions. At these chloride concentrations, the electrodes are operating in their non-Nernstian response regions and direct potentiometry has poor precision, even if standards could be successfully matched to samples containing such high concentrations of background material. Known addition - known dilution potentiometry was adopted, with internal calibration for both slope factor and standard potential. (author)

  14. Long-term stability of temocillin in dextrose 5% and in sodium chloride 0.9% polyolefin bags at 5 ± 3°C after freeze-thaw treatment.

    Science.gov (United States)

    Rolin, C; Hecq, J-D; Tulkens, P; Vanbeckbergen, D; Jamart, J; Galanti, L

    2011-11-01

    The aim of this study was to investigate the stability of a mixture of temocillin 20mg/ml in 5% dextrose and in 0.9% sodium chloride polyolefin bags after freezing, microwave thawing and long-term storage at 5±3°C. The stability of ten polyolefin bags containing 20mg/ml of temocillin, five bags in 5% dextrose and five bags in 0.9% sodium chloride, prepared under aseptic conditions was studied after freezing for 1 month at -20°C, thawing in a microwave oven with a validated cycle, and stored at 5±3°C. Over 30 days, temocillin concentrations were measured by high-pressure liquid chromatography. Visual inspections, microscope observation, spectrophotometric measurements and pH measurements were also performed. No precipitation occurred in the preparations but minor colour change was observed. No microaggregate was observed with optical microscopy or revealed by a change of absorbance. Based on a shelf life of 95% residual potency, temocillin infusions were stable at least 11 days in 5% dextrose and 14 days in 0.9% sodium chloride after freezing and microwave thawing (corresponding at the period where 95% lower confidence limit of the concentration-time profile remained superior to 95% of the initial concentration). During this period, the pH values of drug solutions have been observed to decrease without affecting chromatographic parameters. Within these limits, temocillin in 5% dextrose and in 0.9% sodium chloride infusions may be prepared and frozen in advance by a centralized intravenous admixture service then thawed before use in clinical units. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Dynamic electrochemical measurement of chloride ions

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, Derk B.; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement,

  16. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  17. Localized corrosion of molybdenum-bearing nickel alloys in chloride solutions

    International Nuclear Information System (INIS)

    Postlethwaite, J.; Scoular, R.J.; Dobbin, M.H.

    1988-01-01

    Electrochemical and immersion tests have been applied to a study of the localized corrosion resistance of two molybdenum-bearing nickel alloys. Alloys C-276 and 6y25, in neutral chloride solutions in the temperature range of 25 to 200 C as part of the container materials evaluation screening tests for the Canadian Nuclear Fuel Waste Management Program. Cyclic polarization studies show that the passivation breakdown potentials move rapidly to more active values with increasing temperatures, indicating a reduced resistance to localized corrosion. The results of immersion tests show that both alloys do suffer crevice corrosion in neutral aerated sodium chloride solutions at elevated temperatures, but that in both cases there is a limiting temperature > 100C, below which, the alloys are not attacked, regardless of the chloride concentration

  18. Facile Preparation of Chloride-Conducting Membranes : First Step towards a Room-Temperature Solid-State Chloride-Ion Battery

    NARCIS (Netherlands)

    Gschwind, Fabienne; Steinle, Dominik; Sandbeck, Daniel; Schmidt, Celine; von Hauff, Elizabeth

    2016-01-01

    Three types of chloride-conducting membranes based on polyvinyl chloride, commercial gelatin, and polyvinyldifluoride-hexafluoropolymer are introduced in this report. The polymers are mixed with chloride-containing salts, such as tetrabutylammonium chloride, and cast to form membranes. We studied

  19. Calcium phosphate stabilization of fly ash with chloride extraction.

    Science.gov (United States)

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  20. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    Science.gov (United States)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  1. Titanocene(III) chloride mediated radical induced addition ...

    Indian Academy of Sciences (India)

    Reduction of the aldehyde 10 with sodium boro- hydride in the presence of CeCl3.7H2O furnished the alcohol 11 which was finally brominated using PBr3 to yield the dibromo compound 12.13. Thus, a series of bromoepoxides were prepared and subjected to radical cyclization using titanocene(III) chloride and the results ...

  2. Electrochemical chloride extraction of a beam polluted by chlorides after 40 years in the sea

    OpenAIRE

    BOUTEILLER, Véronique; LAPLAUD, André; MALOULA, Aurélie; MORELLE, René Stéphane; DUCHESNE, Béatrice; MORIN, Mathieu

    2006-01-01

    A beam element, naturally polluted by chlorides after 40 years of a marine tidal exposure, has been treated by electrochemical chloride extraction. The chloride profiles, before and after treatment, show that free chlorides are extrated with an efficiency of 70 % close to the steel, 50 % in the intermediate cover and only 5 % at the concrete surface. From the electrochemical characterizations (before, after, 1, 2 and 17 months after treatment), the steel potential values can, semehow, indicat...

  3. Sorption of sulphur dioxide in calcium chloride and nitrate chloride liquids

    International Nuclear Information System (INIS)

    Trzepierczynska, I.; Gostomczyk, M.A.

    1989-01-01

    Flue gas desulphurization via application of suspensions has one inherent disadvantage: fixation of sulphur dioxide is very poor. This should be attributed to the low content of calcium ions which results from the solubility of the sorbing species. The solubility of sparingly soluble salts (CaO, CaCO 3 ) may be increased by decreasing the pH of the solution; yet, there is a serious limitation in this method: the corrosivity of the scrubber. The objective of this paper was to assess the sorbing capacity of two soluble calcium salts, calcium chloride and calcium nitrate, as a function of calcium ion concentration in the range of 20 to 82 kg/m 3 . It has been found that sorbing capacity increases with the increasing calcium ion concentration until the calcium concentration in the calcium chloride solution reaches the level of 60 kg/m 3 which is equivalent to the chloride ion content of ∼ 110 kg/m 3 . Addition of calcium hydroxide to the solutions brings about an increase in the sorbing capacity up to 1.6 kg/m 3 and 2.2 kg/m 3 for calcium chloride and calcium nitrate, respectively, as a result of the increased sorbent alkalinity. The sorption capacity of the solutions is considerably enhanced by supplementing them by acetate ions (2.8 to 13.9 kg/m 3 ). Increase in the sorption capacity of calcium nitrate solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions supplemented in the same way. (author). 12 refs, 7 refs, 4 tabs

  4. 21 CFR 173.375 - Cetylpyridinium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  5. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  6. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  7. Pseudo-Bartter syndrome in an infant with congenital chloride diarrhoea.

    Science.gov (United States)

    Igrutinović, Zoran; Peco-Antić, Amira; Radlović, Nedeljko; Vuletić, Biljana; Marković, Slavica; Vujić, Ana; Rasković, Zorica

    2011-01-01

    Pseudo-Bartter syndrome encompasses a heterogenous group of disorders similar to Bartter syndrome. We are presenting an infant with pseudo-Bartter syndrome caused by congenital chloride diarrhoea. A male newborn born in the 37th gestational week (GW) to young healthy and non-consanguineous parents. In the 35th GW a polyhydramnios with bowel dilatation was verified by ultrasonography. After birth he manifested several episodes of hyponatremic dehydration with hypochloraemia, hypokalaemia and metabolic alkalosis, so as Bartter syndrome was suspected treatment with indomethacin, spironolactone and additional intake of NaCl was initiated. However, this therapy gave no results, so that at age six months he was rehospitalized under the features of persistent watery diarrhoea, vomiting, dehydration and acute renal failure (serum creatinine 123 micromol/L). The laboratory results showed hyponatraemia (123 mmol/L), hypokalaemia (3.1 mmol/L), severe hypochloraemia (43 mmol/L), alcalosis (blood pH 7.64, bicarbonate 50.6 mmol/L), high plasma renin (20.6 ng/ml) and aldosterone (232.9 ng/ml), but a low urinary chloride concentration (2.1 mmol/L). Based on these findings, as well as the stool chloride concentration of 110 mmol/L, the patient was diagnosed congenital chloride diarrhoea. In further course, the patient was treated by intensive fluid, sodium and potassium supplementation which resulted in the normalization of serum electrolytes, renal function, as well as his mental and physical development during 10 months of follow-up. Persistent watery diarrhoea with a high concentration of chloride in stool is the key finding in the differentiation of congenital chloride diarrhoea from Bartter syndrome. The treatment of congenital chloride diarrhoea consists primarily of adequate water and electrolytes replacement.

  8. Electrolytic production of light lanthanides from molten chloride alloys on a large laboratory scale

    International Nuclear Information System (INIS)

    Szklarski, W.; Bogacz, A.; Strzyzewska, M.

    1979-01-01

    Literature data relating to electrolytic production of rare earth metals are presented. Conditions and results are given of own investigations into the electrolytic process of light lanthanide chloride solutions (LA-Nd) in molten potassium and sodium chlorides conducted on a large laboratory scale using molybdenic, iron, cobaltic and zinc cathodes. Design schemes of employed electrolysers are enclosed. (author)

  9. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  10. An eco-friendly approach for sodium chloride free cotton dyeing

    International Nuclear Information System (INIS)

    Umer, T.

    2014-01-01

    Present study was conducted with an aim to develop an environmental friendly method of dyeing cotton as an alternative to standard reactive dyeing process that requires high level of salt. When dyeing was carried out in the absence of sodium chloride (NaCl), an extremely lighter depth of shade was experienced, and hence this particular research was focused on the reduction of the total colour difference (AE) to a minimum level. Instead of adding any other chemical or any additional process like cationization, salt-free reactive dyeing was carried out by varying three common process parameters (dyes, alkali, and process time) to achieve required depth of shade. The results obtained were compared with those of conventionally dyed fabrics in terms of depth of shade (AL), total colour difference (AE), washing fastness, and rubbing fastness. The results were found to be promising and comparable to those dyed with using NaCl. Moreover, the investigated method showed a significant reduction of Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in the wastewater, and thus proved to be an environment friendly process. (author)

  11. Electrochemical reduction of lanthanum trichloride in a molten equimolar mixture of sodium and potassium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Glagolevskaya, A.L.; Kuznetsov, S.A.; Polyakov, E.G.; Stangrit, P.T.

    1987-09-20

    The authors used linear voltamperometry for the investigation of the mechanism for the cathodic reduction of lanthanum. The mechanism for the cathodic reduction of lanthanum chloride in molten equimolar NaCl-KCl may be seen as consisting of a slow irreversible electrode reaction with a subsequent rapid irreversible chemical reaction. Lanthanum ions in a lower oxidation state were not found upon the prolonged maintenance of metallic lanthanum in molten NaCl-KCl-LaCl/sub 3/. Only an increase in the concentration of lanthanum(III) chloride in the melt was noted. The appearance of oxygen anions in the melt does not lead to a change in the mechanism of the cathodic reduction of lanthanum chloride but reduces the concentration of this chloride due to the formation of lanthanum oxochloride which is insoluble in the melt.

  12. Tolerance Test of Eisenia Fetida for Sodium Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, M.; Stewart, A.J.

    2003-01-01

    Saltwater spills that make soil excessively saline often occur at petroleum exploration and production (E&P) sites and are ecologically damaging. Brine scars appear when produced water from an E&P site is spilled onto surrounding soil, causing loss of vegetation and subsequent soil erosion. Revegetating lands damaged by brine water can be difficult. The research reported here considers earthworms as a bioremedial treatment for increasing the salt mobility in this soil and encouraging plant growth and a healthy balance of soil nutrients. To determine the practical application of earthworms to remediate brine-contaminated soil, a 17-d test was conducted to establish salt tolerance levels for the common compost earthworm (Eisenia fetida) and relate those levels to soil salinity at brine-spill sites. Soil samples were amended with sodium chloride in concentrations ranging from 1 to 15 g/kg, which represent contamination levels at some spill sites. The survival rate of the earthworms was near 90% in all tested concentrations. Also, reproduction was noted in a number of the lower-concentration test replicates but absent above the 3-g/kg concentrations. Information gathered in this investigation can be used as reference in further studies of the tolerance of earthworms to salty soils, as results suggest that E. fetida is a good candidate to enhance remediation at brine-damaged sites.

  13. 21 CFR 184.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  14. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  15. Determination of chloride in MOX samples using chloride ion selective electrode

    Energy Technology Data Exchange (ETDEWEB)

    Govindan, R; Das, D K; Mallik, G K; Sumathi, A; Patil, Sangeeta; Raul, Seema; Bhargava, V K; Kamath, H S [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1997-09-01

    The chloride present in the MOX fuel is separated from the matrix by pyrohydrolysis at a temperature of 950 {+-} 50 degC and is then analyzed by chloride ion selective electrode (Cl-ISE). The range covered is 0.4-4 ppm with a precision of better than {+-}5% R.S.D. (author). 4 refs., 1 tab.

  16. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  17. Evaluation of chloride-ion-specific electrodes as in situ chemical sensors for monitoring total chloride concentration in aqueous solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations

    International Nuclear Information System (INIS)

    Smith, W.H.

    1992-10-01

    Two commercially available chloride-ion-specific electrodes (CLISEs), a solid-state type and a membrane type, were evaluated as potential in situ chemical sensors for determining total chloride ion concentration in mixed sodium chloride/potassium chloride/hydrochloric acid solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations. Because the response of the solid-state CLISE was closer than was the response of the membrane-type CLISE to the theoretical response predicted by the Nernst equation, the solid-state CLISE was selected for further evaluation. A detailed investigation of the characteristics of the chloride system and the corresponding CLISE response to concentration changes suggested four methods by which the CLISE could be used either as a direct, in situ sensor or as an indirect sensor through which an analysis could be performed on-line with a sample extracted from the process solution

  18. Pharmacokinetics of vinyl chloride in the rat

    International Nuclear Information System (INIS)

    Bolt, H.M.; Laib, R.J.; Kappus, H.; Buchter, A.

    1977-01-01

    When rats are exposed to [ 14 C]vinyl chloride in a closed system, the vinyl chloride present in the atmosphere equilibrates with the animals' organism within 15 min. The course of equilibration could be determined using rats which had been given 6-nitro-1,2,3-benzothiadiazole. This compound completely blocks metabolism of vinyl chloride. The enzymes responsible for metabolism of vinyl chloride are saturated at an atmospheric concentration of vinyl chloride of 250 ppm. Pharmacokinetic analysis shows that no significant cumulation of vinyl chloride or its major metabolites is to be expected on repeated administration of vinyl chlorides. This may be consistent with the theory that a reactive, shortly living metabolite which occurs in low concentration only, may be responsible for the toxic effects of vinyl chloride

  19. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  20. Laboratory investigation of electro-chemical chloride extraction from concrete with penetrated chloride

    NARCIS (Netherlands)

    Polder, R.B.; Hondel, A.W.M. van den

    2002-01-01

    Chloride extraction of concrete is a short-term electrochemical treatment against corrosion of reinforcing steel. The aim is to remove chloride ions from the concrete cover in order to reinstate passive behaviour. Physically sound concrete is left in place. To make this method more predictable and

  1. Pseudo-Bartter syndrome in an infant with congenital chloride diarrhoea

    Directory of Open Access Journals (Sweden)

    Igrutinović Zoran

    2011-01-01

    Full Text Available Introduction. Pseudo-Bartter syndrome encompasses a heterogenous group of disorders similar to Bartter syndrome. We are presenting an infant with pseudo-Bartter syndrome caused by congenital chloride diarrhoea. Case Outline. A male newborn born in the 37th gestational week (GW to young healthy and non-consanguineous parents. In the 35th GW a polyhydramnios with bowel dilatation was verified by ultrasonography. After birth he manifested several episodes of hyponatremic dehydration with hypochloraemia, hypokalaemia and metabolic alkalosis, so as Bartter syndrome was suspected treatment with indomethacin, spironolactone and additional intake of NaCl was initiated. However, this therapy gave no results, so that at age six months he was rehospitalized under the features of persistent watery diarrhoea, vomiting, dehydration and acute renal failure (serum creatinine 123 μmol/L. The laboratory results showed hyponatraemia (123 mmol/L, hypokalaemia (3.1 mmol/L, severe hypochloraemia (43 mmol/L, alcalosis (blood pH 7.64, bicarbonate 50.6 mmol/L, high plasma renin (20.6 ng/ml and aldosterone (232.9 ng/ml, but a low urinary chloride concentration (2.1 mmol/L. Based on these findings, as well as the stool chloride concentration of 110 mmol/L, the patient was diagnosed congenital chloride diarrhoea. In further course, the patient was treated by intensive fluid, sodium and potassium supplementation which resulted in the normalization of serum electrolytes, renal function, as well as his mental and physical development during 10 months of follow-up. Conclusion. Persistent watery diarrhoea with a high concentration of chloride in stool is the key finding in the differentiation of congenital chloride diarrhoea from Bartter syndrome. The treatment of congenital chloride diarrhoea consists primarily of adequate water and electrolytes replacement.

  2. The use of immobilized form of benzalkonium chloride and metronidazole in the treatment of purulent wounds

    OpenAIRE

    Anastasia S. Gorohova; Arsen Yu. Grigoryan; Alexander I. Bezhin; Tatyana A. Pankrusheva; Boris S. Sukovatykh; Ludmila V. Zhilyaeva; Ekaterina S. Mishina; Elena V. Kobzareva

    2017-01-01

    The purpose of the study is to investigate the wound-healing effect of the immobilized form of benzalkonium chloride and metronidazole based on the sodium salt of carboxymethylcellulose (Na-CMC) or polyethylene oxide (PEO) in the treatment of an experimental purulent wound.Materials and methods. The following compositions were studied, %. Combination 1: benzalkonium chloride – 0.02; Metronidazole – 1,0; Sodium carboxymethylcellulose (NaCMC) – 4,0; Purified water – up to 100,0. Combination 2: ...

  3. The effect of steam curing on chloride penetration in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Jaya Ekaputri Januarti

    2017-01-01

    Full Text Available In this paper, we present the result of our study on the effect of steam curing to chloride ion penetration in geopolymer concrete. Class F fly ash was activated using sodium hydroxide (NaOH and sodium silicate (Na2SiO3. The concrete specimens were then steam-cured at 40°C, 60°C, 80°C and room temperature at 24 hours. The treatment was followed by wet curing for 28 days, and then followed by immersion of all specimens in salt water for the durations of 30, 60, and 90 days. Cylindrical specimens were then prepared for compressive strength, chloride ion penetration, pH, and porosity tests. A 16 mm-steel bar was fixed at the center of the specimen concrete blocks (specimen size: 10cm × 10cm × 15cm. Corrosion probability was determined by conducting Half Cell Potential test. Our result showed that increasing the curing temperature to 80°C induced chloride ion penetration into the concrete’s effective pores, despite improvements in compressive strength. We also found that chloride ingress on the geopolymer concrete increases commensurately with the increase of the curing temperature. The corrosion potential measurement of geopolymer concrete was higher than OPC concrete even if corrosion was not observed in reinforcing. Based on our result, we suggest that the corrosion categorization for geopolymer concretes needs to be adjusted.

  4. Standard practice for exposure of metals and alloys by alternate immersion in neutral 3.5% Sodium Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for making alternate immersion stress corrosion tests in 3.5 % sodium chloride (NaCl) (). It is primarily for tests of aluminum alloys (Test Method G 47) and ferrous alloys, but may be used for other metals exhibiting susceptibility to chloride ions. It sets forth the environmental conditions of the test and the means for controlling them. Note 1 Alternate immersion stress corrosion exposures are sometimes made in substitute ocean water (without heavy metals) prepared in accordance with Specification D 1141. The general requirements of this present practice are also applicable to such exposures except that the reagents used, the solution concentration, and the solution pH should be as specified in Specification D 1141. 1.2 This practice can be used for both stressed and unstressed corrosion specimens. Historically, it has been used for stress-corrosion cracking testing, but is often used for other forms of corrosion, such as uniform, pitting, intergranular, and galvanic. ...

  5. Studies of the effect of ethanol and sodium chloride on the micellization of sodium dodecyl sulfate by gel filtration

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.

    1976-06-01

    The effects of the addition of ethanol and sodium chloride to aqueous solutions of sodium dodecyl sulfate (SDS) were studied by the gel-filtration method. With an increase in the concentration of ethanol, the CMC decreased and then increased after passing a minimum, while the micellar weight increased and then decreased, showing a corresponding maximum. Above about 40 vol percent ethanol, no micelle formation was observed. The micellar weight and aggregation number in the presence of ethanol were measured in the SDS concentration range of a constant elution rate of micelles. A decrease in the CMC and an increase in the micellar weight of SDS were observed with an increase in the concentration of NaCl from 0 to 10 mmol/l. The gel-filtration study enabled us to make a direct experimental confirmation of the effects of ethanol and NaCl on the micelle formation of SDS.

  6. Chloride Ingress in Concrete with Different Age at Time of First Chloride Exposure

    DEFF Research Database (Denmark)

    Hansen, Esben Østergaard; Iskau, Martin Riis; Hasholt, Marianne Tange

    2016-01-01

    Concrete structures cast in spring have longer time to hydrate and are therefore denser and more resistant to chloride ingress when first subjected to deicing salts in winter than structures cast in autumn. Consequently, it is expected that a spring casting will have a longer service life....... This hypothesis is investigated in the present study by testing drilled cores from concrete cast in 2012 and 2013 on the Svendborgsund Bridge. The cores are subject to petrographic examination and mapping of chloride profiles. Moreover, chloride migration coefficients have been measured. The study shows...

  7. Producing ammonium chloride from coal or shale

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, O L

    1921-02-25

    Process of producing ammonium chloride consists of mixing the substance to be treated with a chloride of an alkali or alkaline earth metal, free silica, water and free hydrochloric acid, heating the mixture until ammonium chloride distills off and collecting the ammonium chloride.

  8. Study of electrochemical behaviour of tantalum in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Bajmakov, A.N.; Ezrokhina, A.M.; Sashinina, O.A.; Shkol'nikov, S.N.

    1985-01-01

    Equilibrium potentials of metallic tantalum in the melt TaCl 5 +KCl-NaCl are studied. Are average degree of tantalum ion oxidation, which are in equilibrium with metallic tantalum, is determined. Anodic behaviour of tantalum in equimolar mixture of potassium and sodium chlorides with Ta and F ion additions is considered. An average degree of oxidation of Ta ions, which transfer into the melt, depending on current density, is determined. It is established that tantalum is dissolved in the regime of diffusional kinetics. It is shown that tantalum corrodes in equimolar mixture of potassium and sodiUm chlorides, at that, corrosion rate increases with introdUction of Ta and F ions into solution. The corrosion is of electrochemical nature and it proceeds in the regime of diffusional kinetics

  9. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Kulik, Dmitrii A; Hummel, Wolfgang; Schlumberger, Stefan; Klink, Waldemar; Fisch, Martin; Mäder, Urs K

    2018-03-17

    Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dimethyldialkylammonium chloride. 173.400 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.400 Dimethyldialkylammonium chloride. Dimethyldialkylammonium chloride may be safely used in food in accordance with the following prescribed conditions: (a...

  11. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  12. Could vitamin C and zinc chloride protect the germ cells against sodium arsenite?

    Science.gov (United States)

    Altoé, L S; Reis, I B; Gomes, Mlm; Dolder, H; Pirovani, Jc Monteiro

    2017-10-01

    Arsenic (As) is commonly associated with natural and human processes such as volcanic emissions, mining and herbicides production, being an important pollutant. Several studies have associated As intake with male fertility reduction, thus the aim of the present study was to evaluate whether vitamin C and/or zinc would counteract As side effects within the testicles. Adult male Wistar rats were divided into six experimental groups: control, sodium arsenite (5 mg/kg/day), vitamin C (100 mg/kg/day), zinc chloride (ZnCl 2 ; 20 mg/kg/day), sodium arsenite + vitamin C and sodium arsenite + ZnCl 2 . Testicles and epididymis were harvested and either frozen or routinely processed to be embedded in glycol methacrylate resin. As reduced the seminiferous epithelium and tubules diameter due to germ cell loss. In addition, both the round spermatids population and the daily sperm production were reduced. However, ZnCl 2 and vitamin C showed to be effective against such side effects, mainly regarding to sperm morphology. Long-term As intake increased the proportions of abnormal sperm, whereas the concomitant intake of As with zinc or vitamin C enhanced the proportions of normal sperm, showing that such compounds could be used to protect this cell type against morphological defects.

  13. 21 CFR 522.1862 - Sterile pralidoxime chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile pralidoxime chloride. 522.1862 Section 522....1862 Sterile pralidoxime chloride. (a) Chemical name. 2-Formyl-1-methylpyridinium chloride oxime. (b) Specifications. Sterile pralidoxime chloride is packaged in vials. Each vial contains 1 gram of sterile...

  14. 49 CFR 173.322 - Ethyl chloride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

  15. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium

    Science.gov (United States)

    Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D.

    2017-09-01

    The goal of this study was to examine the possibility of partial replacement of sodium chloride with potassium chloride and ammonium chloride, with the target of achieving less sodium content in meatballs and tomato sauce as well as achieving a better Na:K ratio. The trial consisted of five groups. In the control group of meatballs and sauce, only sodium chloride was added. In group 1, half of the sodium chloride was replaced with potassium chloride related to control group while in group 2 one third of the sodium chloride was replaced with potassium chloride. In group 3, one third of the sodium chloride was replaced with ammonium chloride, and in group 4, sodium chloride was reduced to half the amount in the control group, and 1 g (0.25%) of ammonium chloride was also added. All products were acceptable according to sensory analyses. The largest reductions of sodium content were 44.64%, achieved in meatballs from group 1 and 50.62% in tomato sauce from group 4 in relation to meatballs and tomato sauce from control group. The highest Na:K ratio was calculated in meatballs and tomato sauce from control group, 2.88 and 4.39, respectively. The best Na:K ratio was in meatballs and tomato sauce from group 1, 0.60 and 0.92, respectively, in which half of sodium chloride was replaced with potassium chloride. However, in meatballs and tomato sauce from group 4, with only half the amount of sodium chloride related to control group, the Na:K ratio was worse because in these products, potassium chloride was not added.

  16. Preparation of pure anhydrous rare earth chlorides

    International Nuclear Information System (INIS)

    Bel'kova, N.L.; Slastenova, N.M.; Batyaev, I.M.; Solov'ev, M.A.

    1979-01-01

    A method has been suggested for obtaining extra-pure anhydrous REE chlorides by chloridizing corresponding oxalates by chlorine in a fluid bed, the chloridizing agents being diluted by an inert gas in a ratio of 2-to-1. The method is applicable to the manufacture of quality chlorides not only of light, but also of heavy REE. Neodymium chloride has an excited life of tau=30 μs, this evidencing the absence of the damping impurities

  17. Crystal field influence on vibration spectra: anhydrous uranyl chloride and dihydroxodiuranyl chloride tetrahydrate

    International Nuclear Information System (INIS)

    Perrin, Andre; Caillet, Paul

    1976-01-01

    Vibrational spectra of anhydrous uranyl chloride UO 2 Cl 2 and so called basic uranyl chloride: dihydroxodiuranyl chloride tetrahydrate /UO 2 (OH) 2 UO 2 /Cl 2 (H 2 O) 4 are reported. Factor group method analysis leads for the first time to complete and comprehensive interpretation of their spectra. Two extreme examples of crystal field influence on vibrational spectra are pointed out: for UO 2 Cl 2 , one is unable to explain spectra without taking into account all the elements of primitive crystalline cell, whilst for dihydroxodiuranyl dichloride tetrahydrate the crystal packing has very little effect on vibrational spectra [fr

  18. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  19. Chloride channels in myotonia congenita assessed by velocity recovery cycles.

    Science.gov (United States)

    Tan, S Veronica; Z'Graggen, Werner J; Boërio, Delphine; Rayan, Dipa Raja; Norwood, Fiona; Ruddy, Deborah; Howard, R; Hanna, Michael G; Bostock, Hugh

    2014-06-01

    Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched, normal controls. MC patients exhibited increased early supernormality, but this was prevented by treatment with sodium channel blockers. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that, in dominant MC, the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. Copyright © 2013 Wiley Periodicals, Inc.

  20. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  1. 21 CFR 582.3845 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3845 Stannous chloride. (a) Product. Stannous chloride. (b) Tolerance. This substance is generally...

  2. 7 CFR 58.434 - Calcium chloride.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  3. 21 CFR 582.6193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  4. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    Science.gov (United States)

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  6. 21 CFR 173.255 - Methylene chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  7. 21 CFR 182.8252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  8. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  9. 21 CFR 582.5252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Choline chloride. 582.5252 Section 582.5252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  10. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  11. 21 CFR 582.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  12. The preparation and certification of zirconyl chloride CRM-inhouse from process result of zircon mineral

    International Nuclear Information System (INIS)

    Samin; Sajimo; Supriyanto; Isman Mulyadi T

    2015-01-01

    The preparation and certification of the zirconyl chloride certified reference material (CRM) has been carried out from the row material of the zircon mineral. The zircon mineral was processing in the Feeder with the velocity of 17 kg/hour and produced the zircon concentrate. The zircon concentrate was mixed with NaOH, NaF, Na 2 CO 3 and H 2 O. The mixture was melted in the Furnace at 750°C for 2 hours. The results of molten was pressed with aquadest and then was participated for 24 hours. The solid was separated from the filtrate, and then it was dried in the Oven at 105°C for 3 hours, those result was called sodium zirconate. Sodium zirconate was leaching with HCl, it was found the zirconyl chloride solution and then was evaporated it was found the zirconyl chloride concentrated solution. This solution was crystallized, then obtained the zirconyl chloride crystal. It was washed with ethanol, so retrieved the crystal white zirconyl chloride. The crystal white zirconyl chloride was dried in the Oven at 90°C, it was crushed with stainless steel powder and sieved to 200 mesh of the particle size. The crystal white zirconyl chloride was stirred up to homogenous in the Homogenizer. Next was treated the homogenization and the stabilisation testing with statistically method. Zirconyl chloride crystals was standardized by using standard ZrOCl 2 8 H 2 O made in E. Merck, were include the chemical compounds test with XRD Spectrometry, the composition the content of crystals and the specific gravity. From the evaluation of the homogenization and stabilisation testing, the crystal zirconyl chloride was homogeneous, stable and it was fulfil to physically behavior as CRM. Compared with the standard zirconyl chloride, ZrOCl 2 8 H 2 O, the XRD spectra and chemical composition (96,263%), the content of crystals (98,625%). and specific gravity (97,190%) of the zirconyl chloride crystal were nearly same respectively. Certificate of the parameters testing results in the CRM the

  13. Effect of sodium chloride on photosynthetic 14CO2 assimilation in Portulaca oleracea Linn

    International Nuclear Information System (INIS)

    Joshi, G.V.; Karadge, B.A.

    1979-01-01

    Effect of NaCl on ion uptake, photosynthetic rate and photosynthetic products in a C 4 non-CAM succulent, P. oleracea has been investigated. NaCl causes accumulation of Na as well as Cl ions with decrease in K and Ca contents. Chlorophylls and photosynthetic 14 CO 2 fixation rates are adversely affected due to sodium chloride salinity. Plants grown in the presence of NaCl show increase in C 4 acid percentage with increase in labelling of organic acids in light. Labelling of amino acids (particularly alanine) and sugars (sucrose) is affected by NaCl. Enzyme studies reveal that PEP-carboxylase is stimulated at all concentrations of NaCl but higher concentrations affected the activity of RuBP-Carboxylase. (author)

  14. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  15. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  16. 21 CFR 172.180 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color...

  17. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  18. Effect of cationic composition of electrolyte on kinetics of lead electrolytic separation in chloride melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Makarov, D.V.

    1995-01-01

    The mechanism has been studied and kinetic parameters of the process of Pb(2) ion electrochemical reduction have been ascertained for different individual melts of alkali metal chlorides and their mixtures, using methods of linear voltammetry chronopotentiometry and chronoamperometry. It has been ascertained that cations in the melts of alkali metal chlorides affect stability of [PbCl n ] 2-n ions. The data obtained suggest that the strength of the complexes increases in the series NaCl-KCl-CsCl. In the melt of sodium chloride the electrode process is limited by diffusion, whereas in the melts of KCl, CsCl, CsCl-NaCl with cesium chloride content exceeding 70 mol% lead electrochemical reduction is controlled by preceding dissociation of the complexes. 10 refs., 3 figs., 2 tabs

  19. Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of); Rajesh Kumar, J., E-mail: rajeshkumarphd@rediffmail.com [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of); Kim, Joon-Soo; Park, Hyung-Kyu; Yoon, Ho-Sung [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-08-30

    Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions was carried out using tri-iso-octylamine (Alamine 308) as an extractant diluted in kerosene. The percentage extraction of platinum(IV) and rhodium(III) increased with increase in acid concentration up to 8 mol L{sup -1}. However, at 10 mol L{sup -1} HCl concentration, the extraction behavior was reversed, indicating the solvation type mechanism during extraction. The quantitative extraction of {approx}98% platinum(IV) and 36% rhodium(III) was achieved with 0.01 mol L{sup -1} Alamine 308. The highest separation factor (S.F. = 184.7) of platinum(IV) and rhodium(III) was achieved with 0.01 mol L{sup -1} Alamine 308 at 1.0 mol L{sup -1} of hydrochloric acid concentration. Alkaline metal salts like sodium chloride, sodium nitrate, sodium thiocyanate, lithium chloride, lithium nitrate, potassium chloride and potassium thiocyanate used for the salting-out effect. LiCl proved as best salt for the extraction of platinum(IV). Temperature effect demonstrates that the extraction process is exothermic. Hydrochloric acid and thiourea mixture proved to be better stripping reagents when compared with other mineral acids and bases.

  20. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  1. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid......Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  2. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    Science.gov (United States)

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  3. 21 CFR 184.1446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  4. Similarities and differences of alkali metal chlorides applied in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lü, Zhaoyue; Deng, Zhenbo; Hou, Ying; Xu, Haisheng

    2012-01-01

    The similarities and differences of alkali metal chlorides (sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl) and cesium chloride (CsCl)) applied in organic light-emitting diodes (OLEDs) are investigated. The behavior is similar for the OLEDs with these four chlorides as electron injection layer (EIL). Their maximum luminance and efficiency at 100 mA/cm 2 are within the ranges of 18 550 ± 600 (cd/m 2 ) with an error of 3.23% and 4.09 ± 0.15 (cd/A) within an error of 3.67%, respectively. The similar performance is due to almost identical electron injection barrier for NaCl, KCl, RbCl and CsCl as EIL. Interestingly, the properties are different for devices with chlorides inserted inside tris (8-hydroxyquinoline) aluminum at the position of 20 nm away from aluminum cathode, labeled as NaCl-, KCl-, RbCl- and CsCl- devices. The relation of luminance is CsCl- > RbCl- = KCl- > NaCl-, where “>” and “=” mean “better than” and “the same as”, respectively. And the device efficiencies are decreased from CsCl to NaCl. That is, the sort order of the efficiencies is CsCl- > RbCl- > KCl- > NaCl-. The mechanism is explained by tunneling model in terms of various energy gaps estimated by optical electronegativity of NaCl, KCl, RbCl and CsCl. - Highlights: ► Effects of NaCl, KCl, RbCl and CsCl in organic light-emitting diodes are compared. ► The similar performance is due to almost identical electron injection barrier. ► The different behavior of chlorides inside Alq 3 is explained by tunneling model. ► The different behavior is attributed to various energy gaps of different chlorides. ► The efficiency of device with chlorides inside Alq 3 is decreased from CsCl to NaCl.

  5. on crude water and sodium chloride extracts of Moringa stenopetala

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-04

    Dec 4, 2006 ... coordination or complex formation between the metal cations and pH dependent oxygen and nitrogen anionic sites of the ... iron hydroxide, iron chloride, soda ash and synthetic polymers .... o u n d. Zn adsorption by. MSC-SC. Zn adsorption by. MOC-SC .... Okuda T, Baes AU, Nishijima W, Okada M (2001).

  6. Stability of tacrolimus injection diluted in 0.9% sodium chloride injection and stored in Excel bags.

    Science.gov (United States)

    Myers, Alan L; Zhang, Yanping; Kawedia, Jitesh D; Shank, Brandon R; Deaver, Melissa A; Kramer, Mark A

    2016-12-15

    The chemical stability and physical compatibility of tacrolimus i.v. infusion solutions prepared in Excel bags and stored at 23 or 4 °C for up to nine days were studied. Tacrolimus admixtures (2, 4, and 8 μg/mL) were prepared in Excel bags using 0.9% sodium chloride injection and stored at 23 °C without protection from light or at 4 °C in the dark. Test samples were withdrawn from triplicate bag solutions immediately after preparation and at predetermined time intervals (1, 3, 5, 7, and 9 days). Chemical stability was assessed by measuring tacrolimus concentrations using a validated stability-indicating high-performance liquid chromatography assay. The physical stability of the admixtures was assessed by visual examination and by measuring turbidity, particle size, and drug content. All test solutions stored at 23 or 4 °C had a no greater than 6% loss of the initial tacrolimus concentration throughout the nine-day study period. All test samples of tacrolimus admixtures, under both storage conditions, were without precipitation and remained clear initially and throughout the nine-day observation period. Changes in turbidities were minor; measured particulates remained few in number in all samples throughout the study. Extemporaneously prepared infusion solutions of tacrolimus 2, 4, and 8 μg/mL in 0.9% sodium chloride injection in Excel bags were chemically and physically stable for at least nine days when stored at room temperature (23 °C) without protection from light and when stored in a refrigerator (4 °C) in the dark. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.

    1990-01-01

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  8. Determination of Chloride Content in Cementitious Materials : From Fundamental Aspects to Application of Ag/AgCl Chloride Sensors

    NARCIS (Netherlands)

    Pargar, F.; Koleva, D.A.; van Breugel, K.

    2017-01-01

    This paper reports on the advantages and drawbacks of available test methods for the determination of chloride content in cementitious materials in general, and the application of Ag/AgCl chloride sensors in particular. The main factors that affect the reliability of a chloride sensor are presented.

  9. Effect of different ions on the anodic behaviour of alloy 800 chloride solutions at high temperature

    International Nuclear Information System (INIS)

    Lafont, C.J.; Alvarez, M.G.

    1993-01-01

    The anodic behaviour and passivity breakdown of alloy 800 in sodium bicarbonate and sodium phosphate aqueous solutions were studied in the temperature range from 100 degrees C to 280 degrees C by means of electrochemical techniques. The effect of phosphate or bicarbonate additions on the pitting susceptibility and pitting morphology of the alloy in chloride solutions was also examined. Experiments were performed in the following solutions: 0.1M NaHCO 3 , at 100 degrees C, 200 degrees C, 280 degrees C; 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 , at 100 degrees C, 200 degrees C and 280 degrees C, and 0.1M NaCl with different additions of bicarbonate ion (0.02M, 0.05M and 0.1M) and phosphate ion (0.01M, 0.05M and 0.1M) at 100 degrees C and 280 degrees C. The anodic polarization curves of alloy 800 in deaerated 0.1M NaHCO 3 and 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 solutions exhibited a similar shape at all the tested temperatures. No localized or generalized corrosion was detected on the metallic surface after polarization. The results obtained in chloride plus bicarbonate and chloride plus phosphate mixtures showed that the pitting potential of alloy 800 in chloride solutions was increased by the presence of bicarbonate or phosphate ions. In those solutions where the inhibitor concentration in the mixture is equal or higher than the chloride concentration , the behaviour of the alloy is similar to the one observed in the absence of chlorides. Changes in pitting morphology were found in phosphate containing solutions, while the pits found in bicarbonate containing solutions were similar to those formed in pure chloride solutions. (author). 3 refs., 4 figs

  10. Study of the transport characteristics of uranyl chloride in a highly concentrated aqueous solution of sodium chloride

    International Nuclear Information System (INIS)

    Murso, H.

    1986-01-01

    The purpose of this work was the study of the transport processes of uranyl chloride at various temperatures, in order to be able to estimate the danger potential of the intrusion of water during storage in salt form. For this the concentration dependency of the approximated principal diffusion coefficients of uranyl chloride in a table salt solution, which with a c(NaCl) = 5.2 mol/l is almost at the saturation point, was studied at 25, 40 and 50degC. The measurements were successful in the ternarian system UO 2 Cl 2 -NaCl-H 2 O with absorption optics. An unexpected temperature dependency of the diffusion coefficients was found, which reached its minimum at 40degC with UO 2 Cl 2 concentrations of less than 2x10 -2 mol/l. For comparison the diffusion coefficients were measured in the binary system UO 2 Cl 2 -H 2 O and compared with theoretical calculations. The cause for the poor correlation found here is thought to be the hydrolysis products, whose formation is strongly influenced by the foreign-electrolyte concentration (NaCl). For clarification, viscosity measurements and molar mass determinations (ultracentrifuge) will be done. Some pH-dependent hydrolysis equilibriums are being postulated and the equilibrium constants of uranyl hydroxo complexes are being determined by sedimentation analysis. (orig./RB) [de

  11. Thermal annealing of gamma irradiated ammonium chloride (Preprint no. RC-37)

    International Nuclear Information System (INIS)

    Kalkar, C.D.; Lala, Neeta

    1991-01-01

    Ammonium chloride produces N 2 H 4 + and Cl 2 as the main radiolytic products on gamma irradiation. Thermal annealing has a marked effect on the stability of N 2 H 4 + and Cl 2 . During the thermal annealing the chemical yield of nitrite and iodine was studied by dissolving irradiated ammonium chloride in aqueous sodium nitrate and potassium iodide respectively. The yield of iodine in isochronal annealing showed an exponential behaviour with temperature while that of nitrite showed a decrease and then increases at higher temperatures. The results are explained on the basis of dissociation and recombination of N 2 H 4 + with temperature. (author). 3 refs., 2 figs

  12. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    Science.gov (United States)

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Lactated Ringer's solution or 0.9% sodium chloride as fluid therapy in pigeons (Columba livia submitted to humerus osteosynthesis

    Directory of Open Access Journals (Sweden)

    Adriano B. Carregaro

    2015-01-01

    Full Text Available The study aimed to compare the effects of intraosseous infusion of lactated Ringer's and 0.9% sodium chloride solutions on the electrolytes and acid-base balance in pigeons submitted to humerus osteosynthesis. Eighteen pigeons were undergoing to isoflurane anesthesia by an avalvular circuit system. They were randomly assigned into two groups (n=9 receiving lactated Ringer's solution (LR or 0.9% sodium chloride (SC, in a continuous infusion rate of 20mL/kg/h, by using an intraosseous catheter into the tibiotarsus during 60-minute anesthetic procedure. Heart rate (HR, and respiratory rate (RR were measured every 10 min. Venous blood samples were collected at 0, 30 and 60 minutes to analyze blood pH, PvCO2, HCO3 -, Na+ and K+. Blood gases and electrolytes showed respiratory acidosis in both groups during induction, under physical restraint. This acidosis was evidenced by a decrease of pH since 0 min, associated with a compensatory response, observed by increasing of HCO3 - concentration, at 30 and 60 min. It was not observed any changes on Na+ and K+ serum concentrations. According to the results, there is no reason for choosing one of the two solutions, and it could be concluded that both fluid therapy solutions do not promote any impact on acid-base balance and electrolyte concentrations in pigeons submitted to humerus osteosynthesis.

  14. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  15. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    Science.gov (United States)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  16. Measurement of the body content of sodium, potassium, chloride, calcium, phophorus and nitrogen with reference to spironolactone

    International Nuclear Information System (INIS)

    Boddy, K.

    1978-01-01

    The total body content of sodium, chloride, nitrogen, calcium and phosphorus can be measured simultaneously by in vivo activation analysis and at the same time total body potassium can be determined directly by whole body counting. These procedures have been described and compared with methods using isotope dilution. The complementary nature of the techniques, when properly applied, as well as reported disparities have been illustrated by a number of clinical investigations generally involving aldosterone antagonists. The methods should provide a better insight to the complex changes in body conposition and metabolism accociated with hypertension (and other diseases) and their treatment. (Auth.)

  17. Renal abnormalities in congenital chloride diarrhea

    International Nuclear Information System (INIS)

    Al-Hamad, Nadia M.; Al-Eisa, Amal A.

    2004-01-01

    Congenital chloride diarrhea CLD is a rare autosomal recessive disorder caused by a defect in the chloride/ bicarbonate exchange in the ileum and colon. It is characterized by watery diarrhea, abdominal distension, hypochloremic hypokalemic metabolic alkalosis with high fecal content of chloride >90 mmol/l. We report 3 patients with CLD associated with various renal abnormalities including chronic renal failure secondary to renal hypoplasia, nephrocalcinosis and congenital nephrotic syndrome. (author)

  18. Study on the chloride migration coefficient obtained following different Rapid Chloride Migration (RCM) test guidelines

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    This work presents the differences in the available Rapid Chloride Migration (RCM) test guidelines, and their influence on the values of the chloride migration coefficients DRCM, obtained following these guidelines. It is shown that the differences between the guidelines are significant and concern

  19. Mapping the spatial distribution of chloride deposition across Australia

    Science.gov (United States)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is

  20. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  1. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    Science.gov (United States)

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  2. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (Bufo bufo)

    DEFF Research Database (Denmark)

    Kristensen, P; Larsen, Erik Hviid

    1978-01-01

    Substitution of chloride in the outside bathing medium of the toad skin with bromide, iodide, nitrate and sulphate leads to a reduction in the apparent exchange diffusion of chloride across this tissue, and also to a reduction of the chloride current recorded during hyperpolarization. A series...

  3. Synthesis of carbon-14 labelled ethyl chloride

    International Nuclear Information System (INIS)

    Kanski, R.

    1976-01-01

    A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)

  4. The uptake of silver(I from chloride solutions by amine extractants

    Directory of Open Access Journals (Sweden)

    Wejman Katarzyna

    2017-01-01

    Full Text Available The amine extractants, bis(2-ethylhexylamine, N,N-dimethylethanolamine, and trioctylamine were used to recover silver(I ions from chloride solutions. The effect of the pH, contact time, extractant concentration and reextraction were studied. It was found that extraction of silver(I depended on the pH, extractant concentration and strongly on the contact time. Reextraction of Ag(I ions from the loaded organic phase showed that the metal can be removed in over 50% for the three extractant using sodium hydroxide. The recovery of silver from the chloride leaching solutions were above 85% for bis(2-ethylhexylamine, above 58% for N,N-dimethylethanolamine, and above 70% for trioctylamine.

  5. The "chloride theory", a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology.

    Science.gov (United States)

    Kataoka, Hajime

    2017-07-01

    Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synergism between sodium chloride, sucrose and tricalcium phosphate in the osmotic dehydration of oca (Oxalis tuberosa with and without chitosan coating

    Directory of Open Access Journals (Sweden)

    José Arroyo Portal

    2010-12-01

    Full Text Available We investigated the synergistic effect of three solutes (sodium chloride, sucrose, tricalcium phosphate in different combinations of concentration, on the moisture, solid gain and calcium gain in oca (Oxalis tuberosa with and without chitosan (CR and SR. In both cases applied the Simplex with Extended Centroid mixture design. Were used cylinders of oca of 0.9 cm of diameter and 3.4 cm of length. The kinetics of moisture, solid gain and calcium gain for 48 hours was evaluated. The effective diffusivity of water, solids and calcium was determined. We found that in samples CR is greater loss of water and less solid gain compared with SR samples mainly as sodium chloride or sucrose participate independently, while for the gain of calcium, in all cases, the CR samples gain more of calcium than SR samples. The effective diffusivities found are: water, 1.19E-09 m2 /s in samples CR and 1.34E-09 m2 /s in SR samples; for solid, 3.67E-09 m2 /s in samples CR and 5.43E-09 m2 /s in SR samples; and, for calcium 3.32E-11 m2 /s in samples CR and 1.57E-09 m2 /s in SR samples.

  7. Impact of stirring speed, glycerin and sodium chloride concentrations on photoprotective nanoemulsions

    Directory of Open Access Journals (Sweden)

    Débora Granemann e Silva

    2014-09-01

    Full Text Available New technologies that improve the physical as the sensory properties of sunscreens can help to increase its continued use and impact on health. The use of nanoemulsions in the development of photoprotective vehicles is an advantage, since nanostructured components may have superior properties regarding their performance when compared to conventional products. The advantages of using nanobiotechnology in manufacture of cosmetic and dermatological formulations arise from the protection of compounds from chemical or enzymatic degradation, from the control of their release, and also to the prolonged retention time of cosmetic ingredients in the stratum corneum. Thus, this study aimed to evaluate the impact of stirring speed and of glycerin and sodium chloride concentrations in the development and effectiveness of a nanoemulsion containing ethylhexyl methoxycinnamate and benzophenone-3. The results of statistical analyses regarding the impact of the variables in the process of nanoemulsion development showed that these parameters affect the phase inversion temperature (PIT. However, this did not affect the particle size and the photoprotective efficacy in vitro.

  8. effect of ascorbic acid and/or sodium chloride on irradiated mungbean seeds

    International Nuclear Information System (INIS)

    Hussein, O.S.

    2010-01-01

    dry seeds of mungbean (Vigna radiata L.) were irradiated with different doses of gamma rays (0, 50, 100, 250 Gy) dose rate was 1.33 Gy/sec and germinated under laboratory conditions (28 degree C±2 degree C) in 100 mM of sodium chloride or 10 mM ascorbic acid or mixture of both in equal amounts . a group of irradiated and unirradiated seeds were moistened with tap water and considered as control. the growth parameters of two weeks old seedling were recorded. photosynthetic pigments, total carbohydrates, crud protein and amino acids contents were also determined. gamma radiation (50-100 Gy)increased total chlorophylls and carotenoid pigments while the highest dose of irradiation (250 Gy) reduced these contents. saline condition decreased total chlorophyll and carotenoid contents of seedlings resulted from irradiated seeds than control. adding of ascorbic acid to irradiated mungbean seeds in presence of NaCl overcame partially the inhibitory effect of NaCl on chlorophyll and carotenoid contents of seedlings. the pattern of changes in amino acids content was more or less similar to that of photosynthetic pigments.

  9. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    Science.gov (United States)

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  10. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    Directory of Open Access Journals (Sweden)

    Annette Zeyner

    Full Text Available The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i persists beyond the immediate postprandial period, and ii is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0, 50 (NaCl-50 or 100 (NaCl-100 g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50 at least met the most common recommendations for moderate work. Morning (7:00 AM urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05. This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  11. Buried chloride stereochemistry in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  12. Chloride Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/chloridebloodtest.html Chloride Blood Test To use the sharing features on this page, please enable JavaScript. What is a Chloride Blood Test? A chloride blood test measures the ...

  13. Stability of diclofenac sodium oral suspensions packaged in amber polyvinyl chloride bottles.

    Science.gov (United States)

    Donnelly, Ronald F; Pascuet, Elena; Ma, Carmen; Vaillancourt, Régis

    2010-01-01

    Prescribing of diclofenac for children usually involves a dose different from commercially available strengths. This drug is available only as tablets, which can be divided only so many times before the dose obtained becomes inaccurate. In addition, children may have difficulty swallowing tablets. For these reasons, a compounding formula for a liquid dosage form is essential to ensure effective delivery of the drug to pediatric patients. To develop a compounding formula for diclofenac sodium and to determine the extended physical and chemical stability of this compound when stored in amber polyvinyl chloride (PVC) prescription bottles under refrigeration and at room temperature. A suspension of diclofenac sodium (10 mg/mL) was prepared from commercially available diclofenac sodium tablets, with Ora-Blend as the suspending and flavouring agent. The suspension was packaged in 60-mL amber PVC prescription bottles and stored at either room temperature (23°C) or under refrigeration (5°C). Samples were collected on days 0, 7, 14, 21, 27, 56, and 93. Chemical stability was determined using a validated stability-indicating high-performance liquid chromatography method. At each sampling time, the suspensions were checked for changes in appearance (i.e., colour, layering, caking, ease of resuspension), odour, and pH. The diclofenac sodium suspensions were very stable, retaining at least 99.5% of the original concentration for up to 93 days, regardless of storage temperature. There were no apparent changes in the physical appearance of the suspensions, nor were there any substantial changes in odour or pH. Suspensions of diclofenac sodium (10 mg/mL) were quantitatively stable but difficult to prepare because of the enteric coating of the tablets. Therefore, it is recommended that diclofenac powder be used for the preparation of suspensions. For pediatric use, palatability is a consideration, and a masking agent should be added before administration. An expiry date of up to

  14. Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA

    Science.gov (United States)

    Allert, Ann L.; Cole-Neal, Cavelle L.; Fairchild, James F.

    2012-01-01

    Deicers such as sodium chloride and calcium chloride are used to treat snow and ice on road surfaces and have been identified as potential stressors on aquatic life. Hinkson Creek is an urban stream on the Missouri 303(d) list of impaired waters and is classified as impaired due to urban non-point source pollution. A 7-day toxicity test using Ceriodaphnia dubia was conducted to assess the toxicity of stream water during snowmelt at seven sites within the Hinkson Creek watershed. Chloride concentrations at two sites (Site 6, 1252 mg Cl/L; Site 4, 301 mg Cl/L) exceeded the U.S. Environmental Protection Agency chronic criterion (230 mg Cl/L). Survival (30 %) and total reproduction (6.9 young/adult) of C. dubia at Site 6 was significantly lower than survival (100 %) and total reproduction (30.4 young/adult) at Site 1 (reference site). Results indicate that chloride concentrations are elevated above water-quality criteria and that chloride may be a significant chemical stressor for macroinvertebrate communities during winter low-flow conditions in the Hinkson Creek watershed.

  15. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    Science.gov (United States)

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  16. Atmospheric chloride: Its implication for foliar uptake and damage

    Science.gov (United States)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  17. Diferentes níveis de formiato de sódio em substituição ao cloreto de sódio na dieta de frangos de corte - DOI: 10.4025/actascianimsci.v31i3.6020 Diferent levels of sodium formate in replacement of sodium chloride in broiler diets - DOI: 10.4025/actascianimsci.v31i3.6020

    Directory of Open Access Journals (Sweden)

    Everton Krabbe

    2009-09-01

    Full Text Available Objetivou-se avaliar a eficácia do formiato de sódio como fonte desse mineral na dieta de frangos de corte, comparando-o com o cloreto de sódio. Utilizaram-se 690 fêmeas de corte Ross, que receberam água e alimentação à vontade, divididas em cinco tratamentos e seis repetições, tendo cada repetição 23 aves. Os tratamentos consistiram: T1 (controle, T2 (formiato de sódio com 0,20% de Na+ com cloreto de amônia, T3 (formiato de sódio com 0,20% de Na+ sem cloreto de amônia, T4 (formiato de sódio com 0,16% de Na+ com cloreto de amônia e T5 (formiato de sódio com 0,12% de Na+ com cloreto de amônia. O cloreto de amônia foi adicionado em alguns tratamentos para se equilibrar o balanço eletrolítico das dietas. Os dados foram analisados, utilizando-se Anova 5%, teste de Tukey com comparação de médias duas a duas. Observou-se que os diferentes níveis de formiato de sódio não comprometeram o desempenho das aves nem as variáveis de carcaça, mesmo quando o cloreto de amônia foi incluído. Com isso, conclui-se que o formiato de sódio pode ser utilizado como fonte desse mineral para substituir o cloreto de sódio em dietas de frangos de corte.This study aimed to evaluate the use of sodium formate as a source of sodium in replacement of sodium chloride for broilers. A total of 690 female Ross broiler chickens were divided into five treatments with 6 replicates each. Each replicate had 23 birds. Treatments consisted of: T1 (control, T2 (sodium formate 0.20%Na+ with ammonium chloride, T3 (sodium formate 0.20%Na+ without ammonium chloride, T4 (sodium formate 0.16%Na+ with ammonium chloride and T5 (sodium formate 0.12%Na+ without ammonium chloride. Ammonium chloride was added to some of the treatments to balance the electrolyte balance of the diets. Data were analyzed using ANOVA 5%. Means were separated using Tukey test.The use of sodium formate had no effect on performance and carcass traits of broilers. These results indicate that

  18. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  19. [Forensic Analysis for 54 Cases of Suxamethonium Chloride Poisoning].

    Science.gov (United States)

    Zhao, Y F; Zhao, B Q; Ma, K J; Zhang, J; Chen, F Y

    2017-08-01

    To observe and analyze the performance of forensic science in the cases of suxa- methonium chloride poisoning, and to improve the identification of suxamethonium chloride poisoning. Fifty-four cases of suxamethonium chloride poisoning were collected. The rules of determination of suxamethonium chloride poisoning were observed by the retrospective analysis of pathological and toxicological changes as well as case features. The pathological features of suxamethonium chloride poisoning were similar to the general changes of sudden death, which mainly included acute pulmonary congestion and edema, and partly showed myocardial disarray and fracture. Suxamethonium chloride could be detected in the heart blood of all cases and in skin tissue of part cases. Suxa-methonium chloride poisoning has the characteristics with fast death and covert means, which are difficult to rescue and easily miss inspection. For the cases of sudden death or suspicious death, determination of suxamethonium chloride should be taken as a routine detection index to prevent missing inspection. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  1. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive

    Directory of Open Access Journals (Sweden)

    Peta Katarzyna

    2017-01-01

    Full Text Available In the work, the most important factors which influence on the exploitative durability of heat exchangers are classified. Particular attention was paid to the compounds of sodium chloride used in the winter season for road maintenance. In order to determine their impact on automotive heat exchanger corrosion resistance, a test of heaters in a salt chamber which imitates the conditions of their work was realized. It also allows to verify the durability of these products. To evaluate the corrosion changes, observation with the use of light microscopy and scanning microscopy SEM were made supplemented with microanalysis of chemical composition by EDS spectroscopy method. Critical areas in the heat exchangers which are mostly exposed to damage including the formation of local corrosion pits were located and analyzed.

  2. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  3. Extended Stability of Epinephrine Hydrochloride Injection in Polyvinyl Chloride Bags Stored in Amber Ultraviolet Light-Blocking Bags.

    Science.gov (United States)

    Van Matre, Edward T; Ho, Kang C; Lyda, Clark; Fullmer, Beth A; Oldland, Alan R; Kiser, Tyree H

    2017-09-01

    Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light-blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light-blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light-blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.

  4. Influence of bicarbonate on the sensitivity of renin release to sodium chloride

    DEFF Research Database (Denmark)

    Skøtt, O; Jensen, B L

    1989-01-01

    glomeruli treated with bicarbonate/chloride exchange inhibitor (DNDS), NaCl/KCl cotransport inhibitor (bumetanide), or Na+/H+ antiport inhibitor (amiloride) in the presence or absence of bicarbonate. In addition, the sensitivity to increases in osmolality by addition of sucrose was tested in the presence...... or absence of bicarbonate. Renin release from time controls superfused with a bicarbonate-free Ringer was identical to release from glomeruli superfused with a bicarbonate Ringer. DNDS (0.11 or 1.1 mM) had no effect on renin release in a bicarbonate Ringer. 30 mM sucrose inhibited renin release independently...... of bicarbonate. 15 mM NaCl stimulated renin release when bicarbonate was absent, while it caused an inhibition in the presence of bicarbonate. When bicarbonate/chloride exchange was inhibited, addition of NaCl stimulated renin release even when bicarbonate was present. The effect of NaCl on renin release...

  5. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation.

    OpenAIRE

    Hammer, Anna; Jorg, Stefanie; Haghikia, Aiden; Gold, Ralf; Kleinewietfeld, Markus; Müller, Dominik N.; Linker, Ralf A.

    2017-01-01

    Background: There has been a marked increase in the incidence of autoimmune diseases like multiple sclerosis (MS) in the last decades which is most likely driven by a change in environmental factors. Here, growing evidence suggests that ingredients of a Western diet like high intake of sodium chloride (NaCl) or saturated fatty acids may impact systemic immune responses, thus increasing disease susceptibility. Recently, we have shown that high dietary salt or long-chain fatty acid (LCFA) intak...

  6. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  7. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    International Nuclear Information System (INIS)

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole; Brown, Richard; Forster, Sam; Spinks, Jenny; Toms, Nick; Gibson, G. Gordon; Lyon, Jon; Plant, Nick

    2009-01-01

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcript (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism

  8. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  9. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2014-01-01

    Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  10. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  11. Hydrolysis of cupric chloride in aqueous ammoniacal ammonium chloride solutions

    Directory of Open Access Journals (Sweden)

    Limpo, J. L.

    1995-06-01

    Full Text Available Cupric solubility in the CuCl2-NH4Cl-NH3-H2O system for chloride concentrations lower than 4 molal in the temperature range 25-60 °C was studied. The experimental results show that for chloride concentration between 3.0 and 1.0 molal the cupric solubility is determined by the solubility of the cupric hydroxychloride Cu(OH1.5Cl0.5. For a chloride concentration value of 4.0 molal, there are two cupric compounds, the hydroxychloride Cu(OH1.5Cl0.5 or the diammine chloride Cu(NH32Cl2, on which the solubility of Cu(II depends, according to the temperature and the value of the ratio [NH3]Total/[Cu]Total.

    Se estudia la solubilidad del Cu(II en el sistema CuCl2-NH4Cl-NH3-H2O para concentraciones de cloruro inferiores a 4 molal en el intervalo de temperaturas 25-60 °C. Los resultados experimentales muestran que, para concentraciones de cloruros comprendidas entre 3,0 y 1,0 molal, la solubilidad cúprica viene determinada por la solubilidad del hidroxicloruro cúprico, Cu(OH1.5Cl0.5. Para concentraciones de cloruro 4,0 molal, existen dos compuestos cúpricos, el hidroxicloruro, Cu(OH1.5Cl0.5 o el cloruro de diamina, Cu(NH32Cl2, de los que, de acuerdo con la temperatura y con el valor de la relación [NH3]Total/[Cu]Total depende la solubilidad del Cu(II.

  12. 29 CFR 1926.1152 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  13. 29 CFR 1915.1052 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  14. Microbial Growth in the Magnesium- Chloride - Sodium- Sulphate Ion System: Implications for Habitability in Terrestrial and Extraterrestrial Salts

    Science.gov (United States)

    Loudon, C. M.; Aka, S.; Cockell, C. S.

    2017-12-01

    Icy moons in the outer solar system are key targets in the search for extra-terrestrial life as there is evidence that they harbour subsurface oceans. Observational evidence of icy moons such as Europa suggest that these likely brine oceans should be composed of chloride and sulphate salts. The effects of the ions that compose these salts on biology and how the interactions between them can create geochemical and geophysical barriers to life are poorly understood. Here we present an in depth study of four microorganisms grown in solutions with varying combinations of the magnesium- chloride- sodium- sulphate ions. We find that the ion composition of the brine solution can have a large effect on growth. Whilst the water activity must be permissible for growth we found that this alone could not predict the effects of the ions on growth, chaotropic effects and ion specific effects influenced by the specific physiology of organisms are also evident. For this reason we conclude that simply knowing which salts are present on icy moons is not sufficient information to determine their potential habitibility. A full sample of any brine ocean would need to be studied to fully determine the potential for biology on these outer solar system satellites.

  15. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  16. Compatibility of butorphanol with granisetron in 0.9% sodium chloride injection packaged in glass bottles or polyolefin bags.

    Science.gov (United States)

    Chen, Fu-Chao; Xiong, Hui; Liu, Hui-Min; Fang, Bao-Xia; Li, Peng

    2015-08-15

    The stability of admixtures containing butorphanol and granisetron in polyolefin bags and glass bottles stored at 4 and 25 °C was studied. Commercial solutions of butorphanol tartrate and granisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL; the resulting mixtures were packaged in polyolefin bags and glass bottles. The admixtures were assessed for periods of up to 48 hours after storage at 25 °C without protection from room light and up to 14 days at 4 °C with protection from room light. The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against room light and dark backgrounds. HPLC analysis demonstrated that the percentages of the initial concentrations of butorphanol and granisetron in the various solutions remained above 97% during the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL in 0.9% sodium chloride injection in polyolefin bags or glass bottles remained stable for 48 hours when stored at 25 °C exposed to room light and for 14 days when stored at 4 °C protected from room light. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  17. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure.

    Science.gov (United States)

    Robertson, Laura S; Galbraith, Heather S; Iwanowicz, Deborah; Blakeslee, Carrie J; Cornman, R Scott

    2017-09-01

    To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5'-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation. Environ Toxicol Chem 2017;36:2352-2366. © Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  18. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    Science.gov (United States)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  19. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  20. Chlorides behavior in raw fly ash washing experiments

    International Nuclear Information System (INIS)

    Zhu Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-01-01

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl 2 , and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl 2 decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al 2 O 3 .CaCl 2 ) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl 2 . Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl 2 .

  1. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  2. 29 CFR 1926.1117 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... chloride. Note: The requirements applicable to construction work under this section are identical to those...

  3. Mass transport and chloride ion complexes in occluded cell

    International Nuclear Information System (INIS)

    Tsuru, T.; Hashimoto, K.; Nishikata, A.; Haruyama, S.

    1989-01-01

    Changes in the transport and the concentration of ions in a model occluded cell are traced during galvanostatic anodic polarization of a mild steel and a stainless steel. Apparent transport numbers of anions and cations, which were estimated from chemical analysis of solution, were different from those calculated from known mobility data. At the initial stage of the polarization, the transport number of chloride ion was almost unity, and then decreased gradually. For the mild steel, the concentration of total chloride ion accumulated in the occluded compartment increased with the anodic charge passed, and the amount of chloride ion complexed with cations also increased. The chloride complex was estimated as FeCl + . For SUS304 stainless steel, the total chloride ion increased, however, the free chloride ion, which responded to an Ag/AgCl electrode remained approximately 2 mol/dm 3 . Therefore, most of the chloride ions transferred into the occluded cell formed complex ions, such as CrCl n 3-n . The number of chloride ion coordinated to ferrous and chromic ions was estimated from the data fo mass transport for the case of the mild steel and the stainless steel. (author) 9 refs., 14 figs

  4. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  5. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  6. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  7. Scientific Opinion on the safety of the complexation product of sodium tartrate and iron(III) chloride as a food additive

    OpenAIRE

    2015-01-01

    The complexation product of sodium tartrates and iron(III) chloride (Fe mTA) is proposed for use as an anti-caking agent, only in salt or its substitutes, with a maximum use level of 106 mg Fe mTA/kg salt. Fe mTA can be expected to dissociate into its constituent iron(III) and tartrate components upon ingestion. Studies in rats demonstrated that up to 90 % of ingested DL-tartrate or tartaric acid were absorbed, studies in humans suggested that only 20 % of an ingested dose of tartaric acid we...

  8. The effect of residual chlorides on resultant properties of solid and liquid phases after carbonization process

    Energy Technology Data Exchange (ETDEWEB)

    Plevova Eva; Sugarkova Vera; Kaloc Miroslav [Institute of Geonics ASCR, Ostrava (Czech Republic). Laboratory of Petrology

    2004-07-01

    The low-concentration condition was employed to model the carbonisation mode for local (Czech Republic) coals with higher concentrations of some metals. After completing the carbonisation, mass balance calculations were performed. Results show that the presence of zinc dichloride, copper dichloride and sodium chloride caused the most pronounced impediment to the formation of tar in contrast to lead dichloride and aluminium chloride that increased tar. The results demonstrated that adding of chloride agents effect both the course of the coking process and the properties of solid and liquid products of coking. Evaluation of the solid phase showed that chloride addition caused a decrease of the caking and swelling value, which corresponds with measurements of plasticity values that are of significant influence on mechanical properties closely related to coking plant processes. Evaluation of the liquid phase pointed towards an increase of aromatic hydrocarbons and their derivatives (especially phenanthrene, fluoranthene, acenaphthylene, pyrene) but a decrease of naphthalene and methylnaphthalene. Chloride addition increased aromaticity and caused a difference in substitution rate at aromatic nucleus. Mesophase estimation indicated extensive mosaic, domain and laminated anisotropic texture occurrence after chloride addition, mainly NaCl and CuCl{sub 2} addition. A more detailed evaluation including detailed screening, TGA, IR and RTG analysis will be subject of further investigation. 4 refs., 2 figs., 5 tabs.

  9. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  10. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    Science.gov (United States)

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  11. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  12. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  13. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  14. Bone marrow scintigraphy with 111In-chloride

    International Nuclear Information System (INIS)

    Fujishima, Mamoru; Hiraki, Yoshio; Takeda, Yoshihiro; Kohno, Yoshihiro; Niiya, Harutaka; Aono, Kaname; Yorimitsu, Seiichi; Takahashi, Isao

    1988-01-01

    Bone marrow scintigraphy with indium chloride ( 111 In) was performed in fifty-one patients with the hematological diseases. The results of the investigation were that 1) in all patients, as well as in patients with aplastic anemia, no correlation was there between the degree of the indium chloride accumulation and peripheral blood counts, 2) in patients with aplastic anemia and pure red cell aplasia (PRCA) a tendency to reduction in uptake of indium chloride in bone marrow, 3) in patients with these two good correlation between the degree of indium chloride accumulation and histology of the erythroid bone marrow, but in patients with chronic myelocytic leukemia (CML) and atypical leukemia no correlation between the two, so it seemed unlikely that indium chloride should reflect the effective production of erythrocytes, 4) four patients with leukemia were studied with indium chloride bone marrow imaging two times to evaluate their responses to chemotherapy, and peripheral expansion was no change or reduced in two patients with acute myelocytic leukemia (AML) and one patient with acute lymphocytic leukemia (ALL) who obtained complete remission, but on the other hand, it enlarged in one patient with acute myelocytic leukemia who obtained partial remission, and 5) in two patients with chronic myelocytic leukemia it enlarged up to the ankle joints, which was considerably specific. (author)

  15. Chlorides behavior in raw fly ash washing experiments.

    Science.gov (United States)

    Zhu, Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-06-15

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl(2), and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl(2) decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al(2)O(3).CaCl(2)) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl(2). Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl(2). Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines

    Energy Technology Data Exchange (ETDEWEB)

    Hawker, J.S.; Walker, R.R.

    1978-01-01

    Sodium chloride was supplied to rooted cuttings of Vitis vinifera cv Cabernet Sauvignon grown in a porous growth medium at concentrations of 0, 20, 50 and 75 mM. Shoot and leaf growth and berry set and development were reduced by NaCl, the severity of the effects depending on both NaCl concentration and the age of the plants receiving the treatment. Shoots were not affected by 20 mM NaCl supplied 10 days after flowering but 50 and 75 mM NaCl caused severe stunting of shoots and 75 mM NaCl had a marked effect on berry growth and development. When NaCl was supplied to vines 10 days before flowering, 20, 50 and 75 mM NaCl inhibited shoot growth and reduced berry size and sugar content. Although NaCl caused a decrease in the rate of growth of both leaves and berries, no changes in invertase or pectin methylesterase activities were found in these organs from plants supplied with NaCl.

  17. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.

    2002-01-01

    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  18. Studies on the mercuric chloride resistance of Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Vaczi, L; Fodor, M; Milch, H; Rethy, A

    1962-01-01

    Among 409 pathogenic Staph. aureus strains 34% have been found to be sensitive, and 66% resistant, to mercuric chloride. The incidence of mercuric chloride resistant cultures among antibiotic sensitive staphylococci was 20%; among strains resistant to penicillin or to more than one antibiotic, 70%. Mercuric chloride resistant organisms occurred chiefly among phage group I and untypable strains; they were especially common among the so called epidemic strains of phage group I, and among cultures resistant to 4-6 antibiotics. In mercuric chloride sensitivity a thirtyfold, in merthiolate sensitivity only a two-fold difference has been revealed among the strains. The sulfydryl group content of mercuric chloride resistant organisms was only 1 1/2 times higher than that of sensitive bacteria. As to p-chlor mercuric benzoate binding capacity, a twofold difference was found between mercuric chloride sensitive and resistant staphylococci. The differences in the mercuric chloride resistance of various staphylococcal strains might be due to differences in the chemical structure of the cell surface. 9 references, 1 figure, 6 tables.

  19. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...

  20. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  1. Application Of Vacuum Salt Distillation Technology For The Removal Of Fluoride And Chloride From Legacy Fissile Materials

    International Nuclear Information System (INIS)

    Pierce, R.; Peters, T.

    2011-01-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO 2 ). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), and plutonium fluoride (PuF 3 ) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl 2 , CaF 2 and PuF 3 below 1000 C using VSD technology.

  2. Effects of platinic chloride on Tetrahymena pyrifromis GL

    DEFF Research Database (Denmark)

    Nilsson, Jytte R.

    1992-01-01

    Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin......Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin...

  3. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  4. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continu......The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride...

  5. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution

    International Nuclear Information System (INIS)

    Sanchez, Javier; Fullea, Jose; Andrade, Carmen; Gaitero, Juan J.; Porro, Antonio

    2008-01-01

    The high strength steels employed as reinforcement in pre-stressed concrete structures are drawn wire steels of eutectoid composition with a pearlitic microstructure. This work is focused on the study, by atomic force microscopy, of the early stages of the corrosion of such steels as a consequence of their exposition to a sodium chloride solution. The obtained images show the pearlitic microstructure of the steel, with a preferential attack of the ferrite phase and the cementite acting as a cathode. The corrosion rate was determined by calculating the amount of material lost from a roughness analysis. The obtained results are in good agreement with the predictions of Galvelel's theory, according to which the corrosion rate slows down as the pit depth increases

  6. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, C J

    1992-09-01

    This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

  7. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  8. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  9. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    Science.gov (United States)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-01-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  10. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    Science.gov (United States)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  11. Sorption of amiodarone to polyvinyl chloride infusion bags and administration sets.

    Science.gov (United States)

    Weir, S J; Myers, V A; Bengtson, K D; Ueda, C T

    1985-12-01

    The loss of amiodarone from i.v. admixtures to flexible polyvinyl chloride (PVC) infusion bags and i.v. administration sets was studied. Admixtures containing amiodarone hydrochloride 600 micrograms/mL and either 5% dextrose injection or 0.9% sodium chloride injection were stored at room temperature in glass bottles (both with and without contact of the drug solution with the rubber bottle closure), in flexible PVC bags, or in rigid PVC bottles. After 120 hours, the contents of each flexible PVC bag were emptied and replaced by methanol, which was allowed to remain in the bag for an additional 120 hours and was then analyzed for amiodarone content. To determine availability of amiodarone after infusion through a 1.8-m PVC i.v. administration set, solutions stored in glass containers were run through the set at 0.5 mL/min for 90 minutes. Samples of drug solutions were collected at appropriate intervals and analyzed by a stability-indicating high-performance liquid chromatography (HPLC) assay. Admixtures containing 0.9% sodium chloride injection were not stable; visual incompatibility was evident after 24 hours of storage in glass bottles, and no further testing was performed. In admixtures containing 5% dextrose injection that were stored in 50-mL flexible PVC bags, 60% of the initial amiodarone concentration remained after 120 hours; approximately half of the lost drug was recovered with the methanol. In effluent collected from the PVC administration set, 82% of the initial amiodarone concentration remained. Amiodarone concentrations did not decrease appreciably, after storage in glass or rigid PVC bottles, indicating that drug loss was probably affected by the plasticizer, di-2-ethylhexyl phthalate.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    Science.gov (United States)

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. Copyright © 2016 the American Physiological Society.

  13. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  14. 40 CFR 721.6167 - Piperdinium, 1,1-dimethyl-, chloride.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Piperdinium, 1,1-dimethyl-, chloride... Substances § 721.6167 Piperdinium, 1,1-dimethyl-, chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as piperdinium, 1,1-dimethyl-, chloride. (PMN...

  15. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  16. Chronopotentiometric chloride sensing using transition time measurement

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, D.B.; Olthuis, Wouter; van den Berg, Albert

    2013-01-01

    Detection of chloride ions is crucial to accurately access the concrete structure durability[1]. The existing electrochemical method of chloride ions detection in concrete, potentiometry[1], is not suitable for in-situ measurement due to the long term stability issue of conventional reference

  17. Method for synthesizing pollucite from chabazite and cesium chloride

    International Nuclear Information System (INIS)

    Pereira, C.

    1999-01-01

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs

  18. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  19. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    Science.gov (United States)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  20. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  1. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    Directory of Open Access Journals (Sweden)

    Olufunmilayo O. Joseph

    2016-06-01

    Full Text Available In this study, micro-alloyed steel (MAS material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE environment and its degradation mechanism in the presence of sodium chloride (NaCl was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness.

  2. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    Science.gov (United States)

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  3. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  4. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  5. On barium oxide solubility in barium-containing chloride melts

    International Nuclear Information System (INIS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-01-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl 2 -NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl 2 -MCl systems.

  6. Bone marrow scintigraphy with 111In-chloride

    International Nuclear Information System (INIS)

    Aburano, Tamio; Ueno, Kyoichi; Sugihara, Masami; Tada, Akira; Tonami, Norihisa

    1977-01-01

    It is assumed that 111 In-chloride is bound to serum transferrin and then transported into reticulocyte in erythropoietic marrow. However, several biochemical differences between radioiron and 111 In have been reported since these years. In present study, clinical usefulness of 111 In-chloride bone marrow scintigraphy was examined especially by comparing 111 In-chloride image with sup(99m)Tc-colloid. Obtained results are as follows: 1) In most cases, both 111 In-chloride and sup(99m)Tc-colloid images showed similar bone marrow distributions. 2) In three out of 7 cases with hypoplastic anemia and two patients with bone marrow irradiation (700-1,000 rad), the central marrow or irradiated marrow showed marked decreased uptake of 111 In, and showed normal uptake of sup(99m)Tc. 3) In two out of 3 cases with chronic myelogenous leucemia, central marrow showed normal uptake of 111 In, and showed decreased uptake of sup(99m)Tc. From the present study, the same dissociation findings as those between radioiron and radiocolloid could be obtained in hypoplastic anemia and bone marrow irradiation. 111 In-chloride would appear to be a useful erythropoietic imaging agent, although further study of exact comparison with radioiron should be necessary. (auth.)

  7. Structure and thermodynamic properties of molten alkali chlorides

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-03-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten alkali chlorides in a non-polarizable-ion model. The theory starts from the hypernetted chain approximation and analyzes the role of bridge diagrams both for a two-component ionic plasma on a neutralizing background and for a binary ionic liquid of cations and anions. A simple account of excluded-volume effects suffices for a good description of the pair distribution functions in the two-component plasma, in analogy with earlier work on one-component fluids. The interplay of Coulomb attractions and repulsions in the molten salt requires, on the other hand, the inclusion of (i) excluded-volume effects for the various ion pairs as in a mixture of hard spheres with non-additive radii and (ii) medium-range Coulomb effects reflected mainly in the like-ion correlations. All these effects are included approximately in an empirical evaluation of the bridge functions, with numerical results which compare very well with computer simulation data. A detailed discussion of the results against experimental structural data is then given in the case of molten sodium chloride. (author)

  8. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  9. Microstructural characterization and electrochemical corrosion behavior of Incoloy 800 in sulphate and chloride solutions

    International Nuclear Information System (INIS)

    Mansur, Fabio Abud; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa; Aguiar, Antonio Eugenio de; Chaim, Marcos Souza

    2011-01-01

    Corrosion has been the major cause of tube failures in steam generators (SG) tubes in nuclear power plants. Problems have resulted from impurities in the secondary water systems which are originated from leaks of cooling water. It is important to understand the compatibility of steam generator tube materials with the environment. This study presents the microstructural characterization and electrochemical behavior of the Incoloy 800 in sodium chloride and sodium sulphate aqueous solutions at 80 degree C. Potentiodynamic anodic polarization, cyclic polarization and open circuit potential (OCP) measurements were the electrochemical techniques applied in this work. The pitting resistance of Incoloy 800 in chloride plus sulphate mixtures were also examined. Experiments performed in solutions with different concentrations of Cl- and SO 4 2- ions in solution (200 ppb, 500 ppb, 1ppm, 5 ppm, 50 ppm and 100 ppm) showed that this concentrations range had no substantial effect on the anodic behavior of the alloy. After polarization no localized corrosion was found on the samples. (author)

  10. Conservation of minimally processed pineapple using calcium chloride, edible coating and gamma radiation

    International Nuclear Information System (INIS)

    Pilon, Lucimeire

    2007-01-01

    The aim of this study was to obtain a convenience type pineapple subjected to fresh-cut process and calcium chloride, wheat gluten and alginate-base edible coating and irradiation treatments. The fruits were washed, sanitized with Sumaveg (Sodium Dichloro-s-Triazinetrione) in a 200 mg L-1 chlorine-free solution at 7 deg C for 15 minutes, and then manually peeled. The peeled fruits were sliced into 1 cm thick slices, rinsed in 20 mg L-1 chlorine-free solution for 3 minutes and drained for 3 minutes. In the first experiment, the samples were treated with: 1% calcium chloride + vital wheat gluten solution; 1% calcium chloride + 1% alginate solution; and control. In the second experiment, the samples were treated with: 1% calcium chloride + vital wheat gluten solution + 2.3 kGy; 1% calcium chloride + 2.3kGy; irradiation with 2.3kGy; and control. The packing consisted of rigid polyethylene terephthalate (PET) trays with around 250 g of fruit. The irradiation was performed in a Cobalt-60 multipurpose irradiator with 92 kCi activity and dose value of 2.3 kGy h-1. The samples were stored at 5 ± 1 deg C and evaluated every other day for 12 days. In the first experiment pH and titratable acidity values showed slight variations but were similar between the treatments. There was a decrease in ascorbic acid values in all treatments. Browning was noticed in all treatments over the storage period. Although the values between the treatments were similar, the pineapple treated with calcium chloride + gluten showed firmer texture, less liquid loss, and lower values of polyphenoloxidase and peroxidase activities and CO 2 and ethylene production. Mesophiles and mold and yeast counts were also reduced. No Salmonella and E. coli were detected. Total coliform counts were low in all the treatments and appeared in just a few isolated samples during the storage period. Sensory analyses showed that the samples treated with calcium chloride + gluten had the lower scores for texture

  11. Visual and confocal microscopic interpretation of patch tests to benzethonium chloride and benzalkonium chloride.

    Science.gov (United States)

    Benjamin, Bohaty; Chris, Fricker; Salvador, González; Melissa, Gill; Susan, Nedorost

    2012-08-01

    Quaternary ammonium compounds (Quats), such as benzalkonium chloride (BAC) and benzethonium chloride (BEC), are widely used as antibacterial active ingredients and preservatives in personal care products, disinfectants, and ophthalmic preparations. BAC is known to be a marginal irritant when patch tested at 0.15% aq. Data on BEC are limited. To differentiate irritant from allergic patch test reactions to quaternary ammonium compounds. Eight subjects who were considered likely to react based on history of rash after exposure to disinfectants or a history of prior positive patch test to BAC were recruited, as well as two patients undergoing routine patch testing. BAC (0.15% aq), BAC (0.15% pet), BEC (0.05% aq), BEC (0.15% pet), BEC (0.15% aq), BEC (0.5% aq), sodium lauryl sulfate (2.0%), and deionized water were applied under Finn chambers for 48 h. Four days and 7 days after application, the sites were examined visually and then by in vivo reflectance confocal microscopy (RCM) which was interpreted by blinded experts. Two patients with definite allergic reactions according to visual patch test reads and RCM were clinically relevant. Cross-reaction between BEC and BAC was demonstrated in one patient. RCM imaging correlated well with clinical scoring and interpretation of patch test reactions in terms of irritancy vs. allergy for BEC and BAC. Relevant allergic reactions to quats occur in humans. Possible cross-reaction was noted to occur between BAC and BEC. RCM appears to be a useful tool in distinguishing between irritancy and sensitization during patch testing to BAC and BEC. Further study of prevalence and best test concentration and vehicle is needed. © 2011 John Wiley & Sons A/S.

  12. Effect of ultrasound on electrochemical chloride extraction from mortar

    Science.gov (United States)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  13. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  14. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    Science.gov (United States)

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  15. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang; Wang Huaping

    2009-01-01

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  16. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    Science.gov (United States)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  17. Hydrocracking mechanisms in molten zinc chloride. Isotope scrambling and pyrolysis studies

    International Nuclear Information System (INIS)

    Larsen, J.W.; Earnest, S.

    1979-01-01

    Bruceton coal was hydrocracked in molten zinc chloride using H 2 -D 2 mixtures. No H-D was observed. The pyrolysis of Bruceton coal and a lignite in molten zinc chloride and an inert salt was carried out and the tetrahydrofuran and pyridine extractability of the products determined. In the absence of H 2 , zinc chloride is not an effective cracking catalyst. It is tentatively concluded that the catalytically active species is formed from zinc chloride and something in the coal and H 2 . The interactions between zinc chloride and the lignite appear to be significantly different than the interactions between zinc chloride and the bituminous coal. (Auth.)

  18. Two-electron oxidation of cobalt phthalocyanines by thionyl chloride: Implications for lithium/thionyl chloride batteries. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, P.A.; Lever, A.B.

    1989-10-20

    Cyclic voltammetry, DPV and electronic spectroscopy are used to study the reaction between thionyl chloride and cobalt phthalocyanine. SOCl2 reacts with (Co(I)Tn Pc(2-)) and Co(II)Tn Pc(2-) to give two-electron oxidized species. Implications for Li/SOCl2 batteries are discussed. Thionyl chloride also forms a mono SOCl2 adduct with Co(II)TnPc(2-). Driving forces (Delta E values) were calculated for CoTnPc comproportionation and CoTnPc + SOCl2 reactions. Rest potential measurements of a Li/SOCl2 cells show that addition of AlCl3 stabilizes the LiCl product as LiAlCl4. A catalytic two-electron mechanism is indicated for the reduction of thionyl chloride in a Li/SOCl2/(CoTnPc,C) battery.

  19. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  20. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  1. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence.

    Science.gov (United States)

    Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe

    2018-01-01

    Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4 + T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs.

  2. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Eric Toussirot

    2018-04-01

    Full Text Available Immune mediated diseases (IMDs are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4+ T cells into IL-17 secreting T helper (Th cells (Th17 cells, by a mechanism involving the serum glucocorticoid kinase-1 (SGK1 that promotes the expression of the IL-23 receptor (IL-23R. The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA, multiple sclerosis (MS, and Crohn's disease (CD. Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs.

  3. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro

    1993-01-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO 2 -rich and CeO 2 -lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO 2 content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl 3 , LaCl 3 , NdCl 3 , and PrCl 3 are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 μm

  4. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  5. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  6. Determination of chloride in water. A comparison of three methods

    International Nuclear Information System (INIS)

    Steele, P.J.

    1978-09-01

    The presence of chloride in the water circuits of nuclear reactors, power stations and experimental rigs is undesirable because of the possibility of corrosion. Three methods are considered for the determination of chloride in water in the 0 to 10 μg ml -1 range. The potentiometric method, using a silver-silver chloride electrode, is capable of determining chloride above the 0.1μg ml -1 level, with a standard deviation of 0.03 to 0.12 μg ml -1 in the range 0.1 to 6.0 μg ml -1 chloride. Bromide, iodide and strong reducing agents interfere but none of the cations likely to be present has an effect. The method is very susceptible to variations in temperature. The turbidimetric method involves the production of suspended silver chloride by the addition of silver nitride solution to the sample. The method is somewhat unreliable and is more useful as a rapid, routine limit-testing technique. In the third method, chloride in the sample is pre-concentrated by co-precipitation on lead phosphate, redissolved in acidified ferric nitrate solution and determined colorimetrically by the addition of mercuric thiocyanate solution. It is suitable for determining chloride in the range 0 to 50 μg, using a sample volume of 100 to 500 ml. None of the chemical species likely to be present interferes. In all three methods, chloride contamination can occur at any point in the determination. Analyses should be carried out in conditions where airborne contamination is minimised and a high degree of cleanliness must be maintained. (author)

  7. Corrosion Risk of Reinforced Concrete Structure Arising from Internal and External Chloride

    Directory of Open Access Journals (Sweden)

    M. J. Kim

    2018-01-01

    Full Text Available The corrosion risk of internal chloride and external chloride from three different exposure conditions was evaluated. The initiation of corrosion was detected by monitoring the galvanic current between cathode metal and embedded steel. The chloride threshold was determined by measuring the corrosion rate of steel by the polarization technique for internal chloride and the chloride profiling test for external chloride. As the result, the initiation of corrosion was accelerated with a cyclic wet/dry condition, compared to the totally wet condition. In addition, it was found that an increase of the drying ratio in the exposure condition resulted in an increase of corrosion rate after initiation. The threshold level of external chloride ranged from 0.2 to 0.3% weight by cement and internal chloride shows higher range, equated to 1.59–3.10%. Based on these data, the chloride penetration with exposure condition was predicted to determine the service life of reinforced concrete structure.

  8. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  9. High lumenal chloride in the lysosome is critical for lysosome function.

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-07-25

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~10 3 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca 2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function.

  10. Kinetics of the oxidative hydroxylation of sodium hypophosphite in the presence of copper (II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in soft conditions (50-70oC, PO2 = 1 atm sodium hypophosphite effectively is oxidized by oxygen in water solutions of copper(II chloride  to give mainly a phosphorous acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, the intermediate and final products, optimal conditions of new catalytic reaction of NaH2PO2 oxidation by oxygen in water solution were defined by kinetics, volumometry, redox-potentiometry and a titration.

  11. Absorption media for irreversibly gettering thionyl chloride

    Science.gov (United States)

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  12. Amperometric Sensor for Detection of Chloride Ions†

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-01-01

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832

  13. Amperometric Sensor for Detection of Chloride Ions.

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-09-15

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.

  14. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  15. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  16. Chloride Ingress in Concrete Cracks under Cyclic Loading

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Olesen, John Forbes

    2005-01-01

    was similar for both sets and the maximum crack width was kept constant throughout the exposure period by means of precracking and an external prestressed reinforcement. Chloride profiles after 40 days revealed a considerable increase in ingress towards the crack tip in contrast to data from the literature....... Preliminary investigations have been undertaken to quantify the effect of dynamic load application on the chloride ingress into concrete cracks. Specimens were designed allowing ingress of a chloride solution into a single crack of a saturated unreinforced mortar beam. One set of specimens was subjected...... to a load frequency of ten applications per minute and a second set to one application per hour simulating static cracks, however limiting the ingress hampering effects of autogenous healing and a possible dense precipitation on the crack faces. The averaged chloride exposure interval of the crack faces...

  17. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  18. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  19. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  20. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  1. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Critical pitting temperature for Type 254 SMO stainless steel in chloride solutions

    International Nuclear Information System (INIS)

    Abd El Meguid, E.A.; Abd El Latif, A.A.

    2007-01-01

    The variation with time of the open circuit potential of high molybdenum containing stainless steel (Type 254 SMO) was measured in 4% sodium chloride solution in the temperatures range 30-100 deg. C. The plot of steady state potentials as function of temperature showed an inflection at 50 deg. C, attributed to the decrease of oxygen solubility in test solution above 50 deg. C. Potentiodynamic cycling anodic polarization technique was used to determine the critical pitting potential (E pit ) and the critical protection potential (E prot ) of the steel in 4-30% NaCl solutions at temperatures between 30 and 100 deg. C. By plotting the two values versus solution temperature, the corresponding critical pitting (CPT) and the critical protection (CPrT) temperatures were determined. Both parameters decreased with increasing chloride content. Above the CPT, E pit and E prot decreased linearly with log[Cl - ]. The addition of bromide ions to the solution shifted both E pit and E prot towards positive values. In 4% NaCl, E pit increased linearly with pH in the range 1-10. The combined effect of chloride ion concentration and pH on the morphology of the pits was examined by scanning electron microscopy (SEM) following potentiodynamic cycling anodic polarization

  3. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat...

  4. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  5. High lumenal chloride in the lysosome is critical for lysosome function

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-01-01

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~103 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function. DOI: http://dx.doi.org/10.7554/eLife.28862.001 PMID:28742019

  6. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    Science.gov (United States)

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Thermodynamic properties of molten mixtures of lithium, rubidium, cesium and beryllium chlorides

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Podafa, B.P.; Dubovoj, P.G.

    1982-01-01

    e. m. f. in binary systems of beryllium chloride with rubidium and cesium chlorides were measured. Concentration dependences of thermodynamic functions (mixing entropy Gibbs free energy) of beryllium chloride in the systems as well as with the participation of lithium chloride were analysed

  8. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  9. Chloride transport in mortar at low moisture concentration

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.

    2014-01-01

    Chloride penetration into cementitious structures with a steel reinforcement results in corrosion of the steel. Concrete columns of bridges, which are in frequent contact with sea water, are an example of these structures. Understanding the chloride transport in cementitious materials can lead to

  10. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammonia...... desorption originating from the adsorbed state is directly observed below the bulk desorption temperature, as confirmed by density functional theory calculations. The desorption enthalpy of the adsorbed state of strontium chloride octa-ammine is determined with both techniques to be around 37-39 k...

  11. Free and bound chloride contents in cementitious materials

    NARCIS (Netherlands)

    Marinescu, M.V.A.; Brouwers, H.J.H.; Fischer, G.; Geiker, M.; Hededal, O.; Ottoson, L.; Stang, H.

    2010-01-01

    Chloride attack is the main cause of structural damage in reinforced concrete buildings exposed to marine environments. When a certain threshold concentration of chlorides is reached at the concrete-reinforcement interface, the corrosion of the steel rebars is initiated. A part of the intruding

  12. Chloride ion erosion experiment research in cracked concrete

    Science.gov (United States)

    Ting, Shu; Yang, Li

    2017-08-01

    For the study of chloride ion erosion in cracked concrete, this essay tries to take advantages of relevant trails to build up concrete chloride ion diffusion model based on the Fick’s second law. The parameter of this model is easy to be set, and many factors such as the effect of cracks are taken into consideration in this experiment. The concept of “chloride ion diffusion coefficient of equivalent apparent” is introduced to simplify the calculation. It can help simplify the calculation process, and get a more accurate test result, as well as facilitating the practical application of this parameter.

  13. separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization

    Directory of Open Access Journals (Sweden)

    Ammon N. Williams

    2015-12-01

    Full Text Available Separation of cesium chloride (CsCl and strontium chloride (SrCl2 from the lithium chloride-potassium chloride (LiCl-KCl salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary SrCl2-LiCl-KCl salt was explored at similar growth rates (1.8–5 mm/h and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, SrCl2 separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

  14. Separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ammon n.; Pack, Michael [Dept. of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond (United States); Phongikaroon, Spathorn [Dept. of Chemical and Materials Engineering and Nuclear Engineering Program, University of Idaho, Idaho Falls (United States)

    2015-12-15

    Separation of cesium chloride (CsCl) and strontium chloride (SrCl{sub 2}) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary SrCl2-LiCl-KCl salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, SrCl{sub 2} separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

  15. Chloride ingress profiles measured by electron probe micro analysis

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Coats, Alison M.; Glasser, Fred P.

    1996-01-01

    Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA is demonst......Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA...... is demonstated to determine chloride ingress in cement paste on a micrometer scale. Potential chloride ingress routes such as cracks or the paste-aggregate interface may also be characterized by EPMA. Copyright (C) 1996 Elsevier Science Ltd...

  16. A study on dehydration of rare earth chloride hydrate

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Eun, Hee Chul; Son, Sung Mo; Lee, Tae Kyo; Hwang, Taek Sung

    2012-01-01

    The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step (80→150→230 degree C) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

  17. Amperometric Sensor for Detection of Chloride Ions

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-09-01

    Full Text Available Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV we estimated the limit of detection (3 S/N as 500 nM.

  18. Diffusion Decay Coefficient for Chloride Ions of Concrete Containing Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Jae-Im Park

    2016-01-01

    Full Text Available The diffusion coefficient for chloride ions and the diffusion decay coefficient for chloride ions are essential variables for a service life evaluation of concrete structures. They are influenced by water-binder ratio, exposure condition, curing temperature, cement type, and the type and use of mineral admixture. Mineral admixtures such as ground granulated blast furnace slag, fly ash, and silica fume have been increasingly used to improve resistance against chloride ions penetration in concrete structures built in an offshore environment. However, there is not enough measured data to identify the statistical properties of diffusion decay coefficient for chloride ions in concrete using mineral admixtures. This paper is aimed at evaluating the diffusion decay coefficient for chloride ions of concrete using ordinary Portland cement or blended cement. NT BUILD 492 method, an electrophoresis experiment, was used to measure the diffusion coefficient for chloride ions with ages. It was revealed from the test results that the diffusion decay coefficient for chloride ions was significantly influenced by W/B and the replacement ratio of mineral admixtures.

  19. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci

    Directory of Open Access Journals (Sweden)

    Astha Agarwal

    2013-01-01

    Full Text Available Background & objectives: All colonizing and invasive staphylococcal isolates may not produce biofilm but may turn biofilm producers in certain situations due to change in environmental factors. This study was done to test the hypothesis that non biofilm producing clinical staphylococci isolates turn biofilm producers in presence of sodium chloride (isotonic and high concentration of glucose, irrespective of presence or absence of ica operon. Methods: Clinical isolates of 100 invasive, 50 colonizing and 50 commensal staphylococci were tested for biofilm production by microtiter plate method in different culture media (trypticase soy broth alone or supplemented with 0.9% NaCl/ 5 or 10% glucose. All isolates were tested for the presence of ica ADBC genes by PCR. Results: Biofilm production significantly increased in the presence of glucose and saline, most, when both glucose and saline were used together. All the ica positive staphylococcal isolates and some ica negative isolates turned biofilm producer in at least one of the tested culture conditions. Those remained biofilm negative in different culture conditions were all ica negative. Interpretation & conclusions: The present results showed that the use of glucose or NaCl or combination of both enhanced biofilm producing capacity of staphylococcal isolates irrespective of presence or absence of ica operon.

  20. Improved electrolyte for lithium-thionyl chloride battery. [Patent application

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, W.H.; McCartney, J.F.

    1980-12-17

    A lithium, thionyl chloride battery is provided with an electrolyte which makes it safe under a reverse voltage condition. The electrolyte is niobium pentachloride which is dissolved in the thionyl chloride.

  1. Tissue distribution of 1,2-14C-vinyl chloride in rats

    International Nuclear Information System (INIS)

    Buchter, A.; Bolt, H.M.; Kappus, H.; Bolt, W.

    1977-01-01

    Rats have been pretreatet with 6-nitro-1.2.3-benzothiadiazole which completely blocks the metabolism of vinyl chloride. If the animals are exposed to atmospheric vinyl chloride, the formation of an equilibrium between the compound in the gas phase and in the animal's organism is observed. Unmetabolized vinyl chloride is accumulated in the adipose tissue. The distribution pattern of vinyl in different organs of the rat is constant over the concentration range of 25-10,000 ppm of vinyl chloride in the exposure atmosphere. The distribution of metabolites of vinyl chloride contrasts to that of the original compound; metabolites primarily are concentrated in liver and in kidneys. (orig.) [de

  2. Screening of preschool and school children for cystic fibrosis with the chloride electrode and neutron activation analysis. Part of a coordinated programme on medical applications of activation analysis

    International Nuclear Information System (INIS)

    Gurson, C.T.

    1975-10-01

    A screening study was performed on 9,685 infants and children between 0 and 7 years of age living in the city of Istanbul. 2,511 of the subjects (''normals'') were kindergarten and school children and the remainder were children who had been brought to the casualty outpatient departments of two large hospitals. The purposes of the investigation were twofold, first to determine the prevalence of cystic fibrosis in a normal versus a sick population of children, and second to compare sweat-chloride vis-a-vis nail-sodium as indicators of the disease. Sweat-chloride was determined in all subjects by the use of a chloride specific electrode; nail sodium was determined in 1122 subjects by neutron activation analysis. These measurements led to the identification of seven cystic fibrosis cases in the outpatient group (frequency = 0.1%) and none in the kindergarten/school group. Sweat-chloride gave 0.7% false positives and no false negatives; nailsodium gave 14.7% false positives and 0.1% false negatives. It is concluded that nail-sodium is a much less effective indicator of cystic fibrosis than sweat-chloride and its use can probably not be justified except in certain special circumstances. Furthermore it would appear that the screening of outpatient cases rather than the whole population of children is a more cost-effective method for the detection of cystic fibrosis

  3. Modelling of chloride penetration in concrete under wet/dry cycle

    Directory of Open Access Journals (Sweden)

    Hong Sung-In

    2017-01-01

    Full Text Available This present study concerns modelling of chloride penetration in partially saturated concrete. To mimic the intermittent exposure of sea water to concrete, varying environmental conditions for relative humidity and chloride concentration were considered. As for the moisture distribution in concrete, statistical permeability model based on pore size distribution was used to represent influence of material properties on moisture transport. Then, a combined chloride diffusion and convection was modelled in variation of moisture level in concrete. As a result, smaller relative wet duration induces higher rate of chloride penetration due to enhanced moisture permeability from the surface, and also higher concentration gradient near the surface of concrete due to repeated wet/dry cycle. This implies that only diffusion analysis on chloride induced corrosion in concrete structure may underestimate the serviceability in given material performance.

  4. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  5. Chloride migration in concrete with superabsorbent polymers

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2015-01-01

    Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete...... contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient......; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less....

  6. Optimization of the lithium/thionyl chloride battery

    Science.gov (United States)

    White, Ralph E.

    1989-01-01

    A 1-D math model for the lithium/thionyl chloride primary cell is used in conjunction with a parameter estimation technique in order to estimate the electro-kinetic parameters of this electrochemical system. The electro-kinetic parameters include the anodic transfer coefficient and exchange current density of the lithium oxidation, alpha sub a,1 and i sub o,i,ref, the cathodic transfer coefficient and the effective exchange current density of the thionyl chloride reduction, alpha sub c,2 and a sup o i sub o,2,ref, and a morphology parameter, Xi. The parameter estimation is performed on simulated data first in order to gain confidence in the method. Data, reported in the literature, for a high rate discharge of an experimental lithium/thionyl chloride cell is used for an analysis.

  7. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  8. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  9. Analysis of chloride diffusivity in concrete containing red mud

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud is a solid waste produced in the alumina production process and, due to its high pH, is classified as hazardous. Its incorporation in concrete mixtures, acting as filler due to the particles fineness, might be an interesting reuse alternative. The focus of this paper is to study the chloride diffusivity of concrete mixtures containing red-mud. The concentration of chlorides was monitored by measuring the conductivity of the anolyte, which was distilled water initially. In addition, the estimation of the chloride ions diffusion coefficients in steady and non-steady conditions, Ds and Dns, was obtained from the ''time-lag'' and ''equivalent time'' between diffusion and migration experiments. Due to superfine particle-size distribution and the "filler" effect, the red mud addition seems to assure lower chloride diffusivity.

  10. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  11. Chloride penetration into cementitious mortar at early age

    NARCIS (Netherlands)

    Caballero, J.; Polder, R.B.; Leegwater, G.A.; Fraaij, A.L.A.

    2012-01-01

    Modern service life design methods for concrete structures use chloride diffusion data as an input parameter. Abundant data exist for concrete at 28 days and, to a lesser extent, at later ages. This paper presents chloride diffusion data for mortar at ages between 1 day and 28 days age. Rapid

  12. Aerobic biodegradation of vinyl chloride in groundwater samples

    International Nuclear Information System (INIS)

    Davis, J.W.; Carpenter, C.L.

    1990-01-01

    Studies were conducted to examine the biodegradation of 14 C-labeled vinyl chloride in samples taken from a shallow aquifer. Under aerobic conditions, vinyl chloride was readily degraded, with greater than 99% of the labeled material being degraded after 108 days and approximately 65% being mineralized to 14 CO 2

  13. Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid

    International Nuclear Information System (INIS)

    Li Xueming; Tang Libin; Li Lin; Mu Guannan; Liu Guangheng

    2006-01-01

    The corrosion inhibition of cold rolled steel in 0.5 M sulphuric acid in the presence of o-phenanthroline and sodium chloride (NaCl) has been investigated by using weight loss and electrochemical techniques. The experimental data suggest that the inhibition efficiency increases with increasing NaCl concentration in the presence of 0.0002 M o-phenanthroline, but decreases with increasing temperature. A synergistic effect is observed when o-phenanthroline and chloride ions are used together to prevent cold rolled steel corrosion in 0.5 M sulphuric acid. The polarization curves showed that the complex of o-phenanthroline and NaCl acts as a mixed type inhibitor. The experimental results suggested that the presence of chloride ions in the solution stabilized the adsorption of o-phenanthroline molecules on the metal surface and improved the inhibition efficiency of o-phenanthroline. The adsorption of the complex accords with the Langmuir adsorption isotherm. Some thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy have been calculated by employing thermodynamic equations. Kinetic parameters such as apparent activation energy and pre-exponential factor have been calculated and discussed

  14. Effect of heat treatment on pitting corrosion of austenitic Cr-Ni-Mo steels in sodium chloride solution

    International Nuclear Information System (INIS)

    Stefec, R.; Franz, F.; Holecek, A.

    1979-01-01

    The pitting corrosion resistance of Cr17Ni12Mo2,5 type steel under potentiostatic polarization in a sodium chloride solution is adversely affected by previous annealing. The data obtained were systematically dependent on annealing temperature, time and surface roughness. The corrosion current, the number of pits or the mean area of pit opening and the corrosion rate within the pits were increased by previous annealing at 550 to 750 0 C for 1-100 hrs. The highest corrosion rate estimated corresponded to heat treatments provoking severe sensitization to intergranular corrosion. The paercentage area of corrosion pit openings and the estimated pit penetration rates were several times higher for as-machined than for polished surfaces. It can be assumed that pitting corrosion is little affected by the carbon content and that molybdenum depletion of grain-boundary zones is responsible for the reduced pitting resistance of annealed steels. (orig./HP) [de

  15. Intensity of f-f bands of neodymium chloride alcohol solvates

    International Nuclear Information System (INIS)

    Bukietynska, K.; Jezowski-Trzebiatowska, B.; Keller, B.

    1981-01-01

    Recent results revealed that in alcohol solutions of lanthanide chlorides, at least in the case of Eu 3+ and Yb 3+ ions, there exist mixed solvates, i.e. both chloride ions and solvent molecules are present in the Ln 3+ ion first coordination sphere. This conclusion was drawn from an analysis of the charge transfer transitions in the spectra of Eu 3+ and Yb 3+ chlorides in alcohols (methyl, ethyl, n-propyl), where two separate C.T.bands were observed and identified as C.T. transitions from the alcohol molecule and chloride ion to the Ln 3+ ion. In our previous paper we have reported that the energy of the first f-d transition in the Pr 3+ chloride alcohol solvates varied for different alcohols. These data also confirmed our suggestion that alcohol molecules are present in the first coordination sphere of the lanthanide ion. In the work reported here, we have tried to apply the intensity analysis method to the solution spectra of neodymium chloride dissolved in simple aliphatic alcohols like methanol, ethanol and n-propanol. Experimental details are given. Results are presented and discussed. (author)

  16. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  17. Crevice corrosion of alloy 22 in fluoride and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2005-01-01

    Alloy 22 (N06022) is highly resistant to localized corrosion. Alloy 22 may be susceptible to crevice corrosion in pure chloride (Cl - ) solutions under aggressive environmental conditions. The effect of the fluoride (F - ) on the susceptibility to crevice corrosion induced by chloride ions is still not well established. The objective of the present work was to explore the crevice corrosion resistance of this alloy to different mixtures of fluorides and chlorides. Cyclic potentiodynamic polarization (CPP) tests were conducted in deaerated aqueous solutions of pure halide ions and also in different mixtures of chloride and fluoride at 90 C degrees and pH 6. The range of chloride concentration [Cl - ] was 0.001 M ≤ [Cl - ] ≤ 1 M and the range of molar fluoride to chloride ratio [F - ]/[Cl - ] was 0.1≤ [F - ]/[Cl - ] ≤ 10. Results showed that Alloy 22 was susceptible to crevice corrosion in all the pure chloride solutions but not in the pure fluoride solutions. A molar ratio [F - ]/[Cl - ] ranging from 5 to 10 was required for the inhibition of crevice corrosion to be complete in the halide mixtures. A moderate or nil inhibitive effect was observed for molar ratios [F - ]/[Cl - ] [es

  18. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  19. Study on the chloride diffusion coefficient in concrete obtained in electrically accelerated tests

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Gulikers, J.J.W.; Polder, R.; Andrade, C.

    2015-01-01

    This study presents an analysis of the chloride diffusion coefficient (DRCM), obtained in electrically accelerated chloride migration tests. As demonstrated here, the obtained chloride diffusion coefficient does not represent the apparent one, as it is independent of chloride binding. This is

  20. Analysis of lithium/thionyl chloride batteries

    Science.gov (United States)

    Jain, Mukul

    The lithium/thionyl chloride battery (Li/SOClsb2) has received considerable attention as a primary energy source due to its high energy density, high operating cell voltage, voltage stability over 95% of the discharge, large operating temperature range (-55sp°C to 70sp°C), long storage life, and low cost of materials. In this dissertation, a one-dimensional mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed. Mathematical models can be used to tailor a battery design to a specific application, perform accelerated testing, and reduce the amount of experimental data required to yield efficient, yet safe cells. The Model was used in conjunction with the experimental data for parameter estimation and to obtain insights into the fundamental processes occurring in the battery. The diffusion coefficient and the kinetic parameters for the reactions at the anode and the cathode are obtained as a function of temperature by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49sp°C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells at Sandia National Laboratories. The model is also used to study the effect of cathode thickness and current and temperature pulsing on the cell capacity. Thionyl chloride reduction in the porous cathode is accompanied with a volume reduction. The material balance used previously in one-dimensional mathematical models of porous electrodes is invalid when the volume occupied by the reactants and the products is not equal. It is shown here how the material balance has to be modified to either account for the loss in volume, or to account for the inflow of electrolyte from the header into the active pores. The one-dimensional mathematical model of lithium/thionyl chloride primary battery is used to illustrate the effect of this material balance

  1. Efeito do cloreto de sódio na produção de proteínas (Saccharomyces cerevisiae em fermentação semi-sólida Effect of sodium chloride on protein production (Saccharomyces cerevisae by semi-solid fermentation

    Directory of Open Access Journals (Sweden)

    Ana Maria RODRIGUES

    2001-01-01

    Full Text Available Estudou-se o efeito do cloreto de sódio sobre a produção de biomassa e proteínas extracelulares totais, durante o cultivo de Saccharomyces cerevisiae. A levedura foi desenvonvida em fermentador de leito fluidizado, com vazão de ar de 70L/min, temperatura de 33° C, e umidade relativa de 99-100%. Foi utilizado substrato semi-sólido de batatas, previamente hidrolizado, acrescido de cloreto de sódio 0,6M. O crescimento celular foi monitorado por densidade óptica à 595 nm. Observou-se, como resultado, que a adição de cloreto de sódio 0,6M induziu um aumento de 36,86% na produção de proteínas extracelulares totais, mas inibiu o crescimento celular em 27,62% quando os meios com e sem cloreto de sódio foram testados. A produção máxima de biomassa, tanto para os experimentos com adição de cloreto de sódio quanto para o sem adição, ocorreu no período de 7 a 9 horas de fermentacão, enquanto que a produção de proteínas extracelulares totais, independentemente da adição do sal, ocorreu durante o período de 9 a 12 horas de fermentação. As velocidades específicas máximas de crescimento foram de 0,350/h para os experimentos com sal, e de 0,339/h para aqueles sem a adição do sal. A combinação de alta vazão de ar e a presença de cloreto de sódio 0,6M na fermentação parece não ter tido efeito sobre a duração da fase lag na curva de crescimento celular de Saccharomyces cerevisiae.The effect of sodium chloride on the cell's growth and total extracellular protein production during fermentation of Saccharomyces cerevisiae in an air-fluidized bed fermentation, with a 70 L/min air flow at 33° C and 99-100% relative unidity was studied. A semi-solid potato substrate (previously hydrolized with 0.6M sodium chloride was used. Cell's growth was monitored by optical density at 595 nm. Results showed that the addition of 0.6M sodium chloride enhanced total extracellular protein level (36.86%. On the other hand, the addition of

  2. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  3. Interaction between dietary content of protein and sodium chloride on milk urea concentration, urinary urea excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy cows

    NARCIS (Netherlands)

    Spek, J.W.; Bannink, A.; Gort, G.; Hendriks, W.H.; Dijkstra, J.

    2013-01-01

    Dietary protein and salt affect the concentration of milk urea nitrogen (MUN; mg of N/dL) and the relationship between MUN and excretion of urea nitrogen in urine (UUN; g of N/d) of dairy cattle. The aim of the present study was to examine the effects of dietary protein and sodium chloride (NaCl)

  4. A genetically-encoded YFP sensor with enhanced chloride sensitivity, photostability and reduced ph interference demonstrates augmented transmembrane chloride movement by gerbil prestin (SLC26a5).

    Science.gov (United States)

    Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph

    2014-01-01

    Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl- under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl- measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH.

  5. A genetically-encoded YFP sensor with enhanced chloride sensitivity, photostability and reduced ph interference demonstrates augmented transmembrane chloride movement by gerbil prestin (SLC26a5.

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    Full Text Available Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl- under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl- measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events.In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP, has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5, and shown for the first time physiological (mM chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function.Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH.

  6. Impact of the associated cation on chloride binding of Portland cement paste

    International Nuclear Information System (INIS)

    De Weerdt, K.; Colombo, A.; Coppola, L.; Justnes, H.; Geiker, M.R.

    2015-01-01

    Well hydrated cement paste was exposed to MgCl 2 , CaCl 2 and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg 2 + or Ca 2 + compared to Na + . The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H

  7. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Directory of Open Access Journals (Sweden)

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  8. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; ten Have, Bas; Hoekstra, Gerrit I.; Douma, Arjan; de Bruijn, Douwe; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in

  9. Evidence for many-body interactions in the structure of molten alkali chlorides

    International Nuclear Information System (INIS)

    Malescio, G.P.; Tosi, M.P.

    1985-02-01

    An inversion of the measured partial structure factors of molten sodium chloride is attempted in order to assess some qualitative features of interionic forces in the melt. We start from a calculation of liquid structure and thermodynamic properties by means of a refined theory based on interionic pair potentials determined from properties of the solid phase. This yields very good agreement with the measured values of the internal energy and the compressibility of the liquid, whereas discrepancies with the observed structure are mainly localized in the region of interionic distances outside the minimum of the cation-anion potential. These discrepancies, when interpreted in terms of effective pair potentials in the melt through inversion of the structural data, strongly suggest the presence of many-body effects, insofar as such effective pair potentials oscillate with the local liquid structure and are inconsistent with the measured thermodynamic quantities. A similar analysis of data on molten rubidium and cesium chloride, though harder to carry out quantitatively, supports the above conclusion. (author)

  10. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    This paper summarizes recent work on an analytical model for predicting the ingress rate of chlorides in cement-based materials. An integral part of this is a thermodynamic model for predicting the phase equilibria in hydrated Portland cement. The model’s ability to predict chloride binding...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...

  11. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    Science.gov (United States)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  12. Stability of Dexmedetomidine in 0.9% Sodium Chloride in Two Types of Intravenous Infusion Bags.

    Science.gov (United States)

    Marquis, Kathleen; Hohlfelder, Benjamin; Szumita, Paul M

    2017-01-01

    Dexmedetomidine is a frequently used sedative in the critical care setting. It is commercially available as a 4-mg/mL premixed compound or as 200-mcg/2-mL vials that must be further diluted prior to administration. However, limited data exist regarding the stability of dexmedetomidine admixtures compounded from the 200-mcg/2-mL vials, particularly for durations greater than 48 hours. Therefore, we performed stability testing on compounded dexmedetomidine prepared in two types of intravenous infusion bags for 14 days. Dexmedetomidine is available as 200-mcg/2-mL vials for dilution, 80-mcg/20-mL single-dose vials, and as 200-mcg/50-mL and 400-mcg/100-mL glass bottles. The stability of dexmedetomidine admixtures has previously been tested for 48 hours. The purpose of this analysis was to test the stability of dexmedetomidine admixtures for 14 days. Six dexmedetomidine admixtures of 200 mcg/50 mL were compounded in polyvinyl chloride and non-polyvinyl chloride bags, three of which were stored under refrigeration and three of which were kept at room temperature. High-performance liquid chromatography testing was performed to determine the concentration at Days 1 through 14. Stability was determined by taking the mean concentration of samples taken from each bag. All samples were tested in duplicate. A sample was considered stable if the concentration was greater than 90% of the original concentration. All samples retained over 90% of the drug under their respective storage conditions for the duration of the study. At time 0, the concentration of dexmedetomidine was between 3.99 mcg/mL and 4.01 mcg/mL. On Day 14, the mean concentration was between 95.8% and 98.9%, depending on the bag type and storage condition. The pH remained between 4.7 and 5.8 during the study period as has previously been reported in the literature. Dexmedetomidine admixtures of 200 mcg/50 mL were stable in both polyvinyl chloride bags and non-polyvinyl chloride bags for 14 days under refrigeration

  13. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro.

    Science.gov (United States)

    Roussos, Peter A; Pontikis, Constantine A

    2007-07-01

    Jojoba (Simmondsia chinensis L.) single node explants were cultured in a basal medium supplemented with 17.8 microM 6-benzyladenine and four levels of sodium chloride concentration (0, 56.41, 112.82 and 169.23 mM). The free, the soluble conjugated and the insoluble bound forms of polyamines (PAs) (putrescine (Put), spermidine (Spd) and spermine (Spm)) were determined monthly during a 3-month proliferation stage. Free Put and Spd were found in higher levels in the control treatment, while Spm content was higher in the salt treatments. All soluble conjugated PAs were found to be in lower concentrations in explants growing on medium supplemented with salt, while the opposite was true for the insoluble bound PAs. It appeared that certain PAs and PAs forms could play a significant role in the adaptation mechanism of jojoba under saline conditions.

  14. cis-Dichloridobis(1,10-phenanthrolinechromium(III chloride

    Directory of Open Access Journals (Sweden)

    Xiaoli Gao

    2011-02-01

    Full Text Available In the title complex, [CrCl2(C12H8N22]Cl, the CrIII ion is situated on a twofold rotation axis and displays a slightly distorted octahedral CrCl2N4 coordination geometry. The Cr environment is composed of a cis arrangement of two 1,10-phenanthroline and two chloride ligands. The chloride counter-anion exhibits half-occupation and is equally disordered over two positions.

  15. Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Monica Bregante

    Full Text Available We investigated the biophysical properties of the transport mediated by ion channels in hemocytes from the hemolymph of the bivalve Mytilus galloprovincialis. Besides other transporters, mytilus hemocytes possess a specialized channel sensitive to the osmotic pressure with functional properties similar to those of other transport proteins present in vertebrates. As chloride fluxes may play an important role in the regulation of cell volume in case of modifications of the ionic composition of the external medium, we focused our attention on an inwardly-rectifying voltage-dependent, chloride-selective channel activated by negative membrane potentials and potentiated by the low osmolality of the external solution. The chloride channel was slightly inhibited by micromolar concentrations of zinc chloride in the bath solution, while the antifouling agent zinc pyrithione did not affect the channel conductance at all. This is the first direct electrophysiological characterization of a functional ion channel in ancestral immunocytes of mytilus, which may bring a contribution to the understanding of the response of bivalves to salt and contaminant stresses.

  16. WATER AND SODIUM CHLORIDE EFFECTS ON Mimosa Tenuiflora (WILLD. POIRET SEED GERMINATION

    Directory of Open Access Journals (Sweden)

    Ivonete Alves Bakke

    2006-01-01

    Full Text Available Water shortage and saline soils of the Brazilian semi-arid northeastern region are limiting factors to the development of many plants. Jurema preta (Mimosa tenuiflora (Willd. Poiret is a small, multiple use tree that abundantly colonizes unfavorable sites, including environments with severe water stress. This work had the objective of investigating the tolerance of jurema preta seeds to water and salt stresses during germination. Seeds germination in polyethylene glycol (PEG-6000 and sodium chloride (NaCl solutions was analyzed under five different osmotic potentials (0.0; -0.3, -0.6, -0.9 and -1.2MPa, in order to simulate water and salt stress, respectively, in four 100-seed replications for each treatment. Seeds were placed into 10cmx10cmx4cm boxes, and germination accomplished in BOD germinator adjusted to 30oC. The number of germinated seeds was monitored every 24 hours, and percentage and speed of seed germination were generated from these data. Mean percentage germination in the control treatment was ~95%, reducing to 63-53% at -0.9 to -1.2-MPa PEG solutions, and to 27- 9.5% at NaCl solutions at equivalent osmotic potentials. Velocity of germination index was more affected, and decreased up to 1/8 of the control, at -0.6 MPa. Jurema preta seeds showed lower tolerance to NaCl than to water stress, and this species can be classified as a glycophyte.

  17. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    Science.gov (United States)

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.

  18. Experimental investigations on chloride effects on EAC of LAS under BWR conditions

    International Nuclear Information System (INIS)

    Herbst, M.; Roth, A.; Widera, M.

    2015-01-01

    This program was devoted to examine the principle effects of permanent and temporary chloride contaminations on environmentally assisted cracking (EAC) of low-alloy steels (LAS). Particular focus was laid on deriving a better understanding with regard to the effects of chloride on the general corrosion behavior of LAS in oxygenated high-temperature water (HTW) and to investigate the underlying mechanisms for crack initiation and propagation due to chloride assisted EAC. Therefore, systematic investigations on the effect of chloride on the EAC behavior of LAS were performed to understand and elucidate the underlying mechanisms. The overall project was therefore divided into three phases, focusing on the effect of chloride on: 1) general corrosion, 2) crack initiation, and 3) crack growth of low-alloy steels in oxygenated high-temperature water. Studies on the effect of chloride on the general corrosion behaviour were performed by immersion tests that were evaluated using electrochemical monitoring techniques and different post-test investigation methods like SEM, ToF-SIMS, and others. From the performed investigations it is concluded that the presence of small amounts of chloride in oxygenated HTW causes an incorporation of chloride into the oxide layer, a thinning of the oxide layer thickness, and pronounced pitting. The crack initiation susceptibility of LAS was investigated using CERT tests. These tests showed an increased number of crack initiation locations and a decrease of the elongation at fracture with increasing chloride concentrations. Crack growth rate tests clearly demonstrated that not the increase in the chloride concentration per se, but the conjoint occurrence of an active or dormant crack and increased chloride concentration causes an increase in the observed crack growth rates. For practical applications of LAS in oxygenated HTW the results obtained in the frame of this project clearly indicate that short term transients, as simulated in this

  19. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  20. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    Science.gov (United States)

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  1. IRIS Toxicological Review of Vinyl Chloride (Final Report, 2000)

    Science.gov (United States)

    EPA is announcing the release of the final report, Toxicological Review of Vinyl Chloride: in support of the Integrated Risk Information System (IRIS). The updated Summary for Vinyl Chloride and accompanying Quickview have also been added to the IRIS Database.

  2. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  3. Systems of pyridine, piperidine, piperazine, morpholine hydrochlorides-terbium (dysprosium) chloride-water

    International Nuclear Information System (INIS)

    Gajfutdinova, R.K.; Sharafutdinova, A.A.; Murinov, Yu.I.

    1988-01-01

    The isothermal cross section method at 25 and 50 deg C is applied to study pyridine hydrochloride-terbium chloride-water (1) piperidine hydrochloride-dysprosium chloride-water (2), piperazine dihydrochloride-dysprosium chloride-water (3) and morpholine hydrochloride-terbium chloride (4) systems. Solubility isotherma prove the formation of incongruently soluble compound of the TbCl 3 x6C 5 H 5 NxHCl composition systems (1). The individuality of the new solid phase is proved by the chemical and DTA methods. Systems (2-4) are of a simple eutonic type

  4. Pitting morphologies of zirconium base alloys in aqueous and non aqueous chloride media

    International Nuclear Information System (INIS)

    Palit, G.C.; Gadiyar, H.S.

    1988-01-01

    Pitting morphology of zirconium and Zr-Cr alloys in aqueous chloride and nonaqueous methanol + 0.4 per cent HCl solution was investigated and observed to follow different modes in these two environments. While in aqueous chloride solution pitting was transgranular and randomly oriented, in methanol-chloride solution pits were observed to initiate and propagate along the grain boundaries. In aqueous chloride solution very irregular and sponge like zirconium metal was formed inside the pit while in methanol-chloride solution the pits were crystallographic in nature. Optical microscopy has revealed that pits preferentially initiate and propagate along scratch line in aqueous chloride solution, but such was not the case in nonaqueous methanol-chloride solution. The nature and the mechanism operating in the catastropic failure of these materials are investigated. (author). 10 refs., 11 figs

  5. Hazards of lithium thionyl chloride batteries

    Science.gov (United States)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  6. Hydrophobic treatment of concrete as protection against chloride penetration

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1996-01-01

    Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Hydrophobic treatment was studied as a protection agninst chloride penetration from deicing salts. Test methods were designed. Nine hydrophobic products were tested, of which three complied to the requirements on

  7. Alkali metal bismuth(III) chloride double salts

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Andrew W. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Nicholas, Aaron; Ahern, John C. [Department of Chemistry, University of Maine, Orono, ME 04469 (United States); Chan, Benny [Department of Chemistry, College of New Jersey, Ewing, NJ 08628-0718 (United States); Patterson, Howard H. [Department of Chemistry, University of Maine, Orono, ME 04469 (United States); Pike, Robert D., E-mail: rdpike@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States)

    2016-06-15

    Evaporative co-crystallization of MCl (M = Na, K, Rb, Cs) with BiOCl in aqueous HCl produces double salts: M{sub x}Bi{sub y}Cl{sub (x+3y)}·zH{sub 2}O. The sodium salt, Na{sub 2}BiCl{sub 5}·5H{sub 2}O (monoclinic P2{sub 1}/c, a = 8.6983(7) Å, b = 21.7779(17) Å, c = 7.1831(6) Å, β = 103.0540(10)°, V = 1325.54(19) Å{sup 3}, Z = 4) is composed of zigzag chains of μ{sub 2}-Cl-cis-linked (BiCl{sub 5}){sub n}{sup 2n–} chains. Edge-sharing chains of NaCl{sub n}(OH{sub 2}){sub 6−n} octahedra (n = 0, 2, 3) are linked through μ{sub 3}-Cl to Bi. The potassium salt, K{sub 7}Bi{sub 3}Cl{sub 16} (trigonal R−3c, a = 12.7053(9) Å, b = 12.7053(9) Å, c = 99.794(7) Å, V = 13,951(2) Å{sup 3}, Z = 18) contains (Bi{sub 2}Cl{sub 10}){sup 4–} edge-sharing dimers of octahedra and simple (BiCl{sub 6}){sup 3–} octahedra. The K{sup +} ions are 5- to 8-coordinate and the chlorides are 3-, 4-, or 5-coordinate. The rubidium salt, Rb{sub 3}BiCl{sub 6}·0.5H{sub 2}O (orthorhombic Pnma, a = 12.6778(10) Å, b = 25.326(2) Å, c = 8.1498(7) Å, V = 2616.8(4) Å{sup 3}, Z = 8) contains (BiCl{sub 6}){sup 3–} octahedra. The Rb{sup +} ions are 6-, 8-, and 9-coordinate, and the chlorides are 4- or 5-coordinate. Two cesium salts were formed: Cs{sub 3}BiCl{sub 6} (orthorhombic Pbcm, a = 8.2463(9) Å, b = 12.9980(15) Å, c = 26.481(3) Å, V = 2838.4(6) Å{sup 3}, Z = 8) being comprised of (BiCl{sub 6}){sup 3–} octahedra, 8-coordinate Cs{sup +}, and 3-, 4-, and 5-coordinate Cl{sup −}. In Cs{sub 3}Bi{sub 2}Cl{sub 9} (orthorhombic Pnma, a = 18.4615(15) Å, b = 7.5752(6) Å, c = 13.0807(11) Å, V = 1818.87(11) Å{sup 3}, Z = 4) Bi octahedra are linked by μ{sub 2}-bridged Cl into edge-sharing Bi{sub 4} squares which form zigzag (Bi{sub 2}Cl{sub 9}){sub n}{sup 3n–} ladders. The 12-coordinate Cs{sup +} ions bridge the ladders, and the Cl{sup −} ions are 5- and 6-coordinate. Four of the double salts are weakly photoluminescent at 78 K, each showing a series of three excitation peaks

  8. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  9. Correction of Hemodynamics with Hypertonic Sodium Chloride Solution in Critical Conditions

    Directory of Open Access Journals (Sweden)

    P. S. Zhbannikov

    2007-01-01

    Full Text Available Objective: to assess the capabilities of small-volume hypertonic infusion in the context of early goal-directed therapy for critical conditions in surgical patients.Subjects and methods. Twenty-nine patients (SAPS II 47.5±6.81 scores operated on for generalized peritonitis (n=24 or severe concomitant injury with damages to chest and/or abdominal organs (n=5 who had the clinical and laboratory signs of a systemic inflammatory reaction were intravenously injected 4 ml/kg of 7.5% of hypertonic sodium chloride solution (HS and colloidal solution, followed by infusion and, if indicated, inotropic maintenance of hemodynamics for 6 hours in order to achieve the goal vales of mean blood pressure (BP, central venous pressure (CVP, central venous blood oxygen saturation (ScvO2, and diuresis. Plasma concentrations of sodium, chlorine, and lactate, acid-base balance, and osmotic blood pressure were monitored.Results. The patients were found to have infusion therapy-refractory critical arterial hypotension, low ScvO2, and oliguria before small-volume circulation maintenance. In all the patients, HS infusion originally caused a rapid rise in BP up to the goal value, with its further colloid infusion maintenance requiring additional dopamine infusion in 12 patients and red blood cell transfusion in 3. This could stabilize over 6 hours BP at the required level in 25 patients, in 9 of whom CVP only approximated the goal value. All the patients were found to have a significant increase in ScvO2 up to an average of 68% in response to HP infusion after 30—60 minutes; in 14 out of them ScvO2 exceeded 70%. By hour 6, ScvO2 stabilized at its goal level in 23 (79% examinees. Administration of HS caused a significantly increased diuresis. In patients with recovered renal function, the observed hypernatremia, hyperchloremia with hyperchloremic acidosis were transient.Conclusion. The results of the study show it possible to include small-volume hypertonic infusion at

  10. Lithium thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  11. Investigation of chloride-release of nuclear grade resin in PWR primary system coolant

    International Nuclear Information System (INIS)

    Cao Xiaoning; Li Yunde; Li Jinghong; Lin Fangliang

    1997-01-01

    A new preparation technique is developed for making the low-chloride nuclear-grade resin by commercial resin. The chloride remained in nuclear grade resin may release to PWR primary coolant. The amount of released chloride is depended on the concentration of boron, lithium, other anion impurities, and remained chloride concentration in resin

  12. Direct potentiometric control of chloride-ion content in water coolant of nuclear reactors

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Vilkov, N.Ya.; Krasnoperov, V.M.; Epimakhova, L.V.

    1979-01-01

    The work of automatic chloride measuring device designed for continuous determination of chloride-ion concentration in water coolants of nuclear power plants is investigated. A series of experiments have been performed to investigate a device with sensitive element in the form of potentiometric cell with two flowing porous metal silver electrodes (PSE), placed in series. A calibration circuit of chloride measuring devices and PSE is described. A comparison is made between the results obtained by means of automatic chloride measuring device and results of manual control of samples. A conclusion is drawn that automatic chloride measuring devices meet the requirements of nuclear power plants for methods and instruments of control of chloride-ions microconcentration. The development and implantation of automatic chloride-ion analizers will make the analytical control on nuclear power plants easier and make it possible to obtain more reliable information

  13. Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil

    Energy Technology Data Exchange (ETDEWEB)

    Rasa, Kimmo [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)]. E-mail: kimmo.rasa@helsinki.fi; Peltovuori, Tommi [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland); Hartikainen, Helinae [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)

    2006-08-01

    Excessive use of sodium chloride (NaCl) as de-icing chemical causes environmental problems, such as elevated chloride concentrations in groundwater. On vulnerable sites, this can be avoided by using alternative organic de-icing chemicals, such as potassium formate (KHCOO). The environmental impacts of KCHOO are, however, not well known. This study reports the potential effects of NaCl and KCHOO on mechanisms controlling the mobility of cadmium (Cd) in roadside soils as a result of vehicular traffic. Changes in the solubility of Cd in a coarse mineral soil treated with these two de-icing chemicals were studied in a 50-day incubation experiment under four different moisture and temperature combinations and an initial soil Cd concentration of 3 mg kg{sup -1}. After incubation, the distribution of soil Cd into different fractions was analyzed using a sequential extraction method. Soil pH and soil redox potential were recorded and the occurrence of Cd-Cl complexes in the soil was estimated using published stability constants. During incubation, KCHOO lowered the soil redox potential, but this was not accompanied by a decrease in the sorption capacity of oxides and the release of oxide-bound Cd into soil solution. On the other hand, elevated pH (from 4.3 to 6.7-8.5) in the formate treatments increased the sorption of Cd onto the oxide surfaces (up to 80% of total sorbed Cd). In the NaCl treatments, cation competition and formation of Cd-Cl complexes increased the water-soluble Cd fraction. Consequently, the amount of bioavailable Cd was 3.5 times smaller in the KCHOO than in the NaCl treatments.

  14. A Genetically-Encoded YFP Sensor with Enhanced Chloride Sensitivity, Photostability and Reduced pH Interference Demonstrates Augmented Transmembrane Chloride Movement by Gerbil Prestin (SLC26a5)

    Science.gov (United States)

    Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph

    2014-01-01

    Background Chloride is the major anion in cells, with many diseases arising from disordered Cl− regulation. For the non-invasive investigation of Cl− flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl− sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl− under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl− measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. Methodology/Principal Findings In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Conclusions Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH. PMID:24901231

  15. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  16. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  17. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  18. Binding of chloride and alkalis in Portland cement systems

    International Nuclear Information System (INIS)

    Nielsen, Erik P.; Herfort, Duncan; Geiker, Mette R.

    2005-01-01

    A thermodynamic model for describing the binding of chloride and alkalis in hydrated Portland cement pastes has been developed. The model is based on the phase rule, which for cement pastes in aggressive marine environment predicts multivariant conditions, even at constant temperature and pressure. The effect of the chloride and alkalis has been quantified by experiments on cement pastes prepared from white Portland cements containing 4% and 12% C 3 A, and a grey Portland cement containing 7% C 3 A. One weight percent calcite was added to all cements. The pastes prepared at w/s ratio of 0.70 were stored in solutions of different Cl (CaCl 2 ) and Na (NaOH) concentrations. When equilibrium was reached, the mineralogy of the pastes was investigated by EDS analysis on the SEM. A well-defined distribution of chloride was found between the pore solution, the C-S-H phase, and an AFm solid solution phase consisting of Friedel's salt and monocarbonate. Partition coefficients varied as a function of iron and alkali contents. The lower content of alkalis in WPC results in higher chloride contents in the C-S-H phase. High alkali contents result in higher chloride concentrations in the pore solution

  19. Chloride homeostasis and chemoreception in trigeminal sensory neurons of mice

    OpenAIRE

    Radtke, Debbie

    2012-01-01

    In der vorliegenden Arbeit konnte gezeigt werden, dass trigeminale Ganglienneurone (TGNs), im Gegensatz zu den meisten zentralen Neuronen, auch postnatal eine hohe intrazelluläre Chloridkonzentration vorweisen. Die intrazelluläre Akkumulation von Chlorid wird hauptsächlich durch den Na+-K+-2Cl- Cotransporter NKCC1 gewährleistet. Auf Grund der hohen intrazellulären Chloridkonzentration führt das Öffnen von Chlorid-leitenden GABAA Rezeptoren nicht zu einem Einstrom von Chlorid-Ionen...

  20. Reliability Assessment of a Bridge Structure Subjected to Chloride Attack

    DEFF Research Database (Denmark)

    Leira, Bernt J.; Thöns, Sebastian; Nielsen, Michael Havbro Faber

    2018-01-01

    Prediction of the service lifetime of concrete structures with respect to chloride ingress involves a number of parameters that are associated with large uncertainties. Hence, full-scale measurements are strongly in demand. This paper begins by summarizing statistical distributions based on measu......Prediction of the service lifetime of concrete structures with respect to chloride ingress involves a number of parameters that are associated with large uncertainties. Hence, full-scale measurements are strongly in demand. This paper begins by summarizing statistical distributions based...... on measurements taken from the Gimsøystraumen Bridge in Norway. A large number of chloride profiles are available based on concrete coring samples, and for each of these profiles the diffusion coefficient and surface concentration (due to sea spray) are estimated. Extensive measurements of the concrete cover...... depth are also performed. The probability distributions are input into a prediction model for chloride concentration at the steel reinforcement. By also introducing the critical chloride concentration as a random variable, the probability of exceeding the critical threshold is determined as a function...

  1. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  2. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  3. Process for the graft polymerization of polyvinyl chloride. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, E; Kusama, Y; Udagawa, A; Hashimoto, S

    1970-08-14

    The graft polymerization of acrylonitrile on polyvinyl chloride is effected by simultaneous irradiation with ionizing radiations in a reaction bath consisting of 30% acrylonitrile and 70% n-hexane. The acrylonitrile-hydrocarbon reaction bath increases the graft efficiency markedly when the content of acrylonitrile is 30%. In this case, the formation rate of acrylonitrile homopolymer decreases with a decrease in the content of acrylonitrile. The immersion time may be from a few minutes to a few hours, depending on the type, property and desired graft efficiency of the polyvinyl chloride resin. The polyvinyl chloride may be any available on the market. The acrylonitrile may contain a small quantity of copolymerizable monomer if it does not influence the thermal property of the polyvinyl chloride graft polymer. The ionizing radiations must have enough energy to form an ion pair by removing one electron from one atom of a gas. In examples, 10 g of polyvinyl chloride in powder form were immersed in 100 cc of a mixed solution consisting of 70% to 90% of n-hexane and 10% to 30% of acrylonitrile. The polyvinyl chloride in the solution was exposed to electron beams of 2 Mrad at a dose rate of 7.2 x 10/sup 7/ rad/hr. under a reduced pressure. The graft efficiency was 50% to 80% and the yield of acrylonitrile homopolymer was 0.42 g to 1.26 g.

  4. Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN.

    Science.gov (United States)

    Zhang, Heng; Gao, Xin; Chen, Keli; Li, Hui; Peng, Lincai

    2018-02-01

    In current study, cellouronic acid sodium (CAS), obtained from bagasse pith, has been introduced into poly(acrylamide-co-diallyldimethylammonium chloride) (poly(AM-co-DAC)) network to form novel thermo-sensitive semi-IPNs. The structure and morphology of the hydrogels were proved by Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effects of CAS content, initiator charge, cross-linker dosage and swelling-medium property on the thermo-responsive water absorptivity were investigated in detail. The results elucidated that the prepared gels exhibited a thermo-sensibility with an upper critical solution temperature (UCST) and a high water-absorbency. And the values of UCST and equilibrium swelling ratio largely depended on the inner structure of the semi-IPNs and the external solvent property. It was also revealed that the swelling process conformed to the Schott's pseudo second order model and diffusion type was non-Fickian diffusion. The value of activation energy for this polyelectrolyte was found to be 8.74kJ/mol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Intratesticular hypertonic sodium chloride solution treatment as a method of chemical castration in cattle.

    Science.gov (United States)

    Neto, Olmiro Andrade; Gasperin, Bernardo G; Rovani, Monique T; Ilha, Gustavo F; Nóbrega, Janduí E; Mondadori, Rafael G; Gonçalves, Paulo B D; Antoniazzi, Alfredo Q

    2014-10-15

    Castration of male calves is necessary for trading to facilitate handling and prevent reproduction. However, some methods of castration are traumatic and lead to economic losses because of infection and myiasis. The objective of the present study was to evaluate the efficiency of intratesticular injection (ITI) of hypertonic sodium chloride (NaCl; 20%) solution in male calf castration during the first weeks of life. Forty male calves were allocated to one of the following experimental groups: negative control-surgically castrated immediately after birth; positive control -intact males; G1-ITI from 1- to 5-day old; G2-ITI from 15- to 20-day old; and G3-ITI from 25- to 30-day old. Intratesticular injection induced coagulative necrosis of Leydig cells and seminiferous tubules leading to extensive fibrosis. Testosterone secretion and testicular development were severely impaired in 12-month-old animals from G1 and G2 groups (P<0.05), in which no testicular structure and sperm cells were observed during breeding soundness evaluation. Rectal and scrotal temperatures were not affected by different procedures. In conclusion, ITI of hypertonic NaCl solution induces sterility and completely suppresses testosterone secretion when performed during the first 20 days of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Radiochemical determination of methylmercury chloride Part 1

    International Nuclear Information System (INIS)

    Stary, J.; Prasilova, J.

    1976-01-01

    The isotope exchange between methylmercury species and an excess of inorganic radiomercury in sulphuric acid medium has been used for the simple determination of methylmercury chloride down to 0.01 ppm. The determination is not influenced by the presence of a great excess of other metals, however, chlorides, bromides and iodides interfere in higher concentrations. It has been found that the isotope exchange between CH 3 HgCl and 203 HgCl 4 2- (or 203 HgCl 2 ) in 0.01-3M hydrochloric acid is extremely slow, for the bimolecular reaction the rate constant is lower than 10 -3 mol -1 s -1 at 25 deg C. The isotope exchange rate between methylmercury chloride and mercuric-nitrate 0n on 0.5M sulphuric acid is higher. The isotope exchange is a bimolecular reaction with a rate constant k=0.050+-0.004 mol -1 s -1 at 25 deg C. (T.I.)

  7. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  8. Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis

    Science.gov (United States)

    Blackman, Scott M.; Raraigh, Karen S.; Corvol, Harriet; Rommens, Johanna M.; Pace, Rhonda G.; Boelle, Pierre-Yves; McGready, John; Sosnay, Patrick R.; Strug, Lisa J.; Knowles, Michael R.; Cutting, Garry R.

    2016-01-01

    Rationale: Expanding the use of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors for the treatment of cystic fibrosis (CF) requires precise and accurate biomarkers. Sweat chloride concentration provides an in vivo assessment of CFTR function, but it is unknown the degree to which CFTR mutations account for sweat chloride variation. Objectives: To estimate potential sources of variation for sweat chloride measurements, including demographic factors, testing variability, recording biases, and CFTR genotype itself. Methods: A total of 2,639 sweat chloride measurements were obtained in 1,761 twins/siblings from the CF Twin-Sibling Study, French CF Modifier Gene Study, and Canadian Consortium for Genetic Studies. Variance component estimation was performed by nested mixed modeling. Measurements and Main Results: Across the tested CF population as a whole, CFTR gene mutations were found to be the primary determinant of sweat chloride variability (56.1% of variation) with contributions from variation over time (e.g., factors related to testing on different days; 13.8%), environmental factors (e.g., climate, family diet; 13.5%), other residual factors (e.g., test variability; 9.9%), and unique individual factors (e.g., modifier genes, unique exposures; 6.8%) (likelihood ratio test, P < 0.001). Twin analysis suggested that modifier genes did not play a significant role because the heritability estimate was negligible (H2 = 0; 95% confidence interval, 0.0–0.35). For an individual with CF, variation in sweat chloride was primarily caused by variation over time (58.1%) with the remainder attributable to residual/random factors (41.9%). Conclusions: Variation in the CFTR gene is the predominant cause of sweat chloride variation; most of the non-CFTR variation is caused by testing variability and unique environmental factors. If test precision and accuracy can be improved, sweat chloride measurement could be a valuable biomarker

  9. Biochemical changes in rats under the influence of cesium chloride

    Directory of Open Access Journals (Sweden)

    N. M. Melnikova

    2013-04-01

    Full Text Available Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

  10. Corrosive gas generation potential from chloride salt radiolysis in plutonium environments

    International Nuclear Information System (INIS)

    Tandon, L.; Allen, T.H.; Mason, R.E.; Penneman, R.A.

    1999-01-01

    The specific goal of this project was to evaluate the magnitude and practical significance of radiation effects involving mixtures of chloride salts and plutonium dioxide (PuO 2 ) sealed in stainless steel containers and stored for up to 50 yr, after stabilization at 950 C and packaging according to US Department of Energy (DOE) standards. The potential for generating chemically aggressive molecular chlorine (and hydrogen chloride by interaction with adsorbed water or hydrogen gas) by radiolysis of chloride ions was studied. To evaluate the risks, an annotated bibliography on chloride salt radiolysis was created with emphasis on effects of plutonium alpha radiation. The authors present data from the material identification and surveillance (MIS) project obtained from examination and analysis of representative PuO 2 items from various DOE sites, including the headspace gas analysis data of sealed mixtures of PuO 2 and chloride salts following long-term storage

  11. Characterisation of the steel concrete interface submitted to chloride-induced corrosion

    International Nuclear Information System (INIS)

    L'Hostis, V.; Amblard, E.; Guillot, W.; Paris, C.; Bellot-Gurlet, L.

    2013-01-01

    This paper deals with the characterisation by means of electrochemical, gravimetric and analytical methods of chloride-induced-corrosion behaviour of steel coupons embedded in chloride-containing-cement pastes. Corrosion rates were estimated from electrochemical measurements as well as gravimetric ones. They vary from 2.6 to 5.7μm/year for 5 and 10 g/L chloride-containing cement pastes. Analytical characterisations (including optical and electron microscopy and Raman micro-spectroscopy) showed that corrosion patterns are not depending on the chloride content of the cement paste (5 and 10 g/L chloride in the interstitial solution). A localised corrosion pattern composed of pits growing inside the metallic substratum, a corrosion products layer (CPL) and a transformed medium (TM) was pointed out. CPL can be divided into two sub-layers (CPL1 and CPL2), characterised by the presence or absence of calcium coming from the cement matrix. (authors)

  12. Optical, thermal and magnetic studies of pure and cobalt chloride doped L-alanine cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Benila, B.S., E-mail: benjane.benila@gmail.com [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India); Bright, K.C. [Department of Physics, St. John' s College, Anchal, Kollam 691 306 (India); Delphine, S. Mary [Department of Physics, Holy Cross College (Autonomous), Nagercoil 629 004 (India); Shabu, R. [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India)

    2017-03-15

    Single crystals of L-alanine cadmium chloride (LACC) and cobalt chloride (Co{sup 2+}) doped LACC have been grown by the slow evaporation solution growth technique. The grown crystals were subjected to various characterizations such as powder XRD, SXRD, FTIR, UV–vis, EDAX, TG/DTA, VSM, Dielectric and Second Harmonic Generation (SHG) measurements. The lattice parameters of the grown crystals were determined by single crystal X-ray analysis. EDAX analysis confirms the presence of Co{sup 2+} ion in the host material. The functional group and optical behavior of the crystals were identified from FTIR and UV-vis spectrum analysis. Electrical parameters such as dielectric constant, dielectric loss have been studied. The thermal stability of the compound was found out using TGA/DTA analysis. Second Harmonic Generation of the samples was confirmed by Kurtz-Perry powder technique. Magnetic properties of the crystals studied by VSM were also reported. The encouraging results show that the cobalt chloride doped LACC crystals have greater potential applications in optical devices. - Graphical abstract: Fig (a) and (b) shows the transparent, stable single crystals of pure and doped crystals were obtained using slow evaporation technique. The sizes of pure and doped crystals are 20×9×2 mm{sup 3} and 18×15×1 mm{sup 3} respectively. Fig (c) is the Hysteresis loop traced at room temperature for the pure and doped crystals explains the soft ferromagnetic nature of the doped crystal. The provision for changing the value of coercivity can be used for security, switching and sensing applications. - Highlights: • Defect free crystals of pure and Co{sup 2+} ion doped L-alanine cadmium chloride were grown. • The optical, dielectric and magnetic properties of pure crystals were enhanced by adding Co{sup 2+} ion. • High optical transmittance was obtained in the entire visible and IR region. • Addition of dopant to the pure crystal altered the coercivity. • Low dielectric

  13. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Science.gov (United States)

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  14. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    Science.gov (United States)

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Determination of the chloride diffusion coefficient in mortars with supplementary cementitious materials

    NARCIS (Netherlands)

    Elfmarkova, V.; Spiesz, P.R.; Brouwers, H.J.H.; Bjegovic, D.; Beushausen, H.; Serdar, M.

    2014-01-01

    The Rapid Chloride Migration (RCM) test, described in the guideline NT Build 492, is one of the most commonly applied accelerated test methods in which chlorides penetrate the concrete at high rates due to the applied electrical field. The output result of the test is the chloride diffusion

  16. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  17. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  18. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels.

    Science.gov (United States)

    Zhang, Yong; Kang, Chao; Wang, Xiao-Lan; Zhou, Min; Chen, Meng-Ting; Zhu, Xiao-Hui; Liu, Kai; Wang, Bin; Zhang, Qian-Yong; Zhu, Jun-Dong; Mi, Man-Tian

    2018-03-01

    In recent decades, the association among diet, gut microbiota, and the risk of colorectal cancer (CRC) has been established. Gut microbiota and associated metabolites, such as bile acids and butyrate, are now known to play a key role in CRC development. The aim of this study is to identify that the progression to CRC is influenced by cholic acid, sodium butyrate, a high-fat diet, or different dose of dihydromyricetin (DMY) interacted with gut microbiota. An AOM/DSS (azoxymethan/dextran sodium sulfate) model is established to study the gut microbiota compsition before and after tumor formation during colitis-induced tumorigenesis. All above dietary factors profoundly influence the composition of gut microbiota and host colonic tumorigenesis. In addition, mice with DMY-modified initial microbiota display different degrees of chemically induced tumorigenesis. Mechanism analysis reveals that gut microbiota-associated chloride channels participated in colon tumorigenesis. Gut microbiota changes occur in the hyperproliferative stage before tumor formation. Gut microbiota and host chloride channels, both of which are regulated by dietary factors, are associated with CRC development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Part 5: Experimental periods using a ferrous-ferric chloride blend

    African Journals Online (AJOL)

    drinie

    A blend of ferrous chloride and ferric chloride (FeCl2-FeCl3) was simultaneously dosed into an activated sludge system at .... theoretical oxygen demand for this reaction is small, namely 0.15 ...... The role of bacterial extracellular polymers.

  20. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures